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Abstract: The present work focuses on the optimization of the energy conversion process and
the use of algal resources for biodiesel production with ultrasound and microwave techniques in
Oedogonium, Oscillatoria, Ulothrix, Chlorella, Cladophora, and Spirogyra for the first time. The fuel
properties are investigated to optimize the efficiency of the newly emerging algal energy feedstock.
The study indicates that the optimized microwave technique improves the lipid extraction efficiency
in Oedogonium, Oscillatoria, Ulothrix, Chlorella, Cladophora, and Spirogyra (38.5, 34, 55, 48, 40, and 33%,
respectively). Moreover, the ultrasonic technique was also effective in extracting more lipids from
Oedogonium sp., Oscillatoria sp., Ulothrix sp., Chlorella, Cladophora sp., and Spirogyra sp. (32, 21, 51,
40, and 36%, respectively) than from controls, using an ultra-sonication power of 80 kHz with an
8-min extraction time. The fatty acid composition, especially the contents of C16:0 and C18:1, were
also enhanced after the microwave and sonication pretreatments in algal species. Enhancement
of the lipids extracted from algal species improved the cetane number, high heating value, cold
filter plugging point, and oxidative stability as compared to controls. Our results indicate that the
conversion of biofuels from algae could be increased by the ultrasound and microwave techniques,
to develop an eco-green and sustainable environment.

Keywords: microalgae; pretreatment; ultra-sonication; microwave extraction; lipids; biodiesel

1. Introduction

Many countries are expected to undergo rapid urbanization over the next 25 years,
which will influence their food, water, and land demands [1]. Only 2.8% of available water
is suitable for human consumption [2], whereas, the remaining 97.2% is in the oceans and
is too salty to use. Due to high salinity levels, approximately 1.5 million hectares of land
are unfertile now for plant cultivation. These global megatrends of climate change and the
growing production of energy from edible crops have created a significant food crisis [3].

The contribution of renewable energy is predicted to increase up to 63% by 2050.
Biodiesels are renewable, highly biodegradable, and non-toxic, and thus are considered
as favorable alternative fuels [4]. Edible crops such as coconut, soybean oil palm, and

Agriculture 2023, 13, 407. https://doi.org/10.3390/agriculture13020407 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13020407
https://doi.org/10.3390/agriculture13020407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-7225-4526
https://orcid.org/0000-0002-4958-8816
https://orcid.org/0000-0001-6227-6684
https://orcid.org/0000-0003-4448-6236
https://orcid.org/0000-0002-8396-6307
https://orcid.org/0000-0001-8654-3177
https://doi.org/10.3390/agriculture13020407
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13020407?type=check_update&version=1


Agriculture 2023, 13, 407 2 of 29

sun-flower, and non-edible feedstocks such as Jatropha, Miscanthus, rubber seed, waste
frying oil, and Pongamia can be used for biodiesel production [5]. Compared to these
traditional feedstocks, microalgae are considered as an alternative feedstock for third
generation biofuels [6]. They have high photosynthetic capacities, able to trap 1.83 kg of
CO2 per kg of biomass [7] and convert it into glucose and oxygen by photosynthesis. As
compared to terrestrial crops, algae can produce 30–100 times more energy/hectare, with a
potential biodiesel yield of 12,000 L/h [8]. Intracellular lipids are the main metabolites of
microalgae which can be used as a feedstock for biodiesel production. Some microalgae
contain up to 70% lipids, compared to 20–40% for typical oilseeds. The extracted lipids
are converted into biodiesel by trans-esterification. Lipid extraction is the major step in
biodiesel production [9], but it is subject to many challenges related to energy conversion
and conservation and the optimal use of energy resources due to the structure of the algal
cell wall. This is composed of hemi-cellulose and cellulose, together with glycoproteins, that
possess high mechanical and chemical resistances that hamper the release of intracellular
lipids [10,11]. The oil extraction methods for energy conversion from oil-bearing seeds are
quite different to those required for algae, and hence, a fundamental understanding of lipid
enhancement needs to be established to develop efficient and cost-effective strategies for
oil extraction.

Lipid conversion to biodiesel from algal feedstocks depends upon an effective biomass
disruption method to improve oil recovery and optimization of the energy processes [12].
Chemical-mediated extraction can cause bio-toxicity, lipid degradation, and device cor-
rosion. A large quantity of energy is consumed by thermal disruption, while enzymatic
degradation is very expensive. Mechanical methods (microwave, sonication, and hydro-
dynamic cavitation) are eco-friendly and non-toxic to the environment, and can disrupt
the algal cells efficiently. Microwave assisted solvent extraction has shown significantly
higher lipid recovery than solvent extraction alone [13]. Microwave assistance increases
the lipid recovery from all solvent extraction methods (Hara and Radin’s [14], Folch’s [15],
Chen’s [16], and Bligh and Dyer’s [17]). Direct lipid extraction is time consuming, whereas
MAE takes a few minutes and uses ten times less solvent. In ultrasound-assisted extraction
(UAE), the sample’s cells are ruptured by using ultrasound of frequency > 20 kHz in the
culture medium, which generates repetitive regions of high pressure (compressions) and
low pressure (rarefactions) [18].

The conversion of the extracted lipids to biofuels is affected by temperature, pres-
sure, and extraction time. To optimize the extraction process for energy conversion,
a good understanding of the complex relationship between the factors affecting lipid
extraction is crucial [19]. Response surface methodology (RSM) is a powerful statistical
technique for simultaneous consideration of independent variables and their interactions
that affect an objective function [20]. Response Surface Methodology (RSM) based on
Central Composite Design (CCD) has been used to design experiments and develop
quadratic equation models to predict the optimum conditions for desirable responses [21].
In the current study, RSM with CCD has been applied to optimize various factors (power,
heating time, and extraction time) for lipid extraction (response) from Oedogonium sp.,
Oscillatoria sp., Ulothrix sp., Chlorella sp., Spirogyra sp., and Cladophora sp., using MAE
and UAE pretreatments, to evaluate whether these parameters have any significant effect
on the percentage of lipid extracted.

