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A HEAT EQUATION APPROACH TO INTERTWINING

NICOLA GAROFALO AND GIULIO TRALLI

Abstract. In this paper we present a new approach based on the heat equation and extension
problems to some intertwining formulas arising in conformal CR geometry.

1. Introduction

In this paper we present a heat semigroup approach to some intertwining formulas which arise
in conformal CR geometry. The prototypical example of the questions we are interested in can
be described as follows. In Rn with n ≥ 2, for 0 < s < 1 consider the pseudodifferential operator

which in Fourier transform is given by ̂(−∆)su(ξ) = (2π|ξ|)2sû(ξ), see [32, 35]. Then, for every
x ∈ Rn, and each fixed y > 0, one has the following intertwining relation

(1.1) (−∆)s
(

(|x|2 + y2)−
n−2s

2

)

=
Γ
(

n
2 + s

)

Γ
(

n
2 − s

) (2y)2s (|x|2 + y2)−
n+2s

2 .

The objective of this note is to use the heat equation to establish a suitable variant of (1.1) in
which (−∆)s is replaced by the nonlocal conformal horizontal Laplacian Ls on a Lie group of
Heisenberg type G. It is worth mentioning here that our approach is new even in the classical
case of (1.1).

To provide the reader with some historical perspective we recall that (1.1) implicitly appeared
in the celebrated 1983 work of Lieb concerning the best constants in the Hardy-Littlewood-
Sobolev inequalities, see (3.12), (3.13) in the proof of [31, Theorem 3.1]. In this connection we
observe that a notable consequence of (1.1) is that it provides a family of positive solutions to
the nonlocal Yamabe equation in Rn

(1.2) (−∆)s u = u
n+2s
n−2s .

The uniqueness of such positive solutions was subsequently proved by Chen, Li, and Ou in [8].
A different way of looking at (1.1), which also underscores its geometric invariance, goes back to
the ideas in [3, 4]. For a function f on Rn denote by f⋆ its push forward to Sn ⊂ Rn+1 through
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2 A HEAT EQUATION APPROACH TO INTERTWINING

the stereographic projection. Branson characterized the conformal pseudodifferential operators
As of order 2s on Sn satisfying the intertwining formula

(1.3) As

((

(

1 + | · |2

2

)
n
2
−s

f

)⋆)

=

(

(

1 + | · |2

2

)
n
2
+s

(−∆)sf

)⋆

,

and proved that they have the following spectral representation

(1.4) As =
Γ(

√

−∆Sn + (n−1)2

4 + s+ 1
2 )

Γ(

√

−∆Sn + (n−1)2

4 − s+ 1
2 )

.

The number As(1) =
Γ(n

2
+s)

Γ(n
2
−s) is called, up to a renormalising constant, the fractional Qs-curvature

of Sn. For more insights on these aspects we refer the reader to [2, 7, 23] . We note that from

(1.3) it is immediate to recognise the validity of (1.1). It suffices to take f(x) =
(1+|x|2

2

)s−n
2 ,

and observe that

(−∆)s
( 2

1 + |x|2
)n

2
−s

=
( 2

1 + |x|2
)n

2
+s(

As(1
⋆)
)⋆

=
( 2

1 + |x|2
)n

2
+s

As(1) =
Γ(n2 + s)

Γ(n2 − s)

( 2

1 + |x|2
)n

2
+s

.

In our main result, Theorem 1.1 below, we present a new approach to intertwining formulas
such as (1.1) which is exclusively based on the heat equation. To explain the main ideas without
delving into technical aspects we mention that, instead of looking at (−∆)s, we consider the
nonlocal heat operator (∂t −∆)s and its extension problem: given a function u ∈ C∞

0 (Rn
x ×Rt),

find U ∈ C∞(Rn
x × Rt × R+

y ) such that

(1.5)

{

P(s)U
def
= ∂2U

∂y2
+ 1−2s

y
∂U
∂y +∆xU − ∂U

∂t = 0,

U(x, t, 0) = u(x, t).

We claim that the fundamental solution q(s)(x, y, t) of the operator P(s) in (1.5) can be used to

provide a simple proof of (1.1). To see this we note that, if w ∈ R2(1−s) and y = |w|, then P(s)

represents the action on functions U(x,w, t) = U(x, y, t) of the heat operator ∆x + ∆w − ∂t in

the space with fractal dimension Rn+2(1−s) × R
+
t whose fundamental solution (with pole at the

origin) is given by

(1.6) q(s)(x, y, t) =
1

(4πt)
n
2
+1−s

e−
|x|2+y2

4t .

If we denote by q(−s)(x, y, t) the heat kernel obtained by replacing s into −s in (1.6), then by
Bochner’s subordination the two functions

(1.7) E(±s)(x, y)
def
=

∫ ∞

0
q(±s)(x, y, t)dt
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are the fundamental solutions of the time-independent differential operators ∂2

∂y2
+ 1∓2s

y
∂
∂y +∆x.

If we now use the elementary (but very important) consequence of (1.6) that

(1.8)

∫ ∞

0
q(±s)(x, y, t)dt =

Γ(n∓2s
2 )

4π
n
2
+1∓s

(|x|2 + y2)−
n∓2s

2 ,

then in view of (1.7) the problem of proving (1.1) is reduced to that of establishing the equivalent
dimension-free relation

(1.9) (−∆)s
(

E(s)(·, y)
)

(x) = (2πy)2sE(−s)(x, y).

To prove (1.9) we once again bring to the center stage the heat semigroup Pt = e−t∆. If, in fact,
instead of the Fourier transform definition of (−∆)s we use the (equivalent) one given by the
following formula of Balakrishnan [1],

(1.10) (−∆)su(x) = −
s

Γ(1− s)

∫ ∞

0

1

t1+s
(Ptu(x)− u(x))dt,

then the proof of (1.9) hinges on the computation of Pt(E
(s)(·, y))(x), with E(s) defined by (1.7).

As we show in (2.7) below and subsequent considerations, the Chapman-Kolmogorov identity and
an elementary change of variable allow to easily complete this computation and establish (1.9).
By comparison, a direct proof of (1.1) via Fourier transform rests on elaborate computations
involving special functions which tend to overshadow the geometric content of the formula itself
(for complete details see [20, Lemma 8.6]).

