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Abstract 8 

 Cognitive sex differences have been reported in several vertebrate species, mostly in 9 

spatial abilities. Here, I review evidence of sex differences in a family of general cognitive 10 

functions that control behaviour and cognition, i.e., executive functions such as cognitive 11 

flexibility and inhibitory control. Most of this evidence derives from studies in teleost fish. 12 

However, analysis of literature from other fields (e.g., biomedicine, genetic, ecology) 13 

concerning mammals and birds reveals that more than 40% of species investigated exhibit 14 

sex differences in executive functions. Among species, the direction and magnitude of these 15 

sex differences vary greatly, even within the same family, suggesting sex-specific selection 16 

due to species’ reproductive systems and reproductive roles of males and females. Evidence 17 

also suggests that sex differences in executive functions might provide males and females 18 

highly differentiated cognitive phenotypes. To understand the evolution of cognitive sex 19 

differences in vertebrates, future research should consider executive functions. 20 

 21 

Keywords: animal cognition; animal behaviour; comparative cognition; cognitive control; 22 

cognitive ecology; individual differences; sexual dimorphism.  23 



3 
 

1. Introduction 24 

Evidence of sex differences in cognitive task performance has been reported in several 25 

vertebrate clades. The largest collection of data on cognitive sex differences comes from 26 

psychological research in human species (reviewed in Halpern, 2000; Geary, 1996; Miller & 27 

Halpern, 2014; Spelke, 2005). A broad literature is also available on laboratory rodents 28 

(reviewed in Jonasson, 2005; Luine & Dohanich, 2008), especially in translational research 29 

on stress and brain disorders (reviewed in Barha et al., 2017; Leger & Neil, 2016; Luine et 30 

al., 2017), and teleost fish (reviewed in Cummings, 2018; Lucon-Xiccato & Bisazza, 2017a). 31 

Moreover, various investigations have been conducted among species belonging to other 32 

groups, such as birds (Guigueno et al., 2014), primates (Vannucchi et al., 2020), carnivorans 33 

(Perdue et al., 2011), and reptiles (Szabo et al., 2019). 34 

The reasons for interest in cognitive sex differences vary across research disciplines. 35 

For example, in biomedical research, interest derives from the fact that many human 36 

cognitive diseases have sex-specific occurrence or aetiology (e.g., Li & Singh, 2014; Beatty 37 

& Aupperle, 2002), requiring sex-specific treatments. Moreover, translational model species 38 

often display sex differences that might hamper the results of behavioural tasks (e.g., 39 

Jonasson, 2005). For evolutionary biologists and comparative psychologists, cognitive sex 40 

differences are particularly interesting because they provide insight on the mechanisms of 41 

cognitive evolution. It is believed that cognitive abilities may evolve in response to selective 42 

pressures, as observed for other traits (Sherry, 2006). The same concept has been applied to 43 

sex differences: if a task has a different ecological relevance for the two sexes, selection is 44 

expected to determine an improvement in the performance of one sex (reviewed in Jones et 45 

al., 2003). In this light, the study of sex differences is capable of revealing how cognition 46 

responds to selective pressures, generating evolutionary changes within species. 47 
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Most of the evolutionary research on cognitive sex differences concerns spatial 48 

abilities, such as learning new navigation routes or remembering the position of a resource 49 

(reviewed in Jones et al., 2003). This is probably due to the fact that the two sexes often 50 

differ in spatial ecology and spatial behaviour, thereby providing testable predictions and 51 

interpretations for sex differences in spatial abilities. For example, Gaulin and Fitzgerald 52 

(1986) observed that males of the polygamous voles Microtus pennsylvanicus made fewer 53 

errors than females in a maze task. Because males of this species have a larger home-range 54 

size compared to females, the effect observed was attributed to the evolution of a sex 55 

difference in spatial abilities due to directional selection on males. Similarly, another study 56 

detected enhanced performance of female shiny cowbirds, Molothrus bonariensis, in 57 

memorising the position of a food reward in an array of cells; the sex difference was 58 

associated with selection on spatial memory because in this species, the female (but not the 59 

male) is required to memorise the position of the host nests (Astié et al., 1998). Similar sex 60 

differences in spatial abilities have been reported for a range of vertebrates (e.g., Lacreuse et 61 

al., 2005; Saucier et al., 2008; Wallace & Hofmann, 2021). However, in most cases, evidence 62 

indicates that the evolutionary hypotheses proposed to explain these sex differences are not 63 

substantially supported by empirical results (Jones et al., 2003). One of the causes of this 64 

problem might be the fact that researchers have often focus on few very specific cognitive 65 

tasks (e.g., spatial learning and memory tasks), while the cognitive phenotype of an 66 

individual is determined by the interaction of multiple cognitive functions.   67 

Here, I review literature on less-known cognitive sex differences that involve the so-68 

called executive functions (EFs). EFs are considered a family of top-down cognitive 69 

functions involved in cognitive and behavioural control (reviewed in Diamond, 2013): EFs 70 

are utilised when relying on automatic responses or previously learned behaviours is not 71 

sufficient to reach a goal. Studies in humans, the species most studied in this respect, 72 
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typically identify three main EFs (reviewed in Diamond, 2013): cognitive flexibility that 73 

permits to shift attention between different stimuli, and adapt behaviour to novel and 74 

unexpected situations; inhibitory control that allows individuals to overrule internal 75 

predispositions and external lures; and working memory that allows one to temporarily store 76 

and manipulate the information necessary to complete a task (Baddeley, 1992). Several 77 

studies suggest that EFs have a relatively general role in cognitive functioning, in the sense 78 

that they affect the outcome of multiple tasks (Cain, 2006; Cragg & Gilmore, 2014; Shamosh 79 

& Gray, 2008). This is usually considered evidence that EFs are activated in accord with 80 

more specific functions to reach the solution of a task (Diamond, 2013). For some authors, 81 

EFs should be regarded as domain-general cognitive mechanisms (Chiappe & MacDonald, 82 

2005). The role of EFs implies that when an animal solves, for instance, a maze task, the 83 

performance might be not only determined by a specific cognitive module that encodes new 84 

spatial information, but also by EFs recruited for the task, such as working memory to store 85 

information or inhibitory control to block impulsive wrong choices. The important role of 86 

EFs makes it critical to understand whether they contribute to cognitive sex differences.  87 

In this review, I first focussed on recent literature in teleost fish because most 88 

experiments directly aimed at comparing EFs between males and females have been 89 

performed in this group. Therefore, literature about teleost fish has provided the early 90 

evidence of widespread sex differences in EFs and still offers the most complete picture of 91 

the phenomenon. In the second part of this review, I looked for evidence of sex differences in 92 

EFs in other vertebrate groups. Considering the numerous similarities observed between the 93 

cognitive system of fish and that of other vertebrates (e.g., Bshary and Brown, 2014; 94 

