ON THE SHARP HARDY INEQUALITY
IN SOBOLEV-SLOBODECKII SPACES

FRANCESCA BIANCHI, LORENZO BRASCO, AND ANNA CHIARA ZAGATI

ABSTRACT. We study the sharp constant in the Hardy inequality for fractional Sobolev spaces
defined on open subsets of the Euclidean space. We first list some properties of such a constant,
as well as of the associated variational problem.

We then restrict the discussion to open convex sets and compute such a sharp constant, by
constructing suitable supersolutions by means of the distance function. Such a method of proof
works only for sp > 1 or for Q being a half-space. We exhibit a simple example suggesting that
this method can not work for sp < 1 and €2 different from a half-space.

The case sp < 1 for a generic convex set is left as an interesting open problem, except in the
Hilbertian setting (i.e. for p = 2): in this case we can compute the sharp constant in the whole
range 0 < s < 1. This completes a result which was left open in the literature.
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1. INTRODUCTION

1.1. Background. Functional inequalities of Hardy—type are certainly among the most studied
ones in the theory of Sobolev spaces. The prototypical example is as follows: for an open bounded
set Q C RY having Lipschitz boundary and every 1 < p < oo, there exists a constant C' =
C(N,p, Q) > 0 such that

|Z’|’ / |VulP da, for every u € C3°(Q).
Q

Here by dn we mean the distance function from the boundary, defined by

do(x) = ;rel(la% |z —yl, for every z € Q.

We refer for example to the classical monograph [44, Theorem 21.3] for such a result, as well as to
the original paper [43] by Jindfich Necas.

The boundedness and regularity assumptions on €2 are placed here just for ease of presentation:
actually, the range of validity of such an inequality is much more general. For example, a well-known
instance corresponds to the choice Q@ = R™ \ {0}: in this case, the distance function is simply given
by

dr~y 10y () = |2, for every z # 0,
and we have the well-known inequality for p # N (see [41, Chapter 1, Section 1.3.1])
N — p
(1.1) ‘p‘ / Jul® de < / |Vul|P de, for every u € C5° (RN \ {0}).
D wy |l RN

The constant in (1.1) is sharp, but never attained on the natural Sobolev space attached to this
inequality: this is the homogeneous Sobolev space Dé’p(RN \ {0}), defined as the completion of
Cs° (RN \ {0}) with respect to the norm

o = Vol Lr@ny-

In general, it is a very interesting problem to find necessary and/or sufficient conditions assuring
that an open set admits a Hardy inequality: we refer for example to [1, 15, 24, 30, 34, 35, 36] and
[47] for some classical results in this direction. Even more interesting is the problem of determining
the best constant in such an inequality, provided it holds true. Here we think it is mandatory to
cite the two papers [38] and [39] which contain very interesting results of general character, on the
problem of determining the sharp Hardy constant. The latter is defined by

. |ul?
Q) = f p : —dr =1 1 .
hp(£2) uGério(Q) {/ |Vul|P dx / & dx , <p< oo

For a better comprehension of the contents of the present paper, it is particularly useful to recall the
result of [38, Theorem 11]: this shows that for every  C RY open convez set and every 1 < p < oo,
we have

00(9) = by 08%) = (221,

p

see also [40, Theorem 1]. Here we use the symbol

1.2 H! = (0,400 and HY = RY¥=! x (0, +00), for N > 2.
+ +
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1.2. Goal of the paper. In this paper, we want to tackle the same kind of problem in the setting
of Sobolev-Slobodeckii fractional spaces, that recently have attracted much attention (see [17] for a
friendly introduction to the subject). More precisely, for 1 < p < oo and 0 < s < 1 we define the
following nonlocal quantity

u(y)l” ’
» drd , f >(Q),
[u]wsp Ny = (//RNXRN oy |N+gp T dy or every u € C3°(£2)

usually called Gagliardo seminorm or also Gagliardo-Slobodeckii seminorm. Then we study the
sharp constant in the fractional (s, p)—Hardy inequality

(1.3) C / |u| [u]?y.. (RN for every u € C§°(Q).
Such a sharp constant is obviously defined by the following variational problem

p
op(Q) = inf P : u,|d1}.
95(%) ueé%m){[u]w“’(m /Qdé” )

Observe that both integral quantities appearing in (1.3) have the same scaling, thus it is easily seen
that b, ,(2) can not depend on the size of Q, i.e. in other words we have

Bop(1 Q) = by (52), for every p > 0.

We first recall that the fractional counterpart of (1.1) has been obtained in [28, Theorem 1.1] by
Rupert Frank and Robert Seiringer, who found the sharp constant for the punctured space R\ {0}.

In the case of convex sets, in [8, Theorem 1.1] the second author and Eleonora Cinti proved that
inequality (1.3) holds for every © C RY, every 1 < p < oo and 0 < s < 1. Moreover, the same
result comes with an explicit lower bound on hs ,(2): we have

_¢
s(1—s)
for some computable constant C = C(N,p) > 0. The dependence on the fractional parameter s in
the previous lower bound is optimal, as explained in [8, Remark 1.2]. The proof of (1.4) is based on

the following fact: on a convex set, the power s of the distance function is weakly superharmonic,
in a suitable sense, that is

(1.4) < bs,p(€),

(—A,)%dg > 0, in Q.

Here (—A,)® is the fractional p— Laplacian of order s, formally defined for 1 <p < coand 0 < s <1
by

Suu(m) — u(@) — u(y) P~ (u(x) — u(y))
(—A,)°u(z) =2P.V. - o — gV Fer dy,

see Section 2 for the precise definition. Such an operator naturally comes into play, since its weak
form is precisely the first variation of the Gagliardo-Slobodeckii seminorm raised to the power p.

The primary goal of the present paper was to improve (1.4), by computing the sharp constant
hs,p () in the case of convex sets. As we will explain below, we partially succeeded in our goal. We
first notice that for:

e p=20<s<1and Q=HY;

e p=21/2<s<1and Q< RY any open convex set;
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such a constant has been computed in [4, Theorem 1.1] and [25, Theorem 5], respectively. Some
comments are in order on these results: actually, the statement of [4, Theorem 1.1] is concerned
with the sharp constant in the “regional” fractional (s,2)—Hardy inequality, i. e.

Jul?

c
y 2%

dx < [u3y.. 2(EY) for every u € C5°(HY),

where for 1 < p < 00, 0 < s < 1 and every open set £ C R we used the notation

bilw (29 = (//EE x_yNijf d”“"dyf'

Observe that this Gagliardo-Slobodeckii seminorm is computed on the smaller set F x E, rather
than on the whole RY x R¥ as in our case. Then the authors of [4] remark that our constant
bs,2(HY) can be obtained from this “regional” constant, see' [4, formula (1.5)] or (1.11) below.

Regarding [25, Theorem 2.2], this has been obtained by appealing to the so-called Caffarelli-
Silvestre extension formula (see [14]). Such a tool is quite specific of the Hilbertian setting p = 2
and it permits to transform the nonlocal variational problem of determining b, o into a weighted
local variational problem, with one extra variable. However, this tool is not available for p # 2 and
thus a different proof is needed.

By expanding the ideas of [4], we will use that a crucial role in the determination of b, ,(€) is
played by positive weak (super)solutions of the equation
up 1

(1.5) (—A,)°u = dép , in Q.
This can be regarded as the Euler-Lagrange equation of the variational problem connected with
hs,p (). More precisely, we will use the following fact

(1.6) Bs,p(€2) = sup {/\ >0 : equation (1.5) admits a positive local weak supersolution}7

see the companion paper [2, Theorem 1.1]. Such a characterization holds true for every open set
Q ¢ RY. Formula (1.6) permits us to refine the method of proof used in [8] and to give more precise
estimates, by constructing suitable supersolutions in the case of convex sets. These will be

sp—1

(1.7) do?

extended by 0 outside 2. This method is the extension to p # 2 and to general convex sets of the
one employed by Krzysztof Bogdan and Bartlomiej Dyda in the aforementioned paper [4].

Remark 1.1 (“Regional” Hardy’s inequalities). For ease of completeness, we recall that there
exists a huge literature on the “regional” fractional Hardy inequality, i.e.

(1.8) c/ [ul”

It would be impossible to list all the contributions, but we like to single out [20], which eventually
became a landmark and contains many references on this subject. Other recent interesting papers
on this problem are [18, 22, 23, 46]. All these references are related to the problem of finding
necessary /sufficient conditions on €, p and s for (1.8) to hold.

[u] .. () for every u € C3°(£2).

11t should be noticed that such a formula contains a small typo: the “regional” term C(u,u) should be replaced
by the “global” one K(u,w), in the notation of [4].
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The problem of determining the sharp constant in (1.8) has been addressed, apart for the ref-
erences [4, 27], by Michael Loss and Craig Sloane in [37, Theorem 1.2], still in the case of convex
sets. The further restriction sp > 1 is needed, since on bounded Lipschitz sets (1.8) can not hold
for sp <1 (see [20, Section 2]).

Concerning this restriction, we conclude this remark with a problem which is still open to the
best of our knowledge. For sp < 1 and

0= {(;v’,xN) ERVIXR : zy > f(x’)},

with f: R¥~! — R a convex Lipschitz function, it is known that (1.8) holds true, see [20, Theorem
1.1, case (T3)]. However the sharp constant is not known in this case, even in the case when € is
a convex cone (not coinciding with a half-space).

Remark 1.2 (Bregman-Sobolev forms). For ease of completeness, we point out that the problem
of the sharp constant for fractional Hardy—type inequalities has been recently tackled also for the
so-called Bregman-Sobolev form

o (u(@) = u(y)) (Jp(u(z)) = Jy(u(y)))
Epalu) = //an de dy,

‘.’E _ y|N+2s

in place of the Gagliardo-Slobodeckii seminorm. Here 1 < p < 00, 0 < s < 1 and
Jp(t) == |tP~2t, for every t € R.

See for example [6, Theorems 1 and 2] for the case of the punctured space RV \ {0} and [33, Theorem
2] for the case of convex sets. Though the methods of proof are similar to those of the aforementioned
references, the results are not directly comparable, due to the different form of the energy £, o. We
refer to [5, Section 6] for some comments on the comparison between Bregman-Sobolev forms and
Gagliardo-Slobodeckii seminorms.

1.3. Main results: convex sets. We need at first to settle some notation. For every 1 < p < oo
and 0 < s < 1, we define

sp—1 p

1 ‘]_—t P 2
1. Ag =2 ——dt+ —.
) I =

As we will see below, this constant will coincide with b, ,(H. ). For every k € N and a > 0, we set

k+24+a

+oo
I(k;a):/ th (14" = dt.
0

By indicating with wy, the volume of the k—dimensional open ball of radius 1, we define?
(N—-1)wn_1Z(N —2;sp), for N>2,

(1.10) CNnspi=
1, for N =1.

We can now state our main result concerning the determination of b, , for convex sets.

Main Theorem. Let N > 1 and 1 < p < oo, then we have:

2For N > 2, such a constant could be explicitly computed in terms of the Gamma function, see for example
the proof of [27, Lemma 2.4]. An alternative expression for this constant can be found in Lemma B.1 below. For
our purposes, the explicit expression is not very important and we prefer not to appeal to it. Observe that Cn sp
depends on s and p only through their product sp.
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(1) forevery0<s<1
hs,p(Hﬁ) = CN,sp Mo ps
(2) for every 1/p < s <1 and every Q@ C RN open convexr set
bsp(2) = bsm(Hi\-’);
(3) for p=2, for every 0 < s < 1 and every Q C RY open conver set
bs,2(Q) = hs72(H~1X>‘
In each case, the constant b, is not attained.