The pseudodifferential operators (−∆)s and (1.4) have a counterpart in CR geometry. In
this context the Heisenberg group Hn ∼= Cn × R with coordinates (z, σ)1 occupies a special
position since, via the Cayley transform, such group has a conformal identification with the
boundary of the unit ball in Cn+1, the sphere S2n+1 with its standard CR structure. Analogously
to the term (|x|2 + 1)−1 in the stereographic projection, the function |i + (4σ + i|z|2)|−2 =
((|z|2 + 1)2 + 16σ2)−1 appears as the conformal factor in the Cayley transform, see [26, Section
4], and in fact appropriate powers of such factor played a central role in the works of Jerison and
Lee [27] and Frank and Lieb [15]. In Hn, with T = ∂σ, the CR conformal nonlocal operator Ls

was first introduced in the work by Branson et al. [5, see (1.33)] via the spectral formula

(1.11) Ls = 2s|T |s
Γ(−1

2L |T |−1 + 1+s
2 )

Γ(−1
2L |T |−1 + 1−s

2 )
, 0 < s < 1,

where we have denoted by L the Kohn-Spencer horizontal Laplacian in Hn. We note that, when
0 < s < 1 the pseudodifferential operator Ls is dramatically different from L s = (−L )s (for
the definition of this operator see (2.2) below), and these two operators coincide only in the
local case s = 1. In fact, by formally letting s ր 1 in (1.11), and using Γ(x + 1) = xΓ(x), we
obtain L1 = −L = L 1. In their work [16] Frank et al. introduced a new extension problem
for the nonlocal operator (1.11), very different from that for its non-geometric counterpart L s

in [13] (based on the work of Caffarelli and Silvestre [6]), and used scattering theory to solve

1we explicitly mention here that traditionally the letter t is reserved for the vertical variable in H
n. However, since

we want to indicate the time variable with t, we have opted for the notation σ.
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it. Subsequently, Roncal and Thangavelu employed a parabolic version of the extension problem
in [16] to establish some optimal Hardy inequalities in Hn [33], or more in general in groups of
Heisenberg type [34]. Such time-dependent extension problem plays an important role in our
recent work [21], as well as in the present paper which can be seen as a continuation of such
work.

To introduce the relevant geometric framework we recall that Lie groups of Heisenberg type
were introduced by Kaplan [28] in connection with hypoellipticity questions. They are geo-
metrically interesting since on one hand they retain most of the important symmetries of Hn,
on the other they naturally arise as the nilpotent component N in the Iwasawa decomposition
G = KAN of a simple group of rank one, see [11]. In a group of Heisenberg type G (see Section
3 for the relevant definitions) the following generalisation of (1.11) was introduced in [34]. Let
g = V1 ⊕ V2 be the Lie algebra of G, and denote m = dimV1, k = dimV2 (we note that the
complex structure of G forces m = 2n for some n ∈ N). We routinely identify g with Rm × Rk,
and the generic point g ∈ G with its logarithmic coordinates (z, σ) ∈ Rm × Rk. Let L be a
given horizontal Laplacian in G associated with an orthonormal basis of the horizontal layer V1.
Consider the pseudo-differential operator of order 2s defined by

(1.12) Ls = 2s(−∆σ)
s/2Γ(−

1
2L (−∆σ)

−1/2 + 1+s
2 )

Γ(−1
2L (−∆σ)−1/2 + 1−s

2 )
, 0 < s < 1.

We note that for Hn the dimension of the vertical layer is k = 1 and (−∆σ)
s/2 in (1.12) becomes

|T |s, thus giving back (1.11). In a group of Heisenberg type G the counterpart of the intertwining
formula (1.1) is given by the following

Ls

(

((|z|2 + y2)2 + 16|σ|2)−
m+2k−2s

4

)

(1.13)

=
Γ
(

m+2+2s
4

)

Γ
(

m+2k+2s
4

)

Γ
(

m+2−2s
4

)

Γ
(

m+2k−2s
4

)(4y)2s((|z|2 + y2)2 + 16|σ|2)−
m+2k+2s

4 ,

for (z, σ) ∈ G, and y > 0. We stress that in the particular case of the Heisenberg group Hn

(which corresponds to the case m = 2n and k = 1) the function appearing in the left-hand side
of (1.13) defines, up to group translations, the unique extremal of the Hardy-Littlewood-Sobolev
inequalities obtained by Frank and Lieb in [15]. We also note that, similarly to (1.2) above,
a remarkable by-product of (1.13) is that up to a renormalising factor the function u(z, σ) =

((|z|2 + y2)2 +16|σ|2)−
Q−2s

4 (where Q = m+2k denotes the so-called homogeneous dimension of
the group G) provides a positive solution to the following nonlocal Yamabe equation

(1.14) Lsu = u
Q+2s
Q−2s .

Following [16], one can consider semilinear equations as (1.14) in a suitable class of CR manifolds
having Hn as (flat-)model case: proving existence of positive solutions in this framework would
in fact resolve the fractional CR Yamabe problem posed in [16, p. 103-104]. We also mention
[24, 30] for multiplicity results for solutions of (1.14) with unrestricted sign in Hn.

In connection with (1.13) we recall that the existence of intertwining operators in semisimple
Lie groups is known since the pioneering work [29] by Knapp and Stein. A systematic treatment
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of intertwining kernels in Lie groups of Heisenberg type was developed by Cowling in [10] and
subsequently by Cowling and Haagerup in [12]. Formula (1.13) was recently proved by Roncal
and Thangavelu in [33, Theorem 3.1] and [34, Theorem 3.7], where they used it to find a M. Riesz
type inverse of the operator Ls. Their approach relies on non-commutative Fourier analysis and
group representation theory, and it is inspired to the results in [12, Section 3].

Our approach to the CR intertwining formula (1.13) is inspired to the above described strategy
leading to (1.9). While we refer the reader to Section 3 for the relevant details and a description
of the background results from [16], [33], [21] and [22], here we mention that the main step is to
consider the parabolic extension problem referred to above: given a function u ∈ C∞

0 (G × Rt),
find a function U ∈ C∞(G× Rt ×R+

y ) such that

(1.15)

{

P(s)U
def
= ∂2U

∂y2
+ 1−2s

y
∂U
∂y + y2

4 ∆σU + LU − ∂U
∂t = 0, in G× Rt × R+

y ,

U(g, t, 0) = u(g, t).

