
Journal of Computational Physics 503 (2024) 112845

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Particle simulation methods for the Landau-Fokker-Planck 

equation with uncertain data

Andrea Medaglia a,∗, Lorenzo Pareschi b,c, Mattia Zanella a

a Department of Mathematics “F. Casorati”, University of Pavia, Italy
b Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom
c Department of Mathematics and Computer Science, University of Ferrara, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Plasma physics

Landau-Fokker-Planck equation

Particle methods

Uncertainty quantification

Stochastic Galerkin methods

The design of particle simulation methods for collisional plasma physics has always represented a 
challenge due to the unbounded total collisional cross section, which prevents a natural extension 
of the classical Direct Simulation Monte Carlo (DSMC) method devised for the Boltzmann 
equation. One way to overcome this problem is to consider the design of Monte Carlo algorithms 
that are robust in the so-called grazing collision limit. In the first part of this manuscript, we will 
focus on the construction of collision algorithms for the Landau-Fokker-Planck equation based on 
the grazing collision asymptotics and which avoids the use of iterative solvers. Subsequently, 
we discuss problems involving uncertainties and show how to develop a stochastic Galerkin 
projection of the particle dynamics which permits to recover spectral accuracy for smooth 
solutions in the random space. Several classical numerical tests are reported to validate the 
present approach.
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1. Introduction

The Landau-Fokker-Planck kinetic equation, also referred to as the Landau equation, holds significant importance as a fundamen-

tal tool for understanding the complex dynamics of charged particles within a collisional plasma. The equation plays a crucial role in 
elucidating the behaviour of particles that interact over long distances, primarily influenced by Coulomb forces. These long-range in-

teractions give rise to small-angle collisions between the particles, leading to a breakdown in the finiteness of the classical Boltzmann 
collision operator [4,14,26,40].

Due to its profound implications in the development of fusion reactors, the formulation of this model has had a far-reaching 
impact on both the theoretical and applied scientific communities. Researchers and engineers in the field have extensively utilized 
this formalized model to gain insights into the behaviour of charged particles in plasmas, paving the way for advancements in fusion 
reactor design and other related applications.

The construction of numerical methods for the Landau-Fokker-Planck equation has to deal with several challenges, among which 
are the high dimensionality of the problem, the structural properties, and the presence of multiple scales. As in most kinetic equations, 
the construction of numerical methods for plasma physics can be subdivided into two main categories, the first based on direct 
discretizations of the collisional PDEs, like spectral methods, see e.g. [12,18,19,23,33,34], and the second based on the approximation 
of the underlying particles’ dynamics. In this latter direction we mention particle-in-cell methods [1], direct simulation Monte Carlo 
methods [2,3,5,17,35,39] and deterministic particle methods [6,7]. It is worth to remark that Monte Carlo approaches based on the 
groundbreaking contribution of Bobylev and Nanbu [2,30] are consistent with the Landau equation thanks to their link with the 
Boltzmann equation when collisions become grazing.

To enhance prediction accuracy, it is crucial to understand how sensitive physical models are to potential uncertainties in the 
constitutive parameters that characterize the system behaviour and influences of the different scales. Consequently, addressing 
the issue of quantifying these uncertainties becomes a major concern, both analytically and computationally. The development of 
numerical techniques must consider the added complexity arising from the increased dimensionality of the system due to the presence 
of random inputs in the model. In this direction, several research efforts focused on the design of efficient numerical techniques for 
uncertainty quantification (UQ), see [15,20,21,25,31,37,38,44] and the references therein. We mention also recent results on UQ in 
plasma physics obtained in [11,22,24,42].

Among the most popular UQ techniques, stochastic Galerkin (sG) methods based on generalized polynomial chaos expansions 
have shown the ability to achieve spectral accuracy in the random space for smooth solutions [43]. However, in contrast to stochastic 
sampling methods, these methods are highly intrusive and require to design new algorithms. Furthermore, a direct application of 
sG methods may lead to the loss of important structural properties, like conservation of physical quantities, nonnegativity of the 
solution, and hyperbolicity close to fluid regimes, see e.g. [13,16]. To overcome this issue, a different approach based on projecting 
the particle dynamics through generalized polynomial chaos was proposed in [8,9,28,36]. Recently, the methodology has been 
extended to plasma simulations with BGK collisions in [27].

In this article, our focus lies on the more realistic scenario where plasma collisions are described by the Landau equation, taking 
into account uncertain quantities. Specifically, we concentrate on the space homogeneous case, where the collision algorithm follows 
the approach outlined in [2,17] whereas the uncertain velocity changes are approximated using an sG particle projection. In this 
direction, we will construct a sG particle approximation which is consistent with the Landau equation in the grazing regime. To ensure 
spectral accuracy in the random space, our particle method is designed to leverage the general structure of collision kernels discussed 
in [2]. To this aim, we introduce a new regularised kernel, which guarantees that the scaled Boltzmann equation for Coulomb 
collisions is capable to efficiently approximate the Landau equation and that offers several advantages, including the avoidance 
of iterative techniques commonly employed in other particle simulation methods [17]. Being based on particle reconstruction, the 
method preserves the nonengativity of the solution and the main physical properties. Furthermore, the resulting sG particle solver 
leads to a consistent approximation of the uncertain quantities linked to the solution of the Landau equation. To validate our method, 
we conduct several tests, these include classical benchmarks such as BKW, Trubnikov’s solution for Coulombian particles, and the 
bump-on-tail problem.

The rest of the manuscript is organized as follows. In Section 2 we recall the basic ideas in the design of collision algorithm 
for the Landau-Fokker-Planck equation inspired by the corresponding grazing limit of the Boltzmann equation. Section 3 is devoted 
to present the details of the DSMC approach with a regularized kernel and the corresponding sG projection. A suite of numerical 
examples is then reported in Section 4 which confirms the efficiency and the accuracy of the present approach. The last section 
2

collects some concluding remarks and future developments.



Journal of Computational Physics 503 (2024) 112845A. Medaglia, L. Pareschi and M. Zanella

2. Foundations of collision algorithms for the Landau equation

In this section, following [2,17], we recall some results concerning the derivation of direct simulation collision algorithm for the 
Landau-Fokker-Planck equation based on the grazing collision limit of the Boltzmann equation. To this aim, we will make use of a 
first order approximation of the space homogeneous Boltzmann equation and devote particular attention to the Maxwellian and the 
Coulombian cases.

We consider the space homogeneous Boltzmann equation [10]

𝜕𝑓 (𝑣, 𝑡)
𝜕𝑡

=𝑄(𝑓,𝑓 )(𝑣, 𝑡), (1)

describing the time evolution of the one-particle distribution function 𝑓 (𝑣, 𝑡) with velocity 𝑣 ∈ ℝ3, at the time 𝑡 > 0. The collision 
term 𝑄(𝑓, 𝑓 ) on the right-hand side of (1) is a bilinear operator describing the binary interactions between particles and it is given 
by

𝑄(𝑓,𝑓 )(𝑣, 𝑡) = ∫
ℝ3

∫
𝑆2

𝐵

(|𝑞|, 𝑞 ⋅ 𝑛|𝑞|
)(
𝑓 (𝑣′, 𝑡)𝑓 (𝑣′∗, 𝑡) − 𝑓 (𝑣, 𝑡)𝑓 (𝑣∗, 𝑡)

)
𝑑𝑛𝑑𝑣∗, (2)

where 𝑞 = 𝑣 − 𝑣∗ is the relative velocity and 𝑛 ∈ 𝑆2 is the unit vector normal to the unit sphere 𝑆2 in ℝ3. The binary interactions 
rules characterizing collisions between particles are

𝑣′ = 1
2
(𝑣+ 𝑣∗ + |𝑞|𝑛)

𝑣′∗ =
1
2
(𝑣+ 𝑣∗ − |𝑞|𝑛)

and the collisional kernel 𝐵(|𝑞|, cos𝜃) reads

𝐵 (|𝑞|, cos𝜃) = |𝑞|𝜎(|𝑞|, 𝜃), with (0 ≤ 𝜃 ≤ 𝜋),
where cos𝜃 = 𝑞 ⋅ 𝑛∕|𝑞| and 𝜎(|𝑞|, 𝜃) is the so-called differential collision cross section at the scattering angle 𝜃, corresponding to the 
number of particles scattered per unit of incident flux, per unit of solid angle, in the unit time. We introduce also the total scattering 
cross section

𝜎𝑡𝑜𝑡(|𝑞|) = 2𝜋

𝜋

∫
0

𝜎(|𝑞|, 𝜃) sin𝜃 𝑑𝜃,
and the momentum-transfer (or -transport) scattering cross section defined as

𝜎𝑡𝑟(|𝑞|) = 2𝜋

𝜋

∫
0

𝜎(|𝑞|, 𝜃) (1 − cos𝜃) sin𝜃 𝑑𝜃,

that describes the average momentum transferred in the collisions. The differential cross section 𝜎(|𝑞|, 𝜃) takes different forms 
depending on the interactions considered. Amongst the most relevant cases we mention the variable hard sphere (VHS) model and 
the Coulomb interactions. The VHS model is such that

𝜎(𝑞, 𝜃) = 𝐶𝛾 |𝑞|𝛾−1, so that 𝐵(|𝑞|, 𝜃) = 𝐶𝛾 |𝑞|𝛾 , (3)

where 𝐶𝛾 > 0 is a constant, with 𝛾 = 0 for Maxwell molecules and 𝛾 = 1 for hard sphere model, which gives

𝜎𝑡𝑜𝑡(|𝑞|) = 𝜎𝑡𝑟(|𝑞|) = 4𝜋𝐶𝛾 |𝑞|𝛾−1.
On the other hand, particles subject to Coulomb forces are characterized, according to the Rutherford formula, by the scattering

𝜎(𝑞, 𝜃) =
𝑏20

4 sin4(𝜃∕2)
, with 𝑏0 =

𝑒2

4𝜋𝜀0𝑚𝑟|𝑞|2 , (4)

where 𝑒 is the charge of the particles, 𝜀0 the vacuum permittivity and 𝑚𝑟 is the reduce mass, corresponding to 𝑚∕2 for particles of 
the same species. In this case, it is necessary to introduce a cut-off, since for 𝜃→ 0 the cross section is singular. Following the usual 
approximations justified by the shielding effect, we have

𝜎𝑡𝑜𝑡(|𝑞|) = 𝜋𝜆2𝑑 , where 𝜆2𝑑 =
𝜀0𝑘𝑇

𝑛𝑒2

is the Debye length and

2 1
3

𝜎𝑡𝑟(|𝑞|) = 4𝜋𝑏0 logΛ, where Λ =
sin(𝜃𝑚𝑖𝑛∕2)

.
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It is well-known that in the grazing collision limit, from equation (1) with collisional operator (2), we can recover the Landau-

Fokker-Planck equation [26]

𝜕𝑓 (𝑣, 𝑡)
𝜕𝑡

= 𝑄𝐿(𝑓,𝑓 )(𝑣, 𝑡)

= 1
8
∇𝑣 ⋅

⎡⎢⎢⎣∫ℝ3

Φ(𝑣− 𝑣∗)
(
𝑓 (𝑣∗)∇𝑣𝑓 (𝑣) − 𝑓 (𝑣)∇𝑣∗𝑓 (𝑣∗)

)
𝑑𝑣∗

⎤⎥⎥⎦
(5)

where Φ is a 3 × 3 nonnegative symmetric matrix and its usual form is given by

Φ(𝑞) = |𝑞|𝛾+2𝑆(𝑞), 𝑆(𝑞) = 𝐼 − 𝑞 ⊗ 𝑞|𝑞|2 ,
with 𝐼 identity matrix, and where 𝛾 = 0 is the Maxwellian case and 𝛾 = −3 is the Coulombian case. In the following, we will discuss 
in more detail this aspect and derive first order approximation formulas which are suitable for the design of DSMC type algorithms.