The previous result is obtained by combining Theorems 6.2, 6.3 and 6.6 below. We first notice
that point (1) could be obtained by using [27, Theorem 1.1] for the “regional” case and then
observing that

2Cn |u|P
1.11 p = p _4781)/ d f > HN
(1.11) ey = v = 0 f g e foreveyw € G,

as in [4]. However, we prefer to give a direct proof of this fact: this is consistent with a detailed
analysis of the supersolution method, taken in the present paper. This analysis should (hopefully)
lead to a better comprehension of the problem. We also think that such an analysis gives some
interesting byproducts. Actually, we show in this paper that:

e if O C RY is an open convex set, the function dg (extended by 0 outside ) is always a
local positive weak supersolution of the equation (1.5) for some A = A(f), provided that

the exponent (3 is such that
s
0 S 6 < 7p17

see part (1) of Theorem 5.2;

e when ) is a half-space, the last range can be enlarged to
1 sp
— < B< ==,
p—1 v p—1
i.e. we can even admit negative powers, see part (2) of Theorem 5.2;

o the coefficient A = A(8) appearing in (1.5) is maximal for the choice

sp—1
B = ;
p
provided this is compatible with the previous restrictions, see Remark 5.3. This neatly
explains why (1.7) is the optimal choice, provided this is feasible. This generalizes the

observation made in the proof of [4, Theorem 1], for p = 2 and 2 = Hf ;

e moreover, in a very simple situation (i.e.  being an interval, p = 2 and s = 1/2), we
show that the restriction 5 > 0 is unavoidable for this method to work. Indeed, we show
in this case that, as soon as § < 0, the function dé is no more a supersolution of (1.5)
for any A > 0. Actually, such a function is not even superharmonic in the fractional sense
(see Appendix A). Observe that in such a case, the function dé is actually convex on € and
non-smooth in correspondence of the maximum point of dg. These two facts can be held
responsible for this undesired behaviour of dg.
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We point out that this phenomenon does not occur in the case of half-spaces, since in
this case the distance function is always smooth;

e the previous points clarify why for the range s < 1/p the optimal choice (1.7) should not
be feasible, for convex sets not coinciding with half-spaces. In turn, this suggests that this
method for constructing optimal supersolutions of (1.5) is doomed to fail in this regime,
unless 2 is a half-space;

e finally, the Hilbertian case p = 2 is peculiar: in this case we can exploit the existence of a
fractional analog of the Kelvin transform (see [7, 45]) to “transplant” the supersolution dﬁl
i

from the half-line Hi to any bounded interval. This permits to determine the sharp Hardy
constant for an interval, without restrictions on s. Once we have this, we can use a “Fubini-
type argument along directions” as in [37] (a method which goes back to [16]) and obtain
the value of b o, for any convex set. This in particular covers the case 0 < s < 1/2, which
was left open in [25, Theorem 5|. Moreover, with respect to [25], we can obtain sharpness
of the constant without any additional condition on the set, apart for its convexity.

Then we leave the following interesting

Open problem. For N > 1, p € (1,00) \ {2}, 0 < s < 1/p and @ C R" an open convex set
different from a half-space, compute the sharp constant b, ,(£2). Actually, in this regime, with our
proof we obtain that (see Remark 6.4)

2
CN,sp 5 < hs,p(Q) < hS,P(H—I&Y)'

One could bravely guess that we should still have

bs,p(Q) = bs,p(Hf)a

for sp < 1 and p # 2. However, very recently the first and third authors, in collaboration with
Giorgio Stefani, have shown that this already fails in dimension N = 1. Namely, in [3] they showed
that there exists pg < 2 such that

hsp(I) < hs’p(H}r), for sp<land 1 <p < po,
where I = (0,1) C R.

1.4. Technical aspects of the proofs. We want to make here some comments about our proofs.
We also make some comparisons with similar results already existing in the literature.

At first, we notice that in the Main Theorem we also state that the sharp constant hs,(Q) is
not attained. Our proof of this result is based on the following general fact (see Proposition 3.5):
whenever an open set @ C RV has the following two properties:

(a) 1/do & L' ();

(b) there exists a local positive weak supersolution u of (1.5) with

sp—1

A =Ds,(82) and u~dg?

then b, ,(€2) is not attained. Since property (a) is always true for a convex set, while (b) comes for
free from our construction of the supersolution (recall the explanation of the previous subsection),
we get immediately that b, ,(£2) is not attained for a convex set. This reasoning has been inspired
to us by [39, Theorem 1.1].
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When computing the operator (—A,)* for a function of the form ¢ ~ t# defined on the half-line
(see Lemma 4.3), we found it useful to use a trick taken from [12, Appendix A], for tackling the
singular integral in principal value sense. This trick has the advantage of giving rise to homogeneous
quantities and thus convergence issues are quite easy to handle.

When proving sharpness of the Hardy constant found for the half-line ]HI}‘_ (see the proof of
Theorem 6.2), we use some trial functions which are slightly different from those employed in
[4, 27, 28]. Essentially, we simply approximate the “virtual” extremal z(*?~1/P by adding a small
€ to the exponent and then letting € go to 0. A further truncation at infinity is needed. This
approach has the advantage of clarifying some Sobolev properties of power functions (see Lemma
4.1), which are probably known, but not so easy to find in the literature. Moreover, it permits to
treat the case sp > 1 and sp < 1 at the same time.

1.5. Plan of the paper. We fix the main notation and the functional analytic setting in Section
2. There we also present some inequalities and some particular trial functions that will be needed
in the sequel. In Section 3 we prove some general properties of b ,(£2), as well as of the variational
problem naturally associated with it, for general open sets. Starting from Section 4, we restrict
the discussion to the case of convex sets: in this section we consider the one-dimensional case and
construct suitable supersolutions of (1.5). This is then extended to higher dimensions in Section 5.
Finally, Section 6 contains the proof of the Main Theorem.

Last but not least, Appendix A contains the computation of the fractional p—Laplacian of a
negative power of the distance, in the simple case p =2, s =1/2 and 2 = (0,1) C R.
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2. PRELIMINARIES

2.1. Notation. For every 1 < p < oo, we indicate by J, : R — R the monotone increasing
continuous function defined by

Jp(t) = |tP~2¢, for every t € R.
For 2o € RN and R > 0, we will set
Bpg(zg) = {x eRYN : |z — x| < R},

and wy := |Bi(0)|. For an open set Q C RV we denote by

do(z) = yrrelbrg) |z —yl, for every z € (Q,
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the distance function frori the boundary. For two open sets ' C Q C RY, we will write ' € Q to
indicate that the closure O/ is a compact set contained in Q. Finally, for a measurable set £ C RV,
we will indicate by 1g the characteristic function of such a set.

2.2. Functional analytic setting. For 1 < p < co and 0 < s < 1, we consider the fractional
Sobolev space

WoP(RN) = {u € LP(RY) : [ulyor@n) < +oo},

[u]ws.pmyy = // uly )|pdxdy E.
RN xRN |33—1/|N+Sp

This is a reflexive Banach space, when endowed with the natural norm

where

llullwsr@yy = [Jull Lo@yy + [u]wsr@yy-

For an open set  C RY, we indicate by Wg’p(ﬁ) the closure of C§°(92) in W*P(RY). By the
Hahn-Banach Theorem, this is a weakly closed subspace of W*P(RY), as well.
Occasionally, for an open set Q C RY, we will need the fractional Sobolev space defined by

WeP(Q) = {u € LP(Q) : [ulwsr) < —l—oo},

[u] )|pdacd ’
e QxQ |9C— |N+Sp V) -

We will denote by W2P(€) the space of functions u € L, () such that u € W*P(Q') for every
Q CQ.
For 0 < 8 < 0o, we also denote by pr(]RN ) the following weighted Lebesgue space

where

u(z)|?
L RNy ={ue Ll (R / EUIC) S
sp( ) { loc( ) RN (1_|_ |x|)N+sp
We observe that this is a Banach space for 8 > 1, when endowed with the natural norm.
For 1 <p<ooand 0 < s<1,in a open set 2 C RY we want to consider the equation

ulP~2u
dyf 7

(2.1) (—Ap)u=A in Q,
where A > 0. The symbol (—A,)° stands for the fractional p—Laplacian of order s, defined in weak
form by the first variation of the convex functional

1

I; [u]gvs‘p(RN) :

Definition 2.1. We say that w € WP () N L, H(RY) is a

loc

(N d

e local weak supersolution of (2.1) if

// Jo(ulz) —u(v) (@) = o) 40 /WI”W@(MC
RN xRN |

|z —y|[NHer ()*P

for every non-negative ¢ € W*P(RY) with compact support in €;
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o local weak subsolution of (2.1) if

/ / Ip(u(@) — u(y)) (p(z) — () , dy < Ju(@) P2 u(x)
RN xRN -

|z —y|N+sp o da(z)sP

o() dz,

for every non-negative ¢ € W*?(R¥") with compact support in €;

e local weak solution of (2.1) if it is both a local weak supersolution and a local weak subso-
lution.

Remark 2.2. It is not difficult to see that under the assumptions taken on u and the test function
, the previous definition is well-posed, i.e.

Jp(u(z) —u xT)—
(o) w9 () = 000) ¢ 1 ),

The following simple result will be useful: its proof is simply based on standard properties of
convolutions and it is thus omitted (see for example [26, Lemma 11]). This shows in particular that
in Definition 2.1 we can simply take ¢ € C§°(Q2), considered to be 0 on the complement RY \ Q.

Lemma 2.3. Let 1 <p < oo and 0 < s < 1. Let Q C RY be an open set. If o € WP(RYN) has
compact support in Q, then we have ¢ € Wi (Q).

2.3. Pointwise inequalities. We recall the following discrete version of Picone’s inequality, taken
from [9, Proposition 4.2] (see also [28, Lemma 2.6]). We explicitly state the equality cases.

Lemma 2.4 (Discrete Picone’s inequality). Let 1 < p < oo, for every a,b > 0 and ¢,d > 0 we have

c? dr
Jp(a—b) (aP—l - bP—1> <le—dfP.
Moreover, equality holds if and only if
c d
i

Proof. We first observe that if ¢ = 0, the inequality is equivalent to

J,(b— a) < dv.

bp—1 —
If we also have d = 0, then this is trivially true. If d > 0, then this is equivalent to
1 . p—2 a
Jpb—a) g <1 thatis 1-7 (175)31.
Since a and b are both positive, it is easily seen that the last inequality is true, actually with the
strict inequality sign.
We then suppose ¢ # 0: we first observe that the left-hand side can be rewritten as

(1) (mf: _ bf:) —J, (1 - Z) (cpdp (Z):—1> )
=en(-0) (-(2) ).

thanks to the homogeneity of J,. If we introduce the shortcut notation

1,‘:é and A:g,
a c

’ a
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we then get that the claimed inequality is equivalent to
AP
Jp(l—1) (11517—1) <|1—- AP, for every t >0, A> 0.
It is not difficult to see that the function
AP
o(t) = Jp(1—1t) <1 - t1’1> ;

is monotone increasing for ¢ < A and monotone decreasing for ¢ > A. The choice t = A thus
corresponds to the unique maximum point, for which we have

D(t) <P(A) =11 — AJP.
This concludes the proof. O
The following simple inequality will be useful somewhere in Section 4.
Lemma 2.5. Let 8 # 0, then we have
I1—7% <8 maX{Tﬁfl, 1}(1—-7), for every T € (0,1),
and

1
I1-77 <18 max{TB,T} (r—1), for every T > 1.

Proof. We start with the case 8 > 0. By basic Calculus, we have for 7 € (0,1)
L-rfl=1-7" =5 (1 —7),

for some 7 < ¢ < 1. We observe that the quantity & — B&°~! is increasing for 3 > 1 and decreasing
for 0 < B < 1. This gives the desired conclusion.
The case 8 < 0 is treated similarly. We have this time for 7 € (0,1)

=7l =77 —1=8 (=) = (=8 (1 =),

for some 7 < £ < 1. By using that £~ < 7871, we get the conclusion, here as well.
Finally, for 7 > 1 it is sufficient to write
-B
1
T

and then use the previous inequality, with —f in place of 5 and 1/7 in place of 7. O

- =

2.4. Some trial functions. The next result is a sort of interpolation—type inequality, for smooth
functions. It is useful in order to prove some Leibniz—type formulas in fractional Sobolev spaces.