In our previous study, 24% lipid was extracted from Oedogonium sp., 21% from Oscilla-
toria sp., 48% from Ulothrix sp., 33% from Chlorella sp., 23% from Cladophora sp., and 14%
from Spirogyra sp., without pretreatment [22]. In the current study it was demonstrated
that the extraction of microalga lipids, and their conversion to biodiesel, were significantly
higher following pretreatment using MAE and UAE. No study has been attempted to use
microwave and sonication pre-treatment techniques on Oedogonium sp., Oscillatoria sp.,
Ulothrix sp., Chlorella sp., Cladophora sp., and Spirogyra sp. to enhance the extraction of
lipids and their conversion to biodiesel with a high heating value, cetane number, and
oxidative stability [23]. The results of the present study demonstrate that MAE and UAE
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are an effective pretreatment to improve lipid recovery and fuel properties from algae, as
compared with a previous study with a relatively short extraction time, and are essential
for maintaining a good quality of lipid conversion to biofuel production [22,24]. Therefore,
it is important to characterize algal resources for bioenergy productions by using their fatty
acid profile and fuel values and their extraction methods. Therefore, the objectives of the
study include: (1) Modelling and optimization of microwave and sonication pre-treatment
parameters using the response surface method; (2) Evaluation of the effects of pretreatment
on the fatty acid composition and on the fuel properties of algal biomass.

2. Materials and Methods
2.1. Algae Collections

Oedogonium sp., Oscillatoria sp., Ulothrix sp., Chlorella sp., Cladophora sp., and Spirogyra
sp. were collected at different localities of Lahore, Pakistan. Supplementary Table S1
describes the algal characteristics. All these six algal strains were selected on the basis of
abundance, high lipid contents, growth rate, adaptation to the environmental conditions,
and high biomass productivity [24].

2.2. Molecular Identification

Further species of algae were collected from different areas of Punjab, Pakistan. Eight
algal strains were selected on the basis of morphology and identified by matching 18SrDNA
and ITS region. After DNA extraction the 18SrDNA gene was amplified and sequenced by
Macrogen, then the sequences were used to draw a phylogenetic tree using the MEGA6
software (Molecular Evolutionary Genetics Analysis, Version 6, Tokyo, Japan) [25].

2.3. Cultivation and Harvesting

The algal species were cultivated in Blue Green medium with pH 7, at 25 ◦C, and a
16 h:8 h light dark cycle. Algal biomass was harvested by centrifugation at 1800× g for 5 min
and the pellets were used for pretreatment [10]. The experimental workflow is illustrated in
Figure 1.
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2.4. Microwave Assisted Lipid Extraction

A weight of 0.2 g of the dried algal samples (Oedogonium sp., Oscillatoria sp., Ulothrix
sp., Chlorella sp., Cladophora sp., and Spirogyra sp.) was suspended in 30 mL of chloro-
form/methanol (2:1, v/v). The samples were treated by microwave with 180–600 watts
power, 2–8 min heating, and 3–4 h extraction time. The mixture was centrifuged at 8000 rpm
for 10 min, the supernatant was filtered, and then the filtrate was dried in the oven at 40 ◦C.
The lipid contents were calculated as a percentage of the dry weight of the sample.

Lipid content (%) = (weight o f lipids/weight o f samples)× 100 (1)

2.5. Ultrasonic Assisted Lipid Extraction

Dried algal sample (0.2 g) was added to 30 mL of chloroform/methanol (2:1, v/v).
The sample was treated by ultrasound at 40–80 kHz with 4–8 min extraction time. The
mixture was centrifuged at 8000 rpm for 10 min, the supernatant was filtered, and the
filtrate was dried in the oven at 40 ◦C. The lipid contents, as a percentage, were calculated
from Equation (1).

2.6. Response Surface Optimization Designs of Two Extraction Processes

The response surface methodology with Central Composite Design (Design Expert®

software, version 11, Stat-Ease, Inc. Godward, Minneapolis, MN) was employed to optimize
the lipid extraction. The experimental design consisted of power, heating time, and extraction
time as design variables for MAE, and lipid extraction and power or heating time for UAE lipid
extraction, while considering the lipid content as a response. Tables 1–6, detail the experimental
design of the microwave assisted lipid extraction from Oedogonium sp., Oscillatoria sp., Ulothrix
sp., Chlorella sp., Cladophora sp., and Spirogyra sp. with 20 experiments. Table 7 shows the
experimental design of the sonication assisted lipid extraction from Oedogonium sp., Oscillatoria
sp., Ulothrix sp., Chlorella sp., Cladophora sp., and Spirogyra sp. with 13 experiments.

Table 1. Central composite design results of the combined effect of factors of MAE in Oedogonium sp.

Factor 1 Factor 2 Factor 3 Response 1

Std Run A:Power B:Heating Times C:Extraction Time Lipid Content

Watts Mins Hr %

13 1 390 5 3.5 31

2 2 180 8 3 26

9 3 390 5 3.5 31

19 4 390 5 2.5 30

5 5 390 5 4.5 32

3 6 390 5 3.5 31

17 7 600 8 4 38.5

18 8 600 2 4 28

11 9 390 5 3.5 31

16 10 390 1 3.5 22

7 11 390 5 3.5 31

4 12 180 2 3 19

6 13 390 10 3.5 35

14 14 180 2 4 20

8 15 600 8 3 38

12 16 750 5 3.5 37

10 17 600 2 3 27.5

15 18 180 8 4 27

1 19 390 5 3.5 31

20 20 360 5 3.5 31



Agriculture 2023, 13, 407 5 of 29

Table 2. Central composite design results of the combined effect of factors of MAE in Oscillatoria sp.

Factor 1 Factor 2 Factor 3 Response 1

Std Run A:Power B:Heating Times C:Extraction Time Lipid Content

Watts Mins Hrs %

7 1 180 8 4 28

3 2 180 8 3 26

16 3 390 5 3.5 29

14 4 390 5 4.5 32

9 5 180 5 3.5 24

8 6 600 8 4 32

1 7 180 2 3 17

15 8 390 5 3.5 29

11 9 390 1 3.5 16

2 10 600 2 3 31

5 11 180 2 4 20

10 12 600 5 3.5 34

20 13 390 5 3.5 29

12 14 390 10 3.5 33.5

19 15 390 5 3.5 29

4 16 600 8 3 32

13 17 390 5 3 31

6 18 600 2 4 32

17 19 390 5 3.5 29

18 20 390 5 3.5 29

Table 3. Central composite design results of the combined effect of MAE in Ulothrix sp.