In our recent work [21] we have proved that the fundamental solution (with pole at the origin)

of the operator P(s) in (1.15) is the function in the thick space G× R2(1−s) × R+ given by

q(s)((z, σ), t, y) =
2k

(4πt)
m
2
+k+1−s

∫

Rk

e−
i
t
〈σ,λ〉

(

|λ|

sinh |λ|

)
m
2
+1−s

e
−

|z|2+y2

4t
|λ|

tanh |λ|dλ.(1.16)

Similarly to the case of Rn, the conformal CR invariants of the formula (1.13) are embedded in
the fundamental solution q(s)((z, σ), t, y) in (1.16). This claim will follow from two basic results
stated below: Theorem 1.1 and Theorem A. The former is the main result in this paper, the
latter represents a counterpart of (1.8) and was proved in [21, Theorem 1.4]. From (1.16) and
Bochner’s principle of subordination we know that the distribution

(1.17) e(s)((z, σ, y)
def
=

∫ ∞

0
q(s)((z, σ), t, y)dt

is the fundamental solution with pole at the origin of the time-independent part of P(s), i.e.,

the conformal extension operator L(s) =
∂2

∂y2 + 1−2s
y

∂
∂y + y2

4 ∆σ + L . The reader should bear in

mind that e(s)((z, σ, y) is the CR counterpart of the function E(s)(x, y) in (1.7) above. Along
with e(s)((z, σ), y), we consider the distribution e(−s)((z, σ), y) obtained by changing s into −s in
(1.16) and (1.17). We are finally ready to state our main result.

Theorem 1.1 (Geometric intertwining). Let G be a group of Heisenberg type and let s ∈ (0, 1).
For every g ∈ G and y > 0 one has

(1.18) Ls(e(s)(·, y))(g) = (2πy)2se(−s)(g, y).

Theorem 1.1 is the CR counterpart of the dimension-free identity (1.9). It is worth mentioning
here that in our proof of (1.18) we do not use the definition (1.12) of Ls since the latter would
immediately lead into the elaborate machinery of non-commutative Fourier analysis and group
representation theory. Instead, we base our analysis on the equivalent representation (3.8) below
which is only formally similar to (1.10).

With Theorem 1.1 in hands, we combine it with the following result, which is [21, Theorem
1.4], that further underscores the geometric relevance of the functions e(±s)((z, σ), y).
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Theorem A. Let 0 < s ≤ 1. In any group of Heisenberg type G the distribution in the thick

space G× R+
y defined by (1.17) is given by

(1.19) e(s)((z, σ), y) =
Γ(s)

(4π)1−s
C(s)(m,k) ((|z|2 + y2)2 + 16|σ|2)−

1
2
(m

2
+k−s),

where we have let

(1.20) C(s)(m,k) =
2

m
2
+2k−3s−1Γ(12(

m
2 + 1− s))Γ(12(

m
2 + k − s))

π
m+k+1

2 Γ(s)
.

An equation similar to (1.19) holds if we replace s with −s, provided that Γ(s) is replaced by

|Γ(−s)|.

It should now be clear to the reader that the combination of Theorem 1.1 and Theorem A
immediately implies the intertwining formula (1.13), see Corollary 3.3 below.

In closing, we provide a brief description of the paper. In Section 2 we present a fairly general
non-geometric version of the intertwining phenomenon that goes well beyond the setting of Lie
groups of Heisenberg type. We warn the reader that, although on a formal level the statement of
Theorem 2.1 seems similar that of Theorem 1.1, the geometric content of the latter result is lost in
the former. Our intent is to illustrate the flexibility of the heat equation approach which allows to
treat situations in which the arsenal of Fourier analysis is not readily available. For this we have
chosen the framework of stratified nilpotent Lie groups (aka Carnot groups) of arbitrary step,
but the proof of Theorem 2.1 holds with no changes for the fractional powers of the infinitesimal
generator of a Dirichlet form under by now standard assumptions which guarantee Gaussian
estimates for the relevant heat semigroup. Section 3 is devoted to proving Theorem 1.1. We
begin by explaining in some detail the geometric extension problem (1.15), and we introduce the
two operators P(±s),t. We highlight the new difficulties that one encounters with respect to the
non-geometric case and we establish two preliminary results of an elementary character, Lemma
3.1 and Lemma 3.2, that serve to overcome such obstructions. Finally, we prove Theorem 1.1.
In Corollary 3.3, which closes the paper, we combine this result with Theorem A to establish
(1.13).

2. Non-conformal intertwining formula

In this section we establish in the setting of stratified nilpotent Lie groups of arbitrary steps
(aka Carnot groups) a general version of the intertwining formula (1.9), see Theorem 2.1 below.
On one hand, our purpose is to show that the heat equation approach outlined in the case of flat
Rn in the introduction works in great generality. On the other hand, with the present section
we intend to highlight the dramatic differences between the geometric and the non-geometric
operators Ls and L s. To introduce our discussion we recall that a Carnot group of step r is
a simply-connected Lie group G whose Lie algebra g is stratified and r-nilpotent. This means
that g = V1 ⊕ ... ⊕ Vr, with [V1, Vi] = Vi+1, i = 1, ..., r − 1, and [V1, Vr] = {0}. The bracket
generating layer V1 of g is called the horizontal layer. If we denote by Lg(g

′) = g ◦ g′ the
operator of left-translation on G, and define left-invariant vector fields Xj(g) = dLg(ej), where
{e1, ..., em} is an orthonormal basis of V1, then a horizontal Laplacian in G (associated with the
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basis {e1, ..., em}) is defined by L =
∑m

j=1X
2
j . Such differential operator fails to be elliptic at

every point g ∈ G, but according to Hörmander’s theorem in [25] it is hypoelliptic in G. In
[14] Folland proved the existence of a strictly positive kernel p(g, g′, t), C∞ off the diagonal,
such that the heat semigroup Pt = e−tL is represented by Ptf(g) =

∫

G
p(g, g′, t)f(g′)dg′. Such

semigroup is stochastically complete (P11 = 1) and a contraction on Lp(G) for every 1 ≤ p ≤ ∞.
Furthermore, the kernel p(g, g′, t) satisfies the Gaussian estimates

(2.1) Ct−Q/2e−α
d(g,g′)2

t ≤ p(g, g′, t) ≤ C−1t−Q/2e−β
d(g,g′)2

t ,

for appropriate universal constants C,α, β > 0. In (2.1) we have indicated withQ =
∑r

j=1 j dimVj

the homogeneous dimension of G with respect to the anisotropic dilations associated with the
grading of the Lie algebra, whereas d(g, g′) denotes the control distance, see [14, 36]. The semi-
group Pt is all that is needed to introduce the fractional powers L s = (−L )s by means of the
following formula due to Balakrishnan

(2.2) L
su(g) = −

s

Γ(1− s)

∫ ∞

0

1

t1+s
(Ptu(g)− u(g))dt.

