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Abstract
Temperature is one of the most fundamental drivers governing microbial nitrogen (N) dynamics in
rivers; however, the effect of climate change-induced warming on N processing has not been
sufficiently addressed. Here, annual, and seasonal (spring and summer) N loads exported from the
Po River watershed (Northern Italy), a worldwide hotspot of eutrophication and nitrate pollution,
are investigated in relation to water temperature trends over the last three decades (1992–2019).
Despite large inter-annual variations, from the early 1990s, the Po River experienced a significant
reduction in total N loads (−30%) represented mainly by nitrate, although agricultural N surplus
in croplands and other watershed conditions have remained constant. In parallel, the Po River
water is steadily warming (+0.11 ◦C yr−1, for average annual temperature) and the number of
warm days is increasing (+50%, in the spring–summer period). The inverse relationship between
water temperature and N loads strongly indicated that the higher temperatures have boosted the
denitrification capacity of river sediments along the lowland reaches. Overall, over the last three
decades, annual total N loads declined by around one-third due to a near 3 ◦C increase in
temperature and this evidence was even more marked for the summer season (−45% for total N
loads and+3.5 ◦C for temperature). Based on these observations, it is suggested that near-term
effects of climate change, i.e. warming and an increase in the duration of low-flow periods in
rivers, may have negative feedback on eutrophication, contributing to partially buffer the N export
during the most sensitive period for eutrophication.

1. Introduction

Anthropogenic reactive nitrogen (N) inputs in agri-
cultural watersheds have dramatically increased
during the 20th century, with multiple detrimental
environmental effects including water pollution,
eutrophication, aquatic ecosystem functioning, biod-
iversity loss, and human health impacts [1–3]. The
interaction between land use, hydroclimatic, and
biogeochemical drivers over space and time mainly
influences N use efficiency in croplands, runoff rates,
and riverine N export from watersheds [4–6]. The
amounts of N that reach coastal zones depend on
an array of processes occurring across the landscape

(e.g. crop uptake, leaching from the soil, nitrifica-
tion, denitrification, etc) that are temperature- and
precipitation-dependent. Thus, the alteration of the
hydrological cycle and thermal regimes under cli-
mate change scenarios is expected to significantly
affect both themagnitude and timing of N processing
and delivery to inland waters and ultimately the sea
[7–9]. Changes in precipitation frequency, intensity,
and duration alter watershed hydrological cycles by
emphasizing extreme hydrologic events (floods and
droughts) and, consequently, the seasonality of N
load generation and transport from land to aquatic
ecosystems via runoff. Reductions in precipitation
and higher evaporation rates are expected to decrease
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discharge in summer, whereas higher winter rainfall
or periods with short-term but heavy precipitation
likely result in increased discharge and N leaching
from agricultural areas outside the growing season
[10, 11].

Studies on climate change and river water qual-
ity have almost exclusively focused on assessing the
impact of altered hydrological regimes on runoff and
nutrient loss from croplands and riverine transport.
However, the impact of climate change on watershed
biogeochemical cycles (N in particular) depends not
only on changes in precipitation and runoff but also
on water temperature changes. While trends in cli-
matic variables (i.e. air temperature and precipita-
tion) arewell documented inmanywatershedsworld-
wide, studies concerning the trajectories of riverwater
temperature are still limited due to the scarcity of
long-term and high-resolution datasets. Thus, the
effect of climate warming on the thermal regime and
thus on microbial activity and N budget of river
systems is still understudied [e.g. 12–14]. Warmer
waters may stimulate, both directly and indirectly, the
N-removal capacity of rivers, thereby reducing the
amount of N transported to coastal zones. Denitri-
fication, the anaerobic reduction of nitrate (NO−

3 )
to N gas, is regarded as one of the main regulating
ecosystem functions provided by rivers and is a cru-
cial process that counteracts eutrophication [15, 16].
Like all microbial processes, denitrification is con-
trolled by temperature, and higher water temperat-
ures also enhance sediment oxygen demand and the
extent of hypoxic or anoxic conditions in the benthic
compartment [17, 18].

