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In this work we prove that the one-body position operator for periodic systems that we have
recently proposed [Phys. Rev. B 99, 205144] is unique modulo a phase factor and an additive
constant. The proof uses several general physical constraints that a periodic one-body position
operator should satisfy. We show that these constraints are sufficient to uniquely define a position
operator that is compatible with periodic boundary conditions.

The position of a particle is a fundamental concept
in physics. In classical mechanics the position is a vec-
tor whose components are the Cartesian coordinates
of the particle, while in quantum mechanics the posi-
tion is an operator whose action is the multiplication
by the coordinates of the particle. However, these def-
initions implicitly assume that we work within open
boundary conditions (OBC). Instead, many systems,
in particular crystalline solids, are more efficiently de-
scribed within periodic boundary conditions (PBC).
In fact, the use of PBC is a crucial tool for the treat-
ment of crystals and periodic systems in general. Un-
fortunately, the above definitions are not compatible
with PBC since they do not yield a unique definition
of the position.

Some solutions have been proposed in the litera-
ture. Zak proposed to define the position operator in
terms of a sine function [1]. However, this proposi-
tion yields a distance function that depends on the
choice of the origin of the coordinate system, and this
is unphysical. It has been shown that discontinuous
position functions, such as the sawtooth function, are
also problematic. For example, they cannot be used
to extract the electronic response of periodic chains to
a uniform external field [2]. Finally, Resta proposed
an expression for the expectation value of the total
position operator that is compatible with PBC [3].
Besides the fact that it is not a definition of the posi-
tion operator itself, the expression involves an explicit
many-body operator, and therefore, becomes unprac-
tical in studies of systems with many electrons.

Recently, we have proposed a periodic position qL
that is compatible with PBC [4]. In one dimension it
is given by

qL(x) =
L

2πi

[

exp

(

2πi

L
x

)

− 1

]

(1)

where L is the period. We then demonstrated that
qL(x) as defined above complies with several impor-
tant constraints that should be satisfied by a periodic
position. We have successfully applied this position
and the corresponding distance function in the calcu-
lation of Madelung constants in ionic crystals [5, 6],
in the calculation of ground state energies of Wigner
crystals [7] and Wigner molecules [8, 9], as well as

the localization tensors and polarizabilities of peri-
odic chains [4, 10]. Recently it has also been used
in the calculation of the localization tensor of one-
dimensional mosaic lattices [11].
In this work we will make an important further step

and prove that, given the known constraints for the
position operator within PBC, Eq. (1) is the only defi-
nition that satisfies these constraints. In other words,
we proof the uniqueness of the periodic position in
Eq. (1). We thus solve a longstanding problem of
defining a position operator that is consistent with
PBC. For the sake of clarity we will focus here on
the one-dimensional (1D) case. The generalization
to many-dimensional systems is straightforward, pro-
vided the different dimensions are along mutually or-
thogonal axes.
Our strategy for the definition of a classical periodic

position, and then to move to a quantum (possibly
many-body) context, mimics the strategy in the case
or ordinary OBC. It is based on the following steps:

1. Define a classical periodic position suitable for
the treatment of periodic systems.

2. Define a quantum position operator as in the
non-periodic case, i.e., a multiplicative opera-
tor, whose action is the multiplication by the
classical periodic position.

3. In the case of a many-body system, the total
many-body operator is obtained by adding the
individual one-body periodic positions of all the
particles of the system.

In the 1D case a periodic system is isomorphic to a
circle. Let us consider therefore the periodic interval
[0, L], where L is the length of the period, and let x
be the coordinate of a point belonging to this inter-
val, i.e, x ∈ [0, L]. Let us call the (possibly complex)
function qL(x) the periodic position associated the co-
ordinate x. Because of periodicity x is defined modulo
the length L. We impose the following four general
and physically motivated conditions on the periodic
position qL(x):

1. The periodic position qL(x) is invariant with re-
spect to translations equal to the length L. In
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other words, qL(x) is a periodic function with
period L, i.e.,

qL(x+ L) = qL(x) ∀x. (2)