Next, we consider the parabolic extension problem for the pseudodifferential operator (∂t−L )s,
see [19]: given a function u ∈ C∞

0 (G× Rt), find U ∈ C∞(G× Rt × R+
y ) such that

{

P(s)U
def
= ∂2U

∂y2 + 1−2s
y

∂U
∂y + LU − ∂U

∂t = 0,

U(g, t, 0) = u(g, t).

Since we can think of the differential operator P(s) as a heat operator on the group G×R
2(1−s)
w ×

R
+
t acting on functions U(g,w, t) = U(g, y, t), with y = |w|, its fundamental solution with pole

at the identity is given by

(2.3) q(s)(g, t, y) =
1

(4πt)1−s
e−

y2

4t p(g, e, t),

where we have denote by e ∈ G the identity element. We stress that the function q(s)(g, t, y)
in (2.3) is dramatically different from its geometric counterpart q(s)((z, σ), t, y) in (1.16) above

which is not a product. Hereafter, we indicate with the q(−s)(g, t, y) the function obtained by
changing s into −s in (2.3) (see (2.9) below), and we define

(2.4) e(±s)(g, y)
def
=

∫ ∞

0
q(±s)(g, t, y)dt.

It should be clear to the reader that the function e(s) in (2.4) is the fundamental solution (with

pole at the identity) of the time-independent extension operator ∂2

∂y2
+ 1−2s

y
∂
∂y +L . We have the

following result.

Theorem 2.1 (Non-geometric intertwining). Let G be a Carnot group and s ∈ (0, 1). For any

g ∈ G and y > 0 one has

(2.5) L
s(e(s)(·, y))(g) = (2πy)2se(−s)(g, y).
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Proof. First, we observe that if u is a C∞(G) function which suitably decays at infinity, then the
estimates (2.1) allow to integrate by parts in (2.2) obtaining

(2.6) L
su(g) = −

s

Γ(1− s)

∫ ∞

0

1

τ1+s

∫ τ

0
∂tPtu(g)dtdτ = −

1

Γ(1− s)

∫ ∞

0
t−s∂tPtu(g)dt.

If we apply Pt to u(g) = e(s)(g, y), and we use (2.4), we find

Pte
(s)(g, y) =

∫

G

p(g, g′, t)

∫ ∞

0

1

(4πτ)1−s
e−

y2

4τ p(g′, 0, τ)dτdg′(2.7)

=

∫ ∞

0

1

(4πτ)1−s
e−

y2

4τ

∫

G

p(g, g′, t)p(g′, e, τ)dg′dτ

=

∫ ∞

0

1

(4πτ)1−s
e−

y2

4τ p(g, e, t + τ)dτ,

where in the last equality we have used the Chapman-Kolmogorov equation (semigroup property
for Pt)

p(g, g′′, t+ τ) =

∫

G

p(g, g′, t)p(g′, g′′, τ)dg′ for g′′ ∈ G.

Substituting this formula in (2.6), we find

L
s(e(s)(·, y))(g) = −

(4π)(s−1)

Γ(1− s)

∫ ∞

0

∫ ∞

0

(τ

t

)s
∂t

(

e−
y2

4τ p(g, e, t + τ)

)

dτ

τ
dt.

The change of variable

(2.8) (v, ρ) =
(

t+ τ,
τ

t

)

, or (t, τ) =

(

v

1 + ρ
,

vρ

1 + ρ

)

,

for which dtdτ = v
(1+ρ)2

dvdρ and ∂t = ∂v −
ρ(1+ρ)

v ∂ρ, now gives

L
s(e(s)(·, y))(g) =

−(4π)s−1

Γ(1− s)

∫ ∞

0

∫ ∞

0

ρs−1

1 + ρ

(

∂

∂v
−

ρ(1 + ρ)

v

∂

∂ρ

)(

e
− y2

4v
1+ρ
ρ p(g, 0, v)

)

dvdρ.

Observing that, as a function of v, e−
y2

4v
1+ρ
ρ p(g, 0, v) tends to 0 both as v → 0+ and v → ∞

thanks to (2.1), we deduce that

L
s(e(s)(·, y))(g) =

(4π)s−1

Γ(1− s)

∫ ∞

0

∫ ∞

0

ρs

v

∂

∂ρ

(

e
− y2

4ρv e−
y2

4v p(g, 0, v)

)

dvdρ

=
(4π)s

Γ(1− s)

∫ ∞

0

1

4πv
e−

y2

4v p(g, 0, v)

(∫ ∞

0
ρs

∂

∂ρ

(

e
− y2

4ρv

)

dρ

)

dv

=
(4π)s

Γ(1− s)

∫ ∞

0

1

4πv
e−

y2

4v p(g, 0, v)

(

y2

4v

∫ ∞

0
ρs−1e

− y2

4ρv
dρ

ρ

)

dv.

Finally, keeping in mind that

y2

4v

∫ ∞

0
ρs−1e

− y2

4ρv
dρ

ρ
=

Γ(1− s)

(4v)s
y2s,
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and recalling

(2.9) q(−s)(g, v, y) =
1

(4πv)1+s
e−

y2

4v p(g, e, v),

we reach the desired conclusion (2.5). �

In the Abelian case when G = Rn, the functions e(±s)(g, y) coincide with E(±s)(x, y) in (1.7).
However, we warn the reader that for a general non-Abelian group G the conformal significance
of formulas (1.6) and (1.8) is lost. We close this section by recording that, as an immediate
consequence of Theorem 2.1 and formulas (1.6)-(1.8), we have the following.

Corollary 2.2. In Rn, with n ≥ 2, we have for 0 < s < 1,

(−∆)s
(

(|x|2 + y2)−
n−2s

2

)

=
Γ
(

n
2 + s

)

Γ
(

n
2 − s

) (2y)2s (|x|2 + y2)−
n+2s

2 , x ∈ R
n, y > 0.

Proof. We observe that (2.3) and its counterpart obtained by changing s into −s presently give

(2.10) q(±s)(g, t, y) =
1

(4πt)1∓s
e−

y2

4t
1

(4πt)
n
2

e−
|x|2

4t =
1

(4πt)
n
2
+1∓s

e−
|x|2+y2

4t .

From (2.10) and the definition (2.4) we find

(2.11) e(±s)(g, y)
def
=

∫ ∞

0

1

(4πt)
n
2
+1∓s

e−
|x|2+y2

4t dt =
Γ(n∓2s

2 )

4π
n
2
+1∓s

(|x|2 + y2)−
n∓2s

2 .