Oliveira, 2016; Salas et al., 2003), I hypothesise that sex differences in EFs might be 95 

widespread among vertebrates, even if less studied. Because I found that literature on 96 

tetrapods contains a limited number of works intended to study sex differences in EFs, I 97 



6 
 

expanded the search to review literature from other fields (e.g., neural disorders, biomedicine, 98 

stress research). In the last part of the review, I analyse the putative mechanisms, 99 

evolutionary explanations, and consequences of sex differences in EFs, with the aim to 100 

suggest future research directions. 101 

 102 

2. Sex differences in executive functions in teleost fish 103 

 This first review section focussed on teleost fish. Interest on sex differences in this 104 

group has mostly arisen in the last decade but has rapidly become key in the field (Pouca & 105 

Brown, 2017). Interestingly, several studies in fish have been specifically designed to detect 106 

sex differences in EFs, a trend that is not observed in other vertebrate groups. For this reason, 107 

literature in fish provides the most compelling analysis of sex differences in EFs available to 108 

date. 109 

 110 

2.1 Reversal learning tasks 111 

A relatively extended line of research in fish has analysed the performance of males 112 

and females in the discrimination reversal learning task (sensu Shettleworth, 2009). This task 113 

requires the animal to choose a predetermined stimulus between two options via association 114 

with a reward. After the animal learns this contingency, the food-reward association is 115 

reversed requiring to select the previously unrewarded stimulus. Therefore, the reversal 116 

learning task measures the ability to modify behaviour in response to the novel contingency, 117 

which is mainly considered a form of cognitive flexibility (Boogert et al., 2010; Happel et al., 118 

2014).  119 

The studies with the reversal learning involved several fish species, all but one 120 

(discussed in section 2.3) belonging to the Poeciliidae family. The species with more 121 

experimental data is the guppy, Poecilia reticulata. In this species, sex differences in the 122 
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discrimination reversal learning task were initially studied using red-yellow plastic discs as 123 

the stimuli: the fish had to dislodge the disc with the correct colour to obtain a food rewarded 124 

underneath. Results indicated that female guppies solved the task with approximately half as 125 

many errors as males (Lucon-Xiccato & Bisazza, 2014; figure 1). Moreover, the study found 126 

that the two sexes showed similar performance in the initial learning of the colour-reward 127 

association. Therefore, the sex difference in the reversal phase was not likely due to general 128 

learning or motivation. 129 

A well-known problem is that animal cognition cannot be directly assessed, but it is 130 

inferred from task performance (Boogert et al., 2018; Rowe & Healy, 2014). Consequently, 131 

results of a single experiment should be considered carefully because it is difficult to ensure 132 

which cognitive ability determined the performance. Replication with different tasks 133 

designed to measure the same ability might confirm the involvement of the target ability. 134 

This problem might apply also to the reversal learning task. In the specific case of guppies’ 135 

sex differences, a replication was also necessary to solve a theoretical problem. Considering 136 

that female guppies display a highly flexible mate choice based on male red-orange spots 137 

(Dugatkin & Godin, 1992; Gong & Gibson, 1996), one could hypothesise that female 138 

guppies’ greater cognitive flexibility was limited to colour discrimination due to a learning 139 

predisposition (Shettleworth, 1972). To clarified these issues, in a follow-up study, Miletto 140 

Petrazzini and colleagues (2017) compared male and female guppies in a spatial and in a 141 

numerical reversal learning task, finding overall support for greater female performance 142 

difference. The coherent results from three variants of the reversal learning task (i.e., colour, 143 

spatial, and numerical discrimination) suggests that methodology and learning predispositions 144 

did not explain the findings of the first study with the colour discrimination. Overall, the data 145 

points towards the presence of a single EF that differs between the two sexes. Regarding the 146 

evolutionary explanation, it is still possible that female guppies have evolved greater 147 
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cognitive flexibility in the context of mate choice (Briggs et al., 1996; Dugatkin & Godin, 148 

1992); however, this evolutionary change has likely involved a general EF, thereby also 149 

affecting performance in other contexts, like in the spatial and numerical reversal learning 150 

tasks.  151 

A colour discrimination reversal learning task with discs as stimuli has been also used 152 

to study sex differences in three other poeciliid fish (Fuss & White, 2019). Interestingly, a sex 153 

difference favouring males was found in Poecilia mexicana, whereas male and female 154 

Poecilia latipinna demonstrated a similar performance (figure 1). Greater flexibility of males 155 

in P. mexicana was also reported in a modified version of the task which required social 156 

learning (Fuss et al., 2021); the target colour changed multiples times across the training, and 157 

the subject could identify it by observing the choice of a trained demonstrator (Fuss et al., 158 

2021). As seen in guppies, results of the reversal learning task in P. mexicana are consistent 159 

to small variations in methodological aspects, reinforcing the idea of a single EF (i.e., 160 

cognitive flexibility) that is recruited in multiple reversal learning tasks and varies between 161 

the two sexes.  162 

The whole set of data in poeciliids suggests that the pattern of sex differences in EFs 163 

is highly variable across closely related species. Considering other species and other 164 

cognitive abilities, a similar interspecific variability has been reported. For instance, Microtus 165 

pinetorum does not show the greater male spatial performance described in the congeneric M. 166 

pennsylvanicus (Gaulin & Fitzgerald, 1986). This interspecific variability has been associated 167 

to the fact that the former species is monogamous, causing males and female to share the 168 

same home range and determining relaxed selection for greater male spatial abilities. 169 

Applying the same interpretation to the reversal learning data in poeciliid fish suggests the 170 

presence of direct selection on cognitive flexibility that varies across species. 171 

 172 
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2.2 Inhibitory tasks in fish 173 

Several studies in teleost fish have addressed sex differences in inhibitory control. The 174 

performance of teleost fishes and other animals is usually measured with the detour task. The 175 

subject has to withhold the tendency to directly reach a desired stimulus placed behind a 176 

transparent barrier and rather detour the barrier (figure 2a). A simple version of the detour 177 

task developed for social fish exploits a group of conspecifics as the social stimulus (figure 178 

2a). Guppies tested with this paradigm exhibited a remarkable sex difference: males 179 

persistently tried to swim through the transparent barrier and took five times more than 180 

females to detour it and reach the stimulus (Lucon-Xiccato & Bisazza, 2017b; figure 2d).  181 

The validity of the detour task has been often criticised (e.g., van Horik et al., 2018). 182 

In particular, it might not provide a reliable indication of cognitive sex differences if the two 183 

sexes differ in one of the many factors that can affect performance, such as social motivation 184 

(Griffiths, Magurran, 1998), learning abilities (van Horik et al., 2020), or sensory capacities 185 

(Santancà et al., 2019). To control that motivation was not involved in the sex difference, the 186 

detour experiment in guppies was repeated deploying a barrier made visible with a mesh net 187 