Factor 1 Factor 2 Factor 3 Response 1

Std Run A:Power B:Heating Times C:Extraction Time Lipid Content

Watts Mins Hr %

12 1 600 2 4 38

13 2 390 5 3.5 47

1 3 180 2 3 24

15 4 390 10 3.5 49

16 5 390 5 2.5 47

5 6 390 5 4.5 48

20 7 180 2 4 30

9 8 180 5 3.5 35

3 9 390 5 3.5 47

10 10 180 8 3 38

11 11 390 1 3.5 29

8 12 600 8 4 45

4 13 750 5 3.5 47

17 14 180 8 4 39

2 15 600 8 3 55

7 16 390 5 3.5 47

6 17 390 5 3.5 47

14 18 600 2 3 37

18 19 390 5 3.5 47

19 20 390 5 3.5 47
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Table 4. Central composite design results of the combine effect of factors of MAE in Chlorella sp.

Factor 1 Factor 2 Factor 3 Response 1

Std Run A:Power B:Heating Times C:Extraction Time Lipid Content

Watts Mins Hr %

16 1 390 5 3.5 40

17 2 390 5 4.5 39

14 3 390 5 3.5 40

15 4 600 8 3 47

2 5 600 2 4 37

7 6 180 2 3 26

1 7 180 8 3 39

6 8 390 5 3.5 40

11 9 390 5 3.5 40

4 10 600 8 4 48

12 11 390 5 2.5 40

20 12 390 1 3.5 27

8 13 390 8 3.5 42

18 14 390 5 3.5 40

19 15 600 2 3 37

3 16 700 5 3.5 41

5 17 180 2 4 26

10 18 390 5 3.5 40

9 19 600 5 3.5 45

13 20 180 8 4 39

Table 5. Central composite design results of the combined effect of factors of MAE in Cladophora sp.

Factor 1 Factor 2 Factor 3 Response 1

Std Run A:Power B:Heating Times C:Extraction Time Lipid Content

Watts mins Hrs %

14 1 390 5 3.5 32

5 2 180 2 4 22

6 3 600 2 4 34

2 4 600 2 3 33

7 5 180 8 4 35

3 6 180 8 3 33

9 7 365 5 3.5 30

10 8 415 5 3.5 33

8 9 600 8 4 40

1 10 180 2 3 21

11 11 390 5 3.5 32

4 12 600 8 3 37

12 13 390 5 3.5 32

13 14 390 5 3.5 32

19 15 390 5 4.5 34

16 16 390 5 2.5 32

20 17 390 1 3.5 24

15 18 390 8 3.5 37

18 19 700 5 3.5 37.5

17 20 600 5 3.5 38
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Table 6. Central composite design results of the combined effect of factors of MAE in Spirogyra sp.

Factor 1 Factor 2 Factor 3 Response 1

Std Run A:Power B:Heating Times C:Extraction Time Lipid Content

Watts Mins Hrs %

9 1 365 5 3.5 23

1 2 180 2 3 17

10 3 415 5 3.5 26

13 4 390 5 3.5 25

12 5 390 5 3.5 25

6 6 600 2 4 27

7 7 180 8 4 28

14 8 390 5 3.5 25

4 9 600 8 3 30

2 10 600 2 3 26

3 11 180 8 3 26

5 12 180 2 4 18

8 13 600 8 4 33

11 14 390 5 3.5 25

20 15 390 5 4.5 26

17 16 390 5 2.5 24

19 17 390 1 3.5 18

15 18 390 8 3.5 27

18 19 700 5 3.5 32

16 20 600 5 3.5 31.5

Table 7. Central composite design results of the combined effect of factors of UAE in algal species.

Factor 1 Factor 2 Lipid Content

Std Run A:Power B:Extraction Time Oedogonium sp. Oscillatoria sp. Ulothrix sp. Chlorella sp. Cladophora sp. Spirogyra sp.

kHz Mins % % % % % %

8 1 60 8 25 20 45 35 29 19

12 2 60 6 24 17 44 32 26 16

9 3 60 6 24 17 44 32 26 16

3 4 40 8 17 16 36 26 21 15

1 5 40 4 16 14 35 24 15 13

4 6 80 8 32 21 51 40 36 20

10 7 60 6 24 17 44 32 26 16

7 8 60 3 21 16 38 30 25 15

2 9 80 4 27 18 46 36 29 17

11 10 60 6 24 17 44 32 26 16

13 11 60 6 24 17 44 32 26 16

6 12 80 6 31.5 19 49 38 31.5 18

5 13 30 6 14 14 32 20 14 13

2.7. Statistical Analysis

Analysis of variance (ANOVA) and least significant difference was performed to
analyze the data of the central composite design in the Design Expert® software ( Stat-Ease,
Inc. Godward, version 11, Minneapolis, MN, USA).

2.8. Transesterification and Fatty Acid Methyl Esters (FAMEs) Analysis

The extracted lipids, after pretreatment of all studied algal strains, were transesterified
by the protocol described in Munir et al. [10]. After completion of trans-esterification, the
reaction mixture was cooled to room temperature and centrifuged at 3000 rpm to obtain an
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upper layer, of fatty acid methyl ester (biodiesel), and a lower layer (glycerol). The biodiesel
upper layer was washed with warm distilled water at 50 ◦C to remove traces of catalyst
and methanol. After transesterification, recovered FAMEs were injected to GCMS. [26].

2.9. Fuel Properties

The fuels’ properties, such as higher heating value, cetane number, iodine value, saponi-
fication valve, oxidation stability, cold filter plugging point, density, long chain saturation
factor, and kinematic viscosity were calculated using the formula described in [26].