2.1. First order approximation of the Boltzmann equation

From a direct inspection of the collisional kernel in the presence of Coulomb forces, it is evident that when collisions become 
grazing, the interaction rate becomes infinite. To overcome this problem, which prevents the direct application of the DSMC algo-

rithm, following [2] we introduce a suitable first order approximation of the Boltzmann collision operator that permits to avoid such 
restrictions. In the sequel, we omit the explicit dependence on the time variable for compactness of notation.

First, we rewrite equation (1) as

𝜕𝑓

𝜕𝑡
= ∫
ℝ3

𝐽𝐹 (𝑈,𝑞)𝑑𝑣∗,

where 𝑈 = (𝑣 + 𝑣∗)∕2 is the velocity of the centre-of-mass, and

𝐹 (𝑈,𝑞) = 𝑓 (𝑈 + 𝑞∕2)𝑓 (𝑈 − 𝑞∕2) = 𝑓 (𝑣)𝑓 (𝑣∗).

The operator 𝐽 is defined such that its action on the angular variable 𝜔 = 𝑞∕|𝑞| is

𝐽𝐹 (𝑈, |𝑞|𝜔) = ∫
𝑆2

𝐵(|𝑞|,𝜔 ⋅ 𝑛) (𝐹 (𝑈, |𝑞|𝑛) − 𝐹 (𝑈, |𝑞|𝜔)) .
Now we expand the operator 𝐽 at first order in 𝜀 > 0 as

𝐽 ≈ 1
𝜀

(
exp(𝜀𝐽 ) − 𝐼

)
,

where 𝐼 is the identity operator and 𝜀 is a small parameter. We first observe that in the limit 𝜀 → 0 we recover the definition of 𝐽
and thus the original Boltzmann equation. Within this approximation, the collision term reads

𝑄(𝑓,𝑓 ) ≈ 1
𝜀 ∫
ℝ3

(
exp(𝜀𝐽 ) − 𝐼

)
𝐹 (𝑈,𝑞)𝑑𝑣∗ =

1
𝜀

(
𝑄+
𝜀 (𝑓,𝑓 ) − 𝜌𝑓

)
, (6)

where

𝑄+
𝜀 (𝑓,𝑓 ) = ∫

ℝ3

exp(𝜀𝐽 )𝑓 (𝑣)𝑓 (𝑣∗)𝑑𝑣∗

is the gain operator. To explicitly construct the operator exp(𝜀𝐽 ), it is sufficient to study the initial value problem for any test function 
𝜓(𝜔, 𝜀)

𝜕𝜓

𝜕𝜀
= 𝐽𝜓,

for arbitrary initial conditions 𝜓(𝜔, 0) = 𝜓0(𝜔), 𝜔 ∈ 𝑆2 with 𝜓0(𝜔) ∈ 𝐿2(𝑆2). Following [2], we can expand 𝜓0(𝜔) into its spherical 
harmonics

𝜓0(𝜔) =
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝜓0
𝑙𝑚𝑌𝑙𝑚(𝜔)

with

𝜓0
𝑙𝑚 = 𝜓0(𝜔)𝑌 ∗

𝑙𝑚(𝜔)𝑑𝜔
4

∫
𝑆2
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and 𝑌 ∗
𝑙𝑚
(𝜔) the complex conjugate of the spherical function 𝑌𝑙𝑚(𝜔). The action of 𝐽 on 𝑌𝑙𝑚 reads

𝐽𝑌𝑙𝑚 = −𝜆𝑙𝑌𝑙𝑚, with 𝜆𝑙 = 2𝜋

1

∫
−1

𝐵(𝜇)(1 − 𝑃𝑙(𝜇))𝑑𝜇

with 𝑃𝑙(𝜇) Legendre polynomials of order 𝑙 and 𝜇 = 𝜔 ⋅ 𝑛 = cos𝜃. Therefore, the solution of the equation furnishes the action of the 
operator in integral form, since we have

exp(𝜀𝐽 )𝜓0(𝜔) = 𝜓(𝜔,𝜀) = ∫
𝑆2

𝐵𝜀(𝜇, |𝑞|)𝜓(𝑛)𝑑𝑛,
with

𝐵𝜀(𝜇, |𝑞|) = +∞∑
𝑙=0

2𝑙 + 1
4𝜋

exp(−𝜆𝑙(|𝑞|)𝜀)𝑃𝑙(𝜇)
the Green function, and

𝜆𝑙(|𝑞|) = 2𝜋

1

∫
−1

𝐵𝜀(𝜇, |𝑞|)(1 − 𝑃𝑙(𝜇))𝑑𝜇.
With the above representation of the operator exp(𝜀𝐽 ), the approximated gain operator explicitly reads

𝑄+
𝜀 (𝑓,𝑓 ) = ∫

ℝ3
∫
𝑆2

𝐵𝜀(𝜔 ⋅ 𝑛, |𝑞|)𝑓 (𝑣′)𝑓 (𝑣′∗)𝑑𝑣∗.
Since we are interested in the behaviour of the equation in the grazing collision limit, i.e. when the differential scattering cross 

section 𝜎(|𝑞|, 𝜃) is concentrated at a small angle 𝜃 ≈ 0, we assume that 𝜇 in 𝐵𝜀(𝜇, |𝑞|) is concentrated near the value 𝜇 = 1. In this 
regime, it is well known that the Boltzmann equation converges to the Landau equation. We have

𝜆𝑙(|𝑞|) ≃ 2𝜋

+1

∫
−1

𝐵𝜀(𝜇, |𝑞|)(1 − 𝑃𝑙(𝜇) + (1 − 𝜇)𝑃 ′
𝑙 (1)

)
𝑑𝜇 = 𝜋𝑙(𝑙 + 1)

+1

∫
−1

𝐵𝜀(𝜇, |𝑞|)(1 − 𝜇)𝑑𝜇,
where 𝑃 ′

𝑙
(1) = 𝑙(𝑙 + 1)∕2. With the above formula, the Green function 𝐵𝜀(𝜇, |𝑞|) can be further approximate as 𝐷(𝜇, |𝑞|)

𝐵𝜀(𝜇, |𝑞|) ≃𝐷(𝜇, |𝑞|) = +∞∑
𝑙=0

2𝑙 + 1
4𝜋

𝑃𝑙(𝜇) exp
(
− 𝑙(𝑙 + 1)

2
|𝑞|𝜎𝑚(|𝑞|)𝜀) .

Finally, one can show that equation (6) with the above collisional kernel approximates the Landau-Fokker-Planck equation for small 
values of 𝜀. We define 𝜏 such that

1
𝜏
= 𝜌|𝑞|𝜎𝑡𝑟(|𝑞|) (7)

and the approximated Green function with the cut-off of the scattering angle as

𝐷
(
𝜇, 𝜏(𝛾)0

)
=

+∞∑
𝑙=0

2𝑙 + 1
4𝜋

𝑃𝑙(𝜇) exp
(
−𝑙(𝑙 + 1)𝜏(𝛾)0

)
, 𝜏(𝛾)0 = 𝜀

2𝜌𝜏
= 𝜀

2
|𝑞|𝜎𝑡𝑟(|𝑞|), (8)

where the superscript (𝛾) into the definition of 𝜏(𝛾)0 refers to the type of particle interaction, which changes the form of 𝜎𝑡𝑟(|𝑞|). We 
have the first order approximation

𝜕𝑓

𝜕𝑡
= 1
𝜀

⎡⎢⎢⎣∫ℝ3
∫
𝑆2

𝐷
(
𝜇, 𝜏(𝛾)0

)
𝑓 (𝑣′)𝑓 (𝑣′∗)𝑑𝑛𝑑𝑣∗ − 𝜌𝑓 (𝑣)

⎤⎥⎥⎦ , (9)

where the first term on the right-hand side of the previous equation plays the role of the gain operator with the approximated Green 
function, and the second one is the loss term. We remark, however, that at this point no assumptions were made on the type of 
collision. Indeed, the derivation of the approximated Boltzmann equation (9) does not depend on the explicit form of 𝜏(𝛾)0 . Thus, it 
holds for both the VHS and Coulomb models introduced in Section 2.

In the numerical part, Section 4, we will consider the Maxwell (𝛾 = 0) and Coulomb (𝛾 = −3) cases. In these scenarios, the explicit 
form of 𝜏(𝛾)0 in a single species plasma model reads as follows: if 𝛾 = 0, we have
5

𝜏(0)0 = 4𝜋𝐶0
𝜀

2
,
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that is independent from the relative velocity, if 𝛾 = −3, we recover

𝜏(−3)0 = 4𝜋
(

𝑒2

4𝜋𝜀0𝑚𝑟

)2 logΛ|𝑞|3 𝜀

2
. (10)

With a slight abuse of notation, we will refer to 𝜏(𝛾)0 simply as 𝜏0, whenever the differences in the type of interaction do not change 
the general construction.

2.2. Approximated scattering kernels

In order to solve numerically equation (9), we need to sample the probability density 𝐷(𝜇, 𝜏0) defined in (8). To this end, a 
random sample of the quantity 𝜇(𝜀) in [−1, 1], at each time step, is required. It is easily observed that this can be very heavy from a 
numerical perspective.

However, as pointed out in [2], we may consider simpler collisional kernels 𝐷∗(𝜇, 𝜏0) with the following properties

1. 𝐷∗(𝜇, 𝜏0) ≥ 0, and 2𝜋
+1

∫
−1

𝐷∗(𝜇, 𝜏0)𝑑𝜇 = 1

2. lim𝜏0→0𝐷∗(𝜇, 𝜏0) =
1
2𝜋
𝛿(1 − 𝜇)

3. lim𝜏0→0
2𝜋
𝜏0

+1

∫
−1

(𝐷∗(𝜇, 𝜏0) −𝐷(𝜇, 𝜏0))𝑃𝑙(𝜇)𝑑𝜇 = 0 for any 𝑙 = 1, 2, … .

A general form of such a kernel is furnished by the following result.

Lemma 1. Conditions 1-3 are satisfied for any function of the type

𝐷∗(𝜇, 𝜏0) = 𝜓
(
1 − 𝜇
2𝜏0

)⎡⎢⎢⎢⎣4𝜋𝜏0
1∕𝜏0

∫
0

𝜓(𝑥)𝑑𝑥
⎤⎥⎥⎥⎦
−1

,

where 𝜓(𝑥) ≥ 0 for any 𝑥 > 0 and

•

+∞

∫
0

𝜓(𝑥)𝑑𝑥 =
+∞

∫
0

𝑥𝜓(𝑥)𝑑𝑥 <∞;

• lim𝜏0→0 𝜏0

+∞

∫
1∕𝜏0

𝑥𝑛𝜓(𝑥)𝑑𝑥 = 0 for any 𝑛 = 2, 3, … .

