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Simple Summary: Ocular malignancies encompass a broad range of disorders that affect the eyelids,
orbit, and eye and have significant impacts for national healthcare systems. Due to its exposure to
various stressors, the eye is an anatomical site susceptible to cellular toxicity and tissue damage,
which can result in significant vision loss. In this context, similar to other tissue types, p53 plays a
crucial role in maintaining ocular homeostasis. However, few in vitro experimentation and clinical
trials of p53 pathway modulators have been conducted. The aim of this review is to discuss the
potential of pharmacological p53 activators as a novel targeted therapy for managing ocular tumors.

Abstract: The pivotal role of p53 in the regulation of a vast array of cellular functions has been the
subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but
also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations
in the p53 gene with loss of function represent one of the major mechanisms for cancer development.
As expected, due to its key role, p53 is expressed throughout the human body including the eye.
Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival
and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective
cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or
dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an
attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis
of these ocular tumors and outlines the various pharmacological activators of p53 that are currently
under investigation for the treatment of ocular malignancies.

Keywords: p53 pathways; ocular malignancies; therapy; retinoblastoma; uveal melanoma;
conjunctival melanoma; pterygium; eye cancer; tumor treatment

1. Introduction

The eye is an anatomical site exposed to multiple stressors, such as microorganisms
(viruses, bacteria, and protozoa), environmental factors (e.g., UV radiation, which leads to
oxidative photodegradation), and degenerative disorders, which can cause moderate-to-
severe vision loss and blindness.

Ocular diseases encompass various pathologies, including ocular malignancies and
other complex eye diseases. The pathogenesis of various ocular tumors remains largely
unknown, which limits the development of diagnostic and treatment approaches for these
diseases that are relevant for health, society, and the national health system. Ocular malig-
nancies may originate from any tissues of the eye, involving the conjunctiva, cornea, sclera,
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uvea, and/or retina with melanocytic, fibrous, epithelial, and other form of lesions [1]. In
the United States and Northern Europe, the incidence of retinoblastoma is estimated to be
approximately one in 16,000–18,000 live births [2,3]. On the other hand, melanoma is the
most common malignant primary intraocular tumor in adults [4]. Resection and radiation
therapy are the first-line treatment options for ocular melanoma, with enucleation being
last resort [5].

Common eye disorders and diseases hold the potential to worsen the overall quality
of life of patients and are commonly found in elderly people. These eye disorders include
age-related macular degeneration (AMD), glaucoma, diabetic retinopathy, cataracts, and
dry eye. These disorders are rising with an increase of blindness and vision loss patients
from 12.44 million in 1990 to 22.56 million in 2019 [6].

In addition to diseases that mainly originate from tissues of the eye, paraneoplas-
tic ocular syndrome may occur. In paraneoplastic ocular syndrome, molecular mimicry
drives the autoantibodies response against normal eye tissue, leading to ophthalmic symp-
toms including, but not limited to, cancer-associated retinopathy, melanoma-associated
retinopathy, cancer-associated cone dysfunction, paraneoplastic vitelliform maculopathy,
and paraneoplastic optic neuritis [7].

In this context, the expression of p53 has been demonstrated throughout the human
body, including the eye. The transcription factor p53 directly regulates the expression of
target genes for maintaining tissue homeostasis during various physiological conditions
such as development and differentiation [8–10]. Therefore, a mutation in the gene encoding
p53 or the inactivation of the pathway under its governance may contribute to malignant
transformation. In this regard, p53 preserves tissues by restricting genome alteration which
may lead to aberrant mitoses [11]. Since the discovery that p53 plays a pivotal role in the
induction of apoptotic cell death of DNA-damaged cells, the activation of p53 has become
an attractive therapeutic strategy for various malignancies.

After the identification of compounds that modulate the p53 pathways, which arrest
cell growth and induce apoptosis, multiple inhibitors of the p53–MDM2 interaction have
been suggested as potential treatments for solid tumors, hematological cancers, and ocular
diseases [12,13]. Alongside these inhibitors, recent research has identified traditional
Chinese herbal medicine as a promising candidate for cancer therapy with fewer side effects
than chemotherapy. Chinese herbal medicine may be considered as a complementary or
alternative option in the field of oncology [14]. Natural products possess nutraceutical
potential in a diverse range of diseases and are readily available with cost-effective pricing
and fewer harmful side-effects [15–18]. Among these agents, baicalein, a flavonoid extracted
from the dried root of Scutellaria baicalensis, has demonstrated significant efficacy in the
treatment and prevention of many types of cancers. Baicalein exerts its actions by inhibiting
numerous complex cascades and increasing the expression of the tumor suppression
proteins p38 and p53, leading to cell cycle arrest and apoptosis [19].