3. Results and Discussions
3.1. Molecular Identification of Algae

The analyzed 18S rRNA or ITS sequences of algae species were assembled and com-
pared by BLAST and CLUSTALW, and a phylogenetic tree was constructed. Figure 2
shows that the accession no KU563009 had 95% identification with Chlorella sorokini-
ana (KJ173792.1), while KU865579 had the closest similarity (91%) to Chlorella vulgaris.
KU865580, showed the closest similarity (84%) to Cladophora sp. (KF318887.1), KU865577
showed 90% homology with Hydrodictyon reticulatum (KM676903), KU865576 had 94%
similarity to Oedogonium sp. (DQ413053), KU865578 showed 93% homology with Spirogyra
sp. (KM677012.1), KM676563.1 has 90% similarity to Stigeoclonium sp., and KU865575
showed 92% similarity to Ulothrix sp. (JX491152.1).
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3.2. Experimental Design and Statistical Analysis

The effect of power, heating, and extraction time in lipid extraction with microwave
assistance, and power and extraction time in lipid extraction with sonication assistance, was
evaluated in the algal species for the lipid content extraction. This included 20 repeats in each
experiment of MAE and 13 runs in UAE (Tables 1–7). The impact of each factor on the lipid
extraction with microwave assistance is shown in Tables 2–7. From Oedogonium sp., 38.5%
lipids was obtained, 40% from Cladophora sp., and 33% from Spirogyra sp., under the optimized
conditions: microwave power 600 watts, 8 min heating time, and 4 h extraction time. From Os-
cillatoria sp., 34% lipids was extracted at microwave power 600 watts, 5 min heating time, and
3.5 h extraction time. From Ulothrix sp., 55% lipids, and 48% from Chlorella sp., were extracted
at microwave power 600 watts, 8 min heating time, and 3 h extraction time, and microwave
power 600 watts, 8 min heating time, and 4 h extraction time, respectively. Increasing the
microwave power from 180 to 600 W resulted in an increase in the lipid extraction efficiency.
When the power exceeded 600 W, the extraction rates decreased. Increasing the microwave
heating time from 1 to 8 min significantly increased the lipid content. Extending the extraction
time after microwaving from 2.5 to 3.5 h significantly increased the lipid content, but a slight
reduction of lipid content was found in all observed species after the extraction time was
prolonged beyond 3.5 h (Tables 1–6).

During the microwave-assisted lipid extraction, algal cell membranes are weakened
by the oscillation of polar substances generated by the heating effects of the microwaves,
making it suitable for the extraction of intracellular metabolites. Earlier studies also indicate
that MAE heats the extracts quickly and accelerates the extraction process [27,28]. Ulothrix
sp. is a significant species for oil production, containing up to 60% lipid contents [24],
whereas the lipid contents in Chlorella sp. have been measured as being up to 30% [24,29].
Gupta et al. [28] extracted 30% lipid from Oedogonium sp. by MAE. The lipid content was
increased 20-fold, as compared to the controls, by using MAE in Chlorella sp. [30]. Ali
and Watson [18] used 1021 W microwave power for 5 min to increase the lipid content
3-fold as compared to the control in Chlorella sp. From Dunaliella tertiolecta, 57.02% lipids
was obtained at 160 sec extraction time and 490 W microwave power [31]. Many other
researchers have used the MAE technique for algal lipid extraction, obtaining 28.6% lipid
from Chlorella sp. [32], 32.8% from Nannochloropsis sp. [33], 39% from N. gaditana [34], and
28.9% from Chlorella vulgaris [35]. This oil extraction research suggests that these algal
species can compete favorably with other conventional sources for biofuel production, if
applied with the proper methods and extraction time. The oil content in algal species has
been reported to vary from 14–63% of the dry weight [36]. The algal species studied in this
research produced higher yields than those reported above, ranging from 40–50%, with the
optimization of different methods.

As listed in Table 7, using the ultrasonic technique, 32% lipid was obtained from Oe-
dogonium sp., 21% from Oscillatoria sp., 51% from Ulothrix sp., 40% from Chlorella sp., 36%
from Cladophora sp., and 20% from Spirogyra sp., under an ultra-sonication power of 80 kHz
and with an 8 min extraction time. Increasing the sonication power from 30 to 80 kHz, and
the extraction time from 3 to 8 min, resulted in an enhanced lipid extraction efficiency in all
observed species. In this technique, ultrasonic waves create cavitation bubbles in a solvent
and these bubbles collapse to generate shock waves near the algae cells, causing disruptions
of cellular walls and the release of the lipids into the solvent [37]. Abd El Fatah et al. [38]
extracted 15% lipids from Oscillatoria sp. by solvent extraction that could be improved by MAE
or UAE. Sonication with higher frequencies caused more effective cell disruption. Many other
scientists have used the UAE technique for algal lipid extraction, obtaining 18.9% lipid from
Nanno chloropsis [33], 8.8% from Scenedesmus sp. [39], 36% from N. gaditana [34], and 26.4% from
Chlorella vulgaris [35]. Ferreira et al. [40] extracted 19% of total lipids with ultra-sonication from
Chlorella sp. Silva et al. [41] conducted a study to find out the best algal lipid extraction method
from a mixed algal culture. Zheng et al. [42] extracted 6, 15, 10, and 18% lipids from Chlorella
vulgaris by grinding, ultrasound, bead milling and microwave, respectively. Approximately
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24% lipid was extracted from Spirogyra sp. using ultra-sonication at 40 KHz for 30 min–2 h at
30 ◦C [23].

However, UAE is difficult to scale up and uses large amounts of power. Microwaves
are a more suitable choice of technique for algal lipid extraction, having numerous benefits
such as, a reduced extraction time and solvent usage, an improved extraction yield, a lower
response period and operational expenses, as well as being environmentally friendly.

3.3. Equations in Terms of Coded Factors of Quadratic Models

The RSM suggested a quadratic model that relates the lipid content to the independent
variables (Equations (2)–(13) in Table 8). The lipid content was the response and A, B, C
were the coded terms used for the investigated parameters. A is microwave power, B is
microwave heating time, and C is extraction time. These equations can accurately describe
the interaction between the interactions, factors, and response.

Table 8. Equations in terms of coded factors of quadratic model of MAE.