Proof. For the proof, we refer to [2]. □

In the following, we consider three different kernels. The first one has been proposed in [17,29] and is commonly used in plasma 
physics simulation, and it reads

𝐷(1)
∗ (𝜇, 𝜏0) =

𝐴
4𝜋 sinh𝐴

exp(𝜇𝐴) (11)

with

coth𝐴− 1
𝐴

= 𝑒−2𝜏0 . (12)

As a consequence, to sample 𝐷(1)
∗ (𝜇, 𝜏0) in the spherical coordinate system (𝜃, 𝜙), we need to solve at every time step the nonlinear 

equation (12) and then compute the scattering angle cos𝜃 as

cos𝜃 = 1
𝐴
ln
(
exp−𝐴+2𝑟1 sinh𝐴

)
, (13)

and 𝜙 as

𝜙 = 2𝜋𝑟2, (14)
6

where 𝑟1, 𝑟2 are two uniform random numbers in (0, 1).
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The second kernel has been proposed in [2] as a simplification of 𝐷(1)
∗ (𝜇, 𝜏0) satisfying Lemma 1

𝐷(2)
∗ (𝜇, 𝜏0) =

1
2𝜋
𝛿
(
𝜇 − 𝜈(𝜏0)

)
, (15)

where

𝜈(𝜏0) =

{
1 − 2𝜏0 if 0 ≤ 𝜏0 ≤ 1
−1 if 𝜏0 > 1.

(16)

Sampling 𝐷(2)
∗ (𝜇, 𝜏0) corresponds, in the spherical coordinate, to compute 𝜙 as in (14) and to fix

cos𝜃 = 𝜈(𝜏0). (17)

Note that in this case we need only one random number, i.e. 𝑟2, and no iterations are required.

A third approximation consistent with Lemma 1 will be considered in the following and it consists in a regularization of the 
previous kernel 𝐷(2)

∗ (𝜇, 𝜏0) defined as

𝐷(3)
∗ (𝜇, 𝜏0) =

1
2𝜋
𝛿
(
𝜇 − 𝜈̃(𝜏0)

)
, (18)

with

𝜈̃(𝜏0) = 1 − 2 tanh 𝜏0. (19)

We highlight that cos𝜃 is obtained by fixing

cos𝜃 = 𝜈̃(𝜏0) (20)

whereas 𝜙 is computed as in (14).

Proposition 1. The kernel 𝐷(3)
∗ (𝜇, 𝜏0) defined in (18) satisfies conditions 1-2-3.

Proof. Condition 1 is satisfied because 𝜈̃(𝜏0) = 1 − 2 tanh 𝜏0 ≥ 0 for every 𝜏0 ≥ 0, and consequently

𝐷(3)
∗ (𝜇, 𝜏0) =

1
2𝜋
𝛿
(
𝜇 − 𝜈̃(𝜏0)

) ≥ 0, for every 𝜇 ∈ [−1,1], 𝜏0 ≥ 0.

Moreover, by the definition of Dirac delta we have the normalization

2𝜋

+1

∫
−1

𝐷(3)
∗ (𝜇, 𝜏0)𝑑𝜇 = 2𝜋

+1

∫
−1

1
2𝜋
𝛿
(
𝜇 − 𝜈̃(𝜏0)

)
𝑑𝜇 = 1.

Condition 2 follows from the fact that tanh 𝜏0 → 0 for 𝜏0 → 0 and thus

lim
𝜏0→0

𝜈̃(𝜏0) = 1

from which we have

lim
𝜏0→0

𝐷(3)
∗ (𝜇, 𝜏0) =

1
2𝜋
𝛿 (𝜇 − 1) .

To prove the last Condition, we recall that 3 can be rewritten

lim
𝜏0→0

2𝜋
𝜏0

1

∫
−1

𝐷∗(𝜇, 𝜏0)
(
1 − 𝑃𝑙(𝜇)

)
𝑑𝜇 = 𝑙(𝑙 + 1), for every 𝑙 = 1,2,…

as observed by Bobylev and Nanbu in [2]. Then, substituting 𝐷(3)
∗ (𝜇, 𝜏0) in the previous relation and solving the integral, we end up 

with

lim
𝜏0→0

1 − 𝑃𝑙(𝜈̃(𝜏0))
𝜏0

= 𝑙(𝑙 + 1). □

Remark 1. As long as a kernel 𝐷(𝑖)
∗ meets the conditions 1-2-3 or the equivalent Lemma 1, the approximated Boltzmann equation 

(9) with such 𝐷(𝑖)
∗ is a first order surrogate model for the Landau equation. The differences between the three proposed kernel with 
7

𝑖 = 1, 2, 3 will be investigated in the following sections.
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3. Particle methods and their sG projection

We introduce a random vector 𝐳 = (𝑧1, … , 𝑧𝑑 ) ∈ ℝ𝑑𝐳 collecting all the uncertainties of the system and for which it is known its 
distribution 𝑝(𝐳)

Prob(𝐳 ∈Ω) = ∫
𝐼𝐳

𝑝(𝐳)𝑑𝐳,

for any 𝐼𝐳 ∈ ℝ𝑑𝐳 . The vector 𝐳 characterizes the uncertainties of the system due, e.g., to missing information on the initial state, 
measurement of the model parameters and, boundary conditions [27,46].

We are interested in the evolution of the density 𝑓 (𝑣, 𝑡, 𝐳), 𝑣 ∈ ℝ3, 𝐳 ∈ℝ𝑑𝐳 , 𝑡 ≥ 0, solution to the Landau-Fokker-Planck equation 
(5) with uncertainties

𝜕𝑡𝑓 (𝑣, 𝑡, 𝐳) =
1
8
∇𝑣 ⋅

⎡⎢⎢⎣∫ℝ3

Φ(𝑣− 𝑣∗, 𝐳)(𝑓 (𝑣∗, 𝐳)∇𝑣𝑓 (𝑣, 𝐳) − 𝑓 (𝑣, 𝐳)∇𝑣∗𝑓 (𝑣∗, 𝐳))𝑑𝑣∗
⎤⎥⎥⎦ (21)

complemented with the initial condition 𝑓 (𝑣, 0, 𝐳) = 𝑓0(𝑣, 𝐳) ∈ ℝ3 × ℝ𝑑𝐳 . In particular, in (21) the interaction matrix Φ(⋅, 𝐳) may 
encode different types of interactions.

In this section, we first recall the basic ingredients of DSMC particle method in the absence of uncertainties, as proposed in [17].

Once established the DSMC solver of interest we seek to derive the related sG particle approach. These methods have been 
previously studied for mean-field model for emerging phenomena [8,9,28], and subsequently extended to the space-homogeneous 
Boltzmann equation in [36] and to a non-homogeneous plasma dynamics with BGK collision operator in [27].

3.1. DSMC methods

Let us now give the details of the DSMC algorithms based on the previous first order approximation of the Boltzmann equation in 
the grazing collision limit and in absence of uncertainties (see [2,17,29,32,45] and the references therein).

3.1.1. Nanbu-Babovsky scheme

We first present the Nanbu-Babovsky scheme for the Boltzmann equation (9). We introduce a time discretization 𝑡𝑛 = 𝑛Δ𝑡, Δ𝑡 > 0
and we indicate with 𝑓𝑛(𝑣) the approximation of 𝑓 (𝑣, 𝑛Δ𝑡). Applying a forward discretization to (9) we get

𝑓𝑛+1 =
(
1 − 𝜌Δ𝑡

𝜀

)
𝑓𝑛 + 𝜌Δ𝑡

𝜀
𝑃 (𝑖)
∗,𝜀(𝑓,𝑓 )

where

𝑃 (𝑖)
∗,𝜀(𝑓,𝑓 ) = ∫

ℝ3
∫
𝑆2

𝐷(𝑖)
∗
(
𝜇, 𝜏0

)
𝑓 (𝑣′)𝑓 (𝑣′∗)𝑑𝑛𝑑𝑣∗

where we substituted 𝐷
(
𝜇, 𝜏0

)
by any of the previous approximations 𝐷(𝑖)

∗
(
𝜇, 𝜏0

)
, 𝑖 = 1, 2, 3 defined in (11)-(15)-(18).

Hence, indicating with 𝑞𝑛 = 𝑣𝑛𝑖 − 𝑣
𝑛
𝑗 the relative velocity at the time step 𝑛 of any two particles 𝑣𝑛𝑖 , 𝑣

𝑛
𝑗 , the collision law reads

𝑣′𝑖 = 𝑣
𝑛
𝑖 −

1
2
(𝑞𝑛(1 − cos𝜃) + ℎ𝑛 sin𝜃)

𝑣′𝑗 = 𝑣
𝑛
𝑗 +

1
2
(𝑞𝑛(1 − cos𝜃) + ℎ𝑛 sin𝜃)

(22)

with ℎ𝑛 given by

ℎ𝑛𝑥 = 𝑞
𝑛
⟂ cos𝜙

ℎ𝑛𝑦 = −
(
𝑞𝑛𝑦𝑞

𝑛
𝑥 cos𝜙+ 𝑞𝑛𝑞𝑛𝑧 sin𝜙

)
∕𝑞𝑛⟂

ℎ𝑛𝑧 = −
(
𝑞𝑛𝑧𝑞

𝑛
𝑥 cos𝜙− 𝑞𝑛𝑞𝑛𝑦 sin𝜙

)
∕𝑞𝑛⟂,

where 𝑞𝑛⟂ =
(
(𝑞𝑛𝑦)

2 + (𝑞𝑛𝑧)
2
)1∕2

. In the above formulas, the angles 𝜃 and 𝜙 are given by (13)-(14), (17)-(14), or (20)-(14) according to 
the approximated kernel we consider.

We have denoted by Sround(𝑥) the stochastic rounding of a positive real number 𝑥

Sround =

{⌊𝑥⌋+ 1 with probability 𝑥− ⌊𝑥⌋⌊𝑥⌋ with probability 1 − 𝑥+ ⌊𝑥⌋,

8

where ⌊𝑥⌋ denotes the integer part of 𝑥.
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Algorithm 1 Nanbu-Babovsky for the Landau equation.

• Compute the initial velocity of the particles {𝑣0𝑖 }𝑁𝑖=1 by sampling from the initial distribution 𝑓 0(𝑣) = 𝑓 (𝑣, 𝑡 = 0);
• for 𝑛 = 1 to 𝑛TOT, given {𝑣𝑛𝑖 }𝑁𝑖=1 :

– set 𝑁𝑐 = Sround(𝜌𝑁Δ𝑡∕2𝜀);
– select the interaction pairs (𝑖, 𝑗) uniformly among all the possible ones, and for every pair (𝑣𝑛𝑖 , 𝑣𝑛𝑗 ):

* compute the cumulative scattering angle cos𝜃 and the angle 𝜙 according to (13)-(14) (for 𝐷(1)
∗ (𝜇, 𝜏0)), (14)-(17) (for 𝐷(2)

∗ (𝜇, 𝜏0)), or (14)-(20) (for 𝐷(3)
∗ (𝜇, 𝜏0));

* perform the collision according to (22);

* set 𝑣𝑛+1𝑖 = 𝑣′𝑖 and 𝑣𝑛+1𝑗 = 𝑣′𝑗 ;
– set 𝑣𝑛+1𝑖 = 𝑣𝑛𝑖 for all the particles that have not been collided;

• end for.

Remark 2. In standard DSMC algorithms, the presence of a collisional kernel, representing the forces between molecules or the 
frequency of interaction, is reflected in the number of colliding particles. In particular, for non-Maxwellian models an acceptance-

rejection procedure is performed according to the kernel [32]. With the reformulation presented in this work, the physics of the 
interactions is encoded into the sampling of the angles, which depends on 𝜏0 defined in (8). Thus, Algorithm 1 reads as a standard 
Nanbu-Babovsky scheme for Maxwell particles with collisions defined by (22) and angles (𝜃, 𝜙) given by (13)-(14), (17)-(14), or 
(20)-(14), according to 𝐷(𝑖)

∗ , but it holds for both the VHS and Coulomb scenario.