(Lucon-Xiccato & Bisazza, 2017b). In this second version of the task, the sex difference in 188 

performance disappeared. Inhibitory control was arguably the cause of the heightened 189 

performance of females in the early version of the task because the effect was related to the 190 

presence of a transparent obstacle that made difficult to inhibit the tendency to swim directly 191 

towards the stimuli. Another confirmation was provided by a study with a different paradigm, 192 

which seems to measure the same underling inhibitory control ability (Montalbano et al., 193 

2020) but does not involve issues related to social motivation or cues from different sensory 194 

modalities (Lucon-Xiccato & Bertolucci, 2019; Lucon-Xiccato et al., 2020b). In this task, the 195 

guppies were presented with live prey sealed inside a transparent tube to measure their 196 

capacity to progressively withhold their attack behaviour (figure 2b). Results confirmed the 197 
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two-fold sex difference favouring females (Lucon-Xiccato et al., 2020a; figure 2d). With a 198 

third inhibitory task, which required to enter a transparent cylinder to reach a food reward 199 

(figure 2c), the result observed was less clear as it varied according to the dependent variable 200 

analysed: females were faster in solving the task but less accurate compared to males (Lucon-201 

Xiccato et al., 2020b; figure 2d).  202 

Data on inhibitory control have been reported for other four teleost fish, including a 203 

hermaphroditic species (discussed in section 2.3). Another poeciliid fish, the mosquitofish, 204 

Gambusia affinis, was assayed in a detour task with a social reward (Wallace et al., 2020) and 205 

showed no effect of sex (figure 2d). Brandão and colleagues (2019) administered a detour 206 

task with food reward to an African cichlid, the Nile tilapia, Oreochromis niloticus. Both 207 

males and females learned the task, but females solved it faster than males (figure 2d). A 208 

modified version of the cylinder task, in which the cylinder was placed vertically, was used to 209 

study sticklebacks, Gasterosteus aculeatus (Keagy et al., 2019), resulting in males clearly 210 

outperforming females, with scores approximately three times higher (figure 2d). 211 

Interestingly, the higher inhibitory ability of female Nile tilapia and male sticklebacks was 212 

predicted based on the sex that provides parental care. Eggs and fry are highly preferred prey, 213 

but female Nile tilapia (Brandão et al., 2019) and male sticklebacks (Keagy et al., 2019) 214 

inhibit the behaviour of feeding on them to provide parental care.  215 

Overall, evidence of sex differences in inhibitory control appears common in fish: it 216 

was detected in three out of four species investigated so far, and in all three families 217 

investigated (Poecilidae, Cichlidae, and Gasterosteidae). Studies on guppies are particularly 218 

interesting because of the replication with different paradigms. Three out of four measures of 219 

performance suggest that inhibitory capacities are greater in females of this species (figure 220 

2d). One possible explanation for this sex difference might be the presence of selection acting 221 

on males for high persistence in trying to obtain mating (Rowe et al., 2005). Interestingly, 222 
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results in guppies also suggest that the dependent variable collected might affect the outcome 223 

of the experiments (see the variable ‘correct responses’ in Lucon-Xiccato et al., 2020b). This 224 

is line with earlier reports on the importance of methodological aspects in fish cognition 225 

research (Gatto et al., 2021; Gingins et al., 2018) and can limit our ability to compare the 226 

results obtained in other species because each study used different paradigms. 227 

Methodological replications and standardisation of experimental protocols are likely 228 

important aspects to consider in future studies. 229 

 230 

2.3 Sex differences in a hermaphroditic fish 231 

Considering the studies in guppies analysed so far, it is interesting that females 232 

showed in general much greater performance than males in both the discrimination reversal 233 

learning and the detour task. This similarity may be due to two independent cognitive sex 234 

differences or to a single cognitive sex difference that affects performance in both types of 235 

task. For instance, one may argue that the reversal learning paradigm requires inhibition with 236 

some extent, when the animal withholds the choice for the previously rewarded stimulus 237 

(e.g., Tapp et al., 2003). While it is currently difficult to disentangle the two explanations 238 

based on guppies’ studies, a recent work with the cleaner fish, Labroides dimidiatus, has 239 

provided interesting insights. L. dimidiatus is a protogynous hermaphroditic fish, in which the 240 

males have previously been females. Triki and Bshary (2021) investigated sex differences in 241 

this species with both the reversal learning task and the detour task with food reward. 242 

Females showed enhanced performance compared with males in the detour task, but males 243 

were better learners in the reversal learning task. This seems to support the idea that two EFs 244 

are involved in the sex difference in discrimination reversal learning and the detour task. 245 

Additionally, the results of this study support that selection on cognitive abilities that favour 246 

one sex might determine intraspecific sexual conflict. 247 
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 248 

3. Do tetrapods display sex differences in executive functions? 249 

 Compared to fish literature, few studies in non-human tetrapods aimed at investigating 250 

sex differences in EFs. The cognitive literature in birds and mammals is, however, generally 251 

more extended compared to that of fish, encompassing many disciplines. Looking at this 252 

literature, I found EFs studies that analysed the effect of sex, even if this testing was not the 253 

primary goal of the experiment. In this section, I therefore discussed both studies aimed to 254 

test for sex differences and studies from other research fields. 255 

 256 

3.1 Evidence in birds 257 

A recent line of research by Lois-Milevicich and colleagues has focussed on sex 258 

differences in cognitive flexibility in cowbirds. In a first study on the shiny cowbird, 259 

Molothrus bonariensis, males and females were compared in the reversal learning using a 260 

shape discrimination and a left-right spatial discrimination task (Lois-Milevicich et al., 261 

2021a). A sex difference favouring females was found in the former task, whereas the two 262 

sexes demonstrated similar performance in latter task (Lois-Milevicich et al., 2021a). In both 263 

cases, males and females did not show learning differences the initial association. In a second 264 

study, shiny cowbirds were tested along with a closely related species, the screaming 265 

cowbird, Molothrus rufoaxillaris, using a modified version of the reversal learning task 266 

(Lois-Milevicich et al., 2021b). The experimenters initially trained the subjects to retrieve a 267 

food reward indicated by both a colour and position cue; then, the colour cue was dissociated 268 

from the reward. Results confirmed greater cognitive flexibility in female shiny cowbirds, but 269 

no sex difference was found in the other species. Overall, the cowbird study system 270 

highlights both similarities and differences with the studies on reversal learning in poeciliid 271 

fish. As in poeciliids, congeneric species displayed variation in the sex difference, suggesting 272 
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the presence of species-specific selective pressures on cognitive flexibility of males and 273 

females. However, there was no result agreement between reversal learning variants in the 274 

species tested multiple times: M. bonariensis displayed sex differences only in two out of 275 

three reversal learning tasks. Notably, in the task with no sex differences (the spatial reversal 276 

learning), females’ average performance was (non-significantly) higher compared to males 277 