Lipid Parameter Contents Correlation

Oedogonium sp. +31.09+ 5.12 ∗ A + 4.56 ∗ B + 0.4375 ∗C + 0.8750 ∗ AB − 0.1250 ∗ AC + 0.0000 ∗ BC − 1.18 ∗ A2 − 1.60 ∗ B2 − 0.0781 ∗C2 (2)

Oscillatoria sp. +32.51+ 3.80 ∗ A+ 2.27 ∗ B+ 0.5193 ∗C− 1.0000 ∗ AB− 0.2500 ∗ AC+ 0.0000 ∗ BC− 2.66 ∗ A2 − 1.49 ∗ B2 − 0.3234 ∗C2 (3)

Ulothrix sp. +46.70 + 6.08 ∗ A + 6.73 ∗ B + 0.0000 ∗ C + 0.2500 ∗ AB − 2.00 ∗ AC − 2.00 ∗ BC − 4.05 ∗ A2 − 4.04 ∗ B2 + 0.0858 ∗ C2 (4)

Chlorella sp. +39.79+ 4.66 ∗ A + 6.01 ∗ B − 0.1250 ∗C − 0.5000 ∗ AB + 0.0000 ∗ AC + 0.0000 ∗ BC − 1.20 ∗ A2 − 1.78 ∗ B2 + 0.0802 ∗C2 (5)

Cladophora sp. +31.86 + 4.15 ∗ A + 4.37 ∗ B + 0.8750 ∗ C − 1.87 ∗ AB + 0.1250 ∗ AC + 0.3750 ∗ BC − 2.68 ∗ A2 − 2.60 ∗ B2 − 0.0991 ∗ C2 (6)

Spirogyra sp. +25.29 + 3.41 ∗ A + 3.62 ∗ B + 0.8750 ∗ C − 1.12 ∗ AB + 0.1250 ∗ AC + 0.3750 ∗ BC − 1.10 ∗ A2 − 1.30 ∗ B2 − 0.0341 ∗ C2 (7)

Equations in terms of coded factors of quadratic model of SAE

Oedogonium sp. +24.09 + 6.66 ∗ A + 1.38 ∗ B + 1.00 ∗ AB − 0.1193 ∗ A2 − 0.6625 ∗ B2 (8)

Oscillatoria sp. +16.98 + 2.13 ∗ A + 1.29 ∗ B + 0.2500 ∗ AB − 0.0161 ∗ A2 + 0.4066 ∗ B2 (9)

Ulothrix sp. +44.01 + 6.44 ∗ A + 1.80 ∗ B + 1.00 ∗ AB − 0.9815 ∗ A2 − 1.23 ∗ B2 (10)

Chlorella sp. +32.11 + 6.59 ∗ A + 1.79 ∗ B + 0.5000 ∗ AB − 0.9575 ∗ A2 + 0.3769 ∗ B2 (11)

Cladophora sp. +25.88 + 6.87 ∗ A + 2.71 ∗ B + 0.2500 ∗ AB − 1.10 ∗ A2 + 0.9397 ∗ B2 (12)

Spirogyra sp. +15.98 + 2.13 ∗ A + 1.29 ∗ B + 0.2500 ∗ AB − 0.0161 ∗ A2 + 0.4066 ∗ B2 (13)

3.4. Analysis of Variance (ANOVA)

To analyze the significance, reliability, and fitness of the model, a lack of fit and
an ANOVA test was applied. The results are shown in Supplementary Tables S1–S12.
All the models show a p-value < 0.0001, which indicates that all the models are highly
significant in the response except the quadratic model in Oscillatoria sp. (MAE), having
a p-value < 0.0002. Nevertheless, in this study, all the p-values are < 0.0500, which indi-
cates that the model is significant. In the case of MAE, the p value of coefficients of power
and heating time were < 0.0001, while the p value for extraction time was 0.0053 in Oedo-
gonium sp. In Oscillatoria sp., the p value of power was < 0.0006, heating time < 0.0074,
and extraction time, 0.6153. In Ulothrix sp., the p values of power and heating time were
<0.0001, while the p value of the extraction time was 1. In Chlorella sp., the p values of
power and heating time were < 0.0001, while the p value of the extraction time was
0.7547. In Cladophora sp., the p values of power and heating time were < 0.0001, while
the p value of extraction time was 0.0043. In Spirogyra sp., the p values of power and
heating time were < 0.0001, while the p value of extraction time was 0.0222. In the
case of UAE, the p value of coefficients power was < 0.0001, and extraction time was
0.0002 in Oedogonium sp. The p value of power and extraction time were < 0.0001 in
Ulothrix sp., Chlorella sp., Cladophora sp., and Spirogyra sp. The model F-values in all the
models were significant. There is only a 0.01% chance in all models, expect Oscillatoria
sp. (MAE) which has 0.02% chance, that an F-value this large could occur by chance.
The lack of fit value was > 0.05 (insignificant) in all models, indicating that the models
are reliable and a good fit to the actual data.
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3.5. Validation of Models

R2 is the correlation coefficient which indicates whether or not the experimental data
fit the model. R2 must be at least 0.90. In all the models, the R2 values were greater than
0.90 (Supplementary Tables S13 and S14), thus indicating a good compatibility between
the actual and calculated results within the wide range of the experiments. C.V% in all
models was less than 10, indicating a good fit of all models to the experimental data. In all
the models, adequate precision was more than four (4), this indicates that the model noise
ratio is located in the satisfactory range. So, all the models were valid and can be used to
navigate the design space.

3.6. Interaction of Factors

The 3-D response surface graphs show the effect of factors on a particular response,
and also demonstrate the interaction between factors, to locate the best level of each factor
for the maximum response. The curved slope on the three-dimensional response surface
(Figures 3–8) displays the influence of microwave power, heating time, and extraction time
on the lipids extracted from particular species. As the figures show, microwave power and
heating time significantly influenced the lipid content.

