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Abstract. Drawing inspiration from the extended finite element method (X-FEM), we propose for 
two-dimensional elastic fracture problems, an extended virtual element method (X-VEM). In the 
X-VEM, we extend the standard virtual element space with the product of vector-valued virtual 
nodal shape functions and suitable enrichment fields, which reproduce the singularities of the exact 
solution. We define an extended projection operator that maps functions in the extended virtual 
element space onto a set spanned by the space of linear polynomials augmented with the 
enrichment fields. Several numerical examples are adopted to illustrate the convergence and 
accuracy of the proposed method, for both quadrilateral and general polygonal meshes. 
Introduction 
Numerical techniques for the solution of problems that admit singular or discontinuous solutions 
such as fracture propagation in solids have attracted significant attention in the last two decades. 
Among these, enriched finite element approximations based on the partition-of-unity concept [1] 
and the eXtended Finite Element Method (X-FEM) [2] have become widely popular. More 
recently, extended finite element formulations for polygonal meshes have been proposed [3] even 
though, on polygonal elements, the construction of shape functions is generally cumbersome and 
additional numerical integration issues must be carefully addressed [4]. The Virtual Element 
Method (VEM) is a stabilized Galerkin scheme proposed in [5] to solve partial differential 
equations on general polygonal meshes that overcomes many of the difficulties related to standard 
polygonal finite element formulations. The VEM can be looked at as a generalization of the Finite 
Element Method (FEM) in which the explicit knowledge of the basis functions is not needed, since 
the bilinear form and the continuous linear functional deriving from the variational formulation, 
are approximated by means of elliptic projections of the basis functions onto suitable polynomial 
spaces, which turn out to be computable from the degrees of freedom of the method. More recently, 
taking inspiration from the X-FEM, an eXtended Virtual Element Method (X-VEM) has been 
proposed in [6,7], for the scalar Laplace problem with singularities and discontinuities, and in [8] 
for fracture problems in two-dimensional linear elasticity. Here, we summarize the main finding 
related to the extended virtual element formulation for linear elastic fracture problems proposed in 
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[8], in which the displacement field exhibits both crack-tip singularities and discontinuities. An 
enriched virtual element space is constructed by resorting to an additional set of virtual basis 
functions, starting from suitably chosen vectorial enrichment fields which allow to incorporate 
additional information about the exact solution, improving numerical accuracy in the presence of 
singularities. The X-VEM for elastic fracture proves to be more flexible with respect to the X-
FEM since it is applicable to arbitrary polygonal meshes, while using a very simple one-
dimensional quadrature rule for the computation of all the integrals involved. 
Two-dimensional elasticity model 
Let us consider a linear elastic body occupying the two-dimensional domain Ω ∈ ℝ2, bounded by 
Γ  cut by a traction-free internal crack cΓ . We denote the displacement field on Ω  by u(x) and 
assume small strains and displacements. The boundary is such that u t cΓ = Γ ∪Γ ∪Γ . Prescribed 
displacements 0 ( )uCg∈ Γ  are imposed on uΓ , whereas tractions 0 ( )tCt ∈ Γ  are imposed on tΓ . 
Let 𝛔𝛔 be the Cauchy stress tensor. In the absence of body forces, equilibrium equations read 
 0 in ,σ∇⋅ = Ω   (1) 

with the natural boundary conditions 

 
on ,
on ,

t

c

σ n t
σ n 0
⋅ = Γ
⋅ = Γ

  (2) 

where n is the unit outward normal, and the essential boundary condition 
 on .uu g= Γ   (3) 

The small strain tensor ε  is related to the displacement field u by the compatibility equation 

 ( )1( ) ( ) ( ) .
2

Tε u u u= ∇ +∇   (4) 

Lastly, the isotropic linear elastic constitutive for a homogeneous material reads 
 ( ) : ( ),σ u C ε u=   (5) 

Where C  is the fourth-order elasticity tensor. 
To state the weak form of the problem we define the test function space as: 

 { }1 2
0 [ ( )] : 0 on , discontinuous on .u cU Hv v v= ∈ Ω = Γ Γ   (6) 

The weak form of the equilibrium equation reads as: Find the admissible displacement field 𝐮𝐮 
such that 

 0( , ) : ( ) : ( ) : .( )
t

a dx d b Uu v σ v ε u t v v v
Ω Γ

= = ⋅ Γ = ∀ ∈∫ ∫   (7) 