(Lois-Milevicich et al., 2021a). Considering the low number of subjects tested (5 males and 6 278 

females), it cannot be excluded that the experiments did not achieve sufficient power to 279 

detect a small sex difference. Before concluding that in this species the sex difference does 280 

not involve a cognitive flexibility function with general effects, it is important to conduct 281 

more experiments and possibly, analyse all the available data with a meta-analysis approach. 282 

The literature in birds does not contain other studies performed to compare the two 283 

sexes in the reversal learning task. However, behavioural ecology studies have in some cases 284 

used this paradigm for other purposes and then included the effect of sex as predictor in the 285 

statistical analysis. Sex difference favouring males was found in zebra finches, Taeniopygia 286 

guttata (Brust et al., 2013) and no sex differences in six other avian species (Aphelocoma 287 

coerulescens, Zenaida aurita, Amazona amazonica, Parus major, Nestor notabilis, and 288 

Corvus corax; table 1). Therefore, sex differences in the reversal learning task in birds were 289 

reported in two out of nine species tested. 290 

Considering inhibitory control, sex differences in birds were purposely investigated in 291 

one study on the effects of androgens by Rogers (1974). She found a greater performance of 292 

female chickens in a task in which subjects had to switch searching for food from an old to a 293 

novel location. Further data derives from other fields of cognitive research. In the pheasant 294 

Phasianus colchicus, two studies have reported contrasting results; one found no sex 295 

difference in the detour task (VanHorik et al., 2018) and the other found higher score of 296 

males in a task requiring to feed on a reward presented in changing locations (Meier et al., 297 
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2017). In three other avian species, the sex was not a significant predictor of performance in 298 

the cylinder task (Stow et al., 2018; Vernouillet et al., 2016).  299 

Overall, birds displayed some evidence of sex differences in EFs, despite the low 300 

number of studies focussing on this effect. It is worth noting that the absence of an effect in 301 

great tits, P. major, and kea, N. notabilis, was confirmed by two independent studies, 302 

strengthening the credibility of these null results. 303 

 304 

3.2 Cognitive flexibility and inhibitory control in mammals 305 

If we exclude humans (see Gaillard et al., 2021), literature in mammals contains only 306 

a couple of studies aimed at searching sex differences in cognitive flexibility, and both were 307 

performed in rodents. Guillamón and colleagues (1986) compared male and female 308 

laboratory rats using a T-maze reversal learning task in which the two arms of the maze had 309 

different colour. The two sexes showed no difference in the initial learning, but when the 310 

reward contingency was reversed, females outperformed males. A study recently found no 311 

sex differences in the bank vole, Myodes glareolus with a spatial reversal learning task 312 

(Mazza et al., 2018). 313 

As observed in birds, the lack of studies on sex differences in mammals can be 314 

compensated by looking at the literature of other fields such as genetic and stress diseases 315 

(table 1). In this literature, discrimination reversal learning studies evidenced sex differences 316 

favouring females in pigs, Sus domesticus, and pigtailed macaque monkeys, Macaca 317 

nemestrina (Ha et al., 2011; Roelofs et al., 2017). Conversely, reversal learning experiments 318 

in other four mammalian species did not detect sex differences (dog: Brucks et al., 2017; 319 

horse, Equus ferus caballus: Fiske & Potter, 1979; marmoset, Callithrix jacchus: LaClair & 320 

Lacreuse, 2016; baboon, Papio sp.: Rodriguez et al., 2011). 321 
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Considering tasks aimed to study inhibition, a study reported difficulties in inhibit a 322 

distraction in male rhesus monkeys, Macaca mulatta, compared to females (Loyant et al., 323 

2021). Studies on drugs abuse in laboratory rodents (mice and rats) have suggested that 324 

generally males have more difficulties in inhibiting prepotent responses compared to females 325 

(reviewed in Weafer & deWit, 2014). In the A-not-B task, in which subjects had to deal with 326 

a stimulus that changed position across different trials, goats did not show sex differences 327 

(Raoult et al., 2021). Last, studies on dogs’ inhibitory control reported quite consistently a 328 

similar performance in males and females with various tasks: cylinder task and A-not-B task 329 

(Faganani et al., 2016); a task requiring to ignore a preferred, but unobtainable, food reward 330 

(Bray et al., 2014); a battery of three inhibitory tasks (Brucks et al., 2017). 331 

It is possible to conclude that literature in mammals provides evidence of sex 332 

differences in cognitive flexibility and inhibitory control, possibly more often compared to 333 

birds’ literature. Also in this group, the number of studies with the aim of examining sex 334 

differences is small. 335 

 336 

3.3 Working memory in mammals 337 

In mammals, an extended literature has investigated working memory. This form of 338 

memory is recruited to work with information that is no longer perceptually present 339 

(Diamond, 2013). Although determining the presence of sex differences was often not the 340 

primary aim of the studies on working memory, evidence of such effect has been reported. A 341 

study found that male rhesus monkeys were more proficient than females in a task requiring 342 

memorising a set of locations (Lacreuse et al., 2005). In another primate, the marmoset, no 343 

sex differences were reported in a similar task (LaClair & Lacreuse, 2016). In laboratory 344 

rodents, a larger amount of data on working memory is available, especially with a task 345 

called the radial arm maze. The apparatus consists in a central platform with a series of 346 
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(usually eight) radial arms containing a food reward. Working memory errors are recorded 347 

when the subject enters a previously visited, and thus not baited anymore, arm. Sex 348 

differences have been often reported with the radial maze (reviewed Jonasson, 2005) but 349 

variability in the experimental protocol and rearing environment have produced results that 350 

are difficult to interpret (reviewed Jonasson, 2005). For instance, Seymoure and colleagues 351 

(1996) found greater performance of male rats in the radial arm maze. Conversely, Bimonte 352 

and Denenberg (2000) analysed other task parameters and concluded that aspects of 353 

performance different from working memory were involved in the sex difference. This 354 

literature on working memory suggests that tetrapods might show sex differences in EFs 355 

other than cognitive flexibility and inhibitory control. Research on working memory is 356 

however restricted to very few taxa compared with that on cognitive flexibility and inhibitory 357 

control. 358 

 359 

3.4 Reptiles and amphibians 360 

 Data on sex differences in EFs are essentially absent in two main tetrapod groups 361 