Substituting the right-hand side of (2.11) in (2.5) of Theorem 2.1 we reach the desired conclusion.
�

3. Conformal intertwining formula

The objective of this section is to prove Theorem 1.1 following the ideas outlined in Sections 1
and 2. We begin by introducing the relevant geometric framework. Let G be a Carnot group of
step r = 2 with Lie algebra g = V1⊕V2, which we assume endowed with an inner product 〈·, ·〉 and
induced norm |·|. We fix orthonormal basis {e1, ..., em} and {ε1, ..., εk} for V1 and V2 respectively.
Points z ∈ V1 and σ ∈ V2 will be identified with either one of the representations z =

∑m
j=1 zjej ,

σ =
∑k

ℓ=1 σℓεℓ, or also z = (z1, ..., zm), σ = (σ1, ..., σk). Accordingly, whenever convenient we

will identify the point g = exp(z + σ) ∈ G with its logarithmic coordinates (z, σ) ∈ Rm × Rk.
The Kaplan mapping J : V2 → End(V1) is defined by

(3.1) 〈J(σ)z, ζ〉 = 〈[z, ζ], σ〉 = −〈J(σ)ζ, z〉,

for z, ζ ∈ V1 and σ ∈ V2. Clearly, J(σ)⋆ = −J(σ), and one has < J(σ)z, z >= 0. By (3.1) and
the Baker-Campbell-Hausdorff formula, see e.g. p. 12 of [9],

exp(z + σ) exp(ζ + τ) = exp

(

z + ζ + σ + τ +
1

2
[z, ζ]

)

,
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we obtain the non-Abelian multiplication in G

(3.2) g ◦ g′ = (z, σ) ◦ (ζ, τ) =
(

z + ζ, σ + τ +
1

2

k
∑

ℓ=1

< J(εℓ)z, ζ > εℓ
)

.

From (3.2) it is easy to recognise that e = (0, 0) and (z, σ)−1 = (−z,−σ).
Henceforth in this section we assume that G is of Heisenberg type. By this we mean that for

every σ ∈ V2 one has

J(σ)2 = −|σ|2 IV1 .

We now denote by L the horizontal Laplacian associated with the orthonormal basis {e1, . . . , em}
of the horizontal layer V1, see the opening of Section 2.

We consider the extension problem (1.15) above: given a function u ∈ C∞
0 (G × Rt), find a

function U ∈ C∞(G ×Rt × R+
y ) such that

(3.3)

{

P(s)U
def
= ∂2U

∂y2
+ 1−2s

y
∂U
∂y + y2

4 ∆σU + LU − ∂U
∂t = 0, in G× Rt ×R+

y ,

U(g, t, 0) = u(g, t).

For the Heisenberg group Hn the time-independent version of (3.3) was first introduced in the
cited work of Frank et al. [16]. Subsequently, Roncal and Thangavelu considered the time-
dependent problem (3.3) in their cited papers [33, 34]. Our approach is quite different from that
in these works since, as we have mentioned above, these authors do not rely on (3.3) to establish
(1.13), but instead use non-commutative Fourier analysis and group representation theory.

We continue to denote by q(±s)((z, σ), t, y) respectively the fundamental solution of P(s) in-
troduced in (1.16), and the function obtained from it by changing s into −s. We now consider
the kernels in the thin space G× (0,∞) defined by

(3.4) K(±s)((z, σ), t) = (4πt)1∓sq(±s)((z, σ), t, 0).

From (1.16) and the definition (3.4) it is easy to see that the kernels K(±s) have the following
explicit expression

(3.5) K(±s)((z, σ), t) =
2k

(4πt)
m
2
+k

∫

Rk

e−
i
t
〈σ,λ〉

(

|λ|

sinh |λ|

)m
2
+1∓s

e
− |z|2

4t
|λ|

tanh |λ|dλ, 0 < s ≤ 1.

It is worth noting here that if we take s = 1 in (3.5) we obtain the Gaveau-Hulanicki-Cygan heat
kernel in G (we refer the reader to [22] for a recent pde-based derivation of such kernel). With
(3.5) in hands, and by slightly abusing the notation, we define

K(±s)(g, g
′, t) = K(±s)(g

−1 ◦ g′, t) = K(±s)((g
′)−1 ◦ g, t).

With such functions in hands, we next introduce two operators on Lp(G) by the formula

(3.6) P(±s),tu(g) =

∫

G

K(±s)(g, g
′, t)u(g′)dg′.



A HEAT EQUATION APPROACH TO INTERTWINING 11

As for P(s),t, we mention that its raison d’être is in the fact, which is one of the main results in
[21], that the operator

(3.7) I(2s)u(g) =
1

Γ(s)

∫ ∞

0
ts−1P(s),tu(g)dt

provides the inverse of Ls. The relevance of the operator P(−s),t, instead, is underscored by the
following formula which was proved in [34]

(3.8) Lsu(g) = −
s

Γ(1− s)

∫ ∞

0

1

t1+s

[

P(−s),tu(g)− u(g)
]

dt.

This preliminary discussion brings us to the heart of the present section, the proof of Theorem
1.1. Our plan is to proceed as closely as possible to the proof of Theorem 2.1, but we immediately
encounter some difficulties. To explain this point we mention that in the non-geometric setting
of Section 2 there are two aspects that play a crucial role: (i) the same heat kernel p(·, t) occurs
both in the expression (2.6) of L s and in that of the function e(s); (ii) the Chapman-Kolmogorov
identity enters crucially in the final equality of the key identity (2.7). Both facts fail to hold in
the present conformal setting. A third more pervasive complication is represented by the very
different nature of the fundamental solutions q(±s) and q(±s) of the parabolic extension problems
for L s and Ls.

The proof of Theorem 1.1 rests on two preliminary lemmas in which we circumvent the diffi-
culties listed above. In the first one we establish a replacement of the semigroup property for the
group convolution of the different kernels q(−s)(·, t, 0) and q(s)(·, τ, y) which respectively appear
in P(−s),t and e(s)(·, y)). We mention that the case y = 0 of the following lemma was proved in
[21, Lemma 4.2].

Lemma 3.1. Fix s ∈ (0, 1), g ∈ G, t, τ > 0, and y ≥ 0. Then, we have

∫

G

q(−s)((g
′)−1 ◦ g, t, 0)q(s)(g

′, τ, y) dg′ =

∫

Rk

e2πi〈σ,λ〉
(

|λ|

2 sinh 2πτ |λ|

)1−s

×(3.9)

×

(

|λ|

2 sinh 2πt|λ|

)1+s( |λ|

2 sinh 2π(t+ τ)|λ|

)
m
2

e
−π

2
|z|2 |λ|

tanh 2π(t+τ)|λ| e
−π

2
y2 |λ|

tanh 2πτ |λ|dλ.

