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Abstract

We revisit a mathematical approach using epidemiological models
to describe risk contagion and propagation among financial players and
markets. The link between the financial system and the ecosystem is
explained by a SIR model with time delay. We aim to apply this on
more complex financial systems, where cryptocurrencies, new partici-
pants and traditional financial operators play together. This work rep-
resents a starting point for a deep stochastic analysis of the contagion
term influence over risk contagion dynamics.
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1 Introduction

In June 2022, a Singapore-based cryptocurrency hedge fund named Three Ar-
rows Capital (3AC) crashed and lost $3.5 billion, according to creditor claims.
After a few weeks in July 2022 the cryptocurrency broker Voyager Digital,
that promoted the 3AC bankruptcy action, also crashed subsequently to the
failure of the so-called margin calls. This domino effect started from the in-
ability of 3AC to pay back a loan from Voyager; this mechanism is well-known
in financial markets where the bankruptcy of one financial player represents
only a first shock for the financial market. In a more interconnected finan-
cial market, as the 3AC experience suggests, cryptocurrencies emerge as a
new asset class since they consider specific features and could improve port-
folio diversification (cfr. [6]), so that the market has fueled the rise of funds
specialized in cryptocurrencies. These funds operate in an asset class corre-
sponding to an unregulated asset with a variety of arbitrage opportunities and
risk-taking opportunities (see [4], [11]). Moreover, they limit the competition
with more cheap financial instruments that overtake traditional funds, such as
Exchange Traded Funds (see [4]). In a complex view, operations among finan-
cial companies, hedge funds, banks and stock exchanges create networks where
financial distress spreads as an epidemic disease and scholars evaluate the risk
of transmission of the so-called default propagation. This classical scheme
of contagion can be boosted by many factors, as well as the interconnection
among cryptocurrencies, operators and FinTech companies (cfr. [3]). In addi-
tion, the linkage between primary broker and hedge funds borrowing is affected
by significantly overcollateralized phenomena (see [10]), and often collaterals
are represented by cryptocurrencies. The so-called spillover effect could be
extended also to other sectors or financial assets (see [2]). As an example, in
October 2022 the bankruptcy of FTX (i.e. a Bahamas-based cryptocurrency
exchange) was caused by a liquidity crisis of the company token and also led
to a collapse in other financial markets and cryptocurrencies.
Our contribution exploits the analogies between financial crises and the spread
of a medical disease, since we consider contagion in terms of a transmission
mechanism, where the event which sets off the crisis could be caused by liquid-
ity, counterparty, or credit risk. Since the linkage between financial systems
and ecosystems has been pointed out by [12], the authors in [7] apply the
Susceptible-Infected-Recovered (SIR) epidemic model on company data as one
of the first contributions to this topic. The role of contagion is important in
the so-called systemic risk, where events could determine a large cascade of
crises (cfr. [8]). As a domino effect, if a financial player moves toward a crash,
this could lead to a crisis or pre-crisis conditions for other financial players
and market instruments. Financial networks, such as the interbank market,
play a key role in default propagation (see [13]). According to [5] , the use of
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Figure 1: Scheme of risk contagion dynamics.

networks in economic analysis has a long history, and in the last decade it can
also be used to explain financial crises. Under a SIR perspective, Susceptible
companies are represented by financial players that operate with cryptocur-
rency markets, while Infected are represented by financial players with financial
distress condition, Recovered are players that operate in particular operative
conditions due to policy maker activities (laws or economic actions).