An interesting scientific question is how water-
sheds react to climate change with respect to N
inputs to water bodies and the resulting timing of
in-stream transformation, removal, and transport
processes. For example, increasing water temperat-
ure induced by climate change, especially in sum-
mer, may strengthen the N-removal capacity of
rivers, thereby attenuating the N loads transported
to coastal zones during the most eutrophication-
sensitive period. Studies targetingNbudgets inwater-
sheds and related N loads and processing in rivers are
usually conducted on an annual scale [4, 6, 19].Whilst
annual N export is a useful indicator in temporal
or comparative studies, is not sufficient for assessing
eutrophication risk. The management of the timing
and impacts of N export requires the detailed quanti-
fication of seasonal N loads, particularly in spring and
summer when eutrophication potential is the highest
in terminal water bodies [20, 21].

In the Mediterranean region, which is charac-
terized by warm dry summers and wet winters, the
impacts of climate change may be among the most
severe worldwide [5, 22, 23]. The Po River basin
(Northern Italy) is a worldwide hotspot of eutroph-
ication and NO−

3 pollution and, as such, represents
a useful study area that has been experiencing high

flow variation and increased frequency and severity
of air temperature anomalies and drought over the
last few decades [19, 24–28]. Comprehensive studies
have demonstrated a significant increase in bothmin-
imumandmaximum temperature extremes in all sea-
sons in Northern Italy, although the strongest warm-
ing trends have been detected from the early 1980s in
summer, with an average rate of change of approxim-
ately 0.5 ◦C every 10 years together with an increasing
frequency of heatwaves, which has resulted in a longer
growing season [29–32].

In human-impacted watersheds, the study of N
load formation, transport, and delivery is a key issue
for implementing environmental policies aimed at
protecting the coastal zones, with strong implications
for productive sectors and urban wastewater man-
agement, and it must necessarily consider the climate
change that is altering the inland waters. At present, it
remains unknown whether climate change and water
temperature affect in-stream N processing and trans-
port in the Po river. To address this knowledge gap,
for the first time, the present study explored the rela-
tionship between the Po River water temperature and
N loads over the last three decades (1992–2019). The
main hypothesis is that the occurrence of higher tem-
peratures over longer periods boosts the sedimentary
microbial processes responsible for N removal (i.e.
nitrification and denitrification) and, thus, decreases
N export to the Adriatic Sea, particularly during the
spring and summermonths, themost sensitive period
for eutrophication.

2. Materials andmethods

2.1. Study area
The Po River is the longest river in Italy, flowing east-
ward across Northern Italy for over 650 km (figure 1),
and is also the largest river, with an average discharge
of ∼1500 m3 s−1 at its closing section [33]. The Po
drainage basin extends over an area of ∼75 000 km2,
a large portion of which constitutes the widest and
most fertile lowland in Italy (∼47 000 km2). The
Po River is supported by both Alpine and Apen-
nine’s tributaries, fed mainly by snowmelt and rain-
fall, respectively, resulting in an annual flow regime
that is characterized by two flood periods (in spring
and late autumn) and two low-water periods (in sum-
mer and winter) [34]. The basin covers the transition
zone between the sub-continental climate of Central
Europe and the Mediterranean climate, with an aver-
age annual precipitation of approximately 1200 mm
[35]. The Po River basin is densely urbanized and
an intensely exploited area, accounting for 40% of
Italy’s gross domestic product and 35% of national
agricultural production. With some of the highest
rates of N losses to surface water and groundwater
[19, 36, 37], this region is responsible for approxim-
ately two-thirds of the total nutrient inputs to the
Northern Adriatic Sea [38–40].
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Figure 1.Map of the Po River basin and its hydrographic network. The blue line represents the main Po River course, and the two
monitoring stations are indicated as black triangles. The borders of the Italian Regions are shown as gray lines with the following
main cities indicated: Turin (TO), Milan (MI), Parma (PR), Mantua (MN), and Ferrara (FE).

2.2. Datasets of river water temperature
Accurate and continuous water temperature data-
sets, representative of the middle-lower reach of the
Po River, were acquired from two monitoring sta-
tions, operated by energy companies, located at the
cooling water intake of the power plants. Daily aver-
age water temperature data were recorded near the
city of Piacenza (Emilia-Romagna Region, stream
kilometer 330) at La Casella Power Station by the
ENEL group (Italian multinational manufacturer
and distributor of electricity and gas; www.enel.com/
it/media/esplora/ricerca-foto/photo/2020/03/italia-c
entrale-la-casella) from 1992 to 2005, and at Piacenza
Power Station by the A2A Life Company Group
(www.a2a.eu/en/group) from 2006 to 2019, giving
a complete dataset for the period 1992–2019. Water
temperature measurements were carried out using
resistance temperature detector (RTD) probes with
platinum Pt100 resistance thermometers having a
nominal resistance of 100 Ω at 0 ◦C defined accord-
ing to IEC 751 (EN 60751) .Other sensor character-
istics: measuring range 0–40 ◦C; accuracy ±0.1 ◦C
at 0◦ C; 4-wire connection; signal conversion elec-
tronics with 4–20 mA output in measuring range
0 ◦C–40 ◦C. The validation procedure to reconstruct
a continuous three-decade time series is reported
in the supplementary material 1. From temperature
daily data, the annual and seasonal trends in average
values were analyzed for the spring (April–June) and
summer (July–September) periods.