2. The periodic position qL(x) is a simple peri-
odic function, i.e., there is a one-to-one corre-
spondence between x and qL(x). This condi-
tion guarantees that L is the smallest period of
qL(x), i.e.,

x 6= 0 (mod 2π) ⇒ qL(x) 6= qL(0). (3)

3. The distance between two arbitrary points x
and x + d is the modulus of the difference
between the corresponding periodic positions,
qL(x) and qL(x+ d), i.e.,

|qL(x + d)− qL(x)| = |qL(d)− qL(0)|. (4)

This condition ensures that the distance be-
tween qL(x) and qL(x + d) is a function of d
alone, independent of x.

4. In the limit of very large values of L, and for a
fixed value of d, we must obtain the OBC dis-
tance between the two points, i.e.,

lim
L→∞

|qL(d)− qL(0)|
2 = d2. (5)

This implies that, in the limit of an infinite sys-
tem, we must recover locally the non-periodic
OBC distance.

In the following we will show that the above four con-
straints on qL(x) are sufficient to uniquely define the
periodic position given in Eq. (1).

Condition 1 implies that we can express qL(x) as a
Fourier series of period L according to

qL(x) =

∞
∑

k=−∞

ak exp

(

i2πkx

L

)

, (6)

where ak are complex coefficients. We note that the
functions exp(i2πkx/L) for different values of the in-
teger k are orthogonal and, therefore, linearly inde-
pendent, on the interval [0, L]. This fact will play a
crucial role in the following.

In order to impose Condition 3 we first compute the
square modulus of the difference DL(x, d) ≡ qL(x +
d) − qL(x) using Eq. (6). We obtain

|DL(x̄, d̄)|
2=

∞
∑

k,l=−∞

a∗kale
i(l−k)x̄

[

e−ikd̄ − 1
] [

eild̄ − 1
]

,

(7)
in which we defined the scaled quantities x̄ = 2πx/L
and d̄ = 2πd/L and where a∗k is the complex conjugate
of ak. If the square modulus of D(x̄, d) is independent
of x̄, its derivative with respect to x̄ must be identi-
cally zero. Therefore, we can impose Condition 2 with

the following relation,

∂

∂x̄
|D(x̄, d̄)|2=

∞
∑

k,l=−∞

ia∗kal(l − k)ei(l−k)x̄

×
[

e−ikd̄ − 1
] [

eild̄ − 1
]

= 0. (8)

We now make two changes of variable, r = l + k and
s = l−k, which imply l = (r+s)/2 and k = (r−s)/2.
We note that r and s are either both even or both odd,
i.e., r ≡ s(mod 2). The above equation can thus be
rewritten as

∞
∑

s=−∞

∞
∑

r=−∞
r≡s(mod2)

isa∗(r−s)/2a(r+s)/2e
isx̄

×
[

e−i(r−s)d̄/2 − 1
] [

ei(r+s)d̄/2 − 1
]

= 0. (9)

We now write the above equation according to

∞
∑

s=−∞

isAs(d̄) e
isx̄ = 0, (10)

where we have defined the functions As(d̄) as

As(d̄) =
∞
∑

r=−∞
r≡s(mod2)

a∗(r−s)/2 a(r+s)/2 (11)

×
[

e−i(r−s)d̄/2 − 1
] [

ei(r+s)d̄/2 − 1
]

. (12)

The functions exp(isx̄) are linearly independent on
[0, 2π].Therefore, Eq. (10) implies

As(d̄) = 0 ∀s 6= 0, (13)

while, because of the prefactor s on the right-hand
side of Eq. (9), no condition is imposed on A0(d̄). Let
us, therefore, first consider the case s 6= 0. We have

As(d̄) =

∞
∑

r=−∞
r≡s(mod2)

a∗(r−s)/2a(r+s)/2

×
[

1 + eisd̄ − e−
i(r−s)d̄

2 − e−
i(r+s)d̄

2

]

= 0 ∀s 6= 0.

(14)

The coefficients As(d̄) are identically zero if either r−
s = 0 or r + s = 0. This implies that the coefficient
a0 is arbitrary, regardless of the values of all the other
coefficients in the sum. This point will be discussed
in more detail later.