The plots indicate that increasing the microwave power from 180 to 600 W resulted
in the increase of the lipid extraction efficiency. When the power exceeded 600 W, the
extraction rates were decreased. Increasing the microwave heating time from 1 to 8 min
significantly increased the lipid content, but there was a slight reduction of the lipid content
if the heating time was longer than 8 min. Extending the extraction time after microwaving
from 2.5 to 3.5 h significantly increased the lipid content, but a slight reduction of lipid
content was found in all observed species when extraction time was prolonged by more
than 3.5 h. The red color indicates the points above the predicted value, while the pink
color indicates the points below the predicted value.
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Figure 3. Response surface plots of the combined effect of MAE parameters on lipid content of
Oedogonium sp. (a) Heating time (h) and Power (Watts) (b) Extraction time (h) and Power (Watts)
(c) Extraction time (h) and Heating time (Mins). Color based on response value: blue color shows
the minimum points, red color shows the maximum points, pink color indicates points below the
predicted value.
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Figure 4. Response surface plots of the combined effect of MAE parameters on lipid content of
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(c) Extraction time (hr) and Heating time (Mins). Color based on response value: blue color shows
the minimum points, red color shows the maximum points, pink color indicates points below the
predicted value.
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Figure 5. Response surface plots of the combined effect of MAE parameters on lipid content of
Ulothrix sp. (a) Heating time (hr) and Power (Watts) (b) Extraction time (hr) and Power (Watts)
(c) Extraction time (hr) and Heating time (Mins). Color based on response value: blue color shows
the minimum points, red color shows the maximum points, pink color indicates points below the
predicted value.
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Figure 6. Response surface plots of the combined effect of MAE parameters on lipid content of
Chlorella sp. (a) Heating time (hr) and Power (Watts) (b) Extraction time (hr) and Power (Watts)
(c) Extraction time (hr) and Heating time (Mins). Color based on response value: blue color shows
the minimum points, red color shows the maximum points, pink color indicates points below the
predicted value.
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Figure 7. Response surface plots of the combined effect of MAE parameters on lipid content of Clad-

ophora sp. (a) Heating time (hr) and Power (Watts) (b) Extraction time (hr) and Power (Watts) (c) 
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Figure 7. Response surface plots of the combined effect of MAE parameters on lipid content of
Cladophora sp. (a) Heating time (hr) and Power (Watts) (b) Extraction time (hr) and Power (Watts)
(c) Extraction time (hr) and Heating time (Mins). Color based on response value: blue color shows
the minimum points, red color shows the maximum points, pink color indicates points below the
predicted value.
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Figure 8. Response surface plots of combined effect of the MAE parameters on lipid content of Spi-
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Figure 8. Response surface plots of combined effect of the MAE parameters on lipid content of
Spirogyra sp. (a) Heating time (hr) and Power (Watts) (b) Extraction time (hr) and Power (Watts)
(c) Extraction time (hr) and Heating time (Mins). Color based on response value: blue color shows
the minimum points, red color shows the maximum points, pink color indicates points below the
predicted value.

Figure 9 displays the significant influence of sonication power and heating time
on the lipid content of particular species. Increasing the sonication power from 30 to 80
kHz, and the extraction time from 3 to 8 min, resulted in an enhanced lipid extraction
efficiency in all observed species.

According to the three-dimensional response surface (Figures 3–9), there is a strong
relationship between microwave power, heating time, and sonication power on the
lipid content.
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Figure 9. Response surface plots of the combined effect of UAE parameters on lipid content of
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Color based on response value: blue color shows the minimum points, red color shows the maximum
points, pink color indicates points below the predicted value.

3.7. Fatty Acid Composition

Fatty acids are a major constituent of microalgae biomass. Fatty acids present in
triacylglycerol are of commercial interest, because they can be used for the production of
transportation fuels, bulk chemicals, nutraceuticals, and food commodities. To determine
the quality of biodiesel, the fatty acid compositions of Oedogonium sp., Oscillatoria sp.,
Ulothrix sp., Chlorella sp., Cladophora sp., and Spirogyra sp. before and after pretreatment
were analyzed, as listed in Table 9. The algae which were not treated with pretreatment
methods are termed as the controls. The experiment runs having the highest lipid content
(MAE runs number 7, 12, 15, 10, 9, 13; and UAE runs number 6, 6, 13, 2, 6, 2 of Oedogonium
sp., Oscillatoria sp., Ulothrix sp., Chlorella sp., Cladophora sp. and Spirogyra sp., respectively)
were further analyzed by GCMS. Palmitoleic acid, palmatic acid, oleic acid, myristic acid,
linolenic acid, linoleic acid, and stearic acid are the major fatty acids detected in all six algal
strains. Palmitoleic acid, palmatic acid, and oleic acid increased after pretreatment in all
algal species, while myristic acid, linolenic acid, linoleic acid, and stearic acid decreased.
The results indicate that Oedogonium sp. has a relatively high oleic acid as compared to
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other tested species. Gondoic acid, myristoleic acid, and arachidic acid were detected in
Spirogyra sp., while traces of myristoleic acid were detected in Cladophora sp. Arachidate
(21:0) was found in all tested algal strains except Oedogonium sp. and Cladophora sp. Erucate
(22:1) was found in Ulothrix sp., Chlorella sp., and Spirogyra sp. Behenic acid was detected in
Oedogonium sp., Ulothrix sp., Chlorella sp., and Cladophora sp. after microwave pretreatment.
Arachidate, erucate, behenic acid, gondoic acid, and arachidic acid are only present in algal
lipids and not in seed oils. Algal fatty acids range from 12 to 22 carbons in length [43], while
50–65% UFAs were found in Nannochloropsis oleabundans, Dunaliella tertiolecta, S. maxima, S.
obliquus and C. vulgaris [44]. Palmitic acid was detected as the major component in Chlorella
sp., Scenedesmus sp. and Botryococu sp., at 35.3%, 33.3%, and 31.7%, respectively, during
cultivation in sewage water [45]. Studied algal oils consists of a combination of archidonic,
eicosapentaenoic, docosahexaenoic, gamma-linolenic, and linoleic acids [46]. Methyl
palmitate, methyl stearate, methyloleate, and methyl linoleate are the main components of
Tolypothryx [47], Pithophora [48], Spirogyra, Hydrodictyon, Rhizoclonium [24] and Cladophora,
while Chlorella vulgaris has mostly methyl linoleate and methyl palmitate [49]. MAE
enhanced by 12% MUFAs, and by 1.5-fold PUFAs, in C. minutissima. Similar results were
reported for T. cutaneum, where C16:0 and C18:1 comprise 60% of the total FAMEs [30].
The same trend is shown in the present study, where C16:0, C16:1, C18:1, C18:2, and C20:5
comprise 84.76% of the total fatty acids. In the current study, although both pretreatments
induce these valuable fatty acids, microwave treatment induces more than sonication. The
same was reported in Chlorella sp., where 61% fatty acids were extracted using UAE and
75% after MAE. The present study suggests that pretreatment is very important before lipid
extraction, especially microwave treatment rather than sonication, because microwaves
selectively release lipids from the algal matrix by causing local superheating of the lipid
compounds to selectively extract them [50]. In contrast, ultrasound destroys the algal cell
wall and releases unnecessary products, such as aroma compounds and other secondary
metabolites, as well as lipids [51].
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Table 9. Lipid composition of algal strains.