2.3. Calculation of riverine N loads
Monthly NO−

3 and ammonium (NH+
4 ) loads and

total nitrogen (TN) exported to the Adriatic Sea

were calculated using discharge and concentration
datasets for the study period (1992–2019) at
the closing section of the Po River basin, which
is conventionally located at Pontelagoscuro
(44◦53′19.34′′N, 11◦36′29.60′′E) near the city of
Ferrara (Emilia-Romagna Region; stream kilo-
meter 586). Daily average discharge was acquired
from the permanent records of a gauge oper-
ated by the Environmental Agency (ARPAE) of
the Emilia-Romagna Region and retrieved from
the ‘Hydrological Annals—Second Part’ pub-
lished by ARPAE, the electronic versions of which
are available on the Regional Open Data Portal
(https://simc.arpae.it/dext3r/). Nitrogen species con-
centrations were obtained from fortnightly (or
monthly) sampling campaigns carried out by ARPAE
under the framework of the environmental monit-
oring program (https://dati.arpae.it/group/acqua).
Sample collection and analysis were performed
in accordance with standard methods and analyt-
ical protocols adopted by regional environmental
agencies [41]. When not provided, TN concen-
trations were calculated from the concentrations
of DIN (NO−

3 + NH+
4 ) according to the formula

TN = 0.93 × DIN + 0.75 (r2 = 0.54; p < 0.001),
obtained by relating time series including simultan-
eous TN and DIN measurements.

Nutrient loads were calculated as the product
of the daily discharge and nutrient concentra-
tion (measured fortnightly or monthly and inter-
polated to daily intervals) and aggregated into
monthly means. The method employed for the
monthly load calculation was based on the lin-
ear interpolation of concentration values between
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two subsequent sampling events [42, 43], as
follows (1):

L= k ·
n∑

j=1

Cint
j ·Qj (1)

where Cj
int is the daily N species concentration

(g N m−3) linearly interpolated between two meas-
ured samples, Qj is the daily discharge (m3 s−1), n
is the number of days in each month, and k is a
conversion coefficient to take the recorded period
into account (e.g. 365 d for annual loads). Sea-
sonal load trends in the spring and summer periods
(t N season−1) were evaluated according to the fol-
lowing monthly clustering: April–June (spring) and
July–September (summer). Annual loads (t N yr−1)
were computed by summing up all the monthly con-
tributions. To validate the annual loads calculated by
the interpolation concentrationmethod, the obtained
values were compared to those calculated by flow-
adjusted concentration method. Flow-adjusted con-
centrations are commonly employed for assessing
annual loads and are recommended in monitoring
guidelines [44] and international conventions (e.g.
OSPAR-Convention for the protection of the mar-
ine environment of the North-East Atlantic) [45],
but they are not valid for calculating monthly (and
thus seasonal) loads because the environmental mon-
itoring quality programs typically carry out just one
sampling permonth. A very good correlation between
the annual values calculated by the two methods was
found (r2 = 0.99, p < 0.001) and a discrepancy of
about 5% on average (see supplementary material 2).

With the aim of assessing if long-term nutrient
load trends might be mediated by the Po River water
temperature trends, monthly flow-normalized loads
(Ln) were calculated according to [46] to remove the
effects of varying inter-annual hydrological condi-
tions on N transport:

Ln= L ·Kh (2)

whereKh (hydrological coefficient). The hydrological
coefficient was obtained as the ratio of the long-
term (period 1992–2019) average outflow of a spe-
cific month to the monthly outflow of a particular
year. The annual normalized loads were computed by
summing up the monthly normalized loads. Simil-
arly, the seasonal normalized loads were calculated by
summing up the normalized loads from April to June
and from July to September, for spring and summer
period, respectively.

