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Abstract: Risk prediction models are fundamental to effectively triage incoming COVID-19 patients.
However, current triaging methods often have poor predictive performance, are based on variables
that are expensive to measure, and often lead to hard-to-interpret decisions. We introduce two
new classification methods that can predict COVID-19 mortality risk from the automatic analysis
of routine clinical variables with high accuracy and interpretability. SVM22-GASS and Clinical-
GASS classifiers leverage machine learning methods and clinical expertise, respectively. Both were
developed using a derivation cohort of 499 patients from the first wave of the pandemic and were
validated with an independent validation cohort of 250 patients from the second pandemic phase.
The Clinical-GASS classifier is a threshold-based classifier that leverages the General Assessment
of SARS-CoV-2 Severity (GASS) score, a COVID-19-specific clinical score that recently showed its
effectiveness in predicting the COVID-19 mortality risk. The SVM22-GASS model is a binary classifier
that non-linearly processes clinical data using a Support Vector Machine (SVM). In this study, we
show that SMV22-GASS was able to predict the mortality risk of the validation cohort with an
AUC of 0.87 and an accuracy of 0.88, better than most scores previously developed. Similarly, the
Clinical-GASS classifier predicted the mortality risk of the validation cohort with an AUC of 0.77 and
an accuracy of 0.78, on par with other established and emerging machine-learning-based methods.
Our results demonstrate the feasibility of accurate COVID-19 mortality risk prediction using only
routine clinical variables, readily collected in the early stages of hospital admission.

Keywords: COVID-19; mortality risk prediction; SVM22-GASS classifier; Clinical-GASS classifier;
GASS score; machine learning

1. Introduction

In late 2019, a new member of the coronavirus family, named Severe Acute Respiratory
Syndrome CoronaVirus-2 (SARS-CoV-2), emerged in the Chinese province of Hubei [1]
and rapidly spread worldwide, causing the first pandemic by a coronavirus. As of January
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2023, the virus has caused more than 670 million cases of infection, and has led to over
6.7 million deaths in more than 200 countries [2].

COVID-19 (COronaVIrus Disease-19), the clinical manifestation of SARS-CoV-2 infec-
tion, is undoubtedly the most important global health concern this century has witnessed
and has been taking a heavy toll in terms of human, financial, and social resources. More-
over, the appearance of new SARS-CoV-2 strains and the lagging vaccination campaigns
hinder the objective of reaching herd immunity, implying that such issues will likely persist
in the coming months. Hospitals are particularly affected, especially during periods of
increased disease transmission, when the number of patients that simultaneously need
treatment increases exponentially. Such waves of patients can quickly deplete hospital
resources if not dealt with optimally.

In these circumstances, it is fundamental to estimate the amount of resources incoming
COVID-19 patients will likely require during their hospital stay; ideally, this assessment
would be made in the early phases of hospital admission. This would ensure that high-risk
patients have access to adequate resources and that, in general, hospital resources are not
misdirected. General risk scores and comorbidity indices, such as the Charlson Comorbidity
Index (CCI) [3], have been shown to be helpful in estimating the prognosis and thus the
level of care that COVID-19 patients require [4,5]. Similarly, pneumonia-specific risk scores
such as the CURB-6 [6] and the CURB-65 [7] scores have been shown to have even greater
prognostic ability [8,9]. Nevertheless, both kinds of risk scores tend to underperform
clinical risk scores that are specifically targeted to COVID-19 patients [10–12]. This is in
part due to the remarkable variability across patients of the SARS-CoV-2 manifestations.

The SARS-CoV-2 infection manifests itself heterogeneously: symptoms can range from
being completely absent (up to 33% of total cases [13]) to being critical (up to 5% of total
cases [14]), in which case they include respiratory failure, high fever, hyperinflammation,
and multiorgan dysfunction. The percentage of critical cases increases substantially in
the cohorts of hospitalized COVID-19 patients, reaching peaks close to 20% [15]; such
percentages are particularly high in older patients with coexisting morbid conditions and
cardiovascular diseases.

To move beyond the limitations of general risk scores, in this work, we introduce two
COVID-19-specific classifiers: the Clinical-GASS and the SVM22-GASS (GASS = General
Assessment of SARS-CoV-2 Severity; SVM = Support Vector Machine). Both classifiers iden-
tify high-risk patients by predicting their 30-day mortality outcome and were developed
and validated using independent derivation and validation cohorts. The SVM22-GASS
classifier is based on a SVM model and is built in a fully data-driven fashion exploiting
state-of-the-art machine learning methods. The Clinical-GASS builds on a COVID-19
specific risk score we recently introduced and which proved effective at stratifying the
population of hospitalized COVID-19 patients: the GASS score [10].

2. Materials and Methods
2.1. Study Design and Participant Recruitment

This is an observational cohort study, developed in the two hospitals of Ferrara’s
territory dedicated to COVID inpatients, “Arcispedale S.Anna” in Cona (Fe) and “Ospedale
del Delta” in Lagosanto (Fe). The province of Ferrara is geographically located in the
Eastern part of the Emilia-Romagna region of Italy, with a population of approximately
350,000 inhabitants, and it is characterized by a high presence of elderly subjects (~26% of
total population is aged >65 years, and nearly 1% >90 years).

This study analyzes the data of two independent cohorts of COVID-19 patients: a
derivation cohort—used to develop the classifiers—and a validation cohort—used to val-
idate them. In the machine learning community, such data are commonly referred to as
training and test set, respectively. The derivation cohort comprises data of 499 patients re-
cruited between March 2020 and June 2020, which have been already partially described and
analyzed in our previous study [10]. The validation cohort comprises data of 250 patients
recruited between September 2020 and March 2021; in this period, 450 patients were admit-
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ted to our departments but the data relative to 200 subjects were not complete for all the
relevant variables and were thus discarded.

The collected variables consist of demographic, anamnestic, and laboratory data. The
anamnestic data comprise: previous history of smoking, hypertension, ischemic heart
disease, heart failure, chronic kidney disease, stroke or TIA (Transient Ischemic Attack),
peripheral arterial disease (PAD), chronic obstructive pulmonary disease (COPD), hep-
atopathy, cancer, dementia, and diabetes. The laboratory data comprise: white blood
cell count (WBC), lymphocyte count, creatinine, C Reactive Protein (CRP), procalcitonin,
fibrinogen, D-dimer, isoamylase, alanine transferase (ALT), creatine phosphokinase (CPK),
lactic dehydrogenase (LDH), ferritin, brain natriuretic peptide (BNP), and HS Tropoin I
(HS TnI). All the variables were retrieved from the patients’ electronic health records with
their consent. Baseline symptoms and vital signs were added to their records and used to
calculate both their CCI score (Charlson Comorbidity Index), and the GASS score. Note
that the variables on which the CCI and GASS scores are based are defined and explained
in previous studies [3,10], and are reported in the Supplementary Tables S1 and S2.