Remark 3. The choice of the kernel 𝐷(𝑖)
∗ , with 𝑖 = 1, 2, 3, is crucial from a numerical perspective. In particular, to sample cos𝜃 and 

𝜙 from 𝐷(1)
∗ , we highlight that the nonlinear equation (12) must be solved for every selected interaction pairs of particles, at every 

time step. This introduces additional numerical errors and may be computationally demanding. On the contrary, 𝐷(2)
∗ and 𝐷(3)

∗ do 
not require the use of a solver for the zeros of the nonlinear equation, and thus the code may be easily vectorizable with a significant 
speed-up in the computational time.

3.1.2. Bird’s scheme

We can also construct a Monte Carlo scheme based on the classical Bird’s no time counter method. In this case, the average 
number of collisions at each time step is given by

𝑁𝑐 =
𝑁𝜌Δ𝑡
2𝜀

,

so that the average time between two collisions is

Δ𝑡𝑐 =
Δ𝑡
𝑁𝑐

= 2𝜀
𝜌𝑁

.

Note that, in our setting, Bird’s method has the same structure of the Nanbu-Babovsky method where at each Δ𝑡𝑐 only one pair 
collides, since

𝑓𝑛+1 =
(
1 −

𝜌Δ𝑡𝑐
𝜀

)
𝑓𝑛 +

𝜌Δ𝑡𝑐
𝜀
𝑃 (𝑖)
∗,𝜀(𝑓,𝑓 ) =

(
1 − 2

𝑁

)
𝑓𝑛 + 2

𝑁
𝑃 (𝑖)
∗,𝜀(𝑓,𝑓 ).

As a consequence, recollision between particles are admissed in a time step Δ𝑡 =𝑁Δ𝑡𝑐 in contrast to Nanbu-Babovsky. In Algorithm 2

we recall the standard Bird’s scheme for Maxwell particles with collisions defined by (22) in the absence of uncertainties. The 
considerations of Remark 2-3 apply also to the Bird scheme.

Algorithm 2 Bird for the Landau equation.

• Compute the initial velocity of the particles {𝑣0𝑖 }𝑁𝑖=1 by sampling from the initial distribution 𝑓 0(𝑣) = 𝑓 (𝑣, 𝑡 = 0);
• set the time counter 𝑡𝑐 = 0;

• set Δ𝑡𝑐 = 2𝜀∕𝜌𝑁 ;

• for 𝑛 = 1 to 𝑛TOT, given {𝑣𝑛𝑖 }𝑁𝑖=1 :

– since 𝑡𝑐 < 𝑛Δ𝑡:
* select a random pair (𝑖, 𝑗) uniformly among all the possible ones;

* compute the cumulative scattering angle cos𝜃 and the angle 𝜙 according to (13)-(14) (for 𝐷(1)
∗ (𝜇, 𝜏0)), (17)-(14) (for 𝐷(2)

∗ (𝜇, 𝜏0)), or (20)-(14) (for 𝐷(3)
∗ (𝜇, 𝜏0));

* perform the collision according to (22);

* set 𝑤𝑖 = 𝑣′𝑖 and 𝑤𝑗 = 𝑣′𝑗 ;
* update the time counter 𝑡𝑐 = 𝑡𝑐 +Δ𝑡𝑐 ;

– set 𝑣𝑛+1𝑖 =𝑤𝑖 for 𝑖 = 1, … , 𝑁 ;

• end for.

3.2. Stochastic Galerkin reformulation of the DSMC method

We consider a sample of 𝑁 particles 𝑣𝑛𝑖 (𝐳) = 𝑣𝑖(𝑡
𝑛, 𝐳), 𝑖 = 1, … , 𝑁 at time 𝑡𝑛 = 𝑛Δ𝑡, and we expand them by their generalized 
9

polynomial chaos (gPC) expansion
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𝑣𝑛𝑖 (𝐳) ≈ 𝑣
𝑛,𝑀
𝑖 (𝐳) =

𝑀∑
𝑘=0

𝑣̂𝑛𝑖,𝑘Ψ𝑘(𝐳), (23)

being {Ψ𝑘(𝐳)}𝑀𝑘=0 a set of polynomials of degree less or equal to 𝑀 ∈ℕ, orthonormal with respect to the measure 𝑝(𝐳)𝑑𝐳

∫
𝐼𝐳

Ψ𝑘(𝐳)Ψ𝑙(𝐳)𝑝(𝐳)𝑑𝐳 = 𝔼𝐳[Ψ𝑘(⋅)Ψ𝑙(⋅)] = 𝛿𝑘𝑙,

where 𝐼𝐳 ∈ℝ𝑑𝐳 and 𝛿𝑘𝑙 is the Kronecker delta function. The polynomials {Ψℎ(𝐳)}𝑀𝑘=0 are chosen following the so-called Wiener-Askey 
scheme, depending on the distribution of the parameters. In (23), for fixed 𝑘 = 0, … , 𝑀 , the term 𝑣̂𝑛

𝑖,ℎ
is the projection in the space 

generated by the polynomial of degree 𝑘 ≥ 0

𝑣̂𝑛𝑖,𝑘 = ∫
𝐼𝐳

𝑣𝑛𝑖 (𝐳)Ψ𝑘(𝐳)𝑝(𝐳)𝑑𝐳 = 𝔼𝐳[𝑣𝑛𝑖 (⋅)Ψ𝑘(⋅)]. (24)

We also have

𝑞𝑛,𝑀𝑖𝑗 (𝐳) = 𝑣𝑛,𝑀𝑖 (𝐳) − 𝑣𝑛,𝑀𝑗 (𝐳) =
𝑀∑
𝑘=0

(
𝑣̂𝑛𝑖,𝑘 − 𝑣̂

𝑛
𝑗,𝑘

)
Ψ𝑘(𝐳) =

𝑀∑
𝑘=0

𝑞𝑛𝑖𝑗,𝑘Ψ𝑘(𝐳),

with 𝑞𝑛
𝑖𝑗,𝑘

= 𝑣̂𝑛
𝑖,𝑘

− 𝑣̂𝑛
𝑗,𝑘

, and

ℎ𝑛,𝑀𝑥 (𝐳) = 𝑞𝑛,𝑀⟂ (𝐳) cos𝜙

ℎ𝑛,𝑀𝑦 (𝐳) = −
(
𝑞𝑛,𝑀𝑦 (𝐳)𝑞𝑛,𝑀𝑥 (𝐳) cos𝜙+ 𝑞𝑛,𝑀 (𝐳)𝑞𝑛,𝑀𝑧 (𝐳) sin𝜙

)
∕𝑞𝑛,𝑀⟂ (𝐳)

ℎ𝑛,𝑀𝑧 (𝐳) = −
(
𝑞𝑛,𝑀𝑧 (𝐳)𝑞𝑛,𝑀𝑥 (𝐳) cos𝜙− 𝑞𝑛,𝑀 (𝐳)𝑞𝑛,𝑀𝑦 (𝐳) sin𝜙

)
∕𝑞𝑛,𝑀⟂ (𝐳).

We recall that in general 𝜏 defined in (7) is a function of the random parameter 𝜏 = 𝜏(𝐳), since it may depend on the relative 
velocity, and then we also have 𝜏0 = 𝜏0(𝐳). As a consequence, the three kernels proposed in Section 2.2 depend on the random inputs 
𝐷(𝑖)

∗ =𝐷(𝑖)
∗ (𝜇, 𝜏0(𝐳)) for every 𝑖 = 1, 2, 3. To sample the angles 𝜃 = 𝜃(𝐳) and 𝜙 according to 𝐷(1)

∗ (𝜇, 𝜏0(𝐳)), we need to solve

coth𝐴(𝐳) − 1
𝐴(𝐳)

= 𝑒−2𝜏0(𝐳) (25)

and then compute

cos𝜃(𝐳) = 1
𝐴(𝐳)

ln(exp−𝐴(𝐳) +2𝑟1 sinh𝐴(𝐳)) (26)

and

𝜙 = 2𝜋𝑟2 (27)

with 𝑟1, 𝑟2 ∼ ([0, 1]). Sampling 𝐷(2)
∗ (𝜇, 𝜏0(𝐳)) corresponds to fix

cos𝜃(𝐳) = 𝜈(𝜏0(𝐳)), (28)

with 𝜈(⋅) as in (16), and compute 𝜙 as in (27). Similarly, if 𝐷(3)
∗ (𝜇, 𝜏0(𝐳)) is considered, we have

cos𝜃(𝐳) = 𝜈̃(𝜏0(𝐳)), (29)

with 𝜈̃(⋅) as in (19), and again 𝜙 as in (27).

We substitute the approximation of the velocities into (22) and we project against Ψ𝑙(𝐳)𝑝(𝐳)𝑑𝐳 for every 𝑙 = 0, … , 𝑀 to obtain

𝑣̂′𝑖,𝑘 = 𝑣̂
𝑛
𝑖,𝑘 −

1
2

(
𝑞𝑛𝑖𝑗,𝑘 −

𝑀∑
𝑙=0
𝑞𝑛𝑖𝑗,𝑙𝑉

𝑛
𝑙𝑘 + 𝑊̂

𝑛
𝑘

)

𝑣̂′𝑗,𝑘 = 𝑣̂
𝑛
𝑗,𝑘 +

1
2

(
𝑞𝑛𝑖𝑗,𝑘 −

𝑀∑
𝑙=0
𝑞𝑛𝑖𝑗,𝑙𝑉

𝑛
𝑙𝑘 + 𝑊̂

𝑛
𝑘

) (30)

where the collision matrices are defined as

𝑉 𝑛𝑙𝑘 = ∫
𝐼𝐳

cos𝜃𝑖𝑗 (𝐳)Ψ𝑙(𝐳)Ψ𝑘(𝐳)𝑝(𝐳)𝑑𝐳

𝑊̂ 𝑛
𝑖𝑗,𝑘 = ℎ𝑛,𝑀𝑖𝑗 (𝐳) sin𝜃𝑖𝑗 (𝐳)Ψ𝑘(𝐳)𝑝(𝐳)𝑑𝐳,

(31)
10

∫
𝐼𝐳
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where the subscript in 𝜃𝑖𝑗 refers to angle sampled for the colliding couple 𝑖𝑗. Therefore, we may rephrase the Nanbu-Babovsky 
scheme in the sG framework as presented in Algorithm 3. Whereas the sG version of the Bird’s scheme is given in Algorithm 4.

Algorithm 3 sG Nanbu-Babovsky for the Landau equation.

• Compute the initial gPC expansions {𝑣𝑀,0
𝑖 }𝑁

𝑖=1 from the initial distribution 𝑓 0(𝑣);
• for 𝑛 = 1 to 𝑛TOT, given the projections {𝑣̂𝑛

𝑖,𝑘
, 𝑖 = 1, … , 𝑁, 𝑘 = 0, … , 𝑀}:

– set 𝑁𝑐 = Sround(𝜌𝑁Δ𝑡∕2𝜏);
– select the interaction pairs (𝑖, 𝑗) uniformly among all the possible ones, and for every pair (𝑣̂𝑛

𝑖,𝑘
, ̂𝑣𝑛
𝑗,𝑘
):

* compute the cumulative scattering angle cos𝜃(𝐳) and the angle 𝜙 according to (26)-(27) (for 𝐷(1)
∗ (𝜇, 𝜏0(𝐳))), (28)-(27) (for 𝐷(2)

∗ (𝜇, 𝜏0(𝐳))), or (29)-(27) (for 
𝐷(3)

∗ (𝜇, 𝜏0(𝐳)));
* compute the matrices 𝑉𝑘𝑙 and 𝑊̂𝑘 according to (31);

* perform the collision according to (30);

* set 𝑣̂𝑛+1
𝑖,𝑘

= 𝑣̂′
𝑖,𝑘

and 𝑣̂𝑛+1
𝑗,𝑘

= 𝑣̂′
𝑗,𝑘

;

– set 𝑣̂𝑛+1
𝑖,𝑘

= 𝑣̂𝑛
𝑖,𝑘

for all the particles that have not been collided;

• end for.