2.4. Reconstruction of historical changes in diffuse
and point N sources
Because the Po River basin is among the most agri-
culturally productive and densely populated areas in
Italy, changes in agricultural practices and popula-
tions could result in changes in riverine N load-
ing. The temporal evolution of diffuse and point N

sources in the watershed was checked by collecting
census data at an almost 10 year time interval for
agricultural land occupied by different crop types
and production systems, numbers of farmed animals,
synthetic fertilizer application practices, and human
population. Statistics were integrated in a N budget-
ing approach previously applied to several sub-basins
of the Po River system [37, 47, 48]. Details regarding
the data sources, computational methods, and uncer-
tainty assessment of the diffuse and point N sources
are presented in supplementary material 3.

2.5. Statistical analyses
Annual and seasonal time series of temperature, riv-
erine N loads, and water flow were analyzed using
parametric (linear regression) and non-parametric
tests (Mann–Kendall, Sen’s slope, and Pettitt’s test).
Pearson correlation analysis was used to investigate
the relationship between temperature and riverine N
loads. All statistical tests were performed using the
software R (Core Team, 2021) with the Kendall pack-
age for the Mann–Kendall test and the Trend pack-
age [49] for the other analyses. The tested factors
and trends were considered statistically significant at
p < 0.05. Details of the statistical tests are presented in
supplementary material 4.

3. Results and discussion

3.1. Nitrogen load trends
During the period 1992–2019, the annual TN
loads at the closing section of the Po River basin
showed a significant negative trend (p < 0.05,
figure 2(a)), decreasing by nearly 33%, correspond-
ing to a reduction of approximately 2000 t yr−1.
Depending on outflow variations linked to pre-
cipitation, the TN export varied greatly among
years, ranging between ∼68 000 t N yr−1 (2007
and 2017) and ∼237 000 t N yr−1 (1996). As is
commonly found in agricultural settings [15, 16],
the nitrate load accounted, on average, for >75%
(range = 62%–86%) of the TN load, whereas the
contribution of NH+

4 was comparatively minor
(range = 1%–5%) (figure 2(a)). Compared to the
early 1990s, the NO−

3 load declined over the study
period by more than 30% (p < 0.05, figure 2(a)),
showing inter-annual variations that coincided with
those detected in the TN load. The highest annual
NO−

3 export (∼160 000 t yr−1) occurred in 1996,
while the lowest amount (∼50 000 t N yr−1) occurred
in both 2007 and 2017. Over the study period, the
annual NH+

4 load decreased by approximately two-
thirds (p < 0.001, figure 2(a)) from ∼6300 t N yr−1

in the early 1990s to less than 2000 t N yr−1 in recent
years. The hydrological conditions have also varied
significantly during this period, although there has
been no significant long-term trend in the annual
outflow. For example, 2007 and 2017 were extremely
dry, with outflow values 42%–45% lower than the
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Figure 2. Temporal trends in nutrient loads (NH+
4 , NO−

3 ,
and other N forms) and outflow measured at the closing
section of the Po River basin on an annual basis (panel (a)),
in spring (panel (b)), and in summer (panel (c)).
NH+

4 +NO−
3 + other N forms= TN. Note that the Y-axis

differs between the panels.

long-term average and corresponding to lower N
transport. Conversely, 2014 was an extremely wet
year with an annual outflow >50% higher than the
long-term average, and consequently higher N trans-
port. In the Po River, early signals of climate change

effects have been reported over the last three decades,
when hydrological extremes have become progress-
ively amplified [19, 33, 34], with large floods followed
by persistent drought conditions [50, 51].

The trajectories of riverine N loads were not
related to human pressures, productive sectors and
the associated generation of N loads from diffuse and
point sources. Indeed, the N balance across the cro-
plands of the Po River basin revealed a steadily con-
stant surplus during the 1990–2019 period, averaging
∼180 kt N yr−1 (figure 3). The total N input during
this period was estimated to exceed 600 kt N yr−1,
mostly derived bymanure spreading (36%), synthetic
fertilizers (33%) and biological fixation (26%). The
total N output during the study period was estim-
ated to exceed 430 kt N yr−1, mainly associated with
crop harvesting (74%). Total watershed N inputs to
croplands showed a slight decline in 2010 (∼14%)
with respect to the previous two decades, but this was
coupled to a decrease also in total N outputs (∼15%)
resulting, if the associated uncertainty is considered,
in a net budget (i.e. surplus) not significantly different
over the studied period.While the human population
in the Po River basin has remained relatively constant
over the last three decades at∼17 million, important
legislative acts aimed at improving urban wastewa-
ter treatment plants (e.g. Directive 91/271/EEC) were
followed by an appreciable reduction in the direct
discharge of untreated or poorly treated domestic
wastewater [28]. Nitrogen loads from point sources
decreased by nearly 45% between 1990 and 2000 and
then remained almost constant until 2019 (figure 3)
and this may have been partly responsible for the
clear decrease of riverine NH+