SARS-CoV-2 infection was confirmed with the reverse transcriptase-polymerase chain
reaction (RT-PCR) test. The exclusion criteria were the negativity of the swab tests to viral
detection and age (patients younger than 18 years were excluded). All patients signed an
informed consent designed specifically for the purpose of this study; in case the patients
were unable to sign, the consent was obtained from their legal representatives.

Importantly, all data were collected at the first hospital visit or blood examination.

2.2. Descriptive Analyses

We evaluated the differences between subjects in terms of the three major COVID-19
outcomes (1. IoC = intensification of care, meant as the need for non-invasive mechanical
ventilation or for endotracheal intubation; 2. in-hospital death; 3. 30-day death). The
observation period was protracted until the 30th day after hospital admission for those
patients who survived the hospitalization: this was possible using records of the local
registry office linked to the hospital information system. Patients needing IoC can be
recognized by the acronym “IoCp” while, for those who did not undergo IoC, we chose
the acronym “nIoCp”. The groups of patients who survived or died after a period of
observation of 30 days are presented with the acronyms “30-ddp” (30-day deceased patients)
and “30-dsp” (30-day survived patients), respectively.

2.3. Statistical Analysis

Data analyses were performed by using SPSS 26.0 software (IBM SPSS Statistics,
IBM Corporation) and MATLAB (MATLAB 2020a, The MathWorks, Natick, MA, USA).
The normal distribution of the continuous variables was analyzed using Kolmogorov–
Smirnov and Shapiro–Wilk tests. Variables not normally distributed were analyzed using
non-parametric tests. Categorical variables were summarized by using frequencies and
percentages, and continuous data were presented as median (interquartile range, IQR). The
Mann–Whitney U test was used for continuous variables, while the χ2 test was used for
categorical variables. Variables with a p value < 0.05 in the univariate analyses were used
to perform multivariate logistic regression analyses. All p values < 0.05 are considered
statistically significant.

2.4. The Clinical-GASS Classifier

In our previous study [10], we defined a new clinical score, the GASS score, and
discussed its ability to stratify the population of hospitalized COVID-19 patients into
groups with significantly different 30-day mortality risk. Such a stratification has the
potential to improve patient care by signaling to the hospital personnel the patients who
are likely to need a mild (GASS < 6), moderate (6 ≤ GASS ≤ 10), or high (GASS > 10)
level of care. However, clinical personnel might also benefit from knowing whether the
patient at hand has a low or a high risk of dying and is likely to require specialized
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treatment such as the admission to the intensive care unit. This can be accomplished by
building a binary classifier that predicts, for example, the 30-day mortality outcome. This
is the primary outcome measure we aim to predict with this, and the other classifiers
considered in the following sections. To assess the potential of the GASS score to be
used for such a binary classification task, we built a simple threshold-based classifier.
The classifier—named Clinical-GASS—was designed by simply computing the optimal
Receiver Operating Characteristic (ROC) threshold on the training set, in terms of the
cost/benefit ratio [16]; equal costs were assumed for the misclassification of survivors and
non-survivors. Patients with a GASS score below such a threshold are classified as likely
survivors while patients with a GASS score above such a threshold are considered as likely
non-survivors. A similar approach was used to build the Charlson Comorbidity Index
(CCI) classifier from the CCI score. The CCI is a clinical score that is often used as a baseline
method to estimate the mortality risk in the general population.

2.5. The SVM22-GASS Classifier

Both the Clinical-GASS and the CCI classifiers are built leveraging medical expertise
and thus might have a strong appeal to clinicians: they are likely to have full understanding
of how the classifiers work, to trust their decisions, and to thus be willing to use them.
However, both classifiers only use a limited number of features (Clinical-GASS: n = 11, CCI
classifier: n = 19) and combine them with only sums and other simple operations defined
by piecewise constant functions. For these reasons, both classifiers are potentially unable to
fully exploit useful features contained in the patients’ health records and their non-linear
interactions, which might be predictive of survival outcome.

To address this issue, we used a Support-Vector-Machine-based classifier (SVM) with
Radial Basis Function (RBF) kernel [17]. An RBF-SVM is a binary non-linear classification
method that classifies data by non-linearly mapping the feature vectors into an infinite
dimensional space in which data from different groups can be easily separated by a hyper-
plane. In brief, data x are classified by the decision function f (x), which is given by

f (x) = ∑N
i=1 αik (xi, x) (1)

Here, N is the number of support vectors, αi are weighting coefficients, and k( , ) is the
kernel function. In our case, we chose the Gaussian Radial Basis Function:

k(y, z) = exp

(
−||y− z||2

2σ2

)
(2)

Therefore, the decision function f(x) becomes:

f (x) = ∑N
i=1 αiexp

(
−||xi − x||2

2σ2

)
(3)

The SVM classifier was trained using only the data contained in the training set, was
tested on the independent test set, and was compared against the CCI and GASS classifiers.
In the remainder of this article, we will refer to the SVM classifier trained on our training
set as SVM22-GASS.

2.5.1. Data Preprocessing

Before training the SVM classifier, we made sure to have sound training data. This
was accomplished in two steps. First, we excluded from the analysis the variables that were
measured in less than 50% of the patients. Secondly, we imputed the remaining missing
values with the weighted average of the values of the three most similar instances, with
weights inversely proportional to the distances from these. As a distance measure, we used
the Euclidean distance for continuous features and the Hamming distance for binary ones.
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2.5.2. Data Augmentation

Learning a classifier from imbalanced training data such as ours (% survivors = 75.7 %)
is a challenging task and can lead to poor sensitivity to the minority class. To deal with
this issue, we balanced the training set using the Synthetic Minority Over-sampling Tech-
nique (SMOTE). We used this specific method because of its proved effectiveness and
simplicity [18]. In brief, this method works by generating synthetic instances of the minor-
ity class by linearly combining samples of the minority class. Specifically, for each minority
class sample s one can generate h synthetic samples by first randomly sampling h of the k
nearest neighbors, and then randomly perturbing s along the directions of the difference
vectors between s and the h samples. In this algorithm, k is a hyperparameter, while h
depends on the number of synthetic samples to generate.