Algorithm 4 sG Bird for the Landau equation.

• Compute the initial gPC expansions of the particles {𝑣𝑀,0
𝑖 }𝑁

𝑖=1 by sampling from the initial distribution 𝑓 0(𝑣) = 𝑓 (𝑣, 𝑡 = 0);
• set the time counter 𝑡𝑐 = 0;

• set Δ𝑡𝑐 = 2𝜀∕𝜌𝑁 ;

• for 𝑛 = 1 to 𝑛TOT, given the projections {𝑣̂𝑛
𝑖,𝑘
, 𝑖 = 1, … , 𝑁, 𝑘 = 0, … , 𝑀}:

– since 𝑡𝑐 < 𝑛Δ𝑡:
* select a random pair (𝑖, 𝑗) uniformly among all the possible ones;

* compute the cumulative scattering angle cos𝜃(𝐳) and the angle 𝜙 according to (26)-(27) (for 𝐷(1)
∗ (𝜇, 𝜏0(𝐳))), (28)-(27) (for 𝐷(2)

∗ (𝜇, 𝜏0(𝐳))), or (29)-(27) (for 
𝐷(3)

∗ (𝜇, 𝜏0(𝐳)));
* compute the collision matrices 𝑉𝑘𝑙 and 𝑊̂𝑘 according to (31);

* perform the collision according to (30);

* set 𝑤̂𝑖,𝑘 = 𝑣̂′𝑖,𝑘 and 𝑤̂𝑗,𝑘 = 𝑣̂′𝑗,𝑘 ;
* update the time counter 𝑡𝑐 = 𝑡𝑐 +Δ𝑡𝑐 ;

– set 𝑣̂𝑛+1
𝑖,𝑘

= 𝑤̂𝑖,𝑘 for 𝑖 = 1, … , 𝑁 ;

• end for.

We stress that Remarks 2-3 hold also in the presence of uncertainties. Algorithms 3-4 read as standard schemes for Maxwell 
molecules, since the physics of the interaction is embedded into the sampled angle 𝜃(𝐳), which depends on 𝜏0(𝐳). Moreover, since 
𝐴 = 𝐴(𝐳), the computational cost needed to sample 𝐷(1)

∗ (𝜇, 𝜏0(𝐳)) scales along with the dimensionality of the random parameter 𝑑𝐳 , 
making the use of such kernel even more prohibitive.

3.3. Consistency estimate

In this section, we study the error produced by the particle sG method in the evaluation of any observable 𝜑 = 𝜑(𝑣). These results 
are inspired by Appendix B.2 of [36] and Section 4.2 of [28]. Let us denote by 𝑓 (𝑣, 𝑡, 𝐳) the solution to the Boltzmann equation with 
random inputs

𝜕𝑓

𝜕𝑡
(𝑣, 𝑡, 𝐳) = ∫

ℝ3
∫
𝑆2

𝐵

(
𝑞,
𝑞 ⋅ 𝑛|𝑞| , 𝐳

)(
𝑓 (𝑣′, 𝐳)𝑓 (𝑣′∗, 𝐳) − 𝑓 (𝑣, 𝐳)𝑓 (𝑣∗, 𝐳)

)
𝑑𝑛𝑑𝑣∗, (32)

and by 𝑓𝜀(𝑣, 𝑡, 𝐳) the solution to the first order approximation of Boltzmann equation in the presence of uncertainties

𝜕𝑓𝜀
𝜕𝑡

(𝑣, 𝑡, 𝐳) = 1
𝜀

⎡⎢⎢⎣∫ℝ3
∫
𝑆2

𝐷
(
𝜇, 𝜏0(𝐳)

)
𝑓𝜀(𝑣′, 𝐳)𝑓𝜀(𝑣′∗, 𝐳)𝑑𝑛𝑑𝑣∗ − 𝜌𝑓𝜀(𝑣, 𝐳)

⎤⎥⎥⎦ . (33)

We further indicate by

𝑓𝜀,𝑁 (𝑣, 𝑡, 𝐳) = 1
𝑁

𝑁∑
𝑖=1
𝛿(𝑣− 𝑣𝑖(𝑡, 𝐳)) 𝑓𝑀𝜀,𝑁 (𝑣, 𝑡, 𝐳) = 1

𝑁

𝑁∑
𝑖=1
𝛿(𝑣− 𝑣𝑀𝑖 (𝑡, 𝐳))

the empirical density functions obtained with the velocities 𝑣𝑖(𝑡, 𝐳) and their gPC approximation 𝑣𝑀𝑖 (𝑡, 𝐳), respectively. The expecta-

tions of 𝜑 read

⟨𝜑,𝑓𝜀⟩ (𝑡, 𝐳) = 𝜑(𝑣)𝑓𝜀(𝑣, 𝑡, 𝐳)𝑑𝑣
11

∫
ℝ3
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so that

⟨
𝜑,𝑓𝜀,𝑁

⟩
(𝑡, 𝐳) = 1

𝑁

𝑁∑
𝑖=1
𝜑(𝑣𝑖(𝑡, 𝐳)),

⟨
𝜑,𝑓𝑀𝜀,𝑁

⟩
(𝑡, 𝐳) = 1

𝑁

𝑁∑
𝑖=1
𝜑(𝑣𝑀𝑖 (𝑡, 𝐳)).

From the central limit theorem we have the following result.

Lemma 2. If we denote by 𝔼ℝ3 [⋅] the expectation with respect to 𝑓𝜀 in the velocity space, the root mean square error satisfies

𝔼ℝ3

[(⟨𝜑,𝑓𝜀⟩ (𝑡, 𝐳) − ⟨
𝜑,𝑓𝜀,𝑁

⟩
(𝑡, 𝐳)

)2
]1∕2

=
𝜎𝜑(𝑡, 𝐳)
𝑁1∕2

with

𝜎2𝜑(𝑡, 𝐳) = ∫
ℝ3

(𝜑(𝑣) − ⟨𝜑,𝑓𝜀⟩ (𝑡, 𝐳))2𝑓𝜀(𝑣, 𝑡, 𝐳)𝑑𝑣.
Denoting by 𝐻𝑟

𝑝(𝐼𝐳) the weighted Sobolev space

𝐻𝑟
𝑝(𝐼𝐳) =

{
𝑣 ∶ 𝐼𝐳 →ℝ3 ∶ 𝜕𝑘𝑣

𝜕𝐳𝑘
∈𝐿2

𝑝(𝐼𝐳), 0 ≤ 𝑘 ≤ 𝑟
}
,

from the polynomial approximation theory [43], we have the following spectral estimate.

Lemma 3. For any 𝑣(𝐳) ∈𝐻𝑟
𝑝(𝐼𝐳), 𝑟 ≥ 0, there exists a constant 𝐶 independent of 𝑀 > 0 such that

‖𝑣− 𝑣𝑀‖𝐿2
𝑝(𝐼𝐳)

≤ 𝐶

𝑀𝑟
‖𝑣‖𝐻𝑟

𝑝 (𝐼𝐳).

Next, for any random variable 𝑉 (𝑡, 𝐳) taking values in 𝐿2
𝑝(𝐼𝐳), we define

‖𝑉 ‖𝐿2(𝐼𝐳 ,𝐿2(ℝ3)) = ‖𝔼ℝ3 [𝑉 2]1∕2‖𝐿2
𝑝(𝐼𝐳)

,

and equivalently

‖𝑊 ‖𝐿2(ℝ3 ,𝐿2(𝐼𝐳)) = 𝔼ℝ3

[‖𝑉 ‖2
𝐿2
𝑝(𝐼𝐳)

]1∕2
.

Then, we have the following result.

Theorem 1. Let 𝑓 (𝑣, 𝑡, 𝐳) be a probability density function in 𝑣 at the time 𝑡, solution to the Boltzmann equation with random inputs (32). Let 
𝑓𝑀
𝜀,𝑁

(𝑣, 𝑡, 𝐳) be the empirical measure obtained from the 𝑁 -particles sG approximation {𝑣𝑀𝑖 (𝐳, 𝑡)}𝑖, numerical resolution to the approximated 
Boltzmann equation with uncertainties (33). If 𝑣𝑖(𝑡, 𝐳) ∈𝐻𝑟

𝑝(𝐼𝐳) for every 𝑖 = 1, … , 𝑁 , we have the following estimate

‖⟨𝜑,𝑓⟩− ⟨
𝜑,𝑓𝑀𝜀,𝑁

⟩‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

≤𝑂(𝜀) +
‖𝜎𝜑‖𝐿2

𝑝(𝐼𝐳)

𝑁1∕2 + 𝐶

𝑀𝑟

(
1
𝑁

𝑁∑
𝑖=1

‖∇𝜑(𝜉𝑖)‖𝐿2
𝑝(𝐼𝐳)

)
,

where 𝜑 is a test function, 𝐶 > 0 is a constant independent on 𝑀 and 𝜉𝑖 = (1 − 𝜗)𝑣𝑖 + 𝜗𝑣𝑀𝑖 , 𝜗 ∈ (0, 1).

Proof. Thanks to the triangular inequality we have

‖⟨𝜑,𝑓⟩− ⟨
𝜑,𝑓𝑀𝜀,𝑁

⟩‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

≤‖⟨𝜑,𝑓⟩− ⟨𝜑,𝑓𝜀⟩ ‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼

+ ‖⟨𝜑,𝑓𝜀⟩− ⟨
𝜑,𝑓𝜀,𝑁

⟩‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝐼

+ ‖⟨𝜑,𝑓𝜀,𝑁⟩−
⟨
𝜑,𝑓𝑀𝜀,𝑁

⟩‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝐼𝐼

.

(34)

As presented in Section 2.1, 𝑓𝜀(𝑣, 𝑡, 𝐳) is a first order approximation of the Boltzmann equation in 𝜀. As observed by Nanbu and 
Bobylev in [2], the accuracy is not formally worse than any other first order approximation of the Boltzmann equation. Therefore, 
12

the term 𝐼 is of first order in 𝜀:
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‖⟨𝜑,𝑓⟩− ⟨𝜑,𝑓𝜀⟩ ‖𝐿2(ℝ3 ,𝐿2(𝐼𝐳)) =𝑂(𝜀).

The second term 𝐼𝐼 can be evaluated exploiting the result of Lemma 2. Therefore, we have

𝐼𝐼 =
‖𝜎𝜑(𝐳)‖𝐿2(𝐼𝐳)

𝑁1∕2 .