4 loads. Despite this, the
decrease was not in the order of magnitude to explain
the decrease recorded for the riverine TN loads. Over-
all, over the entire investigated period, N loads from
urban areas accounted for less than 5% of the total
N input from diffuse agricultural sources. Since the
early 1990s, NO−

3 pollution has become the main
concern for surface water and groundwater in the
Po River basin because the measures introduced by
the European Directives for controlling widespread
agricultural and livestock sources (i.e. 91/676/EEC,
2000/60/EC) have been largely ineffective [27, 52].
Recent studies have shown that in agricultural land-
scapes, artificial water bodies such as irrigation canals
and drainage ditches may act as natural wetlands in
terms of provision of biogeochemical services, i.e. the
mitigation of N excess via denitrification [47, 53].
The capillary network of artificial waterways crossing
the Po River plain was implemented over the centur-
ies, from the Etruscan age to the 1960s, with mul-
tiple purpose, i.e. irrigation, drainage, and flood con-
trol [54–56]. It is reasonable to hypothesize that the
N amount removed via denitrification by the whole
canal network remained stable along the three dec-
ades analyzed in the present study and thus it is very
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Figure 3. Decadal changes (1990–2019) in diffuse and point N sources (kt N yr−1) in the Po River basin.

unlikely to explain the major reduction observed in
the Po River NO−

3 loads, whose cause is to be found
elsewhere.

Spring and summer nutrient loads represented
on average 19%–24% and 13%–14% of the corres-
ponding annual values, respectively (figures 2(b) and
(c)). Summer TN and NO−

3 loads exhibited high
inter-annual variations, ranging from ∼8000 (2003)
to ∼3000 t N season−1 (2002), and from ∼5500
(2003) to ∼27 600 t N season−1 (2002), respectively.
The analyzed dataset contained years with rather
extreme summertime hydrological conditions; the
summers of 2002 and 2014 were very wet, with out-
flow 56%–66% higher than the long-term summer
average. In contrast, the summers of 2003 and 2007
were extremely dry, with outflow 39%–53% lower
than the 1992–2019 average. The period from 2003
to 2007 was characterized by frequent and persistent
summer drought that culminated in daily discharge
frequently <300 m3 s−1. Of the six most-prolonged
drought events recorded during the last century, four

occurred between 2003 and 2007, with the lowest
daily discharge of∼170m3 s−1 occurring in July 2006
[33, 57, 58]. The time series of summer loads exhib-
ited a negative trend for TN and NO−

3 (p < 0.01,
figure 2(c)), decreasing on average by 42%–47%,
while a significant downward trend, if tested by linear
regression, was not detected in spring when load vari-
ations among years were more erratic (figure 2(b)).
Differently to TN and NO−

3 , NH
+
4 loads decreased by

nearly 62% in spring (p < 0.01; figure 2(b)), whereas
linear regression was no statistically significant in
summer (figure 2(c)).

Summer outflow decreased by nearly 34% (1.3%
per year), highlighting that drought events have
been exacerbated during the more recent decades
as previously demonstrated by hydrological studies
[25, 33, 34]. The calculation of flow-normalized loads
showed that the annual transport of TN, NO−

3 , and
NH+

4 at the Po River closing section decreased by
15%, 14%, and 61%, respectively, along the entire
investigated period (figures 4(a), (d), and (g)). The
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Figure 4. Temporal trends in flow-normalized N loads (TN, NO−
3 , and NH+

4 ) measured at the closing section of the Po River
basin on an annual basis (panels (a), (d), and (g)), in spring (panels (b), (e), and (h)), and in summer (panels (c), (f), and (i)).
Note that the Y-axis differs between the panels. Dashed lines show statistically significant trends.

results of the Mann–Kendall and Sen’s slope analyses
on flow-normalized nutrient loads showed negative
Z values, confirmed by a negative slope, indicating
downward trends since 1992 both at the annual and
seasonal scale (table 1). The Pettitt’s test showed that
the decline in seasonal nutrient loads began in 2006
(figures 4(b), (c), (e) and (f)), except for NH+

4 for
which trends began in 2008 for spring (figure 4(h))
and in 2009 for summer (figure 4(i)), resulting in
annual loads started to decrease around 2010.