Lemma 2.6. Let 1 < p < oo and 0 < s < 1, then for every p € C}(RY) we have

|90(‘T) — @(y”p c sp (1-s)p
o /RN o gvrer WS sy Vel @y lolle @),

for some C = C(N,p) > 0.
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Proof. We pick 6 > 0, then for x € RY we split the integral in two parts
) — P ) — P ) — P
/ o (2) ]si(r@i)\ dy = / |p(2) Jfg)l dy + / o () ]svaiys)l dy
Ry |z —y|VHEP Bs(x) |z —y|Ntsp RN\Bj(x) T —y|NTeP

< IVl |
Bs(

5

) | — y[P 79N dy

T N "
RN\ Bs(z)
P P
_ Nwy ||V‘P||Lao(RN) 5 (1-9) Lop ||‘P||Loo(RN) s—r )
P 1—s S
By optimizing in § > 0, we get the desired result. ([l

Lemma 2.7. Let 1 <p < oo and 0 < s < 1. Let Q CRY be an open set, then for every n € C(2)
and u € W2P(Q), the function nu is compactly supported in Q and belongs to WSP(RN). In

loc
particular, we have

nu e WgP().

Proof. We consider both 1 and u to be extended by 0 to RV \ Q. In light of Lemma 2.3, we only
need to show that nu € W*P(RY). We take Q" € Q' € Q such that the support of 7 is contained
in Q”. Then we may write

[ () u(z)/?
[ ulgy.. = [ ulfyer o +2// —————dx dy
Ws:p(RN) Wep(Q) @\ [T — y[NTsP

|7 (x) u(x)|P
= ulfyeniq +2// ——————dzdy,
Pe) Q7 x (RN \Q) |z — y[NFsp

where we used that 1 vanishes outside £2”. For the first term, by using Minkowksi’s inequality and
Lemma 2.6, we can estimate it from above by means of the following Leibniz—type rule

+ ( o In(y)[” ([)de) dy)p

S

c o\ . B
< () e IVl ey IS + ey il < .

For the second term, we have

[ () u(z)|” dy
2// 7d$dy§2 npoo ua:)p ——— | dx
Qs RN\ Q) |£TJ _ y|N+sp || ||L (RN) o | ( | RN\Q/ |’JI . y|N+Sp

dy
<2(n|l¥ / u(x)|? / —— | dx
Ilzee ey m' @ <]RN\B3(1') |z —y|[Ntsp

u(z)|? de < 4o0,
v T [ (o) do <+

where we set 0 = dist(Q2”,09Q") > 0. O
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The following technical result will be used in order to verify the sharpness of our Hardy’s in-
equality on the half-line H} = (0, +00).

Lemma 2.8. Let 1 <p < oo and 0 < s < 1. For M > 0, we take u € W*P((0, M)) and extend it
by 0 outside (0, M). We also suppose that there exist C > 0 and 8 > (sp —1)/p such that

lu(z)| < Oz, for a.e. x € (0, M).
Then for every n € C§°((—oo, M)), we have
un e WoP(HL).

Moreover, the following estimates hold

L[ el g, 200

(2.2) [unl%s,pm) < [“n]ng((o,M)) + o )7 x sp HU’HIﬁm(R) ||U||Izp((o,M)),

and
1

C E S —S
(2.3) [unlwero,m) < 1llLoe @) [ulwer(o,ar)) + (5(1_5)> l[ull 2o (0,0 17 1700 Ry 171l oy o
for some C = C(p) >0

Proof. We start by observing that WOS P(HZ) can be identified with the space of functions in W*»(R)
which vanish almost everywhere in (—oo, 0], thanks to [26, Theorem 6]. By construction, it is then
sufficient to prove that nu € W*P(R).

It is easy to see that un € LP(R), hence let us focus on proving that un has a finite W*? semi-
norm. By construction, this function vanishes almost everywhere outside (0, M). We decompose
the seminorm as follows

T Ju(z) ()P
[UU]I;VW( ) [UU]W”((O M))+2/ /OO |.Z‘—y|1+5p dyd +2/ / |x_y‘1+s‘p d d$

M Ju@) n(=)|? 2 (M u@) (@)l
[UU]WSP((OM)) sp/o |J,‘|9pdx+8p/ Wdft

In order to estimate the first term on the right-hand side, we proceed similarly as in the proof of
Lemma 2.7, so to get

M M _ P
[unlwer(o,n) < VO u(z)|” (/0 Wdy> dw]
v ) — ()P '
/0 In(y) (/O |x_y|1+spdﬂf> dy}

C P /s 1—s
< (sass) elroan 195 e, + Il o [edwesoany

=

+

In the last inequality, we applied again Lemma 2.6. As for the other terms, we observe that

[ ety
0 |z[5P ’

is finite, thanks to the growth assumption on u. Finally, by using that n € C§°((—o0, M)), we have
u(@) () = [u(@)[” In(z) = n(M)P < (17|} g [u(@)|P (M —2)", for a.e. z € (0, M),
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so that we can infer

M M
|u(x) n(z)| — ' /
—_— < MP—SP p P .
/o (M — z)» dr < (Al =®) J, |u(z)|P dz < 400

This completes the proof. O

Lemma 2.9 (Fractional hidden convexity). Let 1 < p < oo and 0 < s < 1. Let Q C RY be an
open set, for every two non-negative functions u,v € Wy*(Q), we set

1
1 1 B
O'_<2Up+2?)p) .

Then o € VIN/S’p(Q) and there holds

1 1
(24) [O—]II:‘/S‘p(RN) S 5 [U]I[Z{/S‘IJ(RN) + 5 [v]gvs,p(]RN)'

Moreover, if equality holds in (2.4) and u,v are both positive almost everywhere in ), then there
exists a constant C' such that

u=Cw, a.e. i Q.
Proof. The proof of (2.4) and the identification of equality cases are contained in [29, Lemma 4.1

& Theorem 4.2]. We just show here that o belongs to the relevant fractional Sobolev space, a fact
that seems to have been overlooked in the literature. We first notice that

1 1
/\U|pdx:f/updx+f/vpdx<+oo,
Q 2 Jo 2 Ja

and by (2.4) we have in particular
[olwss@y) < +oo.

This shows that o € W*P(RY). We now consider {uy, }nen, {vn tnen C C5°(£2) two sequences which
converge respectively to u and v in W*P?(R™). Since u and v are positive, without loss of generality
we can take u,, and v, to be non-negative. Moreover, up to pass to a subsequence, we can suppose
to have almost everywhere convergence.

We set
1 1\ 1 1\"\* 1
On = <2 (Un+n> +§ (Un+n> ) - ﬁ, for every n € N\{O}a

and observe that {0, }neny € CF(Q2) C WO‘S "P(Q). Moreover, o, converges to o almost everywhere,
as n goes to co. We claim that
(2.5) lim [|o, —ol|ra) = 0.

n—oo

Indeed, thanks to Fatou’s Lemma, it holds that

liminf/ \Un\pde/ lo|? dx.
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Conversely, we observe that?

1 1 P
on < <2 ufl—&-Qvﬁ) , for every n € N\ {0}.

By raising to the power p and taking the limit, we get

1 1
limsup [ |op|P dz < limsup [ /ufbdx—l—/vfbdx} :/ lo|P da.
2 Jo 2 Jao Q

n—00 Q n— oo
These facts entail that we have convergence of the LP norms. By joining this with the almost
everywhere convergence, we get (2.5) from the so-called Brézis-Lieb Lemma (see [13, Theorem 1]).
We also observe that [0 ]y s»®~) is bounded. Indeed, we can apply the convexity inequality
(2.4) as follows

[o]? {U Jrl]p <1[u +1]p +1{v +1}p
WED T ey T2 LT nlwes@yy 2 LT nlwes@n
1

9 [Un]gys,p(RN) + 9 [Un]:svs,p(RN)a
and observe that the last terms are uniformly bounded, by construction. The uniform bound on
llonllwer@yy and the reflexivity of the space WP(RN) entail that o, weakly converges, up to

subsequences, to a function in /W/(f P(€)), the latter being a weakly closed subspace of W*P?(RM).
By the uniqueness of the limit, such a function must coincide with o, which then belongs to
WP (Q). |

3. THE SHARP FRACTIONAL HARDY CONSTANT

Let 1 < p <ooand 0 < s < 1. For an open set @ C RY, we define its sharp fractional
(s,p)—Hardy constant, i.e.

P
sp(§2):= inf L : M de=1,.
h ,p( ) uEé‘%o(Q) {[U]Wb,p(]RN) o d;}p X
It is not difficult to see that
3.1 Hs.p(2) = bsp(EQ+ xg), for every t > 0, xg € Q.
P P
Remark 3.1. By definition of the space WOS (Q), one has the following equivalent definition
: |uf?
(3-2) e (62) = ueWHSl’fp(Q) {[U]IV)VS’F(RN’ /A
0

Indeed, the fact that the infimum over Wg P(£2) is less than or equal to b, , () simply follows from
the fact that we enlarged the class of admissible functions.
To prove the converse inequality, we first observe that if h, ,(€2) = 0 then there is nothing to

prove. If on the contrary b ,(£2) > 0, then for every u € ngp(Q) \ {0} we know that there exists

3This follows by noticing that the function
1
1 1 »
h(e) = (5 (a+e)? + > b+ E)p) —e¢e, forevery a,b>0,

is monotone decreasing with respect to € > 0, thus h(e) < h(0).



16 BIANCHI, BRASCO, AND ZAGATI

a sequence {uy, fneny C C§°(Q) converging to u in W*P(RM). Without loss of generality, we can
assume that u,, converges almost everywhere to u, as well. We then have

p T p .. [t | |u|P
[ullysm @y = nh_{TOlo[Un]Ws,p(RN) > bsp(Q) lgr_l)lgf 0 &7 dr = b, () o &7 dz,

where we used Hardy’s inequality in the first inequality and Fatou’s Lemma in the second one.

Lemma 3.2. Let 1 < p < 00, 0 < s <1 and let @ C RN be an open set. If b;,(Q) admits a

non-trivial minimizer u € WSP(Q), then this has constant sign in Q and u # 0 almost everywhere
in Q. Moreover, the minimizer is unique, up to the choice of the sign and it is a weak solution of
(2.1), with A = b, ().

Proof. Let us suppose that (3.2) admits a minimizer u € W; (Q), in particular this implies that
hs,p(2) > 0. We observe that

‘|a\—|b|’ < |a — b, for every a,b € R,
and the inequality is strict, whenever a b < 0. This yields
000 < [Jul]ly gy < 8y = Do),
and thus it must result
u(z)u(y) >0, for a.e. (z,y) € RY x RV,

This shows that u has constant sign almost everywhere in 2. Without loss of generality, we can
suppose that u is non-negative.
We then observe that u must be a minimizer of the following functional

bsp(2) [ lo]?
p Jody

Flp) == [@]@VW(RN) — dz, for every ¢ € Wg’p(Q),

p
as well. Indeed, by definition of b ,(€2), we have F(¢) > 0 for every admissible function and
F(u) = 0. Moreover, u is non-trivial, due to the normalization on the weighted LP norm.