Proof. To establish (3.9), we fix t, τ > 0, y ≥ 0, and z ∈ Rm. By partial Fourier transform with
respect to the vertical variable σ ∈ Rk, we observe that the desired conclusion (3.9) will be true
if we can prove that for all λ ∈ Rk the following holds

∫

Rk

e−2πi〈σ,λ〉

∫

G

q(−s)((g
′)−1 ◦ g, t, 0)q(s)(g

′, τ, y) dg′dσ =

(

|λ|

2 sinh 2πτ |λ|

)1−s

×(3.10)

×

(

|λ|

2 sinh 2πt|λ|

)1+s( |λ|

2 sinh 2π(t+ τ)|λ|

)m
2

e
−π

2
|z|2 |λ|

tanh 2π(t+τ)|λ| e
−π

2
y2 |λ|

tanh 2πτ |λ| .
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The rest of the proof of the lemma will thus be devoted to establishing (3.10). Recalling the
definition of q(±s) in (1.16), by a simple change of variable we see that

(3.11) q(±s)(g
′, τ, y) =

∫

Rk

e2πi〈σ
′,λ〉

(

|λ|

2 sinh 2πτ |λ|

)
m
2
+1∓s

e
−π

2
(|z′|2+y2)

|λ|
tanh 2πτ |λ|dλ.

From the expression (3.2) of the group law, we also have

q(±s)((g
′)−1 ◦ g, t, 0)(3.12)

=

∫

Rk

e2πi(〈σ−σ′,λ〉+ 1
2
〈J(λ)z,z′〉)

(

|λ|

2 sinh 2πt|λ|

)
m
2
+1∓s

e
−π

2
|z−z′|2 |λ|

tanh 2πt|λ|dλ.

Next, we note that by (3.11), (3.12), and applying twice the Fourier inversion formula, for every
fixed λ ∈ Rk we can rewrite the left-hand side of (3.10) in the following way

∫

Rk

e−2πi〈σ,λ〉

∫

G

q(−s)((g
′)−1 ◦ g, t, 0)q(s)(g

′, τ, y) dg′dσ(3.13)

=

∫

Rk

∫

Rk

∫

Rk

∫

G

e−2πi〈σ,λ〉e2πi〈σ−σ′ ,µ〉eπi〈J(µ)z,z
′〉e2πi〈σ

′,ω〉

(

|µ|

2 sinh 2πt|µ|

)
m
2
+1+s

×

×

(

|ω|

2 sinh 2πτ |ω|

)m
2
+1−s

× e
−π

2
|z−z′|2 |µ|

tanh 2πt|µ| e
−π

2
(|z′|2+y2) |ω|

tanh 2πτ |ω|dg′dωdµdσ

=

(

|λ|

2 sinh 2πt|λ|

)m
2
+1+s ∫

Rk

∫

G

e−2πi〈σ′,λ〉eπi〈J(λ)z,z
′〉e2πi〈σ

′,ω〉

(

|ω|

2 sinh 2πτ |ω|

)m
2
+1−s

×

× e
−π

2
|z−z′|2

|λ|
tanh 2πt|λ| e

−π
2
(|z′|2+y2)

|ω|
tanh 2πτ |ω|dg′dω

=

(

|λ|

2 sinh 2πt|λ|

)
m
2
+1+s( |λ|

2 sinh 2πτ |λ|

)
m
2
+1−s

e
−π

2
y2

|λ|
tanh 2πτ |λ|×

×

∫

Rm

eπi〈J(λ)z,z
′〉e

−π
2
|z−z′|2 |λ|

tanh 2πt|λ| e
−π

2
|z′|2 |λ|

tanh 2πτ |λ|dz′.

We now notice that the last integral is the same appearing in proof of [21, Lemma 4.2]: in
fact, exploiting the properties of the J map (3.1), and elementary manipulations of hyperbolic
functions, in the final equality of formula (4.6) in [21] we showed that

∫

Rm

eπi〈J(λ)z,z
′〉e

−π
2
|z−z′|2 |λ|

tanh 2πt|λ| e
−π

2
|z′|2 |λ|

tanh 2πτ |λ|dz′(3.14)

=

(

|λ|

2 sinh 2π(t+ τ)|λ|

)m
2

e
−π

2
|z|2 |λ|

tanh 2π(t+τ)|λ| .

Inserting (3.14) in (3.13) we obtain the desired conclusion (3.10). This completes the proof of
the lemma.

�

The next lemma is purely technical and its significance will be clear in the subsequent discus-
sion.
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Lemma 3.2. Let 0 < s < 1, B,µ > 0. We have

∫ ∞

0

(

µ

(1 + ρ) sinh ρ
1+ρµ

)2(
sinh ρ

1+ρµ

sinh µ
1+ρ

)s

e
− Bµ

tanh
ρ

1+ρ
µ
dρ(3.15)

= Bs−1

(

µ

sinhµ

)s

Γ(1− s)e
− Bµ

tanhµ .

Proof. If we keep in mind the following identity

1

tanhµ
−

1

tanh ρ
1+ρµ

= −
1

sinhµ

sinh µ
1+ρ

sinh ρ
1+ρµ

,

we have

e
Bµ

tanhµ

∫ ∞

0

(

µ

(1 + ρ) sinh ρ
1+ρµ

)2(
sinh ρ

1+ρµ

sinh µ
1+ρ

)s

e
− Bµ

tanh
ρ

1+ρ
µ dρ

=

∫ ∞

0

(

µ

(1 + ρ) sinh ρ
1+ρµ

)2(
sinh ρ

1+ρµ

sinh µ
1+ρ

)s

e
− Bµ

sinhµ

sinh
µ

1+ρ

sinh
ρ

1+ρ
µdρ.

In the last integral we now make the change of variable ρ → τ = Bµ
sinhµ

sinh µ
1+ρ

sinh ρ
1+ρ

µ
, which yields

dτ = − Bµ2

(1+ρ)2 sinh2 ρ
1+ρ

µ
dρ. We thus have

e
Bµ

tanhµ

∫ ∞

0

(

µ

(1 + ρ) sinh ρ
1+ρµ

)2(
sinh ρ

1+ρµ

sinh µ
1+ρ

)s

e
− Bµ

tanh
ρ

1+ρ
µ
dρ

=
1

B

∫ ∞

0

(

Bµ

τ sinhµ

)s

e−τdτ = Bs−1

(

µ

sinhµ

)s

Γ(1− s).

This proves (3.15).
�

We are now ready to present the proof of the main result in this note.