3.2. Water temperature trends
Significant positive trends in the annual, spring, and
summer water temperature series of the Po River
were identified for the 1992–2019 period (figure 5),
as demonstrated by the positive Sen’s slope values
(table 1). The annual average temperature increased
during this period by ∼3 ◦C, corresponding to an
overall warming rate of 0.11 ◦C yr−1, although
the pattern of change showed two moments: the
annual series from 1992 to 2002 were characterized
by relative stability with an average temperature of
13.87 ± 0.22 ◦C and low inter-annual variability;

while an abrupt increase occurred after 2002 with a
slope ofmore than 0.18 ◦C yr−1 and high fluctuations
among the years (average 15.88± 0.88 ◦C) (figure 5).
The highest annual temperatures (up to∼17 ◦C)were
recorded in 2007 and 2015, 2 years marked by signi-
ficant thermal (high air temperature) andmeteorolo-
gical (low precipitation) signals [26, 32]. Seasonally,
the average spring and summer water temperatures
increased by nearly 2 ◦C (0.07 ◦C yr−1) and 3.5 ◦C
(0.13 ◦C yr−1) over the monitoring period, respect-
ively (figures 5(b) and (c)), with the most marked
warming trends and inter-annual variability starting
in 2002 (table 1). These temperature increases resul-
ted to be faster than the average increases observed
in other large European and American rivers in tem-
perate zones during similar periods [59, 60]. How-
ever, the present outcomes agree with previous stud-
ies indicating a major contribution to warming from
the hottest period of the annual cycle with stronger
positive trends for late spring–summer months and a
significant advance of spring warming [61–65].

Meteorological stations located nearby the Po
River course showed a significant positive trend for
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Table 1. Results of the statistical analyses.

Linear regression Mann–Kendall Sen’s slope Pettitt

Period p-value p-value S Z Q K Year

Flow-normalized
TN loading

Annual 0.001 <0.001 −132 −2.59 −744.77 134 316 2010
Spring 0.001 <0.001 −170 −3.34 −326.40 33 282 2006
Summer — <0.001 −74 −1.44 −66.61 20 519 2006

Flow-normalized

NO−
3 loading

Annual 0.05 <0.001 −92 −1.80 −630.06 104 556 2011
Spring 0.001 <0.001 −152 −2.98 −221.59 24 275 2006
Summer — <0.001 −26 −0.49 −19.93 15 024 2006

Flow-normalized

NH+
4 loading

Annual <0.001 <0.001 −214 −4.21 −126.44 5493 2005
Spring 0.01 <0.001 −160 −3.14 −22.02 700 2008
Summer — <0.001 −36 −0.69 −3.37 745 2009

Temperature Annual <0.001 <0.001 236 4.64 0.12 14.0 2002
Spring 0.01 <0.001 160 3.14 0.09 17.1 2002
Summer <0.001 <0.001 192 3.77 0.14 21.1 2002

Outflow Annual — <0.001 −62 −1.20 −0.39 60.45× 109 2002
Spring — <0.001 −122 −2.39 −0.14 12.60× 109 2002
Summer 0.05 <0.001 −20 −0.37 −0.03 17.29× 109 2002

Figure 5. Annual (black line), spring (blue line), and summer (red line) average temperatures of the Po River water between 1992
and 2019. Dashed lines show statistically significant trends.

air temperature, recording an increase of about 2 ◦C
in annual and summer average values and an increase
of about 1 ◦C in spring average values over the
last three decades (figures S2 and S3, supplement-
ary material 1). The present data was confirmed by
previous meteorological studies that have demon-
strated how the air temperature in Po River basin
has been affected by warming in the period 1952–
2002, recording an increase of over 1 ◦C for aver-
age annual values [66] and detecting stronger posit-
ive anomalies in the mountain areas compared to the
lowlands and the delta region [67]. Further studies

have demonstrated an increase in annual maximum
temperatures with linear and constant trends of about
0.5 ◦C every 10 year and predicted a raise of 3 ◦C–
4 ◦C by the end of the last decade, as it happened [68]
and an even higher temperature anomaly for the next
decades [66].