By minimality, we get that w must be a non-trivial non-negative weak solution of the Euler-
Lagrange equation, which is given by (2.1) with A = b, (). By the minimum principle (see [9,
Theorem A.1]), we directly obtain that v > 0 almost everywhere in €, if the latter is connected. If
Q) has more than one connected component, the same conclusion can be drawn by proceeding as in
[10, Proposition 2.6], thanks to the nonlocality of the operator.

We now show the uniqueness for the positive minimizer of b, ,(€2). For this, it is sufficient to

exploit Lemma 2.9. Let us take u,v € WOSP(Q) two positive minimizers of h, ,(£2) and set

1
1 1 P
o= <2 uP =+ 5 ’Up) s
Thanks to (2.4), we get that o € WP(€) is still a minimizer for b ,(€2). Thus (2.4) holds as an
identity. By Lemma 2.9, this means that there exists a constant C such that

u=Cu, a.e. in Q.

Finally, the normalization on the weighted norm implies that C' = 1. This concludes the proof. [



SHARP HARDY’S INEQUALITY IN SOBOLEV-SLOBODECKII SPACES 17

Remark 3.3. In the local case, the uniqueness of an extremal for b, , (provided it exists) can be
found for example in [39, Proposition 3.2]. Differently from [39], here we found useful to rely on a
hidden convexity argument, rather than on Picone’s inequality.

Definition 3.4. Let Q C RY be an open set. We say that 09 is locally continuous at xo € OQ if
there exist:

e an open N —dimensional hyper-rectangle Qs s, centered at the origin, defined by

Qso.5: = (—00,60)" 1 x (=61,61), with &g, 61 > 0;

e a linear isometry O : RN — RY such that O(zg) = 0;
e a continuous function ¥ : (—dg, 5)V "1 — (=01, 61);
such that
Qonis 10(@) = {z = (¢',0n) € Qoo+ V(@) <aw <01},
and
Qs,.5, NO(OQ) = {:L' = (2',zN) € Qsp6, : TN = \I/(x’)}
Roughly speaking, this means that 0S) coincides with the graph of a continuous function, in a small

rectangular neighborhood of xg.

Proposition 3.5. Let 1 < p < 00, 0 < s < 1 and let @ C RN be an open set, which is locally
continuous at a point xg € 0. Let us suppose that there exists a positive local weak supersolution
u of (2.1) with A = b, ,(Q), such that

1 sp—1
3.3 u>—=do” mn Q.
C Q

Then the infimum b, ,(2) is not attained.
Proof. We first show that for such a set, we have
(3.4) 1/dg € L' ().
At this aim, we can assume without loss of generality that
xo = (0,...,0) and O =1d,
so that
Qsy.5, NQ = {x = (2',2N) € Qsp5, : V(7)) <2y < 51}.
We then observe that (see Figure 1)
do(z) < lzy — ¥(2))| = (xn — ¥(2")), for every z = (2',2n) € Qs,.6, N Q.
This implies that

1 1 % 1 ,
—dx > —dz > 7/de dx’.
a do Qsg.5,n02 A2 (=80,80)V -1 \Jw(ar) TN — ¥(2')

By observing that the last integral is diverging, we get (3.4).

We now argue by contradiction and suppose that v € Wg P(£2) is a minimizer for by ,(€2). This
in particular implies that b, ,(€2) > 0. By Lemma 3.2, we can suppose that v is positive. We then
take a sequence {vy, }nen € C§°(2) approximating v in W5P(RY). Without loss of generality, we
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FIGURE 1. For (2/,x ) around a continuity point for the boundary, the “vertical”
distance xy — ¥(z’) (in bold dashed line) is always larger than its distance from
the boundary.

can take each v, to be non-negative and suppose that they converge to v almost everywhere, as
well. We then insert in the weak formulation of the equation for u the test function

P
n

up—1’

Lp =
which is admissible thanks to Lemma 2.7 and (3.3). This leads to

(35 //RNX]RN Jp(xU(—xg)Az_vfs(g)) (;&()xp)—pl - ;&()i) 1) dx dy > bsp(Q2) / % dz.

Q Y0

We now set

R(vm, ) i= [0 (@) — n (@) [P — Jy(ulz) — u(y)) <”"(9”)_p _ aly)? )

a1y

and observe that by Lemma 2.4 this is always a non-negative quantity. With the previous notation,
from equation (3.5) we get

(Vn, u)
e () / deol dx-l—//RNXRN |z — |N+€p dzdy < [U"]W”’(RN)

We now pass to the limit in the previous estimate and use Fatou’s Lemma on the second term on
the left-hand side: this yields

_R(w,u)
bs.p(€2) / g dx""//RNxRN Iz _y|N+sp da dy < [vjy.p @y

By recalling that v solves (3.2), the previous inequality gives

u)
//]RNXJRN |x*y|N+5pd wdy =0.
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Since by Lemma 2.4 we have R(v,u) > 0 almost everywhere, this in turn implies that

0="R(v,u) = |v(z) —v(y)[”
v(x)” v(y)?
— Jp(u(z) — uly)) (u(z)l’—l T awt) for a.e. (z,y) € 2 x Q.
By using the equality cases in the discrete Picone inequality, it follows that there exists a constant
C > 0 such that

u=Cw, a.e. in Q.
This fact and the assumption (3.3) imply in particular that

1 sp—1
v > ° dg? in Q,
possibly for a different constant C' > 0. By minimality of v, it follows
[o” . hs,
“+00 > [ }Ws PRN) = hs,p(Q) dsp L
This finally gives a contradiction with (3.4). O

4. CONSTRUCTION OF SUPERSOLUTIONS IN DIMENSION 1

4.1. The half-line. In what follows, for ¢ > 0 we use the notation

t
(41) ]€<t) = (1+€7<1+€)t) 5 f0r0<5<< 1.
We still use the notation H}r = (0, +00). Let 8 € R, we set
Us(t) :=t, for t € HY,

and extend it by 0 to the complement of H}r' In particular, in the borderline case 8 = 0, this has
to be intended as the characteristic function of Hi_.
The next result collects some properties of Ug which will be useful in the sequel.

Lemma 4.1. Let 1 <p < oo and 0 < s < 1. For every 3 € R we have Ug € W;,F(HL.). Moreover,
Us has the following further properties:

o for
-1
P <p,
p
we have Ug € W*P((0,M)), for every M > 0;
o for
1 sp
p— <p< o1

we have Ug € L2 1(R).

Proof. We observe that Ug is locally Lipschitz on H}r, for every 8 € R. This easily implies that
Up € Wy (HL).

Let us now suppose that 8> (sp—1)/p. From the fact that Uz € W;>P(HL,), we get that for every
0 < e < M we have

|Us(t) — Us(y)|”
/ / |t— IEer dt dy < +o0.
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We show that this is uniformly bounded with respect to . For § > s this is straightforward, it is
sufficient to use that Ug is either f—Holder continuous (for s < 8 < 1) or even Lipschitz continuous
(for f > 1) on [0, M].

We thus assume (sp — 1)/p < 8 < s. By using the definition of Ug, Fubini’s Theorem and the
change of variable y = 7t, we get

M M M
1Us(t) = Us(y)|” / /t [1— 7P Bp—s
dtdy = ——d tPPTSP gt
/ / |t —y[tFep L . ormer @
M 1
‘1_7—6|P Bp—
4.2 = —d tPPTIP
2 / (/ e 7
M M
t |1_7-5‘p Bp—
- d tPPTIP (¢,
-/ (/ (R

1 1

1 — 7Blp 1— B|p

/ﬂd@/ kil Y
Z 0

e |1 —7|ttsp |1 —7|itsp

We now observe that

For second integral, we observe that
|1 —7PP 1

~ for 7 — +o00
|1 —7|+sp  pltsp=Bp’ +oo,

and the last function is integrable on [1,+00), for f < s. Thus we get

M

T ‘1_7—,3|p g < Foo |1_7—/3‘p J
T A T

This discussion entails that
M _ _
Us( MBp—sp+l _ Bp—sp+l
/ / 1Us(t) = Us)? dtdy<0/ 1r=spgp — ¢ ° ,
It* y|ttep Bp—sp+1
and the last quantity is bounded as e goes to 0, thanks to the fact that § > (sp — 1)/p. We thus

proved the claimed property of Ug, for (sp—1)/p < 8 < s.
We still miss the borderline case § = s. From (4.2), we can infer

M M M 1 M M
|Us(t)—U9(y)|p / / |1—7'S|p / /t |1_7.s‘p
—_— < S L I E .
/s /E it — y[i+sp dtdy < i : ‘1_T|1+Spd7 dt + : . |1_T|1+Spd7' dt

The first integral on the right-hand side is uniformly bounded in €, but now we have to pay attention
to the fact that

M s
. |1 —75P
lim 1
t—ot J; |1 —7|ltsP
We can proceed as follows: we write

dr = +o0.

M M |1 — 75 i = 1 — T3P M 3 |1 —75|P
———dr | dt = ———dr | dt ———dr | dt
/8 </ 1= rfrrer @ / / 1= rrrer @ +/ / 1= rreer &

and observe that for 0 < ¢t < M/2, we have

M M

e - M 11— 7s|p S A S
dt < d ——dr | dt
L ) s /|1—T|1+9p STV =ty
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and, at last

M M

i & |1 S‘P 2 & 2 M
/ / T gr) dt < 21+5P/ / TPsTl=sP e | dt = 21+5P/ log ( — | dt.
5 2 |1 - 7—|1+sp 5 2 5 2t

The last integral is uniformly bounded, as € goes to 0. This finally proves that Us € W*P((0, M)).
Finally, we observe that

Us e LIMR) < Bp—1)>-1,

loc

and
Ut +oo 4B (p-1)
/R(1_|_|t|)1+spdt/0 Wdt<+oo A —-1<pB(p-1) <sp.
This concludes the proof. O

Remark 4.2. For later reference, we observe that in the previous proof for

sp—1

< fB<s,
we proved the following upper bound
1 _ B too _ B Bp—sp+l
1 p 1 p M
[U[—}]%/s,p((o M)) S (/ %dT—'—/ | Tl+| dT) .
’ o [L—r|tter 1 =gt ) Bp—sp+1
By making the change of variable 7 = 1/¢ in the second integral, this can also be rewritten as
MBp—sp+l1

1 _ Bp
p [1—77] sp—Bp—1 -
(43) [UIB]WS,p((O’M)) < (/0 |1_7-|1+sp (1+T ) dr ﬂp—sp—i—l.

In the next result, we compute the fractional p—Laplacian of order s for Ug. This generalizes
[32, Lemma 3.1] to the case 8 # s.

Proposition 4.3. Let 1 <p < oo and 0 < s < 1. For every

1 sp

IS

the function Ug is a local weak solution of (2.1) in HY, with
1

Jp(1 —t9) 1B (o 2
14 A=a@B) =2 [ el (1 A ) gy =
(14) ® =2 [ 2 o
Moreover, if we define the family of functions on H}r by

Jp(Us(t) — Us(y))
(4.5) F.(t)=2 / P dy, for0<e <1,

: R\I. (t) [t —y|ttsr
where I.(t) is defined by (4.1), we get that this converges to
Ug(t)P~*
Rty = ) P

uniformly on compact subsets of H}‘_, as € goes to 0.
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F1GURE 2. The set O, is the conical region “centered” around the line y = ¢.

Proof. Let us take ¢ € C§° (]H[}r), we observe that by the Dominated Convergence Theorem we have

// T (Us(t) = UsW) () = W) s 4o — Jin // Tp(Us(t) = UsW)) (p()) = W) 1,
RxR (RxR)\O ?

[t —yl|ttor 0t [t —y|ttor

where
. t t
05:{(t,y)€RXRmln{]ﬂ,(1+5)t}SygmaX{l—'—g7(1+€)t}},

see Figure 2. For every 0 < € < 1, by proceeding as in [8, Lemma 2.3], we have

Jp(Us(t) — Us(y)) 1
|t — y[Ter o(t) € L'((RxR)\ Oc).