2.5.3. Feature Selection

To remove potentially redundant and uninformative features, while reducing the
computational cost of training the SVM model, we performed feature selection; this was
accomplished by learning a regularized logistic regression model with LASSO penalty
[19,20]. The regularization parameter λLASSO, which determines the regularization strength
and thus the number of selected features, was chosen by minimizing the ten-fold cross-
validation deviance. Note that we chose this specific feature selection method due to its
well known cost-effectiveness, its ability to deal with models with both continuous and
categorical variables, and its strong performance exhibited in a previous study [10].

2.5.4. Parameter Training

To learn the model’s parameters, we minimized the hinge loss using the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) solver [21]. Importantly, to speed
up training and reduce memory requirements, we approximated the Gaussian kernel using
the Fastfood [22] random feature expansion method. To deal with potential residual classi-
fication biases due to the class imbalance, we adjusted the SVM classification threshold [23].
Specifically, we used the SVM classification scores to compute the optimal operating point
of the ROC curve and used the resulting threshold to classify the data.

2.5.5. Hyperparameters Optimization

Before learning the final model’s parameters, to preselect a class of SVM models
suitable for the dataset at hand, we performed hyperparameter optimization [24] using
Bayesian optimization [25]. Specifically, with this procedure we found the kernel scale
σ2, the regularization strength λSVM, and the dimensionality of the random features space
δ, that minimize the five-fold cross-validation hinge loss. Note that we used Bayesian
optimization rather than simpler methods such as random or grid search because this
method tends to be less sensitive to the choice of the hyperparameter ranges. Furthermore,
it generally requires a lower expected number of calls to the cost function, which reduces
the computational cost.

2.5.6. Model Evaluation

To evaluate the quality of the model’s predictions, we computed the Area Under the
ROC Curve (AUC), accuracy, sensitivity, and specificity on the independent test set. The
SVM’s performance is then compared to that of the other classifiers of interest, namely, the
CCI classifier and the GASS classifier. As a baseline model, we also considered the majority
classifier, which assigns the majority class to every instance in the dataset, regardless of
its features. Importantly, the majority classifier is patient agnostic: it does not use the
data associated with a specific patient to determine the risk class. Thus, comparing our
classifiers to this baseline model allows us to quickly assess whether they are able to
competently extract useful information from patient data, rather than only exploiting the
class distribution of the training set.
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2.5.7. Model Interpretation

As it is often the case with most high-dimensional and non-linear machine learning
models, also in our case, once the SVM model is fully trained, it is challenging to gain an
intuitive understanding of the mechanism underlying the classifier’s decision process. To
shed some light on such a mechanism, we estimated the variable importance (VI) [26] of
each input feature of the SVM model, by computing the model reliance. In brief, such a
method assigns high reliance to the features that, when perturbed. lead to a strong decrease
in classification accuracy. Furthermore, to assess the discriminative power of the most
important features selected with this method, we trained a reduced SVM model to classify
survivors and non-survivors using only the top-3 features [27] and measured the decrease
in classification performance.

2.6. Guidelines and Ethical Approval

For the compilation of this manuscript, we followed STROBE (Strengthening the
Reporting of Observational Studies in Epidemiology) guidelines for reporting observa-
tional studies. The local Ethics Committee “Comitato Etico Indipendente di Area Vasta
Emilia Centro (CE-AVEC)” approved the protocol of this study; the protocol code is
712/2020/Oss/AOUFe.

3. Results
3.1. Descriptive Analyses

The distribution of males and females in the overall population was quite homoge-
neous (54.8% males vs. 45.2% females), while in the group of patients who underwent
intensification of care (IoCp) there was a higher percentage of males (65.8% vs. 34.2%;
p = 0.021). The median age of the overall population was 72 years (IQR 58–82 years) and
in-hospital mortality was recorded for 62 patients (24.8%)

The subjects who died within the hospitalization period (deceased) were significantly
older than those who were discharged (median age 82 vs. 67 years; p < 0.001). This was
true also for the group of patients who died within 30 days (30-ddp) compared with those
who survived within the same period (30-dsp) (median age 81 vs. 68 years; p < 0.001).

Not surprisingly, we found differences between the IoCp and NIoCp groups in terms
of length of stay (21 vs. 10 days; p < 0.001); significant differences were also found between
the 30-ddp and 30-dsp groups (9 days vs. 13 days; p < 0.001).

The GASS scores were higher in the IoCp group compared to NIoCp (9 vs. 7 points;
p < 0.001); as expected, similar differences were found between deceased and discharged
patients (11 vs. 6 points; p < 0.001) but also between 30-ddp and 30-dsp (11 vs. 7 points;
p < 0.001).

The patients with worse disease outcomes presented with a greater load of comor-
bidities (CCI 3.3 ± 2.7 vs. 1.6 ± 2.3 points, p < 0.001 between deceased and discharged
and 3.0 ± 2.6 vs. 1.7 ± 2.4 points, p = 0.001 between 30-ddp and 30-dsp). As for vital
parameters, IoCp and NIoCp groups differed in terms of respiratory rate, RR (22 bpm, IQR
20–30 vs. 20 bpm, IQR 16–22; p < 0.001) and PaO2/FiO2 ratio at the first visit (300, IQR
230-352 vs. 229, IQR 155-295; p < 0.001). Deceased and discharged patients differed in terms
of systolic blood pressure (SBP), diastolic blood pressure (DBP) and RR; similarly, 30-ddp
and 30-dsp differed for SBP, DBP and RR.

The laboratory findings were also heterogeneously distributed between groups: IoCp
and NIoCp differed for serum C Reactive Protein (CRP), procalcitonin, D-Dimer, isoamylase,
alanine transferase (ALT), lactic dehydrogenase (LDH) and ferritin. Differences between
deceased and discharged patients related to serum lymphocyte count, creatinine, CRP,
procalcitonin, D-Dimer, LDH, BNP and high sensitivity troponin I (HS TnI).

Similar differences were also found between 30-ddp and 30-dsp: these groups differed
for serum creatinine, CRP, procalcitonin, D-Dimer (1.15 mg/L FEU, IQR 0.76–2.00 vs.
0.88 mg/L FEU, IQR 0.48–2.04; p = 0.044), LDH, BNP and HS TnI (42 ng/mL, IQR 19–101
vs. 9 ng/mL, IQR 4–22; p < 0.001).



Biomedicines 2023, 11, 831 7 of 18

All data concerning the characteristics of the studied population can be found in
Table 1; extended results are provided only for those variables found to be important in the
multivariate analyses later.

Table 1. Characteristics of population and differences between groups.