2 Risk spread among financial players

The evolution of financial contagion can be modelled in terms of risk with low
and high level. Actually, some financial players with lower risk are susceptible
(S) to infection by others which are characterized by an extremely high risk
and considered as infected (I). After infection, some players are recovered (R)
and get the capability of risk control, thus they become able to keep their risk
at a low level and are no longer infectious for a period of time but not life long.
Therefore, we describe a SIR dynamics starting at t = 0 when N0 > 0 is the
initial total number of financial players. We normalize the number of items in
each category to the initial value N0, thus we define the densities S(t), I(t) and
R(t) for any class at every time t ≥ 0. The total number of players is evaluated
as N(t) = S(t) + I(t) +R(t) at each t, with N(0) = 1. The whole dynamics is
represented in Figure 1 and is similar to the one proposed in [9] in a different
application framework. We assume that new financial players come into the
susceptible class so that it increases by a given growth rate b > 0. Meanwhile,
a portion of low risk players come into contact with some infected and leave
the susceptible class according to the bilinear incidence term aS(t)I(t), where
a > 0 represents the contagion removal rate. On the other hand, a portion
of infected related to the term δI(t) leaves the same class of infectives and
is recovered; parameter δ is the rate at which contagious players take the
corresponding measures to get financial immunity. Thus, δ may measure the
intervention of laws or economic actions aimed to overcome financial distress; it
is assumed 0 < δ < 1. After curing, the immunity ability of recovered players is
temporary but not lifelong: the financial immunity period τ represents the time
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lag of the model. Actually, recovered items remain in the recovery pool for the
time period between t−τ and t; after that, the portion e−γτδI(t−τ) reverts to
the susceptible class assuming that γ models the regulatory authorities final
elimination rate of the players from the market. We suppose 0 < γ < 1,
moreover we notice that the choice of term e−γτδI(t − τ) is common in the
literature (see [9] and [14]). The resulting differential problem consists of the
following equations

dS(t)

dt
= b− γS(t)− aS(t) I(t) + δe−γτI(t− τ), (1)

dI(t)

dt
= aS(t) I(t)− (γ + δ)I(t), (2)

completed by suitable initial conditions:

S(0) = S0 > 0, (3)

I(s) = I0(s) ≥ 0, for all s ∈ [−τ, 0], with I0(0) > 0. (4)

Once I(t) is evaluated, then the recovered class evolution is obtained by the
following rule

dR(t)

dt
= δI(t)− γR(t)− δe−γτI(t− τ), (5)

which can be integrated in order to have R(t) = δ
∫ t
t−τ e

−γ(t−s)I(s) ds, provided

that R(0) = δ
∫ 0

−τ e
γsI0(s) ds. The following result states the existence of the

unique positive solution of the model.

Theorem 2.1 Assume that I0(·) is a continuous function in [−τ, 0]. Then
there exists a unique solution of problem (1)-(2) which is equipped with initial
conditions (3)-(4). In addition, it holds that S(t) > 0 and I(t) > 0 for all
t ≥ 0.

The proof of existence and uniqueness arises from the continuity feature of the
initial condition together with the fact that the forcing terms are Lipschitz
continuous with respect to S and I; moreover, the approach for proving solu-
tion positivity is similar to the one developed in [9] and [1]. As a consequence
of Theorem 2.1, since R(t) is obtained by integrating I(s) > 0, then we also
get that R(t) is positive for all t ≥ 0.

We remark that the dynamics of the total number of players is described
by dN/dt = b− γN , with N(0) = 1. By integrating this relationship, it is not
so difficult to verify that N(t) ≤ 1 + b/γ for each t, thus both S(t) ≤ 1 + b/γ
and I(t) ≤ 1 + b/γ over the whole time horizon.

In addition, model (1)-(2) has the risk-free equilibrium E∗0 = (b/γ, 0) and
one more non-zero steady state E∗τ = (S∗τ , I

∗
τ ) with

S∗τ = (γ + δ)/a, I∗τ =
γ(γ + δ)

a(γ + δ − δe−γτ )
(ρ0 − 1),
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where

ρ0 =
ba

γ(γ + δ)
,

represents the basic reproduction number. It is known that E∗τ represents an
endemic equilibrium and is feasible under the assumption that ρ0 > 1. In order
to understand whether the risk will continue to exist in or it will be eliminated
from the market, steady state stability needs investigation as in the following
proposition.

Theorem 2.2 The following propositions hold:

• if ρ0 < 1, then the risk-free equilibrium E∗0 is locally asymptotically stable
and no other equilibrium is feasible;

• in the opposite case when ρ0 > 1, then E∗0 is unstable while E∗τ becomes
both feasible and locally asymptotically stable.