Finally, for 𝐼𝐼𝐼 we have‖‖‖‖‖‖ 1
𝑁

𝑁∑
𝑖=1

(
𝜑(𝑣𝑖) −𝜑(𝑣𝑀𝑖 )

)‖‖‖‖‖‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

≤ 1
𝑁

𝑁∑
𝑖=1

‖𝜑(𝑣𝑖) −𝜑(𝑣𝑀𝑖 )‖𝐿2(ℝ3 ,𝐿2
𝑝(𝐼𝐳))

,

and from the mean value theorem 𝜑(𝑣𝑖) − 𝜑(𝑣𝑀𝑖 ) = ∇𝜑(𝜉𝑖) ⋅ (𝑣𝑖 − 𝑣𝑀𝑖 ), for 𝜉𝑖 = (1 − 𝜗)𝑣𝑖 + 𝜗𝑣𝑀𝑖 , 𝜗 ∈ (0, 1). Thanks to Lemma 3 with 
𝐶 =max𝑖 𝐶𝑖‖𝑣𝑖‖𝐻𝑟

𝑝 (𝐼𝐳) we have

𝐼𝐼𝐼 ≤ 1
𝑁

𝑁∑
𝑖=1

‖∇𝜑(𝜉𝑖)‖𝐿2
𝑝(𝐼𝐳)

‖𝑣𝑖 − 𝑣𝑀𝑖 ‖𝐿2
𝑝(𝐼𝐳)

≤ 𝐶

𝑀𝑟

(
1
𝑁

𝑁∑
𝑖=1

‖∇𝜑(𝜉𝑖)‖𝐿2
𝑝(𝐼𝐳)

)
. □

Remark 4. The regularity of the Landau approximation in the space of the random parameter is crucial for the gPC approximation, 
as shown in Lemma 3 and Theorem 1. In this direction, we observe that the angle sampled from the kernel 𝐷(3)

∗ is such that 
cos𝜃(𝐳) = 𝜈̃(𝜏0(𝐳)) is of class 𝐶∞ in the space of the random parameters. On the contrary, considering the kernel 𝐷(2)

∗ , we have that 
the function 𝜈(𝜏0(𝐳)) is not differentiable in 𝜏0(𝐳) = 1. Similarly, taking 𝐷(1)

∗ into account, the numerical resolution of the nonlinear 
equation (25) forces the introduction of cut-offs at the boundary of the domain of 𝐴(𝐳) (see [29], Section C).

4. Numerical examples and applications

In this section, we present several numerical test and examples to validate our algorithms both without and with uncertain 
parameters. First, we investigate the Maxwellian case without uncertainties. Then, we show several tests for the DSMC-sG method, 
for both the Nanbu-Babovsky and the Bird’s schemes. We check for the spectral convergence and the accordance with the exact BKW 
solution of the Maxwellian case with uncertainties. Then, we consider the Coulombian case, focusing the attention on the regularity 
of the kernels 𝐷(1)

∗ , 𝐷(2)
∗ , and 𝐷(3)

∗ . We check again for the spectral convergence, and then we test the schemes on the standard case 
studies for the homogeneous Landau equation. In particular, we concentrate on the capability to reach the equilibrium starting from 
different uncertain initial conditions, i.e., anisotropic initial temperature, sum of two Gaussians, and bump-on-tail distributions. In 
all the subsequent tests, we consider the physical constants fixed as follows: 𝑒 = 𝜀0 =𝑚 = 𝜌 = 1, and logΛ = 0.5.

The number of particles is varied between the values 𝑁 = 106, 5 × 106, 5 × 107. In more details, 𝑁 = 106 is used to compute the 
stochastic Galerkin error and to compare the DSMC-sG and the DSMC-MC schemes; 𝑁 = 5 ×106 is adopted in all the tests showing the 
moments of the distribution; 𝑁 = 5 ×107 is used to display the distribution 𝑓 (⋅) or its marginals. The reason for this choice is that the 
distribution 𝑓 (⋅) is reconstructed using histograms in 3D and therefore it is necessary to choose a high number of particles to smooth 
out statistical fluctuations due to the Monte Carlo nature of the algorithm. On the other hand, the moments of the distribution are 
averaged quantities and therefore fewer particles can be used. The convergence and comparison tests are independent from 𝑁 . We 
will return to this in the following.

4.1. Test 1: exact solution in the Maxwellian case

We consider the model with Maxwell molecules, i.e., 𝛾 = 0 in (3). In 3D, an exact solution is given by (see [6], Appendix A)

𝑓 (𝑣, 𝑡) = 1
(2𝜋𝐾(𝑡))3∕2

𝑒
− |𝑣|2

2𝐾(𝑡)

(
5𝐾(𝑡) − 3𝑇

2𝐾(𝑡)
+ 𝑇 −𝐾(𝑡)

2𝐾(𝑡)2
|𝑣|2) , (35)

with 𝑇 temperature and

𝐾(𝑡) = 𝑇
(
1 − 2

5
𝑒−𝑡∕2

)
.

We recall that the moments of order zero, one, and two are conserved, while the exact time evolution of the fourth order moment 
reads

M4(𝑡) = 9𝐾(𝑡)(2𝑇 −𝐾(𝑡)). (36)

In Fig. 1, we show the relative 𝐿2 errors of the distribution 𝑓 (𝑣, 𝑡) and the fourth order moment M4(𝑡) of the DSMC approximation 
with respect to the exact BKW solution (35) and (36). In particular, we compare the different kernels 𝐷(1)

∗ , 𝐷(2)
∗ , and 𝐷(3)

∗ , together 
with different values of the scaling parameter 𝜀 = 2, 0.5. We use 𝑁 = 5 × 107 particles, and initial conditions given by (35) with 𝑡 = 0
and 𝑇 = 1. We choose the Nanbu-Babovsky scheme given by Algorithm 1. As we can notice, the kernels 𝐷(2)

∗ and 𝐷(3)
∗ perform better 
13

than 𝐷(1)
∗ for small times.
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Fig. 1. Test 1. Time evolution of the relative 𝐿2 errors with respect to the BKW solution of the distribution 𝑓 (𝑣, 𝑡) (left) and of the fourth order moment M4(𝑡) (right), 
for the kernels 𝐷(1)

∗ , 𝐷(2)
∗ , and 𝐷(3)

∗ , and different values of 𝜀 = 𝜌Δ𝑡. In all the tests, we use 5 × 107 particles and the Nanbu-Babovsky scheme. Initial conditions given 
by (35) with 𝑡 = 0 and 𝑇 = 1.

Fig. 2. Test 1. Comparison between the time evolution of the first and second order moments (left), and of the fourth order moment (right), obtained with the DSMC 
method and from the exact BKW solution. In all the tests, we use 5 ×106 particles, Δ𝑡 = 𝜀∕𝜌 = 0.1, the kernel 𝐷(3)

∗ , and the Nanbu-Babovsky scheme. Initial conditions 
given by (35) with 𝑡 = 0 and 𝑇 = 1.

In Fig. 2 we display the time evolution of the first and second order moments (left panel), and the fourth order moment (right 
panel) computed with the DSMC scheme, together with the exact solutions. We choose the Nanbu-Babovsky algorithm, kernel 𝐷(3)

∗ , 
𝑁 = 5 × 106 particles, Δ𝑡 = 𝜀∕𝜌 = 0.1, and initial conditions given by (35) with 𝑡 = 0 and 𝑇 = 1.

4.2. Test 2: Trubnikov test

We initialize the distribution as an ellipsoid, i.e., as

𝑓0(𝑣) =
1

(2𝜋)3∕2
1√

𝑇 0
𝑥 𝑇

0
𝑦 𝑇

0
𝑧

⎛⎜⎜⎝𝑒
− 𝑣2𝑥

2𝑇 0𝑥 𝑒
−
𝑣2𝑦
2𝑇 0𝑦 𝑒

− 𝑣2𝑧
2𝑇 0𝑧

⎞⎟⎟⎠ , (37)

with anisotropic initial temperature

𝑇 0
𝑥 = 𝑇 0

𝑦 > 𝑇
0
𝑧 .

The temperature difference Δ𝑇 (𝑡) = 𝑇𝑥(𝑡) − 𝑇𝑧(𝑡) goes to zero exponentially with a specific rate 𝜏𝑇

Δ𝑇 (𝑡) = Δ𝑇 (0)𝑒−𝑡∕𝜏𝑇 .

In the Maxwellian case (see Appendix A for further details), we have

2

14

𝜏𝑇 =
3𝜌
, (38)
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Fig. 3. Test 2. Time evolution of the relative temperature difference Δ𝑇 (𝑡)∕Δ𝑡(0) for the Maxwellian (left) and the Coulomb (right) cases. The solid black lines are the 
Trubnikov solutions with rate given, respectively, by (38) and (39). The particles are 𝑁 = 5 × 106 , the time step Δ𝑡 = 0.1, and the temperature 𝑇 = 0.07. We choose 
the Nanbu-Babovsky scheme with the kernel 𝐷(3)

∗ . Initial conditions given by (37), with 𝑧-temperature 𝑇 0
𝑧 = 0.04 for the Maxwellian case, and 𝑇 0

𝑧 = 0.04, 0.001 for 
the Coulomb case.

Fig. 4. Test 3. Left: 𝐿2-Error in the evaluation of the temperature 𝑇 (𝐳) at fixed time 𝑡 = 1 for increasing 𝑀 , with respect to a reference solution, for different values 
of 𝜅. Right: time evolution of the same error in the time span [0, 5] for the case 𝜅 = 0.95. We consider in both cases 𝑁 = 106 particles, Δ𝑡 = 𝜀∕𝜌 = 0.1, and initial 
conditions given by (42). The kernel is 𝐷(3)

∗ , the scheme is Nanbu-Babovsky. Reference solution computed with 𝑀 = 30.

while in the Coulombian case Trubnikov [41] obtained an approximated solution in the limit of small temperature difference |𝑇 0
𝑥 −

𝑇 0
𝑧 | ≪ 1, that is

𝜏𝑇 = 5
8

√
2𝜋

(
8
√
𝑚

𝜋
√
2

𝑇 3∕2

𝑒4𝜌 logΛ

)
. (39)

We choose 𝑁 = 5 × 106 particles, Δ𝑡 = 0.1, and the Nanbu-Babovsky scheme with the kernel 𝐷(3)
∗ . We fix the total temperature 

𝑇 = 0.07 and we vary the initial 𝑧-temperature 𝑇 0
𝑧 to change Δ𝑇 (0). In Fig. 3 we compare the benchmark solutions with the particle 

approximations, for both the Maxwellian and the Coulombian cases. In the first scenario (left panel), the decreasing rate does not 
depend on the magnitude of the temperature difference, therefore we choose 𝑇 0

𝑧 = 0.04 so that Δ𝑇 (0) = 0.045 but any other choice 
gives the same result. In the Coulombian case (right panel), we choose 𝑇 0

𝑧 = 0.04, 0.001 to have Δ𝑇 (0) = 0.045, 0.1035. We note 
that the higher Δ𝑇 (0), the higher the discrepancy of the numerical results with the Trubnikov solution. In fact, as pointed out in 
Appendix A, while the Maxwellian rate (38) is exact, the Coulombian rate (39) is approximated and requires Δ𝑇 (0) ≪ 1. Besides, as 
the analytical Trubnikov solution is approximated, even for small differences in the initial temperature there is always a disagreement 
with the numerical results.