Cohort
Character-

istics

All Patients
(N = 250)

IoCp
(N = 76)

NIoCp
(N = 174) p-Value Deceased

(N = 62)
Discharged
(N = 188) p-Value 30-ddp

(N = 59)
30-dsp

(N = 191) p-Value

Males, n
(%) 137 (54.8) 50 (65.8) 87 (50.0)

0.021
31 (50.0) 106 (56.4)

0.38
31 (52.5) 109 (57.1)

0.20
Females, n

(%) 113 (45.2) 26 (34.2) 87 (50.0) 31 (50.0) 82 (43.6) 28 (47.5) 82 (42.9)

Age, years 72 (58–82) 72 (62–80) 72 (53–82) 0.26 82 (76–86) 67 (53–78) <0.001 81 (73–86) 68 (54–79) <0.001

Length of
stay, days 12 (7–22) 21 (12–40) 10 (6–16) <0.001 10 (6–20) 12 (7–23) 0.16 9 (6–16) 13 (8–24) <0.001

GASS
score,
points

7 (5–11) 9 (7–11) 7 (4–10) <0.001 11 (9–13) 6 (4–9) <0.001 11 (8–13) 7 (4–9) <0.001

CCI, points
± SD 2.0 ± 2.5 2.1 ± 2.5 2.0 ± 2.5 0.69 3.3 ± 2.7 1.6 ± 2.3 <0.001 3.0 ± 2.6 1.7 ± 2.4 0.001

Vital Signs and Parameters

SBP,
mmHg 130 (120–140) 130

(120–150) 130 (115–140) 0.47 120
(110–140)

130
(120–140) 0.024 120 (110–130) 130 (120–140) 0.005

DBP,
mmHg 70 (70–80) 70 (60–80) 70 (70–80) 0.08 70 (60–80) 75 (70–80) 0.019 70 (60–80) 75 (70–80) 0.003

HR, bpm 86 (77–99) 86 (75–100) 87 (78–99) 0.39 88 (76–100) 86 (78–99) 0.94 88 (74–100) 86 (78–99) 0.84

RR, apm 20 (18–23) 22 (20–30) 20 (16–22) <0.001 22 (18–28) 20 (16–22) <0.001 21 (18–28) 20 (16–22) 0.016

PaO2/FiO2
ratio 300 (230–352) 229

(155–295) 310 (261–355) <0.001 266
(200–304)

310
(244–355) 0.09 269 (193–311) 308 (245–352) 0.22

Laboratory Findings

WBC
(n/mmc)

6395
(4815–9375)

6970
(5315–9795)

6210
(4750–9280) 0.33 7600 (5380–

10905)
6140 (4750–

9010) 0.07 6280
(5060–10030)

6420
(4795–9320) 0.84

Lymphocytes
(n/mmc)

1000
(740–1390)

990
(635–1325)

1000
(760–1470) 0.33 870

(640–1085)
1050

(778–1483) 0.008 905
(658–1278)

1030
(770–1465) 0.14

Creatinine
(mg/dl)

0.94
(0.77–1.28)

0.96
(0.78–1.35)

0.94
(0.77–1.24) 0.78 1.34

(0.82–2.01)
0.91

(0.75–1.16) <0.001 1.31
(0.88–1.83)

0.91
(0.75–1.17) <0.001

CRP
(mg/dl)

5.82
(1.98–10.92)

8.57
(1.94–18.00)

5.21
(1.98–9.52) 0.038 8.49 (3.10–

13.71)
4.92

(1.74–9.87) 0.007 8.49
(2.87–12.88)

4.98
(1.83–10.12) 0.025

Procalcitonin
(ng/mL)

0.15
(0.05–0.51)

0.25
(0.08–0.73)

0.11
(0.05–0.43) 0.018 0.54

(0.20–1.75)
0.09

(0.05–0.26) <0.001 0.49
(0.17–1.96)

0.10
(0.05–0.27) <0.001

Fibrinogen
(mg/dl) 509 (441–659) 555

(438–689) 501 (441–643) 0.27 572
(431–677)

502
(441–642) 0.37 550 (428–674) 506 (441–643) 0.91

D-Dimer
(mg/L
FEU)

0.93
(0.54–2.04)

1.12
(0.74–1.99)

0.88
(0.47–2.04) 0.039 1.20

(0.77–2.30)
0.85

(0.47–1.80) 0.008 1.15
(0.76–2.00)

0.88
(0.48–2.04) 0.044

Isoamylase
(U/L) 27 (20–44) 36 (25–100) 26 (18–41) 0.008 32 (18–51) 27 (21–44) 0.92 36 (20–45) 27 (20–43) 0.63

ALT (U/L) 21 (14–37) 26 (18–49) 19 (12–33) 0.003 18 (11–29) 87 (52–193) 0.06 19 (12–34) 21 (14–37) 0.29

CPK (U/L) 87 (51–203) 111 (54–224) 83 (46–169) 0.14 93 (50–220) 280
(211–361) 0.82 122 (59–356) 86 (50–167) 0.12

LDH (U/L) 286 (219–380) 390
(274–466) 271 (210–332) <0.001 328

(250–436)
304

(125–593) 0.015 332 (265–434) 276 (210–358) 0.001

Ferritin
(ng/mL) 327 (142–637) 506

(294–922) 275 (120–565) 0.006 364
(180–767)

304
(125–593) 0.19 439 (264–736) 293 (121–610) 0.07

BNP
(pg/mL) 76 (36–185) 80 (43–168) 75 (33–195) 0.90 197

(94–410) 60 (30–126) <0.001 209 (87–377) 62 (30–132) <0.001
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Table 1. Cont.

Cohort
Character-

istics

All Patients
(N = 250)

IoCp
(N = 76)

NIoCp
(N = 174) p-Value Deceased

(N = 62)
Discharged
(N = 188) p-Value 30-ddp

(N = 59)
30-dsp

(N = 191) p-Value

HS TnI
(ng/mL) 14 (5–34) 15 (7–47) 13 (5–29) 0.13 41 (16–85) 9 (4–21) <0.001 42 (19–101) 9 (4–22) <0.001

Data are reported as median (interquartile range IQR) unless otherwise specified; IoCp, patients who underwent
intensification of care; nIoCp, patients who did not undergo intensification of care; 30-ddp, patients deceased
after 30 days; 30-dsp, patients surviving after 30 days; GASS, General Assessment of SARS-CoV-2 patients;
SD, Standard Deviation; CCI, Charlson Comorbidity Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood
Pressure; HR, Heart Rate; RR, Respiratory Rate; WBC, White Blood Cells; CRP, C Reactive Protein; ALT, Alanine
Transferase; CPK, Creatine Phosphokinase; LDH, Lactic Dehydrogenase; BNP, Brain Natriuretic Peptide; HS TnI,
High Sensitivity Troponin I.