The proof can be carried out by linearising system (1)-(2) near the equilibrium
points. Concerning the risk-free steady state, the results arise from noting
that the eigenvalues of the linearisation are evaluated as λ1 = −γ and λ2 =
(γ+δ)(ρ0−1) and they are both negative in the case when ρ0 < 1. On the other
hand, with the aim of understanding the non-trivial equilibrium stability, we
remark that the linearisation matrix of system (1)-(2) near E∗τ has the following
characteristic equation in λ

λ2 + (γ + aI∗τ )λ+ aI∗τ (γ + δ − δe−γτ ) = 0.

In the case when ρ0 > 1, the coefficients in the previous equation are posi-
tive. This yields that both the eigenvalues of the linearisation matrix cannot
be purely imaginary and have negative real parts. It follows that both the
feasibility of E∗τ and its local stability are proved.

3 Fluctuation of the contact coefficient

The contagion parameter a can be perturbed by a white noise with the aim
of accounting for the uncertainty of contacts between players in the financial
market. Contact rate a in model (1)-(2) is replaced by a + σ(dB/dt), where
B(t) is a Brownian motion; thus, the resulting stochastic system is

dS(t) =
[
b− γS(t)− aS(t)I(t) + δe−γτI(t− τ)

]
dt− σS(t)I(t)dB(t), (6)

dI(t) = [aS(t)I(t)− (γ + δ)I(t)] dt+ σS(t)I(t)dB(t), (7)

coupled with (5) which remains a deterministic equation.
The study of well-posedness starts from considering a complete probability
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space (Ω,F ,P) with a filtration {Ft}t∈R+ which is right continuous and in-
creasing, while F0 contains all P-null sets. In this framework, the following
result states the conditions of existence of the unique positive solution of model
(6)-(7).

Theorem 3.1 Assume that initial conditions (3)-(4) are imposed and func-
tion I0(·) is continuous over [−τ, 0]. Then there exists a unique solution of
problem (6)-(7) and, for any time t ≥ 0, it holds that S(t) > 0, I(t) > 0 with
probability one.

The proof can be carried out by applying the Itô’s lemma and exploiting the
Lyapunov function V (S, I) = − log(γS/(γ + b))− log(γI/(γ + b)).

4 Concluding remarks and future development

This work is concerned with the relevant problem of modelling how risk may
spread across financial markets. As there exists a link between financial sys-
tems and ecosystems, risk contagion is modelled by the mathematical approach
of epidemiological models describing infectious disease spread that begins as
outbreak. The analysis of these epidemiological problems is not a novelty,
anyway the paradigm and the application to players in financial markets is an
interesting topic which is worthy of consideration.

We also remark that the present paper represents a starting point for a
deeper investigation about the influence of a stochastic treatment of the con-
tagion term over the whole risk spread dynamics. In this respect, it is worth
noting that stochastic model (6)-(7) has the same risk-free steady state E∗0
as the corresponding deterministic system. In that regard, we remark that
the assumption in Theorem 2.1 can be strengthened to state a sufficient con-
dition for assuring the global asymptotic stability of E∗0 in the deterministic
framework. More precisely, starting from the assumption

ρ0 < 1− a

γ + δ
,

which is more restrictive than the requirement ρ0 < 1 in Theorem 2.1, it is
possible to get I(t) ≤ I0(0)ect with c = a+ (γ + δ)(ρ0 − 1) < 0, by integrating
equation (2). This result can be exploited to prove that any solution of the
deterministic model (1)-(2) converges to the risk-free equilibrium E∗0 at the
long run.
Inspired by this property, our future purpose will consist of providing a com-
plete study of the stochastic stability of the same equilibrium point E∗0 concern-
ing the stochastic process defined in (6)-(7). This analysis will be developed
by choosing suitable Lyapunov functions and applying the classical techniques
of stochastic analysis.
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As a final remark, we notice that the exact solution of the stochastic model
(6)-(7) is not available in closed form, due to the fact that the model is non-
linear. Therefore, it is necessary to approximate risk contagion dynamics by
numerical integration. It will be interesting to combine the numerical algo-
rithms for delay equations together with ad-hoc techniques for approximating
stochastic processes. The issue of investigating the employment of suitable nu-
merical schemes will be another important topic to be developed in our future
research.
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