Thus we can use Fubini’s Theorem and a change of variable, to write

Jp(Us(t) = Up(y)) ((t) = ¢(y)) [ Jp(Us(t) — Us(y))
//(]RXR)\OE [t —y[tter drdy =2 /0 </R\Ia(t) [t —y[tter dy) p(t) di.

Observe that we used that ¢ is compactly supported on H}F. By recalling the definition (4.5), up
to now we have obtained

» [ U000 00— 0y, iy [ )ittt

[t —y|tter e=0" JR

for every ¢ € C’(‘)’O(H}F). We now manipulate this quantity, for a fixed 0 < £ < 1: by recalling that
Up identically vanishes in (—o0, 0], for ¢ > 0 we have

R\I. (¢) [t —y[tTePp

J (8 — 4B 0 4B(-1
HL\L (t) [t —y[ttsp o [t =y s
The second integral can be directly computed: this gives

/0 8 (p—1) 1 Ug(t)P—1
o =y sy ey

)
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where we used the definition of Ug(t). For the first integral in the definition of F., by performing
the change of variable y = 7¢, we obtain

/ Jp(tﬁ —yP) dy— 8 (p—1) /ulrs Jp(1 — 78) J 8 (p—1) /+<>O Jp(1— ) p
H 0

LG |t — y|Ttsp Y= f5p 1 —7[+sp T tsp e [L—7[Fsp

p—1 = _ B +o0 _ B
_ Us(®) =) [T =)
P o [1—r7|ttsp 14e |1 —T[ttsP

again thanks to the definition of Ug. Thus we have obtained

Ug(t)r~t
(4.7) F.(t) = X\ (B) '8557)1), for every t € H}, 0 <e < 1,
where
™= J,(1—18) too (1 - 78) 2
A(B) =2 P L dr+2 P i —.
=2 [T e Rt

By inserting this in (4.6), we have

as [ DO ) gy () /RUﬁ(t)pl o) it

[t —y|tTsP 0+ tsp

To conclude the proof, we only need to show that for A(8) defined by (4.4), we have

1
AB) = 6l_igl+ A:(B), for every — =) <pB< ps—pl'
We first observe that the case § = 0 is simple: in this case we have
J,(tP —1) =0, for t € (0, 1),
and thus we directly get
2
A(0) = A (0) = —.
0) =10 = =

We can thus suppose that 8 # 0. By recalling the definition of \.(8) above and performing the
change of variable 7 = 1/¢ in the second integral, we get for 0 < e < 1

™= _ B ™= _ -8
)\E(ﬁ):2/0 Jp(17)d7+2/0 p(1=¢7F) d¢ 2

[1—r|t+ep 1= ¢Hsr 27 sp

2/WMdT+2/WW<S““””dC+2
0 0

[1—r|t+ep ¢ — 1+ sp
1

(117 g 2

-9 P7<1_ sp—1-8(p 1)>d g

/o L—rter 77 "

On the other hand, by a Taylor expansion, we have

Jp(l_Tﬁ) sp—1-8(p—1 -1 1—s)—1 _
[1—r[ier (1= rr ) g (sp 1= Blp—1) (L= 0TI o A1

which shows that
Jp(1 — )

TRy (1= t=Aem) € 2 (0, 1),
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These facts permit to establish that

. 1 sp
AB) = sli%i A(B), for every — ) <p< Py
thus from (4.8) we get that Ug is a local weak solution of the claimed equation.
The last statement about the convergence of F; is an easy consequence of formula (4.7). g

The next result investigates some properties of the function A(8) defined in (4.4). This in
particular permits to single out a special solution, among all the functions Ug: this corresponds to

the choice
sp—1
B = .
p
Indeed, for this function, the constant A is the largest possible. This extends to 1 < p < co a similar

discussion contained in the proof of [4, Theorem 1].

Proposition 4.4. Let 1 <p < oo and 0 < s < 1. Let us consider the function
, 1 sp
B = AB), defined by (4.4) on the interval | ———, —— | .
p—1p-1
Then this has the following properties:

(1) it is monotonically decreasing for 8 > (sp — 1)/p and monotonically increasing for § <
(sp—1)/p. In particular, we have

sp—1|P

sp—1Y\ l’lftp 2
023(557) =2 [

(2) there exists * = B*(s,p) such that

1 -1
77<ﬂ*<8p
p—1

and A(B*) = A(s) = 0.
In particular, we have
A(B) >0 = B*<pB<s.

Proof. We proceed similarly as in [9, Lemma B.1], but making a more complete study. For every
0 <t < 1, we consider the function defined by

1
9(8) = Jp(1 = 17) (1= 7P EmD) | for — <A< ps_pl.

We discuss the monotonicity of such a function. We first observe that g(0) = 0. Let us take 8 # 0

and differentiate g, we have

g(B) = (p— 1)t P~ 1=BP=D logt 1, (1 — tP)
4.9
(49) — 1% logt (1 —tspflfﬁ(P*U) JH(1—17).

We now discuss separately the cases 5 < 0 and 5 > 0. We start with the latter. By observing that
logt < 0 and that

J(1=t)=(p-1)1 -t and Jy(1 =ty = (1 —tP)r=1,
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we get
JB) >0 — psp—1=B(p—1) (1- tB) _ 4B (1 _ tspflfﬁ(p*1)> <0
e 5Pl < 4B
= riTfr <y,

Since 0 < t < 1, the last requirement is equivalent to

< sp—l'
p

This implies that:
e if sp < 1, then g is monotone decreasing on the whole interval (0, (sp)/(p — 1)) and thus
9(B) < g(0)=0,  forevery 0< < ]%;

e if sp > 1, then ¢ is monotone increasing on (0, (sp — 1)/p) and monotone decreasing on
((sp—1)/p,sp/(p—1)). In particular, it is maximal at 5 = (sp — 1)/p and thus

-1 sp—1\P
g(B) < g 5P :(l—t pl) , forevery0§ﬂ<i.
p p—1

We also observe that

sp—1\P
(1-+57) =0
We now perform a similar discussion for 8 < 0: from (4.9), by noticing that this time
Jy(1 =ty = —(t° —1)P~! and JA—tP)y=J(tF 1) =(p—1)(t" —1)P2,

we get again

As above, this implies that:
e if sp < 1, then g is monotone increasing on (—1/(p—1), (s p—1)/p) and monotone decreasing
on ((sp—1)/p,0). In particular, it is maximal at § = (sp — 1)/p and thus

sp—1

sp—1 P 1
< — (5 - ot .
9(B) _g( ) (t 1) , for every = <B<0

p
We also observe that

sp—1 p
(t ; —1) > 0

e if sp > 1, then g is monotone increasing on the whole interval (—1/(p —1),0) and thus

1
g(B) < lim g(r) =0, for every — —— < 8 < 0.
T—0— P —1
In particular, this finally permits to infer that
sp—1|P
max  g(8) < [1 -t
_E%T<B<;ii

and such a maximal value is uniquely attained at 8 = (sp — 1)/p. By recalling that by definition

A(/s)—2/01(9(5)dt+2,

1—t)ltsp sp
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the properties of A claimed in (1) follow from the above detailed discussion on g.

Finally, the fact that A(s) = 0 has been proved in [32, Lemma 3.1]. The existence of the exponent
B* now follows by using the monotonicity and continuity of A, together with the fact that

)\(Sp_1> >0 and lim  A(B) = —o0.
b

This concludes the proof. O
Remark 4.5 (The exponent 5*). For p = 2, the function A(f8) is given by

1 _ B
A(B) =/0 # (L—¢25717F) dt + %
It is not difficult to see that such a function is symmetric with respect to the maximum point
(25 —1)/2, i.e. we have
(4.10) A2s—1—0) =X\, for every —1 < < 2s.
Accordingly, the exponent S* in this case is simply given by
8 =2s—1—s=s—1.
With such a choice, in view of (4.10), we have
AMs—1)=A(s)=0.
Another case where 8* can be explicitly determined is when sp = 1. In this case, we have
AB) = /01 M (1 B <P—1)) dt + 2,
and we observe that

Jp(1=1%) (1=4720D) = gy (1 =179 (1= 470D,

thanks to the oddness and the homogeneity of J,. This shows that § — A(8) is an even function,
ie.

1 1
A(B) = AM(=8), for every — =1 <B< —
Thus, by recalling that A(s) = 0, we get in this case that * = —s = —1/p.

4.2. The interval for p = 2. By using the results of the previous subsection and the properties
of the fractional Kelvin transform, in the case p = 2 we can “transplant” supersolutions on IHI_lF
to construct suitable supersolutions in a bounded interval. We refer for example to [7] and [45,
Appendix A] for the definition and properties of the fractional Kelvin transform, in connection
with the fractional Laplacian.

In what follows, we use the notation

I=(0,1) and dr(t) = min{t,1 —t}, for t € I.
Lemma 4.6. Let 0 < s <1 and let —1 < 5 < 2s. We consider the function defined by

fa(t) == t2*717F (1 — t)”, fortel,
extended by 0 to the complement of I. Then this is a positive local weak solution of the equation
(—A)*u = A(f) — 2 in 1.

(t(1—1))*"
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In particular, it is a positive local weak supersolution of the equation (2.1), with A = A(53).
Proof. We first notice that the last part of the statement easily follows from the fact that
t(1—1t) <min{t, 1 —t}, fort e I.

Let us focus on proving that fg is a solution of the claimed equation. It is easily seen that fg €
WS2(I1) N LY (R), under the assumption —1 < 8 < 2s. By still using the notation of the previous

loc
subsection, we see that

1
fat) =t*"1Ug (t—1>, fort e I.
Thus, fs coincides with the fractional Kelvin transform of the “shifted” function
x = Ug(x — 1),

defined on the half-line (1,+00) and extended by 0 to its complement. Then the proof of the
statement above consists in computing the fractional Laplacian of such a Kelvin transform. For
every ¢ € C§°((0,1)), we write

// (F5(0) = f5(0) (e(t) =) -
RxR

|t —r[t+2s
1_ 1) — 72571 Uy (1 - 1)) (o(t) — (1))

<|t|28 1 U (

.
— dtdr.
// [t —r[i+2s T

We then make the change of variable t = 1/x and 7 = 1/y, so to get

// (fa(®) ( ) () = (7)) 0
RxR

|1+23

(\x|1*28 Ug (z—1) = [y[' 2 Us (y — 1)) <90 (1> _p (1

://]RXR |z — 725 - y>> | y[?* 7 da dy
e G ORGP

} ERFIES

We now observe that we have the following pointwise identity

(4P 0 =1 = o U - 1) (9 (3) =9 ()
=(Ug(x—1)=Us(y—1)) (IIZS ' ( >|y|251@(21/>)
(3 st o3
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This implies that

/] (J5(1 ( ) (e =p(r)
RxR

i
1) (o (1) e (!

g e ) e G),

) //RXR <UB (x—1)¢ (i) - U5|(j_—;|)1is<;>> (J225= = y2+) o

The second integral on the right-hand side vanishes, thanks to the fact that the function z + |2|?*~!
is a local weak solution of
(=A)°u =0, in R\ {0},
(see [12, Theorem A.4]), once we observe that
1
z—Ug(z—1) g0<),
x

is an element of C§°((1, +00)).
We can now use the equation solved by x — Ug(z — 1): indeed, by Proposition 4.3 for every
1 € C§°((1,4+00)) we have

(Us(z = 1) =Us(y = 1)) (¥(z) = ¥(y)) B U 1)
//M dmdy—A(ﬁ)/ (z) dr.

oy ECENE

v =P (1),

and observing that this belongs to C§°((1,400)) if ¢ € C§°((0,1)), we get

/ /Mwﬁ @=-Us =) (e e (3) oo (1)) o

|z — y[IT2s

50 | m P et () de

Finally, by changing back variable © = 1/t in the last integral, we get with simple manipulations

—+00 T — 1
o) [T EE o (D) =) [ Y a

This concludes the proof. O

In particular, by choosing

Remark 4.7. The previous result has been greatly inspired to us by the reading of [19]. More
precisely, in [19, Lemma 2.1] it is computed the fractional Laplacian of order s of the function

(4.11) w(z) = (1 —x?)?, for z € (—1,1).