Differences between groups were also found in terms of comorbidities, and all the
results are summarized in Table 2. Patients of the IoCp group were more often smokers; in
the group of deceased subjects we found more diagnoses of hypertension, ischemic heart
disease, heart failure, chronic kidney disease, history of stroke or transient ischemic attack
(TIA), peripheral arterial disease (PAD), chronic obstructive pulmonary disease (COPD),
localized or hematological cancer, dementia and diabetes with organ damage.

Table 2. Comorbidities and differences between groups.

Comorbidity All Patients
(N = 250) IoCp (N = 76) NIoCp

(N = 174) p-Value Deceased
(N = 62)

Discharged
(N = 188) p-Value 30-ddp

(N = 59)
30-dsp

(N = 191) p-Value

Smoking habit 53 (21.2) 25 (32.9) 28 (16.1) 0.003 17 (27.4) 36 (19.1) 0.17 14 (23.7) 39 (20.4) 0.59

Hypertension 141 (56.4) 49 (64.5) 92 (52.9) 0.09 45 (72.6) 96 (51.1) 0.003 45 (76.3) 96 (50.3) <0.001

Ischemic heart
disease 25 (10.0) 8 (10.5) 17 (9.8) 0.86 11 (17.7) 14 (7.4) 0.019 9 (15.3) 16 (8.4) 0.12

Heart failure 18 (7.2) 5 (6.6) 13 (7.5) 0.80 8 (12.9) 10 (5.3) 0.045 6 (10.2) 12 (6.3) 0.31

Chronic kidney
disease (moderate or

severe)
35 (14.0) 10 (13.2) 25 (14.4) 0.80 15 (24.2) 20 (10.6) 0.008 13 (22.0) 22 (11.5) 0.042

Stroke or TIA 33 (13.2) 8 (10.5) 25 (14.4) 0.41 17 (27.4) 16 (8.5) <0.001 15 (25.4) 18 (9.4) 0.002

PAD 16 (6.4) 3 (3.9) 13 (7.5) 0.30 9 (14.5) 7 (3.7) 0.003 8 (13.6) 8 (4.2) 0.010

COPD 26 (10.4) 9 (11.8) 17 (9.8) 0.62 13 (21.0) 13 (6.9) 0.002 10 (16.9) 16 (8.4) 0.06

Mild hepatopathy 8 (3.2) 0 (0) 8 (4.6) 0.06 1 (1.6) 7 (3.7) 0.41 1 (1.7) 7 (3.7) 0.45

Moderate or severe
hepatopathy 3 (1.2) 1 (1.3) 2 (1.1) 0.91 3 (4.8) 0 (0) 0.002 3 (5.1) 0 (0) 0.002

Localized or
hematological

cancer
49 (19.6) 17 (22.4) 32 (18.4) 0.47 19 (30.6) 30 (15.9) 0.012 19 (32.2) 30 (15.7) 0.005

Metastatic cancer 11 (4.4) 3 (3.9) 8 (4.6) 0.82 2 (3.2) 9 (4.8) 0.60 1 (1.7) 10 (5.2) 0.25

Dementia 47 (18.8) 13 (17.1) 34 (19.5) 0.65 22 (35.5) 25 (13.3) <0.001 20 (33.8) 27 (14.1) 0.001

Diabetes without
organ damage 23 (9.2) 7 (9.2) 16 (9.2) 1.00 7 (11.3) 16 (8.5) 0.51 8 (13.6) 15 (7.9) 0.19

Diabetes with organ
damage 26 (10.4) 9 (11.8) 17 (9.8) 0.62 11 (17.7) 15 (8.0) 0.029 9 (15.3) 17 (8.9) 0.16

Data are reported as number of subjects (percentage); IoCp, patients who underwent intensification of care;
nIoCp, patients who did not undergo intensification of care; 30-ddp, patients deceased after 30 days; 30-dsp,
patients surviving after 30 days; TIA, Transient Ischemic Attack; PAD, Peripheral Arterial Disease; COPD, Chronic
Obstructive Pulmonary Disease.

Comparison analyses between groups were also performed for each item considered
in the Clinical-GASS score and they can be found in the Supplementary Tables S3–S5. All
variables found to be significantly different between groups in the univariate analyses were
entered into multivariate analyses.

In the logistic regression analyses concerning the need for intensification of care,
the strongest predictive variable was the PaO2/FiO2 ratio: both ratios <100 and 100–199
showed to be somehow protective against the intensification of care (OR 0.11, 95% CI
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0.02–0.72; p = 0.021 and OR 0.07, 95% CI 0.02–0.27; p < 0.001, respectively), while the male
sex and a higher respiratory rate (>30 breaths per minute) seemed to be predictive for a
higher need for intensification of care (OR 3.56, 95% CI 1.20–10.56; p = 0.022 and OR 4.76,
95% CI 1.00–22.96; p = 0.050).

Concerning the in-hospital mortality, age and PaO2/FiO2 ratio >300 were the only
variables able to adequately predict this outcome (OR 1.07, 95% CI 1.02–1.12; p = 0.007 and
OR 0.35, 95% CI 0.13–0.92; p = 0.034, respectively); moreover, age was particularly able at
predicting death within a period of 30 days (OR 1.06, 95% CI 1.01–1.12; p = 0.027), together
with serum D-dimer between 0.5 and 2.0 mg/L FEU (OR 4.22, 95% CI 1.28–13.90; p = 0.018);
serum troponin I (HS TnI) < 20 ng/mL was, instead, protective against 30-day death (OR
0.23, 95% CI 0.06–0.80; p = 0.022).

The Clinical-GASS score was calculated for each patient, and this allowed us to predict
the relative risk of in-hospital and 30-day death based on the analyses of this cohort of
subjects. We developed an open access web tool to help clinicians identify the patients at
higher risk of bad outcomes by COVID-19, simply filling out the form with all the variables
needed. This tool can be found at the following link: https://ml.unife.it/GASS.html and it
is available for free consultation.

Furthermore, we performed Receiver Operating Characteristic (ROC) curve analyses,
in order to evaluate the predictive power of the GASS score, compared to the Charlson
Comorbidity Index, which has been also recently tested in COVID-19 inpatients [28]. The
main results of the classification analysis are reported in Figure 1.

3.2. The CCI Classifier

The optimal ROC threshold for the Charlson Comorbidity Index classifier was 11.
This means that the optimal way to classify COVID-19 patients based on the CCI alone
is to consider as high-risk all the patients with a CCI greater than or equal to this value.
However, this classifier performed poorly on the test set, with an Area Under the Curve
(AUC) of 0.66 and an accuracy of 0.76 (Figure 1D, grey bars). The poor performance of
this classifier is attributable to the complete inability to correctly identify non-survivors
(sensitivity = 0), which makes it effectively equivalent to the naïve majority classifier (black
bars). We refer the reader to Section 2.4 for further details about the CCI classifier.