The four terms within square brackets in Eq. (14)
are of the form eijd, where j is an integer given by 0,
s, (r− s)/2, and (r+ s)/2, respectively. By collecting
the terms corresponding to a given value of j, Eq. (14)
can be recast as

As(d̄) =
∞
∑

j=−∞

Bs,je
ijd̄ = 0 ∀s 6= 0, (15)
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where we have defined

Bs,0 = Bs,s =
∞
∑

r=−∞
r≡s(mod2)

a∗(r−s)/2a(r+s)/2 − a∗0as − a∗−sa0

=

∞
∑

r=−∞
r 6=s,−s

r≡s(mod2)

a∗(r−s)/2a(r+s)/2 (16)

and

Bs,j = −a∗−j a−j+s − a∗j−s aj for j 6= 0, s. (17)

Since the functions eijd̄ are linearly independent on
[0, 2π], the only way to satisfy Eq. (15) is to have

Bs,j = 0 ∀s 6= 0 and ∀j. (18)

We will now prove that, besides a0, the Fourier se-
ries of qL(x) contains a single non-zero coefficient aj .
This is the main result of the present work, that has
deep implications on the possible form of the periodic
position qL(x). In order to prove this fact we consider
the case j 6= 0 and j 6= s and we assume that ak̄ 6= 0
for some specific k̄ 6= 0. We will then proceed in two
steps:

1. We first consider the case s = 2k̄ (k̄ 6= 0). From
Eqs. (17) and (18) we then obtain

B2k̄,k̄ = −2a∗
−k̄ak̄ = 0 (19)

Since we assumed that ak̄ 6= 0, we must have
that a−k̄ = 0.

2. We then consider the case s = k̄ − l̄ (k̄ 6= l̄).
From Eqs. (17) and (18) we then obtain

Bk̄−l̄,k̄ = −a∗
−k̄a−l̄ − a∗l̄ ak̄ = 0. (20)

The first term on the right-hand side of Eq. (20)
is zero, since a−k̄ is zero because of point 1.
Then, since we assumed ak̄ 6= 0, we must have
that al̄ = 0.

This completes the proof. Only a single exponential
function eikx̄ can appear in Fourier series of qL(x)
given in Eq. (6). Moreover, Condition 2 (simple pe-
riodicity) implies that this unique non-zero term will
be associated either to k = 1 or to k = −1. Without
loss of generality, we will use k = 1 in the following.
In summary, we have shown that the only functions
qL(x) that satisfy Conditions 1, 2 and 3 are

qL(x) = a1 exp

(

2πi

L
x

)

+ a0 (21)

where a0 and a1 are complex numbers. We note that
this implies that qL(x) is C

∞.

We will now take into account Condition 4 to de-
termine the coefficient a1. The square distance corre-

sponding to the position in Eq. (21) is given by

d212 = |qL(x1)− qL(x2)|
2 (22)

= 4|a1|
2 sin2

(

π(x1 − x2)

L

)

. (23)

A Taylor expansion up to first order of the above ex-
pression gives, for L ≫ |x1 − x2|,

d212 = 4|a1|
2

(

π2(x1 − x2)
2

L2

)

. (24)

Condition 4 imposes that, in the limit |x1−x2|/L → 0,
we must have d212 = (x1 − x2)

2. We conclude that
a1 = L

2π e
iφ with φ ∈ R. Therefore we have

qL(x) = eiφ
L

2π
exp

(

2πi

L
x

)

+ a0. (25)

We thus obtain

d212 =
L2

π2
sin2

(

π(x1 − x2)

L

)

(26)

for the square distance which is purely real and inde-
pendent of a0 and φ.