In [19] the equation obtained is similar, though a bit different: the computation uses the Kelvin
transformation, as well, even if in a slightly implicit fashion. In other words, in [19] the function w
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is not displayed as the conformal transplantation of a solution on the half-line: in this respect, we
believe that our proof above has its own interest.

In order to compare our function fz with Dyda’s one (4.11), we observe that by making the
change of variable x = 2¢ — 1, we get

Wit)=w@2t—1)=(1- (2t - 1%’ =41 (1 —1t)?, for t € I.

Up to the unessential multiplicative factor 47, we see that Dyda’s function coincides with ours if
and only if
2s—1
29s—1—-8=08 ie  fB= 52 .
Incidentally, we notice that this is the value of 8 which makes \(3) the largest possible, by Propo-

sition 4.4.

Remark 4.8. By recalling Remark 4.5, from Lemma 4.6 we get in particular that, with the choices
8 =sand § =s— 1, the two functions
ts (1 —t)° and test* (1 —1)" 1,

are locally weakly s—harmonic on I. This is a particular case of a result contained in [31], see also
[21, case (b), page 428]. We owe this remark to the kind courtesy of Bartlomiej Dyda.

5. CONSTRUCTION OF SUPERSOLUTIONS IN CONVEX SETS

In what follows, for an open set @ C RY we will use the shortcut notation
B
Ug :=dg,

where this function is extended by 0 to the complement RY \ €. In particular, in the borderline
case = 0, this has to be intended as the characteristic function of €.

Lemma 5.1. Let 1 <p< oo and 0 < s < 1. Let Q C RN be an open convex set. For every
O S 6 < i,
p—1
we have
Us € W (@) 0 L2, (RY).
If Q) is a half-space, then this property is still true for
1 sp
—— <0< .
p—1 v p—1
Proof. The fact that Ug € W;)P(Q) easily follows from its local Lipschitz character. In order to
conclude, we need to prove that

uht sp
—d if —_—
/RN(1+|I|)N+SP r < 400, 16<p71

For 8 > 0, it is sufficient to fix ¢ € 02 and observe that (recall that Us vanishes outside §2)
Us(z) < |o — x0/?, for every = € RV,

p—1 —
[ ot [ ) e
ry (L [z)VHer = = Jpn (14 [a|)NHoP

It is easily seen that the last integral converges if 8 (p — 1) < sp.

We then obtain
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Finally, if ) is a half-space, we can suppose without loss of generality that
Q=H} =RV x (0, +o0).

The case N = 1 is already contained in Lemma 4.1, thus we consider N > 2. We take —1/(p—1) <
B < 0 and we decompose

p—1 B(p—1
/ L / e
gy (14 |z[)N+sp my (14 [z|)Ntsp

N

¥
/ xIJBV(P*I) i
{zeHY :zy>1} (1 + |xDN+sp

B (p—1)

1 5,
+ N-1 N+tsp
R 0 (1+ F$?V+|x/|2>
1

dey | d2’

I
{zeHY :zn>1} (1 + |x‘)N+sp

da’ ! B (p—1)
_ d .
+/ (1 + &N +er (/ N ”)

Thanks to the choice of 3, the last integral is finite. |

dzx

For every k € N and a > 0, we recall that we set

+OO k4+2+a
I(k;a)z/ £ (14 £2)~ 5= g
0

Then we observe that for N > 2 and every m > 0, by using the (N — 1)—dimensional spherical
coordinates and a change of variable, we have

(5.1) /RN?I ( dy’ _ (N_l)wN_lﬂN_z;Sp)_

m? + |2/ — y'[2)TF mitee

In what follows, we still denote by A(3) the constant given by (4.4), while Cy 5, is defined in (1.10).
We refer to Remark 5.3 below, for a comment about the sharpness of the restriction g > 0.

Theorem 5.2. Let 1 < p < oo and 0 < s < 1. Let Q C RN be an open convex set. Then:

(1) if )
0 S 6 < 7])7
p—1
the function Ug is a local weak supersolution of (2.1), with A = Cnsp N(B);

(2) if Q is a half-space and
1 sp
p— <ﬁ<p71,

the function Ug is a local weak solution of (2.1), still with A = Cn sp A(B).

Proof. We will use a simple geometric construction, already exploited in the proof of [8, Proposition
3.2], in conjunction with the formula (5.1). We take z € 2 and let T € 02 be a point such that

do(z) = |z — 7.
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FIGURE 3. The supporting hyperplane for 2 at T.

Since 2 is convex, there exists a supporting hyperplane for it at the point . Without loss of
generality, we can suppose that such a supporting hyperplane coincides with

OHY =RN~1 x {0},
and thus
z = (2/,zn) with zy > 0, z = (2/,0) and do(z) = zN.

Moreover, we suppose that @ C HY. We now observe that for every other y = (y/,yn) € Q, by
convexity it results

da(y) < yn,

see Figure 3. By using this fact and recalling that Ug vanishes in the complement of €2, we actually
have for g > 0

Us(y) < (yN)i, for almost every y = (', yn) € RN
In particular, we thus get that for almost every y € RY and 3> 0
(5.2) Us(x) = Us(y) > (zn) — (yn)].

For every 0 < ¢ < 1 and for every x € RY, we introduce the following slab

. x x
Ke(z) = {y e RN : mm{l_i_vg,(l+s)x1v} <yn < max{l_f_vg,(lJre)xN}}.

Recalling that xy > 0, we now use (5.2) and the monotonicity of 7 +— J,(7): we obtain for § > 0
and 0 <e k1

dy.

B _ (yn)?
(53) [ B U, | B (@)} = wn)f)
RN\K(x) |I—y|N+sp - RN\K, () |l:_y|N+sp
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If N > 2, the last integral can be written as

Jp(Us(z) —
/ _ N+sp dy
RM\K.(z) T — Yl

Y

JJN)B - (yN)ﬁ)
/ N+s dy
RN\K. (2) |$ —y|VHse
/ )ﬂ - (Z/N)ﬁ)
R\IE(IN)

. d
s YN,
RY-1 (|2 — yn |2 + |2/ -y [2)

where I.(zy) is the same interval as in (4.1). If we now use (5.1) with m = |xn — yn|, we get

/ dy C(N sp
vt (Jzy — yn 2 + |2 — )5 Jew —yn [T
Thus, we obtain from (5.3)

)P — B
[ O, CO
RN\K. (z)

|z —y|N+sp R\l (zn) TN —yn['TP

By recalling that we set C'y 5, = 1, the above formula obviously holds for N =1, as well: actually,
it coincides with (5.3).
By the definition (4.5) and the identity (4.7), we have for zy > 0

Jp ((xN)f- - (yN)f-) xﬁ(Pfl) U (z)p—l
2/ ) gy = Falan) = 2e(8) 2N = a(p) 2
R\L(zy) TN — Yn['ToP N (o) #) Ty ) do(z)s?

Moreover, we recall that (see the proof of Proposition 4.3)

T _ B
)\E(ﬂ) :2/ + Jp(l T ) (1,7510*13(?71)) dT+i,
0

1= 5
and
(5.4) lim A.(8) = A(8).
e—0t
Thus we have
Jo (@n)? = w)}) U ()1

2CN.s / dyy = CpNsp A —_
M ey TN — yn [T un = Cnvap 2e(6) do(z)sP

This in turn leads to

Jp(Us(z) — Us(y)) Ug(z)P~!
2 /RN\}C ( |1’ — y|N+sp dy > CN,sp /\5(6) dQ(xi)SP .

We take ¢ € C§°(€2) non-negative, multiply the previous inequality by ¢(z) and integrate over €.
We get

Jp(Us(x) — Us(y)) Us(@)Pt i
65 2 [ ( [ dy) plo)do > Oy () | SAD (o) do.
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On the other hand, we have

Jp(Ug(z) = U, T) — 1
(0] - Ualo) (o) = l0) ¢ 1y

thanks to Lemma 5.1. Thus by the Dominated Convergence Theorem, we get

[[, B Ui ole) = ole) o,
RN xRN

|z —y[NFsp

~ lim Jp(Us(2) —Us(y)) (p(2) — ¢(v)) .
= //]RNXRN)\C ey,

e—0+ | — y|N+sPp

where
C.= {(l’,y) eRY xRN . ye ICE(Q;)}_

Moreover, for every 0 < € < 1 we have

Jp(liﬁ(_x;]vgﬂp(y)) o(z) € LH((RY x RM)\ C.).

Thus with a simple change of variables, we get

[ Dl0ale) Vsl (o) =0l
RN xRN

|N+sp

~ lim p(Us(x) — Us(y)) (p(x) —¢(y)
(5.6) - /mewﬂc |z —y|NFep e dy.

e—0t

. Jp(Us(z) — Us(y))
=2 lim / d d ) dx.
e=0% Jo ( RN\, (z) |z —y|NFsp v | (o)

Observe that we also used Fubini’s Theorem for every fixed 0 < ¢ < 1, in order to arrive at the
last integral. By joining (5.5), (5.6) and (5.4), we finally get

[[, OGN o0 4oy > 0, 0) [ LD )
RN xRN v |

|z —y[NFor o da(x)*?

which is the desired conclusion for 5 > 0.
In order to prove the second statement, we first observe that if €2 is a half-space, we can assume
for simplicity that
Q=m.
Then, in the case N = 1, the statement has been proved in Proposition 4.3. For N > 2, it suffices
to observe that we have equalities everywhere in the previous argument, even for 5 < 0, provided
it is an admissible exponent. ([l

Remark 5.3 (Optimality of Theorem 5.2). As a consequence of Proposition 4.4, we have that

sp—1 1 sp
CnspAB) < Cnps )\< ), for every — —— < < .
Thus, even in the more general case of a convex subset €2, the choice
sp—1
g = )

p
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still produces a supersolution of (2.1), which has the largest possible A, among supersolutions of
this type. However, it should be noticed that, in light of Theorem 5.2, such a choice is now feasible
only for
-1
sp >
b
unless € is a half-space. Moreover, if the convex set €2 is not a half-space, such a result is optimal

in the following sense: already in the borderline case sp = 1, the function Ug with 8 < 0 is not a
supersolution of (2.1). See Lemma A.1 below for a simple counter-example.

0 i.e. sp>1,

6. THE SHARP FRACTIONAL HARDY INEQUALITY FOR CONVEX SETS

In this section we still use the notation (1.2). We start with the following general fact.
Proposition 6.1. Let 1 < p < oo and 0 < 5 < 1. For every Q C RN open convex set, we have
Bs.p(€2) < s p(HY).

Proof. In dimension N = 1, we suppose 2 C R to be a bounded interval. Thanks to (3.1), we can
assume that Q =1 = (0,1). We take 1) € C§°(HL ) and define the rescaled function

bo(t) = ¥ (2) .

We observe that for e > 0 sufficiently small, we have ¢. € C§°(I). We compute

[¢e]€vs,p(R) = Elisp [w]g[/s,p(ﬂgy

t
Y| - 1
o () I e
v dt‘/o (i, 1 1))r @ =€ / (min (et =P

By recalling that v is compactly supported, we get that for 0 < ¢ < 1 we have

and
P

min {T, el — T} =, for 7 in the support of .