4.3. Test 3: Maxwellian case with uncertainties

We consider here the model with Maxwell molecules and uncertainties in the initial temperature 𝑇 (𝐳), i.e.,

1 − |𝑣|2 (
5𝐾(𝑡, 𝐳) − 3𝑇 (𝐳) 𝑇 (𝐳) −𝐾(𝑡, 𝐳) 2

)

15

𝑓 (𝑣, 𝑡, 𝐳) =
(2𝜋𝐾(𝑡, 𝐳))3∕2

𝑒 2𝐾(𝑡,𝐳)
2𝐾(𝑡, 𝐳)

+
2𝐾(𝑡, 𝐳)2

|𝑣| , (40)
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Fig. 5. Test 3. Evolution at fixed times 𝑡 = 0, 1, 5 of the marginal 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] and Var𝐳[𝑓 (𝑣, 𝑡, 𝐳)] of the BKW exact solution (40) and of the DSMC-sG approximation 
of the model for Maxwell molecules, with uncertainty in the initial temperature with 𝜅 = 0.95 in (42). We consider 𝑁 = 5 × 107 particles, Δ𝑡 = 𝜀∕𝜌 = 0.1 and 𝑀 = 5. 
(For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

with

𝐾(𝑡, 𝐳) = 𝑇 (𝐳)
(
1 − 2

5
𝑒−𝑡∕2

)
,

and fourth order moment given by

M4(𝑡) = 9𝐾(𝑡, 𝐳)(2𝑇 (𝐳) −𝐾(𝑡, 𝐳)). (41)

We initialize the particles in the DSMC-sG scheme by sampling the initial conditions given by

𝑓 0(𝑣, 𝐳) = 𝑓 (𝑣, 𝑡 = 0, 𝐳) with 𝑇 (𝐳) = 𝜅 + 0.1𝐳, 𝐳 ∼ ([0,1]). (42)

In all the tests, we adopt the Nanbu-Babovsky scheme given by Algorithm 3 and the kernel 𝐷(3)
∗ , with Δ𝑡 = 𝜀∕𝜌 = 0.1.

In Fig. 4 we show the stochastic Galerkin error for increasing values of 𝑀 (left) and its time evolution at fixed 𝑀 (right). We 
compute a reference solution with 𝑀 = 30 and we store the collisional tree. Then, for different values of 𝑀 , we compute the 𝐿2-Error 
of the temperature 𝑇 (𝐳) with respect to the reference solution. We notice that the machine accuracy is reached with a finite number 
of modes, and the error is constant in time.

In Figs. 5-7 we may see the comparison between the BKW exact solution given by (40) and the DSMC-sG approximation. We 
choose 𝑁 = 5 ×107 particles and a stochastic Galerkin expansion up to order 𝑀 = 5. In particular, in Fig. 5 we display at fixed times 
𝑡 = 0, 1, 5 the marginals of 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] and Var𝐳[𝑓 (𝑣, 𝑡, 𝐳)]. We may notice the accordance between the DSMC-sG approximation 
(red circles) and the exact BKW solution (solid black lines). In Figs. 6-7 the show at the fixed times 𝑡 = 0, 1, 5 the slices of the three 
dimensional plots of 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] and Var𝐳[𝑓 (𝑣, 𝑡, 𝐳)] respectively. In both the figures, the top row is the DSMC-sG approximation, 
while the bottom row is the exact BKW solution. We observe again a good agreement.

4.4. Test 4: Coulomb case with uncertainties

We consider now the Coulomb case with uncertainties, i.e., scattering cross section given by (4) and 𝛾 = −3 in 𝜏0, that is, (10).

Stochastic Galerkin error We are interested first in evaluating the convergence of the scheme in the space of the random parameters. 
16

To this aim, we consider the initial conditions 𝑓0(𝑣, 𝐳) = 𝑓 (𝑣, 0, 𝐳)
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Fig. 6. Test 3. Slices of the expected distribution 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] at fixed times 𝑡 = 0, 1, 5, for the Maxwellian collision model with uncertainties. Upper row: DSMC-sG 
solution obtained with 𝑁 = 5 × 107 particles, Δ𝑡 = 𝜀∕𝜌 = 0.1, 𝑀 = 5, 𝐷(3)

∗ , and the Nanbu-Babovsky scheme. Lower row: exact BKW solution.

Fig. 7. Test 3. Slices of the variance Var𝐳[𝑓 (𝑣, 𝑡, 𝐳)] at fixed times 𝑡 = 0, 1, 5, for the Maxwellian collision model with uncertainties. Upper row: DSMC-sG solution 
obtained with 𝑁 = 5 × 107 particles, Δ𝑡 = 𝜀∕𝜌 = 0.1, 𝑀 = 5, 𝐷(3)

∗ , and the Nanbu-Babovsky scheme. Lower row: exact BKW solution.

𝑓0(𝑣, 𝐳) =
1

(2𝜋𝑇 (𝐳))3∕2
⎛⎜⎜⎝𝑒

− 𝑣2𝑥
2𝑇 0𝑥 (𝐳) + 𝑒

−
𝑣2𝑦
2𝑇 0𝑦 + 𝑒

− 𝑣2𝑧
2𝑇 0𝑧

⎞⎟⎟⎠ ,
where the total temperature, conserved in time, is defined as( )
17

𝑇 (𝐳) = 1
3
𝑇𝑥(𝐳, 𝑡) + 𝑇𝑦(𝐳, 𝑡) + 𝑇𝑧(𝐳, 𝑡)



Journal of Computational Physics 503 (2024) 112845A. Medaglia, L. Pareschi and M. Zanella

Fig. 8. Test 4. Comparison of the 𝐿2 error in the evaluation of the temperature 𝑇 (𝐳) for different kernels, for increasing 𝑀 , with the NB scheme. We choose 𝑁 = 106 , 
𝑡 = 1, Δ𝑡 = 𝜀∕𝜌 = 0.1 and the reference solution is computed with an order 𝑀 = 30.

with uncertain initial conditions in the temperature along the 𝑥 axis

𝑇 0
𝑥 (𝐳) = 𝑇𝑥(𝐳,0) = 1 + 0.05𝐳

𝑇 0
𝑦 = 𝑇𝑦(0) = 0.75

𝑇 0
𝑧 = 𝑇𝑧(0) = 0.75

and 𝐳 ∼ ([0, 1]). We choose Δ𝑡 = 0.1, in a way that 𝜀 = 𝜌Δ𝑡 = 0.1, and 𝑁 = 106 particles. We consider a reference solution obtained 
with 𝑀 = 30 up to time 𝑡 = 1 and we store both the initial data and the collisional tree. Then, we compute the 𝐿2 error in the 
evaluation of the total temperature 𝑇 (𝐳) for increasing 𝑀 . The results obtained with the Nanbu-Babovsky (NB) and the Bird (B) 
scheme are similar, therefore we show only the NB results.

In Fig. 8 we show the decay of the 𝐿2 error in the evaluation of the temperature 𝑇 (𝐳), for the kernels 𝐷(1)
∗ , 𝐷(2)

∗ , and 𝐷(3)
∗ . We 

observe that the error convergence deteriorates for 𝐷(1)
∗ , since we need to introduce a cut-off for the numerical resolution of the 

nonlinear equation (12), and for 𝐷(2)
∗ , because the function 𝜈(𝜏0) is not differentiable for 𝜏0 = 1. With the choice 𝐷(3)

∗ , we reach the 
machine accuracy with a small order 𝑀 .

Trubnikov test We initialize the distribution as an ellipsoid, i.e., as

𝑓0(𝑣, 𝐳) =
1

(2𝜋)3∕2
1√

𝑇 0
𝑥 (𝐳)𝑇 0

𝑦 (𝐳)𝑇 0
𝑧

⎛⎜⎜⎝𝑒
− 𝑣2𝑥

2𝑇 0𝑥 (𝐳) 𝑒
−

𝑣2𝑦
2𝑇 0𝑦 (𝐳) 𝑒

− 𝑣2𝑧
2𝑇 0𝑧

⎞⎟⎟⎠ ,
with anisotropic uncertain initial temperature

𝑇 0
𝑥 (𝐳) = 𝑇

0
𝑦 (𝐳) > 𝑇

0
𝑧 .

In the case of small uncertain temperature difference, the Trubnikov [41] formula reads

Δ𝑇 (𝐳, 𝑡) = Δ𝑇 0(𝐳) exp
(
−𝑡∕𝜏𝑇

)
, with 𝜏𝑇 = 5

8

√
2𝜋

(
8
√
𝑚

𝜋
√
2

𝑇 (𝐳)3∕2

𝑒4𝜌 logΛ

)
, (43)

which can be used as a benchmark solution to test the numerical schemes. We choose

𝑇 0
𝑥 (𝐳) = 𝑇

0
𝑦 (𝐳) = 0.08 + 0.04𝐳

𝑇 0
𝑧 = 0.04,

with 𝐳 ∼ ([0, 1]), 𝑁 = 5 × 106 particles and a sG expansion up to order 𝑀 = 5.

First, we analyse the behaviour of the schemes for different values of the scale parameter 𝜀 = 𝜌Δ𝑡. We test the Nanbu-Babovsky 
and the Bird scheme, for the kernels 𝐷(1)

∗ , 𝐷(2)
∗ , and 𝐷(3)

∗ . The results are summarised in Fig. 9. We observe that for smaller values of 
𝜀, the numerical solutions get closer to the reference one, indicating that the schemes are consistent with the grazing limit. However, 
as pointed out also in [17], there is a discrepancy between the two solutions, since the Trubnikov relation (43) is still an (analytical) 
approximation.

Then, at fixed 𝜀 = 0.5, we compare the solutions obtained with different kernels, for both the Nanbu-Babovsky and the Nanbu 
scheme. In Fig. 10 we may notice that with the choices 𝐷(2)

∗ and 𝐷(3)
∗ the schemes perform better with respect to the choice 𝐷(1)

∗ , in 
18

the sense that they are closer to the Trubnikov solution.
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Fig. 9. Test 4. Time evolution of the expectation of Δ𝑇 (𝐳, 𝑡)∕Δ𝑇 (𝐳, 0), for different values of the scale parameter 𝜀, for the Nanbu-Babovsky (top row) and Bird 
(bottom row) schemes, for 𝐷(1)

∗ (left panels), 𝐷(2)
∗ (centre panels), and 𝐷(3)

∗ (right panels). The black line is the benchmark solution (43). The number of particles is 
𝑁 = 5 × 106 , 𝑀 = 5 and Δ𝑡 = 𝜀∕𝜌.

Fig. 10. Test 4. Comparison of the time evolution of the expectation of Δ𝑇 (𝐳, 𝑡)∕Δ𝑇 (𝐳, 0) for the choices of the kernel 𝐷(1)
∗ , 𝐷(2)

∗ , and 𝐷(3)
∗ , for fixed 𝜀 = 0.5, for both 

the Nanbu-Babovsky (left panel) and Bird (right panel) schemes. The black line is the benchmark solution (43). The number of particles is 𝑁 = 5 × 106 , 𝑀 = 5 and 
Δ𝑡 = 𝜀∕𝜌 = 1.

In the end, we compare the results obtained with the Nanbu-Babovsky and the Nanbu schemes for all the kernels. We fix 𝜀 = 0.5, 
𝑁 = 106 particles and 𝑀 = 5. In Fig. 11 we show the time evolution of the temperature difference for 𝐷(1)

∗ (left panel), 𝐷(2)
∗ (centre 

panel), and 𝐷(3)
∗ (right panel).