3.3. The Clinical-GASS Classifier

The optimal ROC threshold for the Clinical-GASS classifier was 13, which lies, as
expected, within the range of values of the high mortality risk class (GASS > 10). Overall, the
Clinical-GASS displayed satisfying test performance, with an AUC of 0.77 and an accuracy
of 0.78 (Figure 1D, orange bars). Importantly, the Clinical-GASS classifier performed better
than both the majority and the CCI classifiers, due to its improved ability to identify non-
survivors (sensitivity = 0.31). We refer the reader to Section 2.4 for further details about the
Clinical-GASS classifier.

3.4. The SVM22-GASS Classifier

The minimum-deviance ten-fold cross-validation regularization strength λLASSO was
equal to 4.9 × 10−3. The corresponding LASSO logistic regression model fitted with such
a parameter selected a total of 38 features, which are reported in Figure 1A. The best
cross-validated hyperparameters of the RBF-SVM classifier trained using such features
were σ2 = 774.16, λSVM = 1.4 × 10−6, and δ = 7318. The classifier trained with such
hyperparameters achieved nearly optimal performance on the training set (AUC ≈ 1,
accuracy ≈ 1, Figure 1C—blue bars), which means that the decision hyperplane is able
to completely separate survivors from non-survivors in the transformed feature space.
Importantly, the SVM classifier achieved very good performance also on the independent
test set, with an AUC of 0.87 and an accuracy of 0.88. The ability to classify COVID-19
patients of the SVM classifier is thus superior to that of all the other considered classifiers.
Such an improvement is largely attributable to a markedly better ability to correctly identify

https://ml.unife.it/GASS.html
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non-survivors (sensitivity = 0.61). We refer the reader to Section 2.5 for further details about
the SVM22-GASS classifier.
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Figure 1. Summary prediction performance. (A) Receiver Operating Characteristic (ROC) curves
of the considered classifiers, computed on the training set (majority classifier: black; Charlson
Comorbidity Index (CCI) classifier: grey; GASS classifier: orange; SVM classifier: blue). Filled
circles indicate the optimal operating points. Note that the classification threshold of the majority
classifier is fixed; thus, the corresponding ROC curve collapses to a single point. (B) Corresponding
curves computed on the independent test set. Filled circles represent the optimal operating points
of the training ROC curves. (C) Considered classification performance measures, computed on
the training set; values are rounded to the nearest hundredths; AUC: Area Under the ROC Curve.
(D) Corresponding measures computed on the test set. Note that the majority class in both the
training and test set is the survival class, which was arbitrarily associated to a negative test result;
therefore, by always predicting survival, the majority classifier has a sensitivity of 0 and a specificity
of 1.

Model Interpretation and Reduced Models

The SVM classifier just described predicts the most likely 30-day mortality outcome of
COVID-19 patients by non-linearly processing a selection of 38 features that characterize
them. To understand whether some of these features are more important than others, we
computed the model reliance [17]. The results of this analysis are reported in Figure 2A,
where we plotted the model reliance of the full SVM model, on all the 38 features. The
features are sorted from top to bottom in decreasing order of reliance. According to this
analysis, 8 of the 38 features appear to be particularly informative to the model, as its
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predictions change drastically when such features are perturbed. Specifically, the eight
most important features of the full SVM classifier are White Blood Cell Count (WBC),
Lymphocyte Count (LYM), Brain Natriuretic Peptide (BNP), Creatine Phosphokinase (CPK),
Lactate Dehydrogenase (LDH), Fibrinogen (FIBR), PaO2/FiO2 Ratio (PFR), and High-
Sensitivity Troponin I (TnI).

Biomedicines 2023, 11, x FOR PEER REVIEW 12 of 19 
 

 
Figure 2. Understanding the full SVM model. (A) Model reliance of the full SVM model on all the 
38 features its predictions are based on. Features are sorted (from top to bottom) in descending order 
of importance. (B) Medians, 95% bootstrap confidence intervals, and interquartile ranges of the top 
eight features, for the 30-day survival (green) and death (red) group. Black dots represent medians; 
box heights represent confidence intervals; thin lines represent interquartile ranges. Asterisks indi-
cate significant (Bonferroni-adjusted p value ≤ 0.05) differences between groups (Mann–Whitney U 
test). 

To understand how such features differ between survivors and non-survivors, and 
whether such differences are statistically significant, we performed Mann–Whitney U 
tests, using a Bonferroni-adjusted significance value of 0.05 (Figure 2B). Out of the 8 most 
important features, only 2 do not appear to be significantly different between survivors 
and non-survivors (CPK and fibrinogen, p value > 0.05). Medians, 95% bootstrap confi-
dence intervals, and interquartile ranges of the top eight features, for the 30-day survival 
(green) and death (red) group can be found in the Figure 2, panel B. 

The fact that the full SVM model appears to rely mostly on a subset of the full feature 
set of 38 features, raises the question of whether a reduced model, which has only access 
to the most informative features, can also accurately predict the COVID-19 outcome. To 
address this question, we trained a reduced RBF-SVM model to predict the COVID-19 
outcome using only the three most informative features, that is White Blood Cell Count 
(WBC), Lymphocyte Count (LYM), and Brain Natriuretic Peptide (BNP). Choosing exactly 
three features allows us to visualize the entire feature space in which the classifier oper-
ates, and to plot the resulting decision surface. 

As an additional baseline, we also trained another RBF-SVM model that had access 
to only the three least informative features (namely, Creatinine (CRE), Procalcitonin 
(PCT), and D-dimer (XDP)). The models, which we refer to as SVM-TOP3 and SVM-BOT3 
respectively, were trained following the same steps adopted for the full SVM model. The 
results of this analysis are reported in Figure 3. As expected, both reduced models exhib-
ited worse training and test performance than the full SVM model (Figure 3B,C). Never-
theless, while the SVM-BOT3 classifier exhibited overall poor test performance, 

Figure 2. Understanding the full SVM model. (A) Model reliance of the full SVM model on all the
38 features its predictions are based on. Features are sorted (from top to bottom) in descending order
of importance. (B) Medians, 95% bootstrap confidence intervals, and interquartile ranges of the top
eight features, for the 30-day survival (green) and death (red) group. Black dots represent medians;
box heights represent confidence intervals; thin lines represent interquartile ranges. Asterisks indicate
significant (Bonferroni-adjusted p value ≤ 0.05) differences between groups (Mann–Whitney U test).