(figure 3). In reptiles, only one study analysed sex differences in discrimination reversal 362 

learning, finding greater male performance (Szabo et al., 2018). In amphibians, no results on 363 

sex differences in EFs have been published, to the best of my knowledge. 364 

 365 

3.5 Comparison between tetrapods and teleost fish 366 

Overall, sex differences in inhibition and flexibility were found in 40% mammalian 367 

species and in almost 30% avian species investigated (figure 3). This occurrence is lower 368 

compared to that observed in teleost fish (~70%). Evidently, these numbers might be affected 369 

by variability in the number of species studies across taxa, which is reported in figure 3a. The 370 

difference between fish and other groups might be also affected by the fact that few studies 371 
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were directly aimed at investigating sex differences in tetrapods. Lack of intentionality might 372 

have artefactually increase the occurrence of null findings by inflating type II errors. A few 373 

species of mammals and birds have been tested multiple times, usually finding consistent 374 

results in sex differences, such as for inhibitory control in dogs and reversal learning in mice 375 

and great tits. This suggests that at least part of the null results might be reliable. On the other 376 

hand, for some species, inconsistencies between studies associated with methodology have 377 

been detected, such as for pheasants. It is currently unclear whether this interspecific 378 

variability is due to methodological issues or involvement of different cognitive abilities to 379 

solve the two tasks. At the current stage, it is also difficult to exclude that the high occurrence 380 

of sex differences in fish was due to a publication bias towards significant results. Regarding 381 

data collected in guppies in my laboratory, this does not apply because we routinely publish 382 

also ‘negative’ results on sex differences (e.g., Lucon-Xiccato & Bisazza, 2016; Lucon-383 

Xiccato & Bisazza, 2017b; Lucon-Xiccato & Dadda, 2016). A formal analysis of publication 384 

bias including other studies was not possible due to a restricted range in the studies’ sample 385 

size (all the experiment but one tested between 10 to 15 subjects per sex).  386 

 Despite the uncertainties about the exact occurrence and difference between 387 

taxonomic lineages, this literature review clearly demonstrates that sex differences in EFs are 388 

potentially common in vertebrates including tetrapods. 389 

 390 

4. Current challenges and future directions 391 

 The aforementioned records reveal several aspects of the literature that deserve 392 

attention in future research: studies show marked gaps in the taxonomy of the species and in 393 

the EFs investigated; the evolutionary causes and mechanisms have not been addressed; the 394 

consequences of sex differences in EFs are not clear. The present section of the review is 395 

intended to provide a starting point for future research aimed at addressing these aspects. 396 
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 397 

4.1 Literature gaps 398 

The first literature gap highlighted by the review is related to taxonomic distribution 399 

of the species investigated. Most of the relevant research on EF sex differences has been 400 

conducted in teleost fish; the reason for this is unclear. Fish might have greater sex 401 

differences in EFs, perhaps because of their large sexual variability in ecology, mating 402 

system, brain and behaviour (Kotrschal et al., 2012; Magurran & Garcia, 2000). If this is true, 403 

it might have facilitated the discovery of EF sex differences in fish. Another explanation 404 

could be simply that this group has grown in importance concerning cognitive research in 405 

recent years (Brown et al., 2011; Bshary and Brown, 2014). This expansion might have 406 

prompted researchers to explore and develop new lines of investigation, including that of sex 407 

differences in EFs. Notably, within the teleost fish taxonomic gaps are also evident, with no 408 

data available for many important orders. The absence of data on the zebrafish, Danio rerio, 409 

is particularly unexpected given that this species is commonly used as model in behavioural 410 

research. Developing research in the zebrafish would be advantageous given the unique 411 

genetic and brain imaging tools available for this model. 412 

In mammals and birds, part of the literature gap was filled with data retrieved in 413 

studies from other disciplines. This allowed the present review to detect evidence of sex 414 

differences in EFs even in the absence of studies with such goals. However, the question is 415 

open as to whether these studies allow one to deduct robust conclusions. If a study was 416 

intended to address the effect of a certain factor on an EF, testing males and females was 417 

probably an indirect consequence of random subjects’ selection. Hence, the researchers might 418 

have not chosen a sample size adapted to statistically detect sex differences, inflating type II 419 

errors. It also worth noting that more data on this phenomenon might be present in the 420 

literature of other disciplines: many studies might have tested males and females in EF tasks 421 
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without then adding the sex as predictor in the statistical analysis. For both these reasons, the 422 

literature on birds and mammals reported in this review likely underestimates the actual 423 

presence of sex differences. The most evident literature gap regards amphibians and reptiles, 424 

for which studies of sex differences are basically absent. The reason for this gap is probably 425 

that cognitive research in these groups is still relatively scarce compared mammals, birds and 426 

fish. Yet, knowledge in amphibians and reptiles remains important to unravel the evolution of 427 

sex differences (Matsubara et al., 2017). Evidently, a priority for future research is to expand 428 

the taxonomic coverage of data with studies specifically designed to test for sex differences 429 

in EFs. This is also true for invertebrates. While they were not on the focus of this review, 430 

they will undeniably provide interesting insights in the evolution of cognition. Some 431 

invertebrate species can be tested with EF tasks (Hadar & Menzel, 2010) and have been 432 

already studied for sex differences in learning (Tierney & Andrews, 2013). 433 

The second main literature gap concerns the EFs investigated. Most of the studies 434 

have measured cognitive flexibility and inhibitory control, and this bias cannot be entirely 435 

explained by methodological limits. Appropriate paradigms to measure other EFs are indeed 436 

available. For example, data on sex differences in working memory are absent in fish, despite 437 

the development of aquatic versions of the radial maze (Hughes & Blight, 1999). It is also 438 

striking that most research has focussed on discrimination reversal learning and detour tasks, 439 

whereas paradigms commonly used in other research fields have not been deployed. For 440 

instance, a large amount of the literature on inhibitory control exploits the A-not-B task (e.g., 441 

MacLean et al., 2014) or the delayed gratification task (Koepke et al., 2015; Aellen et al., 442 

2021). Increasing the number of EFs investigated and the number of tasks used per each EF is 443 

paramount to obtain more reliable conclusions, particularly considering the potential 444 

methodological inconsistencies between studies highlighted in this review. When more data 445 

is available, a meta-analysis approach might be useful to evaluate the presence of the sex 446 
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differences (Miletto-Petrazzini et al., 2017). Cognitive differences within species, such as 447 

between the two sexes, are expected to be small, thereby increasing the chance of type II 448 

errors. A meta-analysis based on effect size should be more sensitive in detecting small 449 

effects than the results of a single test with the conventional statistical approach. 450 

 451 

4.2 Evolutionary causes of sex differences in executive functions 452 

Because the literature is mostly descriptive, the evolutionary causes of sex differences 453 

in EFs have not been addressed.  However, current knowledge on cognitive evolution permits 454 

speculation on various hypotheses, which require formal testing once the literature 455 

encompasses more species. A first hypothesis derives from the observation of a conspicuous 456 

variation in the presence and direction of EFs sex differences, including between closely 457 

related species. Remarkably, the poeciliid family displayed all possible scenarios of sex 458 

differences in the reversal learning task (P. reticulata: female > male; P. mexicana: female < 459 

male; P. latipinna: female = male; figure 1). The observed variability is consistent with the 460 

role of direct selection due to species-specific requirements. In the absence of such selection, 461 

we would expect closely related species to display the same sex difference due to 462 

phylogenetic signals, in disagreement with the observed data. Therefore, in some species, an 463 

EF might be involved in the solution of a task that is more relevant for one of the two sexes, 464 

causing direct selection for sex difference in such EF.  465 

Sexual selection is perhaps the main candidate source for sex-specific requirements in 466 