Sum of two Gaussians We initialize the distribution as the sum of two Gaussians centred in 𝑣 = ±1 and with the same uncertain 
temperature 𝑇 (𝐳) = 0.1 + 0.2𝐳, 𝐳 ∼ ([0, 1]), i.e.,

𝑓0(𝑣, 𝐳) =
1

2(2𝜋𝑇 (𝐳))3∕2

⎛⎜⎜⎜⎝𝑒
−
|𝑣+ 1|2
2𝑇 (𝐳) + 𝑒

−
|𝑣− 1|2
2𝑇 (𝐳)

⎞⎟⎟⎟⎠ . (44)

We use the Nanbu-Babovsky algorithm and the kernel 𝐷(3)
∗ . We choose 𝑁 = 5 × 107 particles, Δ𝑡 = 𝜀∕𝜌 = 1 and a stochastic Galerkin 

expansion with 𝑀 = 5. As we expected, the system evolves toward the equilibrium distribution, that is the centred Gaussian with the 
19

temperature 𝑇 (𝐳). In Fig. 12 we show the slices at fixed times 𝑡 = 0, 100, 1000 of 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] (upper row), and Var𝐳[𝑓 (𝑣, 𝑡, 𝐳)] (lower 
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Fig. 11. Test 4. Comparison of the time evolution of the expectation of Δ𝑇 (𝐳, 𝑡)∕Δ𝑇 (𝐳, 0) of the Nanbu-Babovsky and Bird schemes, for the kernels 𝐷(1)
∗ (left panel), 

𝐷(2)
∗ (centre panel), and 𝐷(3)

∗ (right panel), for fixed 𝜀 = 0.5. The black line is the benchmark solution (43). The number of particles is 𝑁 = 5 × 106 , 𝑀 = 5 and 
Δ𝑡 = 𝜀∕𝜌.

Fig. 12. Test 4. Slices of the expected distribution 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] (upper row) the variance Var𝐳[𝑓 (𝑣, 𝑡, 𝐳)] (lower row) at fixed times 𝑡 = 0, 100, 1000, for the Coulombian 
model with uncertainties, with sum of two Gaussians initial conditions (44). We choose 𝑁 = 5 × 107 particles, 𝑀 = 5, Δ𝑡 = 𝜀∕𝜌 = 1.

row). In Fig. 13 we display the marginals of 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] at the same times. From the right panel, we may notice the accordance 
between the numerical solution (black circled line) and the expected equilibrium distribution (red starred line).

Bump on tail We initialize the distribution as a centred Gaussian with a bump on tail, namely a small portion of mass concentrated 
in 𝑣 = 3

𝑓0(𝑣, 𝐳) =
1

(2𝜋𝑇1(𝐳))3∕2
39
40
𝑒
−

|𝑣|2
2𝑇1(𝐳) + 1

(2𝜋𝑇2(𝐳))3∕2
1
40
𝑒
−
|𝑣− 3|2
2𝑇2(𝐳) (45)

with uncertain temperatures 𝑇1(𝐳) = 0.2 + 0.2𝐳, 𝐳 ∼ ([0, 1]), and 𝑇2(𝐳) = 𝑇1(𝐳)∕40. Given this initial condition, we observe that the 
conserved quantities, besides the mass, are M1 = 3

40 and 𝑇 (𝐳) = 39
40𝑇1(𝐳) +

1
40𝑇2(𝐳) =

1561
1600𝑇1(𝐳). We choose again the Nanbu-Babovsky 

algorithm and the kernel 𝐷(3)
∗ , with 𝑁 = 5 × 107 particles, Δ𝑡 = 𝜀∕𝜌 = 1 and a stochastic Galerkin expansion 𝑀 = 5.

In Fig. 14 we display the marginals 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] at fixed times 𝑡 = 0, 20, 50, 500. We observe that the bump is absorbed as the 
time increase and, at the time 𝑡 = 500, the system is close to the equilibrium, i.e. the Gaussian with mean M1 = 3

40 and temperature 
𝑇 (𝐳). In particular, in the bottom row, right panel, the accordance is good between the DSMC-sG approximation and the expected 
20

equilibrium distribution.
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Fig. 13. Test 4. Evolution at fixed times 𝑡 = 0, 100, 1000 of the marginal 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] of the Coulombian model with uncertainties, with sum of two Gaussians initial 
conditions (44). We choose 𝑁 = 5 × 107 particles, 𝑀 = 5, Δ𝑡 = 𝜀∕𝜌 = 1. The equilibrium marginal distribution (red starred) of the right panel is the Maxwellian 
distribution computed with the theoretical (conserved) mean and temperature.

Fig. 14. Test 4. Evolution at fixed times 𝑡 = 0, 20, 50, 500 of the marginal 𝔼𝐳[𝑓 (𝑣, 𝑡, 𝐳)] of the Coulombian model with uncertainties, with bump on tail initial conditions. 
We choose 𝑁 = 5 ×107 particles, 𝑀 = 5, Δ𝑡 = 𝜀∕𝜌 = 1. The equilibrium marginal distribution (red starred) of the lower row, the right panel is Maxwellian distribution 
computed with the theoretical (conserved) mean and temperature.

4.5. Test 5: DSMC-sG versus DSMC-MC

We are interested here in comparing the DSMC-sG algorithm with the DSMC-MC, i.e., the standard DSMC scheme with a Monte 
Carlo sampling of the random parameter. We take the same computational setting of Section 4.3, that is, Nanbu-Babovsky scheme, 
kernel 𝐷(3)

∗ , and initial conditions given by (42). We fix the number of particles 𝑁 = 106, the time step Δ𝑡 = 𝜀∕𝜌 = 0.1, and we 
21

compute the error in the evaluation of the fourth order moment at fixed time 𝑡 = 1
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Fig. 15. Test 5. Comparison cost-Error between the DSMC-sG scheme and the standard DSMC with a Monte Carlo sampling of the random parameter (MC-MC).

Error = |𝔼𝐳[M4(𝑡, 𝐳)] − 𝔼𝐳[M̃4(𝑡, 𝐳)]|,
where M̃4(𝑡, 𝐳) is a reference solution computed with a collocation algorithm with 𝑁 = 108 particles and 𝑀 = 20 collocation nodes. 
We want to compare the error with the computational cost, that is 𝑁 ⋅𝑀2 for the DSMC-sG, where 𝑀 is the order of expansion, 
and 𝑁 ⋅𝑀 for the DSMC-MC, where 𝑀 is the size of the sample of the random parameter. In Fig. 15 we show the results for the 
cost divided by the fixed number of particles 𝑁 . As we can see, the DSMC-sG performs better than the DSMC-MC for small cost. 
Moreover, we observe that the error of the DSMC-sG is saturated by the Monte Carlo part of the algorithm since it is constant for 
increasing order of expansion.

5. Conclusions

In this work, we have investigated the design of efficient particle methods for the Landau-Fokker-Planck equation in the presence 
of uncertainties. The equation has significant implications for the development of fusion reactors and has been extensively utilized 
by researchers and engineers to gain insights into the behaviour of charged particles in plasma. To accurately predict the behaviour 
of these particles, it is crucial to account for uncertainties in the constitutive parameters that characterize the system behaviour.

Our approach combines collision algorithms inspired by the grazing limit of the Boltzmann equation with a stochastic Galerkin 
particle projection. This method leverages the general structure of kernels in collision algorithms and introduces a regularized 
kernel to ensure spectral accuracy in the random space. In addition, the method benefits from a more efficient collision strategy 
which avoids iterative algorithms and, by employing particle reconstruction, it preserves the nonnegativity of the solution and other 
essential physical properties.

To validate the effectiveness and accuracy of our approach, we have conducted various numerical tests, including classical 
benchmarks such as BKW, Trubnikov’s solution for Coulombian particles, and the bump-on-tail problem. The results demonstrate the 
efficiency and accuracy of our method in capturing the complex dynamics described by the Landau equation with uncertain data.

In conclusion, we have developed a robust and accurate approach that can effectively capture the behaviour of charged particles 
in collisional plasmas under uncertain data. Future developments may involve extending the methodology to more complex scenarios 
and investigating additional applications in plasma physics in space non-homogeneous situations.
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Appendix A. Trubnikov formula for Maxwell molecules

We follow [41] (Section 20, pages 200–203) to derive the Trubnikov formula for the relaxation of anisotropic initial temperatures 
in a system characterized by Maxwell molecules. We consider equation (5) with 𝛾 = 0 written in flux form

𝜕𝑓 (𝑣, 𝑡)
𝜕𝑡

=∇𝑣 ⋅ 𝐽 (𝑓 )(𝑣, 𝑡),

with initial conditions given by

𝑓0(𝑣) = 𝜌
( 1
2𝜋

)3∕2 1
𝑇⟂

√
𝑇𝑧
𝑒
−
𝑣2⟂
2𝑇⟂ 𝑒

−
𝑣2𝑧
2𝑇𝑧 ,

where 𝑇⟂ = 𝑇𝑥 = 𝑇𝑦 > 𝑇𝑧 and 𝑣2⟂ = 𝑣2𝑥 + 𝑣
2
𝑦. Since the temperature 𝑇 = (2𝑇⟂ + 𝑇𝑧)∕3 is constant in time, we have

𝑑

𝑑𝑡
𝑇⟂ = − 𝑑

𝑑𝑡

𝑇𝑧
2

= −1
𝜌 ∫
ℝ3

𝑣2𝑧
2
𝜕𝑓

𝜕𝑡
𝑑𝑣 = 1

𝜌 ∫
ℝ3

𝑣𝑧𝐽𝑧𝑑𝑣,

where 𝐽𝑧 is the 𝑧-component of the flux

𝐽𝑧 = −1
8 ∫
ℝ3

∑
𝑗={𝑥,𝑦,𝑧}

(|𝑞|2𝛿𝑧𝑗 − 𝑞𝑧𝑞𝑗 )(𝑓 (𝑣)𝜕𝑣∗𝑗 𝑓 (𝑣∗) − 𝑓 (𝑣∗)𝜕𝑣𝑗 𝑓 (𝑣))𝑑𝑣∗.
Using the expression of the initial distribution, we can compute explicitly the sum inside the integral, which gives

𝑑
𝑑𝑡
𝑇⟂ = − 𝑑

𝑑𝑡

𝑇𝑧
2

= − 1
8𝜌
𝑇⟂ − 𝑇𝑧
𝑇⟂𝑇𝑧 ∫

ℝ3
∫
ℝ3

𝑓 (𝑣)𝑓 (𝑣∗)𝑣𝑧𝑞𝑧𝑞2⟂𝑑𝑣∗𝑑𝑣. (46)

In the Coulombian case, we have a multiplicative 1∕𝑞3 term inside the double integral, which forces us to make the assumption 
that |𝑇⟂ − 𝑇𝑧| ≪ 1, (see [41], Section 20, page 202, for further details). In the Maxwell case, we can compute the double integral 
explicitly, using again the expression of the initial distribution. Through the change of variables (𝑣, 𝑣∗) → (𝑉 , 𝑞), where 𝑉 = (𝑣 +𝑣∗)∕2
and 𝑞 = 𝑣 − 𝑣∗, we have

∫
ℝ3

∫
ℝ3

𝑓 (𝑣)𝑓 (𝑣∗)𝑣𝑧𝑞𝑧𝑞2⟂𝑑𝑣∗𝑑𝑣 = 4𝜌2𝑇⟂𝑇𝑧.

Plugging the previous expression into (46) we get

𝑑

𝑑𝑡
𝑇⟂ = − 𝑑

𝑑𝑡

𝑇𝑧
2

= −𝜌
2
Δ𝑇 ,

where Δ𝑇 = 𝑇⟂ − 𝑇𝑧. Hence, if we observe that

𝑑

𝑑𝑡
Δ𝑇 = 3 𝑑

𝑑𝑡
𝑇⟂

we finally get

Δ𝑇 (𝑡) = Δ𝑇 (0)𝑒−𝑡∕𝜏 , with 𝜏 = 2
3𝜌
.

We remark that this expression holds independently of the magnitude of |𝑇⟂ − 𝑇𝑧|. Furthermore, the rate inside the exponential 
function does not depend on the temperature 𝑇 as in the Coulombian case.
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