Pettitt’s test on the Po River water temperature
highlighted a positive trend starting in 2002 (table 1)
and this was consistent with themostmarked increase
in air temperature detected from the beginning of
the 2000s (figure S3, supplementary material). Des-
pite long-term increases in river water temperatures
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Figure 6. Numbers of days annually (black bars), in spring (blue bars), and in summer (red bars) having water temperature above
the long-term average for the Po River (1992–2019). Long-term average values calculated from daily measurements were 15 ◦C,
18 ◦C, and 23 ◦C for the annual, spring, and summer periods, respectively. Dashed lines show statistically significant trends.

being correlated to increases in air temperatures, sur-
prisingly, the warming trend of the Po River water
was stronger than the atmosphere, when the latter is
supposed to contribute to the warming of the former.
These unusual data may be ascribed to the joint effect
of rising air temperature and reduced outflow on river
temperature trends [65].

In parallel to the upward temperature trends, the
annual occurrence of warm days (i.e. the number of
days with water temperatures above the long-term
average) increased by more than 50% for both the
spring and summer periods (figure 6). This condition
was in agree with previous studies reporting, for the
Mediterranean area, a significant increase of the days
with warm temperature extremes [69–71], suggest-
ing that the growing season length is increasing. The
occurrence of warm days in summer is often related
to low-flow conditions, as was the case for the period
from 2003 to 2007, which was characterized by pro-
longed drought in the Po River basin. However, this
has not been the case in the last decade, indicating that
the Po River is becoming more sensitive and vulner-
able to such extreme temperature events with ongo-
ing climate change, as demonstrated for other large
European rivers [64].

3.3. Negative feedback between climate change and
eutrophication
The present outcomes demonstrated that the Po
River water is steadily warming, with the number
of warm days increasing over time and higher water
temperatures corresponding to lower N loads dur-
ing the entire spring–summer period, the time of
year when the risk of coastal zone eutrophication is
greatest [72, 73]. Indeed, highly significant negat-
ive (p < 0.0001) correlations were detected between
average water temperature and monthly loads of TN
and NO−

3 (figures 7(a)–(d)). When the temperature
increased by 1 ◦C, TN and NO−

3 loads decreased by
approximately 7% and 4% in summer and spring,

respectively. A weaker but still significant negat-
ive correlation (p < 0.05) was also found between
the average water temperature and monthly NH+

4

loads in spring (figure 7(e)). The inverse relationship
observed between temperature and TN loads (mainly
NO−

3 ) strongly indicates that the higher water tem-
peratures recorded during the last few decades have
stimulated NO−

3 removal via denitrification in the
river sediments along the lowland reaches (figure 7).
This likely act to partially buffer the eutrophication
risk in the coastal waters. While several studies sug-
gest that water temperature increases may alter the
biodiversity and biological structure and function-
ing of rivers [59, 74], the resulting effects on ecosys-
tem functions (i.e. N removal) and, ultimately, the
regulation of ecosystem services (i.e. self-depuration
capacity) remains unclear and warrant greater atten-
tion. Experimental laboratory studies have shown
that warming boosts nitrification and denitrifica-
tion rates alongside enzymatic reactions in freshwa-
ter sediments [17, 18, 75], but there is a lack of sys-
tematic research forecasting global warming effects
on N cycling in rivers and expected changes in N
loads [76]. When a suitable substrate, NO−

3 , and
labile carbon are available, denitrification generally
responds positively to increases in water temperat-
ure. At the closing section of the Po River, dissolved
organic carbon during the spring–summer months
average 1.8 mg l−1, indicating that organic carbon
is balanced with respect to NO−

3 availability (aver-
aging 1.7 mg N l−1, 1992–2019 period) according
to a theoretical ratio of ∼1 based on denitrifica-
tion stoichiometry [77]. The dissolved organic car-
bon concentrations in the lower reaches of the Po
River tally with those measured in other agricultural
rivers [78, 79], which demonstrates that denitrifica-
tion is not likely limited by the organic carbon supply.
Higher water temperatures decrease oxygen solubil-
ity and increase sediment oxygen respiration, thereby
limiting the oxygen penetration depth and result-
ing in a synergistic indirect effect that strengthens
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Figure 7. Correlations between average water temperature and flow-normalized nutrient loads (TN, NO−
3 , and NH+