EFs (Cummings, 2018; Jones et al., 2003; Lucon-Xiccato & Bisazza, 2017a). For example, 467 

female guppies’ greater cognitive flexibility and inhibitory control might be associated with 468 

females’ highly flexible mate choice (Dugatkin & Godin, 1992; Gong & Gibson, 1996) 469 

and/or male persistence in trying to mate (Magurran & Seghers, 1994). Accordingly, P. 470 

mexicana, in which males showed higher flexibility compared to females, almost entirely 471 
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lacks male courtship displays (Ptacek, 2002). Similar interpretations may apply to mammals, 472 

in which sex differences in discrimination reversal learning tasks exclusively favour females 473 

(table 1). Findings in Nile tilapia and stickleback suggest that selection might be also driven 474 

by parental cares (Brandão et al., 2019; Keagy et al., 2019). Data on birds supports this 475 

hypothesis; in the Passeriformes, a taxon of mostly monogamous species, four out of six 476 

species showed no sex difference in reversal learning (table 1). Other types of selection 477 

deserve consideration, at least for some species. Quite commonly, a species shows sexual 478 

niche segregation (Catry et al., 2006; Kie & Bowyer, 1999; Wearmouth & Sims, 2008), 479 

arguably determining different ecological requirements for the two sexes. These ecological 480 

differences might provide selection for sexual dimorphic cognition. Future studies should 481 

address these hypotheses by taking into account species ecology and phylogeny. 482 

Selection for cognitive sex differences in EFs might be favoured if they have greater 483 

evolvability compared to other cognitive functions. Under this circumstance, if solving a task 484 

with sex-specific relevance requires an EF and another, more specific cognitive function, then 485 

selection is expected to act preferentially on the EF. Evolvability is considered the capacity to 486 

generate phenotypic variability that is heritable (Kirschner & Gerhart, 1998). Heritable 487 

variability in EFs is commonly observed in humans (Carlson & Moses, 2001; Friedman et al., 488 

2008; Schachar et al., 2010; Vogel & Machizawa, 2004) and recently, evidence is growing to 489 

the phenomenon in other vertebrates such as primates (Völter et al., 2018), rodents (Kearns et 490 

al., 2006), dogs (Gnanadesikan et al., 2020), birds (Meier et al., 2017; vanHorik et al., 2018), 491 

and teleost fish (Buechel et al., 2018; Lucon-Xiccato & Bertolucci, 2020; Lucon-Xiccato et 492 

al., 2019; Lucon-Xiccato et al., 2020a; Lucon-Xiccato et al., 2020b; Macario et al., 2021). 493 

Critically, data on a fish and a mammal species suggest that EFs’ variability is greater 494 

compared to that of other cognitive functions (Bray et al., 2021; Lucon-Xiccato et al., 2020a), 495 

which may determine greater evolvability for EFs. It remains difficult to validate this 496 
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hypothesis due of lack of extended comparisons between variability and heritability across 497 

cognitive abilities. Different evolvability of cognitive traits is certainly a promising research 498 

field, not only for understanding sex differences. 499 

Most of the above hypotheses on why EF sex differences exist assume some form of 500 

direct selection. However, direct selection might be not required. EFs are often related to 501 

other traits that undergo sex-specific selection, which might indirectly cause the evolution of 502 

sex differences in EFs. One of these relationships involves personality (Carere & Locurto, 503 

2011), namely individual variation in behaviours such as exploration, boldness, and 504 

sociability. Personality has genetic bases (Dochtermann et al., 2015), and its variability is 505 

maintained by frequency-dependent selection due to fluctuating environmental conditions 506 

(Dingemanse & Réale, 2005). Correlational studies have reported a significant relationship 507 

between EFs and personality at the individual level in various species (Ferland et al., 2015; 508 

Gomes et al., 2020; Lucon-Xiccato et al., 2019). Critically, the two sexes differ regarding 509 

personality (Buirski et al., 1978; Irving & Brown, 2013). Considering all these points, it is 510 

possible to hypothesise that selection acting on sex differences in personality might indirectly 511 

cause the two sexes to also differ in the covarying EFs. Personality and other traits that 512 

covary with EFs should therefore be considered as potential indirect sources of selection, 513 

provided that the covariation has genetic bases. 514 

 515 

4.3 Proximate mechanisms of sex differences in executive functions 516 

Another unanswered question is related to the proximate mechanisms that selection 517 

has targeted determining sex differences in EFs. Hormonal mechanisms are perhaps the most 518 

promising to investigate. Hormonal levels often vary between the two sexes and have broad 519 

effects on cognition and behaviour (Gray, 1971; Mills et al., 1997). For example, circulating 520 

testosterone predicts spatial abilities in men (Silverman et al., 1999), and experimental 521 
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administration of exogenous testosterone increases rats’ performance in spatial learning and 522 

memory tasks (Hawley et al., 2013; Spritzer et al., 2011). Some studies suggest that 523 

hormones have similar effects on EFs (Sanman et al., 1973; Wallin & Wood, 2015). For 524 

instance, Rogers (1974) demonstrated that male chickens treated with testosterone showed 525 

decreased ability to inhibit a learned response whereas they showed the opposite change 526 

when treated with antiandrogens. A study in rats found that sex differences in reversal 527 

learning can be reversed by female androgenisation and male orchidectomy (Guillamón et al., 528 

1986). These studies convey that hormones might be a mechanism at the base of sex 529 

differences in EFs. Notably, the hormonal action can be of two kinds. Circulating hormones 530 

might have modulatory effects that alter brain functioning, which is in line with most 531 

experimental evidence (e.g., Guillamón et al., 1986). However, hormones might also have 532 

organisational effects that trigger long-term changes in the brain anatomy and the neural 533 

circuitry, especially during development (Falter & Davis, 2006). These organisational 534 

changes might determine sex differences in EFs, although a test of this hypothesis in humans 535 

provided no support (Wierenga et al., 2019). 536 

Interestingly, one study reported that African striped mice, Rhabdomys pumilio, 537 

display sex differences in reversal learning in winter, but the effect disappears in summer 538 

(Rochais et al., 2021). This suggests possible seasonal variability in sex differences in EFs, as 539 

observed for various other cognitive functions (e.g., Galea et al., 1996; López-Olmeda et al., 540 

2021). It is conceivable that eventual sexual differences related to reproduction would be 541 

plastic in those species that do not reproduce through the entire year. Regarding the 542 

mechanisms, seasonal cognitive fluctuations have been typically associated with seasonal 543 

fluctuations in sexual hormones (Kimura & Hampson, 1994), reinforcing the need to 544 

investigate hormonal effects on EFs.  545 
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Brain substrates are an additional factor to consider as they can determine sex 546 

differences in EFs via various mechanisms. In humans, functional neuroimaging studies 547 

strongly support the idea that sex differences in EFs are associated with differential activation 548 

of neural networks (reviewed in Gaillart et al., 2021). In other species, we know too little 549 

about fine brain functioning to properly test this hypothesis, although EFs’ brain substrates 550 

are beginning to be analysed in a few species (monkeys: Puig & Miller, 2015; rats: Kesner & 551 