No physical constraint can be used to fix the value
of a0, which is a gauge parameter related to the choice
for the origin of the coordinate system in the periodic
system. Therefore, for the sake of simplicity both C
and φ could be set to zero which would yield

qL(x) =
L

2π
exp

(

2πi

L
x

)

. (27)

An advantage of this expression is that it is charac-
terized by a constant modulus, i.e., |qL(x)| = L

2π .
Therefore, all points are equivalent. It was used, for
example, in Ref. [10]. Alternatively, we can impose
a stronger condition than that given in Eq. (5). In-
stead of imposing a constraint on the distance we can
impose a similar constraint on the position according
to

lim
L→∞

qL(x) = x. (28)

In other words this constraint guarantees that (for
a fixed value of x) when L → ∞ the periodic po-
sition tends to the non-periodic position. A Taylor
expansion around x/L = 0 up to first order on the
right-hand side of Eq. (25) yields

qL(x) = a0 + eiφ
[

L

2π
+ ix

]

+O
( x

L

)2

(29)

Applying the constraint in Eq. (28) then yields a0 =
−eiφ L

2π and eiφ = −i. With this additional constraint
the periodic position is thus given by

qL(x) =
L

2πi

[

exp

(

2πi

L
x

)

− 1

]

. (30)

The two expressions given in Eqs. (27) and (30), as
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well as the general expression in Eq. (25) all have in
common the complex dependence on x. Therefore, a
periodic position that fulfills conditions 1-4 is intrin-
sically complex. Although this could seem surprising,
one can argue that what one can really measure are
distances and not absolute positions, and as shown in
Eq. (26) the distances corresponding to the complex
position operator are purely real.

Finally, we note that the function qL(x) should in-
duce a metric on a space subject to PBC. In other
words, we require that, if we define the distance d12
between x1 and x2 as d12 ≡ |qL(x1) − qL(x2)|, then
d12 should satisfy the three fundamental axioms of
the distance in a metric space. Since the restriction
of a metric space to an arbitrary subset is still a met-
ric space, the function qL(x) indeed induces a proper
distance. More specifically, we can see that the ex-
pression of the square distance between two points in
Eq. (26) is nothing but the Euclidean square distance
between the points P1 and P2 , whose coordinates

are given by Pi =
(

L
2π cos(2πxj/L) ,

L
2π sin(2πxj/L)

)

,

with j = 1, 2. Indeed, it is easy to show that
|P1 − P2| = d12 . Therefore d12 is the restriction
of the usual Euclidean distance on R

2 to a circle of
radius R = L/(2π), and whose points P1 and P2 are
identified by the arc lengths x1 and x2 .

The above proof in one dimension can be easily gen-
eralized to two and three dimensions, by applying the
four conditions we imposed on the one-dimensional
periodic position to each Cartesian component. For
instance, the periodic position in three dimensions is
given by

qLx,Ly,Lz
(~r) =

1

2πi













Lx[exp
(

2πi
Lx

x
)

− 1]

Ly[exp
(

2πi
Ly

y
)

− 1]

Lz[exp
(

2πi
Lz

z
)

− 1].













(31)

In the supplemental material we prove that the posi-
tion defined in the above equation induces a metric,
i.e., an acceptable distance between two points.

In conclusion, we have proven that, except for a
phase factor and a constant, there exists a unique po-
sition and corresponding one-body position operator
that is compatible with periodic boundary conditions.
This position operator, is inherently complex but the
corresponding distance is purely real, as it should be.

The proof relies on the periodicity of the position and
on the application of several physical constraints on
the distance. Finally, we showed that with an addi-
tional constraint on the position itself we can also fix
the phase factor and the constant. As mentioned be-
fore, our position operator has already been shown to
be very useful to calculate various properties of pe-
riodic systems, such as Madelung constants, localiza-
tion tensors, polarizabilities, etc. Any observable of
a periodic system that can be related to the position
operator could be calculated with our approach.
F. A. S. would like to thank L’Oreal UNESCO

“For Women in Science 2018” for partially support-
ing this work. We also thank Prof. Richard E.
Schwartz for very helpful discussions and sugges-
tions. J. A. B. thanks the French Agence Nationale
de la Recherche (ANR) for financial support (Grant
Agreement ANR-19-CE30-0011). This work was par-
tially supported by the “Programme Investissements
d’Avenir” under the program ANR-11-IDEX- 0002-
02, reference ANR-10-LABX-0037-NEXT.