In conclusion, we get for every ¢ € C§°(HL)

P p »
h (I) < lim M = lim [w]W“‘*P(R) - [w]Ws,p(R)
s,p = o+ <[P e 1 = Too » .
R R P L
1 9y 0 5P 0 —op

By arbitrariness of 1, this gives the claimed inequality.

For the case N > 2, we can repeat the same proof of [38, Theorem 5], which deals with the local
case, up to some very minor modifications. We just recall that the proof in [38] is based on a scaling
argument as in the one-dimensional case exposed above, together with the fact that a convex set
admits a tangent hyperplane at almost every boundary point. |
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6.1. The case of the half-space. For an half-space, we can determine the sharp Hardy constant
without restrictions on the product sp.

Theorem 6.2. Let 1 <p < oo and 0 < s < 1. For every N > 1 we have
hs,p(Hﬁ) = CYN,sp As,p7

where As , and Cn s, are defined by (1.9) and (1.10), respectively. Moreover, such a constant is
not attained.

Proof. By combining (1.6) and Theorem 5.2 for Q = Hﬂ\_] , we immediately obtain
1 sp
bsp(HY) > Cnosp A(B), for every — p— <p< PSR
Moreover, by Proposition 4.4, we know that the right-hand side is maximal for 8 = (sp—1)/p and
thus

sp—1

hs,p(Hf) > CN,sp A ( ) = CVN,sp As,p-

In order to prove that the right-hand side actually gives the sharp constant, we distinguish two cases:
N =1 and N > 2. We will show that the latter reduces to the former: this is quite a standard fact
for the Hardy inequality, but we prefer to give the details, since some non-trivial computations are
needed. For the case N = 1, we will use a slightly different family of trial functions with respect to
[27, 28]: this permits to treat the cases sp < 1 and sp > 1 at the same time.

Sharpness: case N = 1. We need to prove that
hop(HY) < Asp.
We take a cut-off function ¢ € C5° ((—o0, 2)) such that
0<¢<1,  ¢=Lonf0l], <O,

and we use the trial function
sp—1

og = Ug, with < B <s.

According to Lemma 4.1 and Lemma 2.8, this function belongs to Wg’p (]HI}F) In light of the estimate
(2.2) and the properties of the cut-off, we get

1 [(bﬁ]gys,p(R) [U,B wlﬁvs,p((m)) 2 2l+p—sp ~p IlUB”Z[),IJ((O)Q))
(6.1) hop(Hy) < —5 |65 (z)[P S (Ug )P + sp + sp S (Ugyp)P
GBI e Al A 7 A dx
0 xsP 0 xsP 0 xsP

We evaluate separately the two quotients on the right-hand side. For the first one, by using the
estimate (2.3), we have

1
[Us ¥lw=r((0,2)) - [Uslwsw((0,2)) +( C >P ~ 1Usll L ((0,2))
s (

B2 PN ) ¢ poNF
([ ) ([ Cta)y 0 ([ )

Moreover, by recalling the definition of Ug, we note that

2 p 2 p
lim / (Us ¥) dx = lim / w dr = +00,
0 )+ 0 rSpP—Bp

6_>(5Pp*1)+ xsP ﬂ%(sppfl
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thus the denominator diverges as  goes to (sp — 1)/p. Coming back to (6.1), this entails that

bep(HL) < limsup Usbhi-siony | 2, 271700 5, [1Usliroy
T ey [y e e [,
0 0

xsP 5P
Usl?, .. 2 UslP . 9
< limsup W — < limsup W Z
sp—1 S sp—1 S
por(2zt)t / Us)” (o 5P po(esetyt / (U, sp
0 xsP 0 xrsp
We claim that
[Uﬁ]z‘;[/sp o 1 1_tspp—1 p
(6.2) P —3 > o
ﬁ%(“”%lf/ Us)” . o (1-1)
o x°P

this would conclude the proof, by recalling the definition (1.9) of A, ,. By using the form of Ug we

have
' (Us)? ' 1
/ dx:/ LY S
o TP 0 Bp—sp+1

Thus in order to prove (6.2), we just need to show that

sp—1 p

1 ‘1 —t

B—(221)"

By recalling the estimate (4.3) from Remark 4.2, we have

» 1 11 t5|p ppB-1y g 2B p—sp+l
U y < (14 t) ———.
[ ﬁ}ww((o,z)) = (/0 |1 —t|ttsp ( ) ) Bp—sp+1

Hence, by taking the limit as 5 goes to (sp—1)/p and using the Dominated Convergence Theorem,
we get (6.2), as desired. This proves the sharpness for N = 1.

Sharpness: case N > 2. We will show that this can be reduced to the previous case, by proceeding
as in [27, Theorem 1.1] and [42, Proposition 3.2]. Let n € C§°((0,+00)) and x € C§°((—1,1)V~1),
we use the test function

1-N

/ / M :E/
o =xm(*")n(xn), WhereXM(ﬂﬂ)::mX )

for some M > 0. Observe that by construction the function y s has compact support on (—M, M)V 1
and unit LP norm. We thus obtain

h (HN) < [TIXMK;VS’T’(RN) N [77XM]€VS,,;(RN)
s,p\Hy = )

— P +oo p
/ |77XSZ¥)I| dx / |?75|p dxy
my Iy 0 TN
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where in the last identity we used Fubini’s Theorem and the properties of x . In order to estimate
the seminorm, we first use Minkowski’s inequality

1
X (@) [P [n(zn) — nyn) v
dx d
[nXM}n/sp ]RN = <\MRNxRN |w_y|N+sp T ay

n(yn) P e (2) = X ()P v
dx d
<//RN><RN ‘x_y|N+3p T ’

and we focus separately on the two integrals on the right-hand side. For the first integral, we use
Fubini’s Theorem and the identity (5.1), so to get

p P
// Ixar ()P In(zn) — n(yn)| dx dy
RN xRN |z —y|N+sp

In(xn) —nlyn)|?
_ p _ P
=Cer (/RN bas () dx) (.//RxR lzn — yN|1+§p N Ay | = o Pl o ey

On the other hand, by using a computation similar to (5.1), we have

400
o\_Ntsp
2/0 A+ .

1
/ d(EN = - .
N+sp I __ o |N—14¢ ! o | N—14¢
R (o — ynl? + a7 — y/]2)" oy e g

Thus, it holds

)P (P
// n(yn)IP Ixam (@) — xm (y')] daz dy
RN xRN |z —y|Ntsp

e (&) — xar (y) 1P
_C/ |77 N |pdyN (//}RN 1y RN-1 ‘x’—y/‘NflJrsP dm/dy/

H77||Lp(]R) [X]Ws P(RN-1)
||XHLp(RN71) Ms=p

=C

In the last identity we used the definition of x s and a change of variable. Then, it follows that

1

(hs,p(Hf)>E S(CN,S )% [U}WSvP(R) i 1 7l L (R) [X]WSvP(RN—l)

1 1
+oo | 1p p Me ||X||LP RN-1) +oo | 1P P
0 Ty 0 TN

By letting M go to +oo and thanks to the arbitrariness of n € C5°((0,4+00)), we obtain

hs,p(Hf) < Cnsp hs,p(Hi) = CNspAsp,
as desired. The last identity follows from the sharpness for N = 1.

The fact that f)s,p(Hﬂ\.’ ) is not attained follows directly from Proposition 3.5, since by Theorem 5.2
we found a local weak solution of (2.1) with A = b, ,(HZY), of the form

sp—1

u=d_%
H+

The proof is over.
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6.2. The case sp > 1.

Theorem 6.3. Let 1 < p < oo and 0 < s < 1 be such that sp > 1. Then for every Q@ C RN open
convez set, we have

Bs,p(€2) = Cnysp Asyp,
where Ag , and Cn s, are defined by (1.9) and (1.10), respectively. Moreover, such a constant is
not attained.
Proof. We suppose that 2 is not a half-space, otherwise there is nothing to prove. By appealing to
(1.6) and Theorem 5.2, we get
(6.3) hsp(Q) > Cn.sp A(B), for every 0 < 8 < Sipl

p—

Again by Proposition 4.4, we know that the right-hand side is maximal for 8 = (sp — 1)/p: such a
choice is feasible, thanks to the assumption sp > 1. We thus get

sp—1
) = CN,SpAs,p-

hs,p(Q) > CvN,sp>\ (
On the other hand, by Proposition 6.1 we know that

bsp(€) < b p(HY).
By combining the latter with Theorem 6.2, we finally get

hs,p(Q) S CN,sp As,pa

as well. This proves that b, ,(2) has the claimed expression.
Finally, the fact that b, ,(2) is not attained follows directly from Proposition 3.5, since by
Theorem 5.2 we found a local weak supersolution of (2.1) with A = b, (), having the form

sp—1

u=dg"
This concludes the proof. O

Remark 6.4 (A lower bound in the case sp < 1). As already said, in the case sp < 1 the maximal
choice for 8 is not feasible. In this case we can choose in (6.3) the exponent § = 0 and get at least

a lower bound, i.e.

2
hs,p(Q) > CVN,sp )\(0) = CN,Sp 5

6.3. The case 0 < s < 1 and p = 2. We first highlight the following consequence of Lemma 4.6.
The resulting inequality is the same as [19, Corollary 1.3] by Barttomiej Dyda.

Proposition 6.5. Let 0 < s < 1 and let a < b be two real numbers. We have the following
one-dimensional Hardy-type inequality

b 1 1 7%
(6.4) AS’2/a Jul? [t_ +b—J dt < [ulfyez(r),

a

for every u € WOS’Q((@, b)). In particular, we have

Bs,2((a,0)) = A

and such a constant is not attained.
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Proof. By recalling (3.1), we can suppose that (a,b) = (0,1) = I. Then the proof of the inequality
(6.4) is the same as in [19] and it follows the same lines as that of [2, Lemma 4.1, point (i)]: it is
sufficient to take

2s5—1
Jo®) =710 (1=1)%, with f= =,
observe that by Lemma 4.6 this weakly solves
(=A)u= A2 Y in I,

) (t(l _t))Qs’
and then make a suitable application of the discrete Picone inequality.
As for the sharp fractional Hardy constant, by observing that
1 1 1 1
- > = , fort eI,
T T = 4D o

we easily get from (6.4) that

Bs,2((0,1)) > A 2.
The reverse inequality can be obtained from Proposition 6.1 and Theorem 6.2. Finally, the fact
that the sharp constant is not attained can be inferred again from Proposition 3.5. ]

By combining the previous one-dimensional result with a decomposition of the Gagliardo-Slobodeckii
seminorm, taken from [37] (see also [16, Chapter 1, Section 5]), we can finally compute the sharp
fractional Hardy constant of a convex set for p = 2, without restrictions on 0 < s < 1.

This complements [25, Theorem 5, points (i) & (ii)], where the case 0 < s < 1/2 was left open.

Theorem 6.6. Let 0 < s < 1, then for every Q C RN open conver set, we have
bs,Z(Q) = CN,QS As,23

where Ag o and Cn 25 are defined by (1.9) and (1.10), respectively. Moreover, such a constant is
not attained.

Proof. By joining Proposition 6.1 and Theorem 6.2, we already know that
bs,Q(Q) < hs,Q(Hf) = ON,23 As,2~

In order to prove the reverse estimate, it is sufficient to reproduce verbatim the proof of [37, Theorem
1.1] for convex sets, by replacing the W*?2 seminorm on €2 there with that on R". In particular,
we need to use the following reduction formula

// |u(z) —u(y)® dr dy
RN xRN |30* |N+25
u(h _
/ / (// *tw) —ulh+ rw)l dtdr) dh dHN = (w),
SN=1 J{heRN :(h,w)=0} RxR |t —r|t+2s

where dh denotes the (N —1)—dimensional Lebesgue measure on the hyperplane {h € R : (h,w) =
0}. Such a formula can be proved exactly as [37, Lemma 2.4]. By starting from this, it is sufficient
to use the one-dimensional Hardy inequality of Proposition 6.5 for the integral on R x R, in place
of the inequality of [37, Theorem 2.1]. This would lead to

1 ul?
[u]%/VSvQ(RN) Z As,2 <2 / |("}N|25 dHNl(w)> |d2|s de
SN—1 Q Yq

By using Lemma B.1 below, we conclude. O
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APPENDIX A. NEGATIVE POWERS OF THE DISTANCE IN THE BORDERLINE CASE s = 1/2

We consider for —1 < 8 <0
Us(t) = dr(t)? = (min{t,1 —t})", for t € I = (0,1).