Churchwell, 2011; guppies: Triki et al., 2022). Some results are however promising. Brain 552 

lateralisation, which is often different between the two sexes (e.g., Reddon & Hurd, 2008), 553 

has been show to affects individuals’ inhibitory control in fish (Lucon-Xiccato et al., 2020c). 554 

Moreover, in sticklebacks, the sex with greater performance in an EF task has much larger 555 

relative brain size compared to the other sex (Kotrschal et al., 2012). These data suggest an 556 

involved of brain activation and structure on sex differences in EFs that deserves further 557 

attention.  558 

Besides hormonal effects and brain substrates, some mechanisms for sex differences 559 

might be less obvious. Among the others, recent studies suggest a potential role of 560 

neuropeptides: orexin affects reversal learning in mice in a sex-dependent manner (Durairaja 561 

& Fendt, 2021). Moreover, a study in mice has reported that sex chromosomes also determine 562 

reversal learning performance (Aarde et al., 2021). Future studies should evaluate these and 563 

other mechanisms with a comprehensive approach.  564 

 565 

4.4 Potential impact of sex differences in executive functions on cognitive performance 566 

Sex differences in EFs might have profound impact on a range of cognitive tasks and 567 

complex behaviour. A key characteristic of EFs is that they are recruited as building blocks of 568 

more complex cognitive processes (reviewed in Diamond, 2013). Consequently, when an 569 

animal handles a certain cognitive task, at least one EF is likely involved, along with more 570 
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specific abilities. The impact of EFs in various cognitive tasks is well-established in humans 571 

(Cain, 2006; Cragg & Gilmore, 2014; Shamosh & Gray, 2008). For example, individuals with 572 

higher inhibitory control scores tend to perform better in mathematical tasks (Gilmore et al., 573 

2013). Research on cognitive traits covariation is less developed in other animal species, but 574 

growing evidence seems to support a widespread effect of EFs on cognitive performance 575 

(Beran & Hopkins, 2018; Chandra et al., 2000; Chow et al., 2019; Hauser et al., 2002; Müller 576 

et al., 2016). For instance, Beran and Hopkins (2018)’ study of 40 chimpanzees reported 577 

positive correlations between performance in an inhibitory control task and the scores in 578 

several other cognitive tasks measuring tool use, gaze/point comprehension, object 579 

permanence, rotation, transposition, gesture production, attention-getting behaviours, and 580 

numerical abilities. 581 

The effects of EFs on various cognitive processes lead to a prediction related to sex 582 

differences: if the two sexes differ in terms of an EF, then their cognitive performance is 583 

expected to differ, in the same direction, in all the tasks in which such an EF is involved. To 584 

the best of my knowledge, there have been no direct tests of this prediction yet. I performed 585 

an exploratory review of the literature on the species with more data related to cognitive sex 586 

differences, the guppy. Results seems to support the prediction: females, which possess more 587 

efficient EFs (section 2.1 and 2.3), outperformed males in 8 out of the 9 (chi-squared test: 588 

Χ21=5.444, P=0.020) sex differences observed in other cognitive tasks (table 2).  589 

The example of guppies leads to the conclusion that evolution of differences in EFs 590 

between the two sexes likely allows selection to produce well-differentiated cognitive 591 

phenotypes for males and females. For instance, if one sex is selected for greater cognitive 592 

flexibility, it should outperform the other sex in all situations requiring switches between 593 

different behavioural responses, such as when a resource is depleted and the animal is 594 

required to find a new source. In extreme circumstances, one can hypothesise that a sex 595 
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differences in EFs might even favour niche divergence between the two sexes. Cognitive 596 

differences might (at least in part) contribute to the evolution of sexual segregation by 597 

increasing the fitness of one sex in a certain environment. It will be critical to investigate 598 

cognitive sex differences in a broader framework that includes a species’ ecology to fully 599 

understand their evolutionary consequences.  600 

A second consequence of the broad impact of sex differences in EFs is that we might 601 

need to re-evaluate some of the previously discovered sex differences in other cognitive 602 

abilities. Many cognitive tasks for which sex differences have been reported, such as spatial 603 

mazes, might be indeed affected by EFs. If this occurs, then the differential performance of 604 

males and females (previously attributed to a specific cognitive ability) might be rather due to 605 

the sex difference in EFs. This has been observed for sex differences in human working 606 

memory that have been shown to explain previously reported sex differences in spatial 607 

abilities (Kaufman, 2007; Wang & Carr, 2014). With this in mind, it should not be assumed 608 

that all the sex differences depend on EFs (Postma et al., 2004). The most likely possibility is 609 

that sex-specific selection might act on various abilities, targeting either an EFs, causing 610 

therefore widespread effects, or a more specific cognitive trait. Factors such as differences in 611 

evolvability discussed before might favour one situation over the other. 612 

From an empirical point of view, a more comprehensive collection of data on 613 

cognitive traits will help to identify which option better applies to each species. Batteries of 614 

cognitive tasks are currently available for a few species of mammals and birds (e.g., Arden & 615 

Adams, 2016; Beran & Hopkins, 2018; Damerius et al., 2019; Shaw et al., 2015) and could 616 

be used for this purpose. These batteries of tests allow one to measure potentially dozens of 617 

traits and therefore study their covariance and relative interference in cognitive tasks. The 618 

structure of covariance between traits should be carefully considered in developing this 619 

research strategy. Some psychological theories assume that one latent factor, known as 620 



27 
 

general intelligence or g, explains a large deal of cognitive variance (Plomin & Spinath, 621 

2002). According to some authors, this general intelligence factor is strictly related to or 622 

perhaps actually is an EF (Convay et al., 2003). These aspects are still highly debated in 623 

human psychology and little understood outside the human species, but they should be not 624 

ignored when dealing with EFs. 625 

 626 

5. Conclusions 627 

The literature on teleosts, mammals, and birds reveals that at least 40% of vertebrate 628 

species and almost two out of three orders investigated display sex differences in EFs. If 629 

these data are plotted across the entire vertebrate clade, sex differences in EFs might be 630 

extremely common. This family of cognitive functions is worth investigating in future studies 631 

of sex differences, along with those traditionally investigated such as spatial abilities. The 632 

magnitude and direction of sex differences in EFs is highly variable and potentially 633 

associated with sexual selection during mate choice and parental care. It is therefore 634 

important to implement the current research with hypothesis-driven studies in species chosen 635 

based on their mating system and other ecological traits. Critically, the marked gaps in the 636 

species investigated should be filled to allow generalised conclusions. This review has also 637 

underlined that sex differences in EFs could affect the entire cognitive phenotypes of males 638 

and females. Intriguingly, the sex differences previously described in various cognitive tasks 639 

might be at least partially due to sex differences in EFs, although this does not rule out that 640 

sex differences might also evolve outside EFs. Studies that investigate EFs and other 641 

cognitive functions simultaneously, and thereby dissect the structure and components of 642 

cognitive sex differences, are necessary. Research on sex differences is a rapidly growing 643 

field of animal cognition. As our understanding of how cognition evolves remains limited, 644 

sex differences may provide an invaluable ground for testing evolutionary hypothesis and 645 
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unravelling selective mechanisms that cause two ‘populations’ of the same species to diverge. 646 