Proof of Theorem 1.1. For u ∈ C∞(G) and suitably decay at infinity, and g ∈ G, one has

Lsu(g) = −
s

Γ(1− s)

∫ ∞

0
τ−s−1

∫ τ

0

∂

∂t

(

P(−s),tu(g)
)

dtdτ(3.16)

= −
s

Γ(1− s)

∫ ∞

0

∫ ∞

t
τ−s−1 ∂

∂t

(

P(−s),tu(g)
)

dτdt

= −
1

Γ(1− s)

∫ ∞

0
t−s ∂

∂t

(

P(−s),tu(g)
)

dt,

which is the conformal counterpart of (2.6). For y > 0 we want to apply (3.16) with the choice

u(·) = e(s)(·, y).
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By (3.4), (3.6) and (1.17), we have

Ls(e(s)(·, y))(g) = −
1

Γ(1− s)

∫ ∞

0
t−s ∂

∂t

(

P(−s),t(e(s)(·, y))(g)
)

dt

= −
1

Γ(1− s)

∫ ∞

0

∫ ∞

0
t−s ∂

∂t

(∫

G

(4πt)1+sq(−s)((g
′)−1 ◦ g, t, 0)q(s)(g

′, τ, y)dg′
)

dτdt.

In view of Lemma 3.1 we thus infer

Ls(e(s)(·, y))(g)

=
−1

Γ(1− s)

∫ ∞

0

∫ ∞

0

∫

Rk

t−s ∂

∂t

(

(4πt)1+se2πi〈σ,λ〉
(

|λ|

2 sinh 2πτ |λ|

)1−s ( |λ|

2 sinh 2πt|λ|

)1+s

×

×

(

|λ|

2 sinh 2π(t+ τ)|λ|

)
m
2

e
−π

2
|z|2

|λ|
tanh 2π(t+τ)|λ| e

−π
2
y2

|λ|
tanh 2πτ |λ|

)

dλdτdt

= −
(4π)s−1

Γ(1− s)

∫ ∞

0

∫ ∞

0

∫

Rk

e2πi〈σ,λ〉

τ

(τ

t

)s ∂

∂t

(

(

2πτ |λ|

sinh 2πτ |λ|

)1−s ( 2πt|λ|

sinh 2πt|λ|

)1+s

×

×

(

|λ|

2 sinh 2π(t+ τ)|λ|

)
m
2

e
−π

2
|z|2

|λ|
tanh 2π(t+τ)|λ| e

−π
2
y2

|λ|
tanh 2πτ |λ|

)

dλdτdt.

Hence, the same change of variable as in (2.8) leads to the following identity

Ls(e(s)(·, y))(g)(3.17)

=
−(4π)s−1

Γ(1− s)

∫

Rk

∫ ∞

0

∫ ∞

0
e2πi〈σ,λ〉

ρs−1

1 + ρ

(

∂

∂v
−

ρ(1 + ρ)

v

∂

∂ρ

)





(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s

×

×

(

2π v
1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s
(

|λ|

2 sinh 2πv|λ|

)
m
2

e
−π

2
|z|2

|λ|
tanh 2πv|λ| e

−π
2
y2 |λ|

tanh 2π
ρ

1+ρ
v|λ|



 dρdvdλ.

We notice that, for any λ ∈ Rk and ρ > 0, the function
(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s(
|λ|

2 sinh 2πv|λ|

)m
2

e
−π

2
|z|2 |λ|

tanh 2πv|λ| e
−π

2
y2

|λ|

tanh 2π
ρ

1+ρ
v|λ|

converges to 0 both as v → 0+ and v → ∞ (this holds for any z ∈ Rm and y > 0). Inserting this
information in (3.17) we deduce

Ls(e(s)(·, y))(g)

(3.18)

=
(4π)s−1

Γ(1− s)

∫

Rk

∫ ∞

0

∫ ∞

0
e2πi〈σ,λ〉

ρs

v

∂

∂ρ





(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s

×
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×

(

|λ|

2 sinh 2πv|λ|

)
m
2

e
−π

2
|z|2

|λ|
tanh 2πv|λ| e

−π
2
y2 |λ|

tanh 2π
ρ

1+ρ
v|λ|

)

dρdvdλ

=
(4π)s

Γ(1− s)

∫

Rk

∫ ∞

0
e2πi〈σ,λ〉

1

(4πv)
m
2
+1

(

2πv|λ|

sinh 2πv|λ|

)
m
2

e
−π

2
|z|2

|λ|
tanh 2πv|λ|×

×





∫ ∞

0
ρs

∂

∂ρ





(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s

e
−π

2
y2

|λ|

tanh 2π
ρ

1+ρ
v|λ|



 dρ



 dvdλ.

To deal with the integral in the last equality in (3.18), for 0 < s < 1 and µ > 0 we now consider
the function hs,µ : (0,∞) → R defined by

(3.19) hs,µ(ρ) =
µ

sinhµ

(

sinh ρµ
1+ρ

sinh µ
1+ρ

)s [

µ

sinhµ

ρ

(1 + ρ)2

(

sinh ρµ
1+ρ

sinh µ
1+ρ

+ 2coshµ+
sinh µ

1+ρ

sinh ρµ
1+ρ

)

− 1

]

.

This function was introduced in [21, Section 4], and the main motivation behind it is in the
formula

(3.20) h′s,µ(ρ) = ρs
∂

∂ρ





(

ρ
1+ρµ

sinh ρ
1+ρµ

)1−s( µ
1+ρ

sinh µ
1+ρ

)1+s


 ,

see [21, equation (4.19)]. This property was critical in showing that the operator I(2s) in (3.7)
inverts Ls. If in (3.19) we now take µ = 2πv|λ|, we obtain from (3.18)

Ls(e(s)(·, y))(g) =
(4π)s

Γ(1− s)

∫

Rk

∫ ∞

0
e2πi〈σ,λ〉

1

(4πv)
m
2
+1

(

2πv|λ|

sinh 2πv|λ|

)m
2

×(3.21)

×e
−π

2
|z|2

|λ|
tanh 2πv|λ|

∫ ∞

0

(

h′s,2πv|λ|(ρ)e
−π

2
y2 |λ|

tanh 2π
ρ

1+ρ
v|λ|+

+ ρs

(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s
∂

∂ρ

(

e
−π

2
y2 |λ|

tanh 2π
ρ

1+ρ
v|λ|

)



 dρdvdλ,

where in the last identity we have used (3.20). We also observe that from (3.19) we have
hs,µ(ρ) → 0 as ρ → 0 and ρ → ∞ (see [21, (4.18)]). From (3.21) we thus find