Fatty Acids Oedogonium sp. Oscillatoria sp. Ulothrix sp. Chlorella sp. Cladophora sp. Spirogyra sp.

Control MAE UAE Control MAE UAE Control MAE UAE Control MAE UAE Control MAE UAE Control MAE UAE
Myristoleic acid (14:1) 0.15 - - - - - - - - - - - 0.32 - - 0.18 0.12 0.15

Myristic acid (14:0) 0.37 0.25 0.28 0.34 0.26 0.30 0.19 0.12 0.16 0.20 0.10 0.15 0.18 0.11 0.15 0.05 - 0.01
Hexadecadienoic (16:2) 0.46 0.29 0.34 - - - - - - - - - - - - 2.28 2.11 2.18
Palmitoleic acid (16:1) 2.92 3.5 3.2 0.38 1.12 0.81 - - - 0.10 0.31 0.22 - - - 0.37 0.56 0.41

Palmatic acid (16:0) 1.19 1.38 1.26 3.12 3.21 3.19 0.28 1.10 0.57 1.0 1.28 1.19 0.44 1.22 0.98 0.19 0.31 0.29
Linolenic acid (18:3) 0.44 0.39 0.40 - - - - - - - - - - - - 0.68 0.45 0.51
Linoleic acid (18:2) 0.38 0.23 0.28 2.18 1.91 2.1 0.6 0.4 0.5 0.50 0.41 0.46 2.13 1.80 1.90 1.56 1.11 1.28

Oleic acid (18:1) 3.12 3.52 3.31 2.15 3.11 2.25 0.46 1.91 1.51 0.10 0.25 0.15 0.15 0.19 0.17 0.35 1.23 1.17
Stearic acid (18:0) 1.32 1.23 1.27 3.14 2.72 2.98 - - - - - - - - - 0.06 - -

Gondoic acid (20:1) - - - - - - - - - - - - - - - 0.18 - -
Arachidic acid (20:0) - - - - - - - - - - - - - - - 0.14 - -

Erucic acid (22:1) 0.46 0.29 0.31 - - - - - - 0.12 0.11 0.10 0.12 0.12 0.12 - - -
Caprylate (8:0) - - - 0.72 0.71 0.70 0.34 0.33 0.34 - - - 0.34 0.33 0.34 - - -
Caprate (10:0) - - - 1.38 1.36 1.38 0.67 0.51 0.61 - - - 0.13 0.13 0.12 - - -
Laurate (12:0) - - - 8.57 8.51 8.52 0.28 0.28 0.28 - - - 0.62 0.60 0.61 - - -

Methyl myristate (14:0) 4.51 3.52 3.81 - - - 3.35 3.21 3.29 2.21 1.91 1.89 3.34 3.29 3.31 2.16 1.90 1.95
Methyl palmitoleate (16:1) 3.16 3.01 3.11 10.4 9.51 9.81 5.13 4.13 5.10 3.13 2.7 2.9 3.27 2.93 3.12 5.90 4.21 4.34

Methyl palmitate (16:0) 46.41 39.10 40.1 12.5 10.01 11.1 24.41 21.14 22.2 40.0 34 37 34.3 29.1 30.0 49.7 43.2 44.5
Linolenate (18:3) 2.35 2.12 2.24 9.17 8.51 8.81 2.64 2.26 2.43 0.81 0.49 0.62 7.62 6.21 6.91 1.43 1.21 1.32
Linoleate (18:2) 2.58 2.23 2.4 3.13 2.69 2.81 9.16 7.81 8.12 2.12 1.72 1.91 5.46 4.41 4.90 0.54 0.35 0.43

Methyl oleate (18:1) 28.06 25.24 26.1 16.19 14.01 15.6 44.24 40.12 41.1 42.5 39.1 41.8 42.8 38.1 39.0 29.1 27.0 28.3
Methyl stearate (18:0) 2.17 2.25 2.18 27.14 27.21 27.1 3.87 4.15 4.10 3.92 3.25 3.51 - - - 5.2 5.8 5.5

Arachidate (21:0) - - - 0.65 0.62 0.64 2.44 2.21 2.36 1.0 - - - - - 1.1 1.1 1.1
Erucate (22:1) - - - - 2.23 2.19 2.21 1.0 - - - - - 0.5 0.5 0.5

Behenic acid (22:0) - 0.10 - - - - - 0.15 - - 0.12 - - 0.13 - - - -
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3.8. Fuel Properties