4 ) measured
at the closing section of the Po River basin in spring (panels (a), (c), and (e)) and summer (panels (b), (d), and (f)). Note that the
Y-axis differs among the panels. Dashed lines show statistically significant correlations.

the denitrification capacity [17, 75]. The inverse rela-
tionship between water temperature and NH+

4 loads
in spring also suggests that warming may stimu-
late nitrifying activity (figure 7(e)). Po River water
column is indeed thoroughly mixed, thus dissolved

oxygen concentrations are typically at or near 100%
saturation, and the oxygenation of surface sediments
is likely sufficient to support coupled nitrification–
denitrification. However, as is widely reported, when
water NO−

3 concentrations exceed 0.5 mg N l−1,
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denitrification is expected to be fueled mainly by
NO−

3 diffusing from the water column to the anoxic
sediment layers [15, 16].

All biogeochemical NO−
3 dissimilative pathways,

including denitrification and DNRA (dissimilat-
ory NO−

3 reduction to NH+
4 ), may be affected

by water warming, both as a direct temperature
effect on enzyme activity and as indirect temperat-
ure effect on sediment redox conditions (i.e. oxy-
gen shortage because of decreased oxygen solubil-
ity or enhanced consumption rates). Organic carbon
availability generally determines whether denitrific-
ation or DNRA will dominate in NO−

3 reduction,
with organic enrichment and reducing (sulfidic) con-
ditions under persistent stratification shifting NO−

3

reduction towards more pronounced DNRA, with
internal NO−

3 recycling to NH+
4 [80, 81]. However,

this is not the case in the Po River where sedi-
ments are sandy and organic matter content is gen-
erally low [82]. Stimulation of DNRA by increased
water temperature cannot be completely excluded,
but this would have contributed to NH+

4 accumula-
tion in water, a condition not evidenced. On the con-
trary, the inverse relationship between water temper-
ature and NH+

4 loads suggested that warming might
also have stimulated nitrifying activity as, in the Po
River, the water column is constantly mixed and oxy-
gen saturated, a condition favoring NH+

4 consump-
tion via nitrification–denitrification coupling. Des-
pite direct measurements are still lacking, on the
base of the evidence reported here, DNRA is likely
a negligible pathway of N cycling in the Po River
sediments.

The links between climate change and eutroph-
ication are being debated and outcomes of many
previous studies pointed towards an aggravation of
eutrophication due to warming lentic water bod-
ies [83]. Differently, warming and an increase in
the duration of low-flow conditions might enhance
the denitrification capacity of the river as a whole
and partially reduce the risk of eutrophic conditions
in the coastal zones. As temperatures are projected
to increase in temperate regions over the coming
decades, the present outcomes suggest an enhanced
future denitrification, representing a natural way to
counteract the harmful effects of eutrophication. Air
temperatures are expected to rise across the entire Po
River basin during all seasons and water temperatures
will likely track this trend with the most significant
changes occurring in summer alongside reductions
in discharge [84]. A decrease in eutrophication phe-
nomena in the PoRiver delta and nearby coastal zones
may be expected, in the medium term, due to neg-
ative feedback between climate change and eutroph-
ication in association with a potential water quality
improvement.

4. Conclusions

The present study demonstrated that water tem-
perature is a critical factor regulating N dynamics
in rivers and water temperature increase associ-
ated with climate change may exert primary con-
trol on watershed-scale N export. The observed Po
River temperature increase was likely associated with
enhanced rates of microbial processes and more
favorable conditions for denitrification and NO−

3

removal. Rivers are under pressure from eutrophic-
ation and warming, but an increased temperature-
driven N dissipation capacity may ameliorate the
quality of riverine water conveyed during the spring–
summer period, partially preventing the degradation
of coastal zones. As microbial communities drive
key N cycle biogeochemical processes, understand-
ing their response to climate change provides import-
ant insight into the river functioning regulation both
now and in the future. Scenarios of in-streamN loads
and export changes will benefit from further research
into the relationships between climatic conditions
and denitrification. The direct connection between
climate warming and NO−

3 removal efficiency high-
lighted here demonstrates that differentiating climate
change effects on denitrification during the spring
and summer months is crucial for evaluating the N
load delivery to the sea during those times of the year
when the risk of eutrophication is greatest.
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