Extended virtual element formulation 
We now summarize the formulation of the extended virtual element method for fracture problems 
in two-dimensional elasticity presented in . Let { }h hΤ = Ω  be a family of decompositions of 𝛺𝛺 into 
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nonoverlapping polygonal elements 𝐸𝐸 with nonintersecting boundary E∂  , barycenter 
( , )T

E E Ex yx ≡  , area | |E  , and diameter ,supE Eh x y x y∈= − . 
Enrichment with singular fields. The main concept of the X-VEM is to enrich the standard 

virtual element space by means of independent fields carrying information about the singularities 
affecting the exact solution. For the problem at hand, we choose the enrichment fields 1/2ˆ /I I hu u=  
and 1/2ˆ /II II hu u= , where Iu and IIu  are the exact asymptotic crack-tip displacement fields for 
mode I and mode II crack opening respectively, and h the maximum elemental diameter of the 
mesh [8]. We observe that these fields satisfy equilibrium. In order to define the extended virtual 
element space, we first introduce the local virtual element space ,*( )h EV : 

 { },* ( ) ( , ) ( ) : ,h h h h T h h h
x y x yE v v E v vV v V= = ∈ =   (8) 

where 
2

( ) ( )h hE V EV  =    with ( )hV E the standard virtual element space, spanned by the scalar 

virtual basis functions { } 1
EN

i i
ϕ

=
 . Hence, the space ,*( )h EV  is generated by the linear combination 

of the basis functions { }*

1
( , ) ENT

i i i i
ϕ ϕ ϕ

=
= . Then, we define the matrices Iψ  and IIψ  as 

 
ˆ ˆ0 0

, ,
ˆ ˆ0 0

I II
x xI II

I II
y y

u u
u u

ψ ψ
   

≡ ≡   
      

  (9) 

so that the local extended virtual element space ( )h
X EV  reads as 

 ,* ,*( ) ( ) ( ) ( ).h h I h II h
X E E E EV V V Vψ ψ≡ ⊕ ⊕   (10) 

A basis of this space can be obtained as the union of the basis functions of ( )h
X EV , ,*( )I h EVψ  

and ,*( )II h EVψ . Therefore, at every enriched node the vector-valued field ( )h
Xv x  that belongs to 

the extended virtual element space ( )h
X EV  is characterized by four values and for an element 

whose nodes are all enriched, we have 4 EN  degrees of freedom. We denote the basis functions of 
( )h

X EV  by the symbol iϕ  , 1,..., 4 Ei N=  , where 

 

( ,0) for 1 2 , odd,
(0, ) for 1 2 , even,
ˆ ˆ( , ) for 1 2 3 ,

ˆ ˆ( , ) for 1 3 4 .

T
i E

T
i E

i I I T
x i y i E E

II II T
x i y i E E

i N i
i N i

u u N i N

u u N i N

ϕ

ϕ
ϕ

ϕ ϕ

ϕ ϕ

 ≤ ≤


≤ ≤
=  + ≤ ≤
 + ≤ ≤

  (11) 

Finally, the extended global virtual element space h
XV  reads: 

 ( ){ }21
|: ( ) .h h h h

X X X E X hv H v E EV V = ∈ Ω ∈ ∀ ∈Ω    (12) 

Since 4
1{ } EN

i iϕ =  are not known in the interior of the element, we construct a convenient projection 
operator that allows to compute the approximations 𝑎𝑎𝑋𝑋ℎ (⋅,⋅):𝐕𝐕𝑋𝑋ℎ(𝐸𝐸) × 𝐕𝐕𝑋𝑋ℎ(𝐸𝐸) → ℝ  and    
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𝑏𝑏𝑋𝑋ℎ(⋅):𝐕𝐕𝑋𝑋ℎ(𝐸𝐸) → ℝ  of the exact bilinear form ( , )a ⋅ ⋅   and the linear functional ( )b ⋅  appearing in 
(7). The extended virtual element formulation then reads: Find ,

h h
X X gu V∈   such that 

 ,0( , ) ( )h h h h h h h
X X X X X X Xa bu v v v V= ∀ ∈   (13) 

where the bilinear form  ( , )h
Xa ⋅ ⋅  is built element-wise as 

 ,( , ) ( , ) , ,h h h h E h h h h h
X X X X X X X X X

E
a au v u v u v V

∈Ω

= ∀ ∈∑   (14) 

and we set ( ) ( ).h h h
X X Xb v b v=  To construct a bilinear form 𝑎𝑎𝑋𝑋

ℎ,𝐸𝐸(⋅,⋅) which is computable from the 
degrees of freedom, we extend the vector-valued linear polynomial space 1( )E℘  to a subspace 