Ls(e(s)(·, y))(g)(3.22)

=
(4π)s

Γ(1− s)

∫

Rk

∫ ∞

0
e2πi〈σ,λ〉

1

(4πv)
m
2
+1

(

2πv|λ|

sinh 2πv|λ|

)
m
2

e
−π

2
|z|2

|λ|
tanh 2πv|λ|×

×

∫ ∞

0

∂

∂ρ

(

e
−π

2
y2

|λ|

tanh 2π
ρ

1+ρ
v|λ|

)

×
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×



ρs

(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s

− hs,2πv|λ|(ρ)



 dρdvdλ

=
4sπs+1y2

Γ(1− s)

∫

Rk

∫ ∞

0
e2πi〈σ,λ〉

1

(4πv)
m
2
+2

(

2πv|λ|

sinh 2πv|λ|

)m
2

e
−π

2
|z|2 |λ|

tanh 2πv|λ|×

×

∫ ∞

0
e
−π

2
y2

|λ|

tanh 2π
ρ

1+ρ
v|λ|

(

2πv|λ|

(1 + ρ) sinh 2π ρ
1+ρv|λ|

)2

×

×



ρs

(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s

− hs,2πv|λ|(ρ)



 dρdvdλ.

From the identity

sinh2 2πv|λ| =sinh2 2π
ρ

1 + ρ
v|λ|+ sinh2 2π

v

1 + ρ
|λ|+

+ 2(cosh 2πv|λ|)(sinh 2π
ρ

1 + ρ
v|λ|)(sinh 2π

v

1 + ρ
|λ|)

and the definition (3.19), a straightforward computation shows that

ρs

(

2π ρ
1+ρv|λ|

sinh 2π ρ
1+ρv|λ|

)1−s(
2π v

1+ρ |λ|

sinh 2π v
1+ρ |λ|

)1+s

− hs,2πv|λ|(ρ) =
2πv|λ|

sinh 2πv|λ|

(

sinh 2π ρ
1+ρv|λ|

sinh 2π v
1+ρ |λ|

)s

.

From (3.22) we thus infer

Ls(e(s)(·, y))(g)(3.23)

=
4sπs+1y2

Γ(1− s)

∫ ∞

0

∫

Rk

e2πi〈σ,λ〉
1

(4πv)
m
2
+2

(

2πv|λ|

sinh 2πv|λ|

)m
2
+1

e
−π

2
|z|2

|λ|
tanh 2πv|λ|×

×





∫ ∞

0

(

2πv|λ|

(1 + ρ) sinh 2π ρ
1+ρv|λ|

)2(
sinh 2π ρ

1+ρv|λ|

sinh 2π v
1+ρ |λ|

)s

e
−π

2
y2 |λ|

tanh 2π
ρ

1+ρ
v|λ|

dρ



 dλdv.

For any λ 6= 0 and v > 0 we now apply Lemma 3.2 with the choices µ = 2πv|λ| and B = y2

4v , and
find

∫ ∞

0

(

2πv|λ|

(1 + ρ) sinh 2π ρ
1+ρv|λ|

)2(
sinh 2π ρ

1+ρv|λ|

sinh 2π v
1+ρ |λ|

)s

e
−π

2
y2

|λ|

tanh 2π
ρ

1+ρ
v|λ|dρ(3.24)

=
y2s−2

(4v)s−1

(

2πv|λ|

sinh 2πv|λ|

)s

Γ(1− s)e
−π

2
y2 |λ|

tanh 2πv|λ| .
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Inserting (3.24) in (3.23), we finally obtain

Ls(e(s)(·, y))(g)

= (2π)2sy2s
∫ ∞

0

∫

Rk

e2πi〈σ,λ〉
1

(4πv)
m
2
+1+s

(

2πv|λ|

sinh 2πv|λ|

)m
2
+1+s

e
−π

2
(|z|2+y2) |λ|

tanh 2πv|λ|dλdv

= (2πy)2s
∫ ∞

0
q(−s)((z, σ), v, y)dv = (2πy)2se(−s)((z, σ), y),

which gives the desired conclusion (1.18).
�

Although it should at this point be self-evident, for the sake of completeness we show how
(1.13) can be derived from Theorem 1.1 and Theorem A.

Corollary 3.3. Let G be of Heisenberg type, and let 0 < s < 1. For every (z, σ) ∈ G, and y > 0
one has

Ls

(

((|z|2 + y2)2 + 16|σ|2)−
m+2k−2s

4

)

=
Γ
(

m+2+2s
4

)

Γ
(

m+2k+2s
4

)

Γ
(

m+2−2s
4

)

Γ
(

m+2k−2s
4

)(4y)2s((|z|2 + y2)2 + 16|σ|2)−
m+2k+2s

4 .

Proof. Combining (1.19) and (1.18), we obtain

Ls

(

((|z|2 + y2)2 + 16|σ|2)−
m+2k−2s

4

)

(3.25)

=
(4π)1−s

Γ(s)C(s)(m,k)
Ls

(

e(s)((z, σ), y)
)

=
(4π)1−s(2πy)2s

Γ(s)C(s)(m,k)
e(−s)((z, σ), y)

=
y2s

4s
|Γ(−s)|C(−s)(m,k)

Γ(s)C(s)(m,k)
((|z|2 + y2)2 + 16|σ|2)−

m+2k+2s
4 .

On the other hand, by (1.20) we have

(3.26)
|Γ(−s)|C(−s)(m,k)

Γ(s)C(s)(m,k)
= 43s

Γ
(

m+2+2s
4

)

Γ
(

m+2k+2s
4

)

Γ
(

m+2−2s
4

)

Γ
(

m+2k−2s
4

) .

Substituting (3.26) in (3.25) we reach the sought for conclusion.
�

In closing, we observe that it is clear from Corollary 3.3 that, for any y > 0, the function

(3.27) uy(z, σ) =

(

Γ
(

m+2+2s
4

)

Γ
(

m+2k+2s
4

)

Γ
(

m+2−2s
4

)

Γ
(

m+2k−2s
4

)

)
m+2k−2s

4s (

16y2

(|z|2 + y2)2 + 16|σ|2

)
m+2k−2s

4

satisfies Lsuy = u
m+2k+2s
m+2k−2s
y . It is worth emphasising here that Corollary 3.3 is stable under the

convergence of s ր 1. In particular, we recover from (3.27) the functions that, in the local case
s = 1, were found in [26] in the Heisenberg group Hn, see also [17, Theor. 1.1] and [18] for partial
results in groups of Heisenberg type.
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