We extend this function by 0 outside the interval I. We want to estimate its fractional Laplacian
of order 1/2.

Lemma A.1. Under the assumptions above, we have

2

(A1) (-8)3Us SBHOUs(0) + 17—

Us(t), i,

in weak sense, where H is the continuous function on I\ {1/2} defined by

B 2 2 4t(1—1)
H(t) = IR0 log ((1 —2t)2) '

This has the following properties:

o it is symmelric with respect to 1/2, i.e.

H(t) = H(1— 1), forte[\{;};

q
loc

o it belongs to L _(I) for every 1 < q < oo;

o it satisfies

1\’ 1
H(t)~—4log<2—t> , fort—>§,

thus the right-hand side of (A.1) diverges to —oo as t approaches 1/2.

In particular, in this case the function Ug is not even locally weakly (1/2)—superharmonic on I.

Proof. Observe that Ug € W;>2(I) N Li(R), under the assumption —1 < 8 < 0. We first show
that Ug satisfies (A.1) in I\ {1/2}. Let us take ¢ € C§°(I'\ {1/2}) non-negative, then there exists
0 < o < 1/4 such that its support is contained in the set

1 1
sy = {50»2—50] U {2-%5071—50} .
For every € > 0 and t € I, we set

Je(t)=(t—¢e,t+e) and DE:{(t,y)GRXR:t—5§y§t+5}.
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By using Fubini’s Theorem and a change of variable, we can write as usual

/] (%uwwwm)ww—w@»ﬁ@
RxR

t—yl

. (Us(t) = Usw)) (t) = ()
= lim //(]RX]R)\DE dt dy

=0 It —y|?

=2 lim / Us(t) — Us(y) dy | (t)dt
=0 g \Jr\a.y 1ty

=2 lim / Ys(t) ~ Us(y) Uf ) dy | »(t)dt.
=0z, \Jra.y 1ty

We first observe that, by using that Ug(t) = Us (1 — t), we have for t € Z;,

Ug(t) — U, Ug(l—1t) —Ug(l —
/ 5(t) 25(2/) dy:/ s(1—1) 26( y) dy
Rty [t—Y R\J. (1) It -y

_ Us(1—t)—-Usg(l—y) Ug(1 —t) — Ug(7) .
‘Amm|ut>uw2@‘4mm00t>72d'

This shows that it is sufficient to consider t € [dg,1/2 — dp]. For almost every ¢ € [dg, 1/2 — o] and
every 0 < e < &y, we have?

/ Uﬁ(t)—Uﬁ(y)dy_/t“ftﬁ—yﬁder/2 tﬂ—yﬁdy+/ltﬁ—(1—y)ﬁdy
R [ty o lt—ylP? e [t—yl? 1 (y—t)?
“+oo B 0 B
t t
e [
1 (y—1)? —o (t—y)?
t—e 48 _, B 3 4B _ .8 LB (1 _ )8
P —y 2P —y 7 —(1-vy)
_ ————d+/ ———d+/4—————d
A TR A vy R (T E R
Us(t) | Us(t)

DR

-

-

To estimate the remaining integrals, we use the “above tangent” property for the convex function
T — 7P, to infer that

1
tP— P < ptPL(t —y), fory€(07t—E)U<t+€,2>7

and

1
P —(1—y)P <BtPt(t+y—1), fory6(2,1>.

40Observe that by construction t —e >0 and t +& < 1/2.
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These yield

t—e 48 _ B 3 4B _ .8 LB _ (1 _ )8
t z ¢ t 1
o [t—yl the [t =l o (y—1t)

e LR Lit4y—1
SB#@A/ Yy dy+ﬂtﬁ’1/ Yy dy+5tﬁ*1/ (t+y—1)
0 3

(y—1)?

|t —y|? t4e |t =2
The last integrals can be explicitly computed. We have

= t—y 2 t—y 1
7dy+/ dy—logtlog(t),
/0 It —yl? e [t —yl? 2
1 1 1
(t+y—1) / 1 / y—1
———dy =t —dy + —Yd
/;, -1 AR ER A AN e

2

t [(; —t)l -1 —t)ll
,% <; t>1+ {1og(1t) ~log (; t)] .

This finally gives that for ¢ € [dp,1/2 — dg], we have

Us(t) — Us(y) g1 Us(t)
(A.3) /R - dy < BPLG(t) +

and

|t _ y‘1+2s

where we set for simplicity
1
G(t) = [logt —log (2 - t)] +1

_% (;—t>_1+ [log(l—t)—log (;—tﬂ

With simple manipulations, we see that this can be also written as

4 _
G(t) = _% + log <(1t(—12t)t2)> ,

and thus this is a continuous function on (0,1/2) such that

G e L{ ((0,1/2]), forevery 1 <gq < oo and lim  G(t) = +oo,

loc

because of the logarithmic term. If we now define

H(t) =2 @ for t € (0, ;) and  H(t):=H(1-t), forte <; 1) :

from (A.2) and (A.3), by recalling that ¢ is non-negative we finally get

(Us(H) = Us() (#(t) - ()
//]RX]R

[t —yl?

dtdyg/l{ﬁH(t)—i—t(lt)} Us(t) o(t) dt.

dy.
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This shows that Ug is a local weak subsolution of the the claimed equation (A.1), at least in the
open set I\ {1/2}.

In order to show that Upg is a local weak subsolution on the whole interval I, it is sufficient to use
a standard trick to® “fill the hole”. we take p € C§°(I) non-negative and for every natural number
n > 5 we take 1, € C*°(I) such that

- 1 21 2 1 11 1
nEl 1 a 4 1> n = a a9 >
v on \[2 n2+n] 4 0on [2 n2+n}
and
0<v¢,<1, || <Cn.

The seminorm of 1, can be estimated by using its properties and an interpolation inequality (see
[11, Corollary 2.2]), i.e.

Wi~ win =

3tn 2 3+3 ~
—c ([ wpa) ([T neepa) <c

2

[¥n)? [1—n)? <C </1 |¢;|2dt)

[N

where C' does not depend on n. This in particular implies that the sequence {¥,,},>5 C L*( x I)
defined by

Y (t) — Pn(y)

(A4) Waltyy) = S

, for a.e. (t,y) €I x1,

is bounded in L?(I x I), since by construction

”\I/n”Lz(IxI) = [wn]wé,zu)'
Thus, up to a subsequence, it converges weakly in L?(I x I). Thanks to the properties of 1,,, such
a limit function must coincide with the null one.

The test function ¢ 1), belongs to C§°(I\ {1/2}) and is non-negative. From the first part we get

Il (Us() = Us®) (60 valt) — 0lo) ) "
RxR

[t —yl|?

2
< [|pr0+ 1] woeo 0 @

(A.5)

We wish to pass to the limit in (A.5), as n goes to co: for the right-hand side, it is easily seen that

2
t1—1)

lim [5 H(t) + Us(t) o(t) dt,

n— oo I

t(12_t)} Us(t) () ¢n(t) dt:/I [5H(t) +

50f course, this will be possible because in R points have zero fractional capacity of order s < 1/2, i.e. they are
removable sets.
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by the Dominated Convergence Theorem. As for the left-hand side, we split the integral as follows:
I (Us(0) = Us®) (¢ 60 0) ~ ) 0nw)
RxR [t —yl?
- (U = Us®)) (2t nlt) = o) u(w)
- S |t —y[?

+2fﬁwwqaww_%@»ﬂﬂ%wd”%

It =yl

Y

dt dy

where I’ C I C I and I’ contains the support of . For the last integral we can easily pass to the
limit as n goes to oo, for the first one we proceed as follows

Il (U(0) = Us@)) (00)(8) = (0) 0 (0)
X1 [t —y|?

B // (Uﬁ(t) - Uﬁ(y)) (@) = W) (1) + vuly)

a [t —yl? 2

dt dy

dt dy

(Us() = Us®)) () = ¥u®)) 52y + ()
+ //1//x1” dt dy.

[t —y[? 2
By using that
(U0 = Us®) ((6) = ()
[t —yl?
and the properties of ¥, we get that

// (Us) = Us®) (#) = @) () + pu(y)
.

|t —y[? 2

c LI(I// X I”),

lim
n— oo

dt dy

dt dy,

/l (Us(®) = Usw)) (o(t) — ()
et = yP

again thanks to the Dominated Convergence Theorem. Finally, the last integral is the most delicate
one: with the notation (A.4), we can write

(Us0) = Us) (0n(0) = 90 ()) o(t) + (3
t—yl? 2

= O(t,y) Wnlty),

where

Us(t) — Us(y)
D(t,y) = ( A t_yﬁ y) @(t); ©(y)

The last property follows from the fact that Ug is locally Lipschitz on I. Thus, by using the weak
convergence of {¥, },,>5 previously inferred, we get

// (Us®) = Us®)) (90 = 62®) o) + ()
v C 2

,y|2

e LA*(I" x I").

lim
n—oo

dtdy = 0.
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Finally, we obtain that we can pass to the limit in (A.5) as n goes to oo and obtain

(Us() — Us(w)) (0(t) - ()
/..

TvE dtdyg/f[ﬁH“”ta—t)

for every ¢ € C§°(I) non-negative, as desired. O

Up(t) p(t) dt,

APPENDIX B. THE CONSTANT Cy sp

For N >2,0<s<1and 1< p < oo, we recall the definition

N+sp

+o0o
Cnisp=N—1)wn_1 / N2+t de
0

In the next simple result, we write C s, in an alternative way. This permits to compare the
constant obtained in the proof of Theorem 6.6, with that of [37, Theorem 1.1].

Lemma B.1. Let N > 2. Then we have

1
CNSp:f/ o7 dHN 1 (w).
’ 2 SN*I

Proof. We first observe that by using spherical coordinates, we have

1
1
Spd — sp N—l+spd dHN—l — / sdeN—l .
/Bl(o) el /SJH ol (/0 ¢ Q) 2 N+sp Jgn- il )

Thus, in order to conclude, it is sufficient to show that

N+ sp
2

N+sp

+oo
/ |xN|Spdx:(N—1)wN_1/ N2 (1 4 2) 2 gy
B1(0) 0

We compute again the integral on the left-hand side, this time by using cylindrical coordinates, i.e.
we write

1 1
/ |mN‘spdm:/ / d’HNfl |7_|spd7.:wN_1 / (1_7_2)¥ ‘T|spd7_
B1(0) -1 {z€B1(0) :zn=T} -1

1
=2wN_1 / (1-— 7'2)% TP dr.
0

We now use the change of variable 7 = (1 +¢2)~!/2. This yields
N1 t

+o0 )
|a:N|s”dx:2wN,1 / (1+t2)_% — = dt
/31(0) 0 (1+2)%5 (1+12)3
+oo N 2 N+42+4sp
:2wN,1/ tN (143" 7 e
0
In turn, by using an integration by parts, we get

oo N gy N42+4sp 1 No1 o\ _Nisp +oo
/ N (142" dt:[ N (14 £2) }
0

" N+sp 0
SN N /+OO N2 (142
N+sp 0 )

This concludes the proof. O
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