X℘  of ( )h
X EV  which includes the linear polynomials and the additional enrichment functions ˆ Iu  

and ˆ IIu . Such space is spanned by the eight linearly independent vector fields representing the 
three fundamental rigid body motions, the three independent deformation modes and the two 
enrichment fields: 

 
ˆ ˆ1 0 0

( ) span , , , , , , , .
ˆ ˆ0 1 0

I II
x x

X I II
y y

u u
E

u u
η ξ η
ξ η ξ

                ℘ =                    −                
  (15) 

We then define the extended elliptic projection operator : ( ) ( )a h
X X XE EVΠ →℘  for each 

element E, which is the solution of the following variational problem: 

 ( ) : ( ) ( ) : ( ) ( ),a h h
X X X X X X X

E E

d dx Eσ q ε v x σ q ε v qΠ = ∀ ∈℘∫ ∫   (16) 

with the additional conditions 

 
,

( ) ( ) ,

a h h
X X X

a h h
X X R X R

v v

v v

Π =

Π =
  (17) 

where ( )⋅  and ( )R⋅  represent the average translation and rotation. Then, the local extended 
bilinear form can be computed as: 

 
( ) ( )

( )

, ( , ) ( ), ( ) ( ), ( )

( ( )) : ( ( )) ( ), ( ) ,

h E h h E a h a h E h a h h a h
X X X X X X X X X X X X X X

a h a h E h a h h a h
X X X X X X X X X X X

E

a a S

d S

v w v w v v w w

σ v ε w x v v w w

≡ Π Π + −Π −Π

= Π Π + −Π −Π∫
 

 (18) 

where ( , )E
XS ⋅ ⋅  is a suitable stabilization term needed to guarantee linear consistency and 

stability of the method. According to the virtual element methodology, ( , )E
XS ⋅ ⋅  can be any 

symmetric, positive definite, continuous bilinear form defined on the kernel of the extended 
projection operator a

XΠ . In [8], we provide two possible choices of the stabilization term by 
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considering the standard dofi-dofi and D-recipe formulations in our extended setting. Such choices 
are widely accepted in the VEM literature and in some cases they were theoretically proved to be 
effective to guarantee stability. 
Numerical examples 
Patch test. We first conduct an extended patch test, addressing the enrichment with singular fields. 
The extended patch test ensures that the singular enrichment fields can be exactly reproduced using 
the X-VEM. To this aim, we consider a square elastic plate that occupies the region 2( 1,1)−  under 
plane strain conditions, with a horizontal crack of unit length that extends from ( 1,0)−  to (0,0) . 
A coarse mesh of 64 polygonal elements are considered, where all the nodes in the domain are 
enriched the near-tip displacement fields are imposed on the boundary of the domain by requiring 
that all the enriched boundary degrees of freedom are equal to 1 and all the standard boundary 
degrees of freedom are equal to 0. The relative error in strain energy for the extended patch tests 
is of the order of 1210− . 

 

 
Figure 1:  X-VEM convergence in strain energy for the mixed-mode benchmark problem with 

both topological and enrichment strategies enrichment. 
Convergence study. We investigate the convergence of the X-VEM for the problem of a 

twodimensional square plate under plain strain conditions in the presence of a horizontal crack, 
extending from the boundary to the center of the specimen. The geometry of the domain is the 
same adopted as that for the extended patch test. On the boundary of the domain, we apply the 
exact near-tip mixed mode I and mode II displacement fields, which are also employed as 
enrichment fields for the X-VEM and represent the exact solution for the problem at hand. Both 
quadrilateral and general polygonal meshes are considered. To compute the element stiffness 
matrix, we follow two different strategies: topological enrichment and geometric enrichment. In 
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the topological enrichment, we only enrich the node located at the singularity of the solution 
whereas in geometric enrichment we enrich all the nodes within a given radius from the origin. As 
in extended finite element methods, due to the presence of the singularity in the crack tip, the 
theoretical convergence rate for this problem is R = 1 that is non-optimal. As shown in Fig. 1, both 
VEM and X-VEM with topological enrichment converge in strain energy with a rate close to 1, in 
agreement with theory. It turns out that the X-VEM is insensitive to the type of mesh 
(quadrilaterals or polygons), and the results from the X-VEM are consistently more accurate than 
those from standard VEM. In order to establish if the proposed X-VEM can deliver the optimal 
convergence rate R = 2 that is predicted by theory, we enrich all nodes that are located within a 
ball of radius 0.5er =   from the origin. As shown in Fig. 1, in the case of geometric enrichment, 
the convergence rate is close to 2, which is consistent with theory. 
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