The fatty acid compositions and fuel properties of oils are important for the evalua-
tion of biodiesel quality (Table 10). Fatty Acid Methyl Esters (FAME) are esters of fatty
acids. The physical characteristics of fatty acid esters are closer to those of fossil diesel
fuels than pure vegetable oils, but their properties depend on the type of vegetable oil.
FAMEs analysis defines the quality of biodiesel. In the present study, the fuel properties
were identified from fatty acid composition by using different formulas. The iodine
value correlates with the degree of oil unsaturation in these studied algal strains. A low
iodine value is very important for the oxidative stability of biodiesel produced from
these new algal resources, because a high level of unsaturation cause glyceride poly-
merization and deposit formation, which ultimately deceases engine performance [52].
The iodine value of each algal strain used here was in the range of 77–93 g I2/100 g.
According to the EN 14214 standard, biodiesels with an IV less than 120 g I2/100 g
can improve engine performance. Both applied pretreatments on algal oil reduced IV
compared to untreated controls. The saponification values were 170–206 mg KOH/g in
all six studied algal strains. High SV levels mean a high acid percentage in biodiesel,
that causes soap formation, which is not recommended [53]. The results indicated that
SV levels reduced after the application of sonication and microwave pretreatments in
algal species, especially in Chlorella sp. The reduction of the SV values by applying
these pretreatment techniques promotes the production of biodiesel from these algal
strains on a commercial scale. In the present study, the cetane numbers (CN) in all algal
strains were in the range of 49–59, which seems an acceptable range compared to the
current standards for biodiesel according to ASTM D6751 standard CN (minimum 47),
while European standard EN 14214 (minimum 51) is recommended for better engine
performance. A high CN relates to a good engine performance, which has been achieved
in Chlorella sp. after microwave pretreatment [54]. The high heating values (HHV) in
all species tested were in the range of 38.1 to 41 MJ/kg, while the highest HHV was
observed in Chlorella sp. after microwave pretreatment. According to ASTM standard,
the HHV for biodiesel should be more than 35 MJ/kg [55,56]. The cold filter plugging
point determines the flow performance of biodiesel [57]. The CFPPs of the biodiesel
from the six algae species were in the range of −10.6 to −16.3 ◦C. According to EN 14214,
the CFPP of biodiesel should be 5–20 ◦C. Biodiesel rich in stearic and palmitic acid has
a poor CFPP. In the current study, stearic acid reduced after pretreatment. The CFPPs
of different algal strains have been reported to be between −12.3 to 20.8 ◦C [58], while
peanut has a 19 ◦C CFPP, which is the highest among the seed oils [59].

Kinematic viscosity should be 1.9–6.0 mm2 s−1 (ASTM 6751) and 3.5–5.0 mm2 s−1

(EN 14214). Here, the overall kinematic viscosities of the biodiesels from all six algae strains
were in the range of 3.6 to 4.1 mm2 s−1. According to EN 14214, the density of biodiesel
should be 0.86–0.9 g cm−3, while there is no specification for density in ASTM 6751. Here, the
densities of the biodiesels from the six algae strains were in the range of 0.87 to 0.88 g cm−3.
In order to store biodiesel for a long time without autoxidation, biodiesel must have a suitable
oxidation stability, which is ≥ 6 h at 110 ◦C (EN 14214), while no specification was recorded
in ASTM 6751. In the current study, the oxidation stabilities of all six algae species were in
the range of 56 to 237 h at 110 ◦C. In the present study, the highest oxidation stability was
237 h at 110 ◦C, in Chlorella sp. A good quality biodiesel has a high cetane number, low iodine
value, high heating value, good cold flow properties, and high oxidation stability [60]. Oleic
acid is a vital component of biodiesel due to its low meting point, high cetane number, and
sufficient oxidative stability [61]. In the present study, when the pretreatment was applied
to the algal strains, oleic acid increased in all six species. In the present study, all the studied
fuel properties of the biodiesels from Oedogonium sp., Oscillatoria sp., Ulothrix sp., Chlorella
sp., Cladophora sp., and Spirogyra sp. were within the range of the ASTM 6751 and EN 14214
standards. Furthermore, pretreatments not only enhance lipid recovery from algal biomass,
but also improve lipid composition and fuel properties.
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Table 10. Fuel properties of the six algal strains studied here.

Algae IV (g
I2100/g fat)

SV (mg
KOH/g) CN LCSF CFPP (◦C) HHVi

(MJ/kg) ρ (g cm−3)
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3.9. Comparative Analysis of Lipid Extraction Pretreatment

Lipid extraction is a primary bottleneck for commercial algal biodiesel production.
Solvent extraction (chloroform, methanol, and hexane) is an extensively applied method
for lipid recovery, but the algal cell walls act as a barrier between the lipids and the solvent.
To overcome this problem, numerous mechanical, chemical, and biological cell disruption
methods have been extensively studied [13,62]. Figure 10 demonstrates that mechanical
methods, such as MAE and UAE, are an effective pretreatment to improve lipid recovery
from algae as compared with previous studies [22,24].
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4. Conclusions

Pretreatment of microalgal biomass is essential for the maximal recovery of biofuel
precursors from complex microalgal cell walls. In the present work, a microwave method
was exploited to enhance the biodiesel yield from microalgal biomass. This study suggested
that the applied pretreatment protocols are able to enhance the lipid contents, particularly in
Ulothrix, for biofuel production. The application of MAE is concluded to be an efficient tech-
nique for lipid extraction under the given conditions, due to a higher oil yield, lower solvent
consumption, and lower time duration of Oedogonium sp., Oscillatoria sp., Ulothrix sp., Chlorella
sp., Cladophora sp., and Spirogyra sp. We conclude that the statistical design methodology
offers an efficient and feasible approach for the optimization of lipid extraction parameters in
the studied algal strains. An improved fatty acid composition due to pretreatment offers the
production of biodiesel at a low cost, which can enhance the energy resources and address the
energy crisis at a mass scale in Pakistan. Overall, the current research facilitates a cost-effective,
green methodology for microalgal biomass pretreatment in a short duration. Further, scale-up
studies and in-depth technological interventions, such as using microwave absorbers, are
required to establish the process’s credibility on a large scale.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture13020407/s1, Table S1: ANOVA results for developed
quadratic model in Oedogonium (MAE); Table S2: ANOVA results for developed quadratic model
in Oscillatoria (MAE); Table S3: ANOVA results for developed quadratic model in Ulothrix (MAE);
Table S4: ANOVA results for developed quadratic model in Chlorella (MAE); Table S5: ANOVA results
for developed quadratic model in Cladophora (MAE); Table S6: ANOVA results for developed quadratic
model in Spirogyra (MAE); Table S7: ANOVA for developed quadratic model in Oedogonium (SAE);
Table S8: ANOVA for developed quadratic model in Oscillatoria (SAE); Table S9: ANOVA for developed
quadratic model in Ulothrix (SAE); Table S10: ANOVA for developed quadratic model in Chlorella
(SAE); Table S11: ANOVA for developed quadratic model in Cladophora (SAE); Table S12: ANOVA for
developed quadratic model in Spirogyra (SAE); Table S13: Fit Statistics for Response Surface Quadratic
Model (MAE); Table S14: Fit Statistics for response Surface Quadratic Model (SAE).
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