∗ stefano.evangelisti@irsamc.ups-tlse.fr
† arjan.berger@irsamc.ups-tlse.fr

[1] J. Zak, Phys. Rev. Lett. 85, 1138 (2000).
[2] B. Kirtman, M. Ferrero, M. Rérat, and M. Spring-
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Theorem .1. Suppose that (X, dX) and (Y, dY ) are metric spaces. Define the function dXY : (X × Y )×

(X × Y ) → R by dXY (〈x1, y1〉 , 〈x2, y2〉) =

√

dX (x1, x2)
2
+ dY (y1, y2)

2
. Then dXY is a metric on X×Y

Proof. Firstly, dXY (〈x1, y1〉 , 〈x2, y2〉) ≥ 0 for all 〈x1, y1〉 and 〈x2, y2〉 because a square root is always
non-negative. We now show that dXY satisfies the three conditions of a metric space.
Condition 1 Let

dXY (〈x1, y1〉 , 〈x2, y2〉) =

√

dX (x1, x2)
2
+ dY (y1, y2)

2
= 0

this is true if and only if dX (x1, x2) = 0 and dY (y1, y2) = 0, which is in turn true if and only if
x1 = x2 and y1 = y2 because dX and dY are metrics. More over , x1 = x2 and y1 = y2 if and only if
〈x1, y1〉 = 〈x2, y2〉 .
Condition 2, By using the symmetry of (X, dX) and (Y, dY ) we have

dXY (〈x1, y1〉 , 〈x2, y2〉) =

√

dX (x1, x2)
2
+ dY (y1, y2)

2
=

√

dX (x2, x1)
2
+ dY (y2, y1)

2

= dXY (〈x2, y2〉 , 〈x1, y1〉)

Condition 3, let 〈x1, y1〉 , 〈x2, y2〉 and 〈x3, y3〉 be elements of X×Y . From the triangle inequality for
dX , we know that dX (x1, x3) ≤ dX (x1, x2) + dX (x2, x3) . Squaring both sides, we get

dX (x1, x3)
2
≤ (dX (x1, x2) + dX (x2, x3))

2

= dX (x1, x2)
2
+ 2dX (x1, x2) dX (x2, x3) + dX (x2, x3)

2

≤ dX (x1, x2)
2
+ dX (x2, x3)

2

From the triangle inequality for dY , we know that dY (y1, y3) ≤ dY (y1, y2) + dY (y2, y3) . Squaring
both sides, we get

dY (y1, y3)
2
≤ (dY (y1, y2) + dY (y2, y3))

2

= dY (y1, y2)
2
+ 2dY (y1, y2) dY (y2, y3) + dY (y2, y3)

2

≤ dY (y1, y2)
2
+ dY (y2, y3)

2

Adding these two inequalities gives

dXY (〈x1, y1〉 , 〈x3, y3〉)
2

= dX (x1, x3)
2 + dY (y1, y3)

2

≤
(

dX (x1, x2)
2
+ dX (x2, x3)

2
)

+

(

(

dY (y1, y2)
2
+ dY (y2, y3)

)2
)

=
(

dX (x1, x2)
2 + dY (y1, y2)

2
)

+
(

dX (x2, x3)
2 + dY (y2, y3)

2
)

≤ dX (x1, x2)
2
+ dY (y1, y2)

2
+ dX (x2, x3)

2
+ dY (y2, y3)

2

= dXY (〈x1, y1〉 , 〈x2, y2〉)
2
+ dXY (〈x2, y2〉 , 〈x3, y3〉)

2

by taking the square root and applying the fact that

∀a, b ≥ 0,
√

a2 + b2 ≤ a+ b

we have

dXY (〈x1, y1〉 , 〈x3, y3〉) ≤

√

dXY (〈x1, y1〉 , 〈x2, y2〉)
2 + dXY (〈x2, y2〉 , 〈x3, y3〉)

2

≤ dXY (〈x1, y1〉 , 〈x2, y2〉) + dXY (〈x2, y2〉 , 〈x3, y3〉)
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