To understand how such features differ between survivors and non-survivors, and
whether such differences are statistically significant, we performed Mann–Whitney U
tests, using a Bonferroni-adjusted significance value of 0.05 (Figure 2B). Out of the 8 most
important features, only 2 do not appear to be significantly different between survivors and
non-survivors (CPK and fibrinogen, p value > 0.05). Medians, 95% bootstrap confidence
intervals, and interquartile ranges of the top eight features, for the 30-day survival (green)
and death (red) group can be found in the Figure 2, panel B.

The fact that the full SVM model appears to rely mostly on a subset of the full feature
set of 38 features, raises the question of whether a reduced model, which has only access
to the most informative features, can also accurately predict the COVID-19 outcome. To
address this question, we trained a reduced RBF-SVM model to predict the COVID-19
outcome using only the three most informative features, that is White Blood Cell Count
(WBC), Lymphocyte Count (LYM), and Brain Natriuretic Peptide (BNP). Choosing exactly
three features allows us to visualize the entire feature space in which the classifier operates,
and to plot the resulting decision surface.

As an additional baseline, we also trained another RBF-SVM model that had access to
only the three least informative features (namely, Creatinine (CRE), Procalcitonin (PCT), and
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D-dimer (XDP)). The models, which we refer to as SVM-TOP3 and SVM-BOT3 respectively,
were trained following the same steps adopted for the full SVM model. The results of
this analysis are reported in Figure 3. As expected, both reduced models exhibited worse
training and test performance than the full SVM model (Figure 3B,C). Nevertheless, while
the SVM-BOT3 classifier exhibited overall poor test performance, comparable to that of the
CCI classifier (AUC = 0.7, accuracy = 0.7—Figure 3C), the SVM-TOP3 classifier performed
surprisingly well. As a matter of fact, the SVM-TOP3 had better test performance than
the Clinical-GASS classifier (AUC = 0.83, accuracy = 0.83—Figure 3C), despite using only
three features.
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Figure 3. Reduced models and decision surface. (A) Decision surface of the SVM-TOP3 model, which
only uses the top-3 features. The surface divides the feature space into two regions: a survival region
(green) and a death region (red). Small green circles represent 30-day survivors, while small red
circles represent 30-day non-survivors; misclassified instances are marked with a black dot. The
corresponding large circles represent the group medians. Note: to facilitate the visualization of the
decision surface, we have only plotted the data within a cuboid delimited by the 20th and 80th
percentiles. (B) Classification performance measures of the full SVM model and of the reduced SVM
models, computed on the training set. The SVM-TOP3 model only uses the top-3 features, while the
SVM-BOT3 model only uses the bottom-3 features; values are rounded to the nearest hundredths.
(C) Corresponding measures computed on the test set.

The resulting decision surface (Figure 3A) is, as expected, highly non-linear. The
3D plot of the feature space confirms that, generally, non-survivors seem to have higher
serum BNP and lymphocyte count. Interestingly, the white blood cells count appears
to become strongly predictive of a non-survival outcome, only for very high values
(WBC > 10 × 103 n/mmc), especially when associated with high values of lymphocytes
(LYM > 9 × 102 n/mmc).
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4. Discussion

Predicting the mortality risk of hospitalized COVID-19 patients could go a long way
to optimal allocation of hospital resources. Popular clinical scores are potentially useful in
this regard, but have proven to be less accurate than COVID-19-specific methods [10,29].
In this work we have introduced and validated two new methods for predicting 30-day
mortality risk: the Clinical-GASS and the SVM22-GASS. Overall, our results show that
both methods are reliable and can thus be used to effectively triage incoming COVID-19
patients using only readily available variables.

4.1. Clinical-GASS Score and Risk Factors

The Clinical-GASS score is based on 11 variables easily available after the first visit at
the Emergency Room, with the execution of both a venous and an arterial blood sample. The
need for reliable and easy-to-use tools, able to predict the outcomes in COVID-19 inpatients
is day by day more urgent because of the scarcity of human and financial resources, already
under strain from the beginning of the pandemic.

The retrospective analyses from the first 499 patients hospitalized with COVID-19 to
our hospitals in the territory of Ferrara, allowed us to notice a strong relationship between
the Clinical-GASS score and mortality by COVID-19 (both in-hospital and 30-day rates);
moreover, a slight relationship with the need for intensification of care was observed and
confirmed only in the population with a Clinical-GASS score lower than 10 points; in the
current study, this was true only for extreme values of the score (<5 or >10 points).

In our cohort of patients, the in-hospital mortality rate was 24.8%, while on the 30th
day of observation, it was 23.6%. Our findings showed how patients who underwent
intensification of care, needing non-invasive mechanical ventilation or endotracheal intu-
bation, were more often males, with a greater Clinical-GASS score (p < 0.001) and worse
respiratory performances (higher respiratory rates and lower PaO2/FiO2 ratios). As for
laboratory abnormalities, those patients had higher serum inflammatory markers (CRP
and ferritin), higher organ damage markers (isoamylase, ALT, LDH, HS TnI), and marked
pro-coagulative status (higher serum D-Dimer).

Such findings are consistent with previous studies: male sex has been already linked
to poorer chances of survival from COVID-19 and with increased risk of admission to the
Intensive Care Units (ICUs) [30]; similarly, the PaO2/FiO2 ratio was already shown to be
independently associated with worse COVID-19 outcomes [29,31]. Furthermore, recent
studies showed how COVID-19 inpatients present commonly with laboratory abnormali-
ties and the role of inflammatory, and organ-damage markers has been also consistently
reported [32,33]. Our analyses also confirmed the role of age. Early Chinese studies showed
how the elderly population was bound to encounter worse COVID-19 outcomes [34,35],
and such findings were later confirmed in studies with European [36,37] and American
patients [38]. Interestingly, the laboratory findings and respiratory performances reported
in these studies were similar to those of our IoC group. Additionally, in accordance with
previous studies that showed how low levels of blood pressure at hospital admission are
often associated with worse COVID-19 outcomes [39], we observed higher blood pressure
(both systolic and diastolic) in the survivor group. Finally, the negative role of comorbidities
(especially cardiovascular) and smoking [40] is also well established [41,42].

4.2. Alternative Clinical Scores

Popular clinical scores of general applicability, such as the Charlson Comorbidity
Score (CCI) [4], the modified Elixhauser Index (mEI) [43], the National Early Warning Score
2 (NEWS2) [44] and the CURB models [8,9] have been used during the current pandemic to
predict COVID-19 outcomes with discrete success. However, they tend to underperform
COVID-19-specific clinical scores [10,29].