In this line of research, it is paramount to start considering the role of EFs thoroughly, which 647 

may account for a large portion of cognitive sex differences observed in a species. 648 
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Figure captions 1312 

Fig. 1 1313 

Variability of cognitive sex differences in poeciliid fish: the colour discrimination 1314 

reversal learning task. Data retrieved from Lucon-Xiccato and Bisazza (2014) and Fuss and 1315 

Witte (2019). Bars represent a relative index based on the number of errors to the learning 1316 

criterion: (mean female errors - mean male errors) / mean female errors. Negative and 1317 

positive values indicate greater performance of males and of females, respectively. 1318 

 1319 

Fig. 2 1320 

Sex differences in inhibitory control in teleost fish. Three paradigms adopted to study 1321 

inhibitory control in dioecious species: (a) detour task, (b) cylinder task, and (c) tube task. (d) 1322 

Results on sex differences in inhibitory control tasks in teleosts; bars represent a relative 1323 

index calculated as (mean female performance - mean male performance) / mean female 1324 

performance; negative and positive values indicate greater performance of males and of 1325 

females, respectively. 1326 

 1327 

Fig. 3 1328 

Distribution of sex differences in executive functions across vertebrates. (a) Number of 1329 

taxa investigated. (b) Percentage of taxa with sex differences detected corrected for the 1330 

number of taxa investigated; percentage was not calculated in reptiles due to the presence of a 1331 

single study. Data are separated according to the main vertebrate groups and three taxonomic 1332 

levels (indicated by bar colour). The two panels of the figure should be read together: due to 1333 

binomial error sampling, the number of taxa investigated affects the calculation of the 1334 

percentage of taxa showing sex differences. 1335 

 1336 
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Tables 1338 

Table 1 1339 

Sex differences in discrimination reversal learning tasks in tetrapods. F > M, M > F, and = 1340 

indicate greater performance of females, greater performance of males, and no sex 1341 

differences, respectively. 1342 

Vertebrate group Order / Family Species Result Study 

Mammals Primates 
Cercopithecidae 

Pigtailed macaque 
monkey, Macaca 

nemestrina 
F > M Ha et al., 2011 

Mammals Primates 
Cercopithecidae Baboon, Papio sp. = Rodriguez et al., 

2011 

Mammals Primates 
Callitrichidae 

Marmoset, 
Callithrix jacchus = LaClair & 

Lacreuse, 2016 

Mammals Carnivora 
Canidae 

Dog, Canis lupus 
familiaris = Brucks et al., 2017 

Mammals Perissodactyla 
Equidae 

Horse, Equus ferus 
caballus = Fiske & Potter, 

1979 

Mammals Artiodactyla 
Suidae Pig F > M Roelofs et al., 2017 

Mammals 
Rodentia 
Muridae Laboratory rat F > M 

Guillamón et al., 
1986 

Mammals Rodentia 
Muridae 

Laboratory mouse = Whitehouse et al., 
2017 

Mammals Rodentia 
Muridae 

Laboratory mouse = Brigman et al., 
2008 

Mammals 
Rodentia 
Cricetidae 

Bank vole, Myodes 
glareolus = Mazza et al., 2018 

Mammals 
Rodentia 
Caviidae 

Guinea pig, Cavia 
procellus = Jonson et al., 1976 

Birds Psittaciformes 
Psittacidae 

Amazon parrot, 
Amazona 

amazonica 
= Cussen & Mench, 

2014 

Birds Psittaciformes 
Nestoridae 

Kea, Nestor 
notabilis = O’Hara et al., 2015 

Birds Psittaciformes 
Nestoridae 

Kea, Nestor 
notabilis = Laschober et al., 

2021 

Birds Passeriformes 
Corvidae 

Raven, Corvus 
corax = Range et al., 2006 

Birds Passeriformes 
Corvidae 

Florida scrub-jay, 
Aphelocoma 
coerulescens 

= Bebus et al., 2010 

Birds Passeriformes 
Paridae 

Great tit, Parus 
major = Hermer et al., 2018 

Birds Passeriformes 
Paridae 

Great tit, Parus 
major = Titualer et al., 2012 

Birds 
Passeriformes 

Estrildidae 

Zebra finch, 
Taeniopygia 

guttata 
M > F Brust et al., 2013 

Birds Passeriformes 
Icteridae 

Shiny cowbirds, 
Molothrus 
bonariensis 

F > M Lois-Milevicich et 
al., 2021a 
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Birds Passeriformes 
Icteridae 

Screaming 
cowbirds, 
Molothrus 

rufoaxillaris 

= Lois-Milevicich et 
al., 2021b 

Birds Passeriformes 
Icteridae 

Shiny cowbirds, 
Molothrus 
bonariensis 

F > M Lois-Milevicich et 
al., 2021b 

Birds Columbiformes 
Columbidae 

Zenaida dove, 
Zenaida aurita = Boogert et al., 2010 

Reptiles Squamata 
Scincidae 

Tree skink, 
Egernia striolata M > F Szabo et al., 2018 
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Table 2 1344 

Studies reporting cognitive sex differences not involving executive functions in guppies, P. 1345 

reticulata. F > M and M > F indicate greater performance of females and of males, 1346 

respectively. 1347 

Cognitive ability Task 
Direction of the 
sex difference Study 

Innovation 
Discovering food in 
a maze F > M Laland & Reader, 1999 

Innovation Discovering food in 
a maze 

F > M Reader & Laland, 2000 

Social learning 
Learning a foraging 
patch from 
conspecifics 

F > M Reader & Laland, 2000 

Numerical abilities 
Selecting the larger 
available social 
group 

F > M Lucon-Xiccato et al., 2016 

Numerical abilities 
Learning to select a 
stimulus with more 
dots 

F > M Miletto Petrazzini et al., 2017 

Spatial abilities 
Learning the route 
in a maze M > F 

Lucon-Xiccato & Bisazza, 
2017b 

Spatial abilities 
Learning the route 
in a maze F > M 

Lucon-Xiccato & Bisazza, 
2017c 

Problem solving Learning to dislodge 
a disc hiding food 

F > M Fuss & Witte, 2019 

Problem solving Learning to dislodge 
a disc hiding food 

F > M Lucon-Xiccato et al., 2020b 
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