The first COVID-19-specific scores were developed in China [11,45], during the first
wave of the pandemic. Further scores for prediction of COVID outcomes were later
developed all over the world [46–48], and data from more heterogeneous datasets were
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collected in order to reduce potential selection bias stemming from sampling from a
restricted population of subjects. A case in point is represented by the 4C score, developed
by Knight et al. [12]: such a score has quickly become popular due to its vast derivation
and validation cohorts and its ease of use. However, the predictive performance of the
score (validation AUC = 0.77), appears to lag behind that of SVM22-GASS introduced
in this work (validation AUC = 0.87, accuracy = 0.88), and to be comparable with that
of the Clinical-GASS (validation AUC = 0.77, accuracy = 0.78). Similar arguments can
be made with regard to the recently developed “Piacenza score” (validation AUC = 0.78,
accuracy = 0.55).

Importantly, the SVM22-GASS bases its prediction on the analysis of clinical variables
that can be quickly and inexpensively retrieved early on during hospital admission. This is
a significant advantage over other popular multivariate methods that rely on the manual
analysis of medical imaging results (e.g., [29]), and yet achieve comparable predictive
performance (validation AUC = 0.88). Like most machine-learning-based classifiers, the
SVM22-GASS, the 4C and the Piacenza scores are purely data-driven. This makes them
carry an intrinsic limitation represented by the fact that often it can be hard to give a
“clinical” sense to the weight assigned to each feature considered in the development of
the score. For this reason, in our first work, we decided to develop the GASS score, an
informatic tool with the ability to accurately predict COVID-19 outcomes while keeping
a clinical sense. The 11 features were chosen, in fact, based on both the strength of the
associations with the outcomes and the clinical importance established for each of them in
the current literature.

4.3. Interpreting the SVM22-GASS Classifier

The SVM22-GASS predicts the 30-day mortality outcome by nonlinearly processing
38 patient features. Our VARIABLE importance analysis isolated eight variables as the
most important for the model: White Blood Cell Count (WBC), Lymphocyte Count (LYM),
Brain Natriuretic Peptide (BNP), Creatine Phosphokinase (CPK), Lactate Dehydrogenase
(LDH), Fibrinogen (FIBR), PaO2/FiO2 Ratio, and (PFR), and High-Sensitivity Troponin
I (TnI). Interestingly, half of them, (namely, LYM, BNP, PFR, and TnI) are also part of
the Clinical-GASS score, which confirms their strong information content and predictive
power. Consistently, serum BNP has been recently found to be significantly elevated in
critically ill COVID patients in a recent meta-analysis [49]; whether or not this peptide
can help discriminate high-risk COVID-19 patients remains unclear and it merits further
investigation. Similarly, high WBC values, high LDH values, and low LYM values [15]
have also been recently linked to high mortality risk.

On the other hand, variables such as age, sex, respiratory rate, and serum D-Dimer
(XDP) do not appear to significantly influence the predictions of the SVM22-GASS classifier.
This finding might appear surprising, as their association with poor COVID-19 outcome is
well established. For example, age is among the predominant risk factors for developing
the severe form of the disease, due to the immuno-senescence and all the physiological
modifications related to it [35]. Similarly, the serum levels of D-Dimer (XDP) were found
to be strictly associated with COVID mortality [50]. Furthermore, the respiratory rate
is a useful indicator of potential respiratory dysfunctions. Nevertheless, the fact that
the SVM22-GASS does not rely on such variables, does not mean that they provide no
information about the mortality risk; it merely means that other variables, those that carry
greater weight, are more informative and/or less noisy.

To validate the results of the variable importance analysis, we trained two additional
classifiers: the SVM-TOP3—which had only access to the three most important features
White Blood Cell Count (WBC), Lymphocyte Count (LYM), Brain Natriuretic Peptide
(BNP)—and the SVM-BOT3—which had only access to the three least important features.
Interestingly, we observed only a moderate performance decrease of the SVM-TOP3 with
respect to the full SVM22-GASS model (AUC: 0.83 vs. 0.87, accuracy: 0.83 vs. 0.88). This
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suggests that SVM-TOP3 is also a competent predictor and can be used in those cases in
which one does not have access to all of the 38 variables for a given patient.

4.4. Potential Limitations

In this observational cohort study, we used independent derivation and validation
cohorts to develop and validate our COVID-19-specific classifiers and risk score. However,
both cohorts were recruited from the same two hospitals in the Italian Province of Ferrara
and included only participants of Caucasian ethnicity. This might lead to overestimating
the performance of our methods. Additionally, the sample size we used, albeit comparable
to that of many other related studies (e.g., see [48]), is still too small to allow us to draw
any final conclusion concerning the generalizability of our approaches.

To deal with these issues, future work will focus on undertaking a larger and multi-
centered study to validate our approaches on a larger and more heterogeneous cohort.

Additionally, some of the patients included in this study had missing values that were
imputed using a weighted nearest neighbor method. Imputation is not an easy ask and
might potentially lead to inflated performance measures. However, in real world setting it
often is a necessary evil that comes with analyzing large and heterogenous datasets such
as ours.

Furthermore, in the current study we did not use information about medical treat-
ments, as this was missing. This implies that we cannot determine whether and how drug
prescriptions altered the prognostic trajectories of our patients.

Finally, the fact that our feature selection step selected a subset of the 38 variables,
suggests that some of the original variables are correlated. Future studies will investigate
these correlations in depth to provide further insight into the disease and potentially reduce
the number of variables to collect.

5. Conclusions

This work introduced two reliable classification approaches for the rapid assessment
of mortality risk of COVID-19 patients. Importantly, both approaches rely on the automatic
analysis of only routine clinical variables that can be readily acquired during hospital
admission. The classifiers were developed and validated with independent derivation and
validation cohorts and exhibited classification performance comparable to that of popular
approaches that leverage information obtained with expensive medical imaging methods
(e.g., chest radiography).

Our results prove that the classifiers have the potential to facilitate the triaging of
incoming COVID-19 patients, thereby optimizing the allocation of hospital resources.

Clearly, predictive scores, in general, should not be taken into consideration as the
only tools able to evaluate patients and their complexity. All scoring systems should be
considered as an addition to clinical reasoning, laboratory, and instrumental examinations,
besides experts’ opinion. Clinicians must always remember that any decision must be
taken only after having the complete picture of their patients.

In conclusion, we are confident that future work will be able to further validate the
proposed methods, using larger and more heterogeneous validation cohorts and we will
focus on designing suitable strategies to assess them in hospital settings.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines11030831/s1, Table S1: GASS score items;
Table S2: Charlson Comorbidity Index; Table S3: GASS score items – differences between groups
in terms of Intensification of Care; Table S4: GASS score items – differences between groups in
terms of in-hospital mortality; Table S5: GASS score items – differences between groups in terms of
30-day mortality.
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