The p53 network coordinates gene expression among cells and tissues, ensuring a
central role in maintain organismal homeostasis [20].

Normal cells conserve pathways for maintaining genomic integrity, thus recognizing,
and repairing damaged DNA. In response to certain types of DNA damage, the WRN
gene, which encodes a DNA helicase, may activate p53 and potentiate p53-mediated
apoptosis [21]. Indeed, as recently shown from Hao et al., the loss of WRN triggers DNA
damage leading to the activation of p53/PUMA and subsequent cell death [22]. On the
other hand, in progeria Werner’s syndrome, the ablation of the WNR gene may lead to
the development of myeloid malignancies as result of competitive fitness by inactivating
p53 [23]. Patients with Werner’s syndrome are also characterized by a high predisposition
to various cancer types and as well as ocular cataracts [23,24]. The increased incidence
of ocular cataracts in patients with Werner’s syndrome may be explained by the role of
p53 in preventing cataracts and the existing relationship between WNR and p53. Indeed,
single nucleotide polymorphisms (SNPs) of WRN might interfere with the binding of p53
to WNR, reducing the apoptotic function of p53 [25]. Furthermore, as shown by Reichel
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et al., p53 ablation increases the frequency of persistent hyperplastic primary vitreous and
cataracts in a mouse model [26].

Therefore, given its role in tissue homeostasis, p53 is also widely expressed in the
whole eye of an adult, where it plays a relevant role in maintaining ocular stability.

This review aims to address the involvement of p53 in ocular stability and highlight
how the putative use of MDM2-p53 binding inhibitors, currently under clinical trial for
other diseases, may improve ocular therapy, where the treatment methods might be the
primary factor influencing the recurrence of the disease [27–30].

2. The Role of p53 in Tissue and Ocular Homeostasis

The p53 gene was first identified in 1979 as a 53 kDa protein associating with the
middle T (mt) antigen of the SV40 virus [31]. Initially, it was believed to be an oncogene,
due to its overexpression in SV40 transformed cells. Subsequent studies have shown it to
be a humoral target in SV40-induced cancer model mice, and it was found to be expressed
in 9% of patients with breast cancer [32,33]. In 1983, this protein was later named tumor
suppression protein p53 [34], and finally further evidence from murine model leukemia and
human leukemia cell line, wherein the gene encoding murine p53 protein was inactivated
or deleted, suggested that p53 might be involved in tumor suppression [35,36].

Many pathways contribute to the p53 activation, including intracellular and extra-
cellular stresses such as heat shock, UV light, inflammatory cytokines, oxidative stress,
hypoxia, and mitogenic oncogenes, as well as physiologically cellular metabolic pathways
observed during stem cell self-renewal and homeostasis. In response to these conditions,
p53 is activated thereby promoting cell cycle arrest, DNA repair, senescence, and activation
of the apoptotic pathway [37,38].

Under physiological conditions, the regulation of p53 depends on its post-translational
protein turnover, which is mainly regulated by the murine double minus 2 (MDM2). MDM2
is primarily located at the nuclear level, by its intrinsic nuclear localization signal (NLS), and
exerts the p53 nuclear export sequence to the cytoplasm, where proteasomal degradation
can occur [39,40]. MDM2 acts as an E3 ligase that binds to the NH2 terminal domain
of p53, targeting its ubiquitination and degradation by the 26S proteasome [41]. The E3
ubiquitin ligase activity of MDM2 relies on its interaction with the murine double minute X
(MDMX also known as MDM4), forming an MDM2/MDMX complex with stable E3 ligase
activity [42]. In mice models, targeted deletion of the MDM2 gene results in embryonic
lethality due to p53-mediated apoptosis [43]. Therefore, MDM2 becomes a critical factor
that transduces intrinsic and extrinsic signals to regulate the p53 effects in response to the
perturbation of homeostasis [44].

It is well-known that p53 plays a role as a growth inhibitory factor and is incompatible
with cancer cell proliferation. Indeed, p53 resides in the middle of the growth signals
where growth-promoting conditions engage Akt which then mediates the phosphoryla-
tion of MDMX with the consequent stabilization of MDM2 [45]. This also demonstrates
the pro-survival oncogenic activity of Akt and the cross talk between p53 and mTOR
pathways [46,47]. These latter observations are in line with the alteration of the mTOR/AKT
/PI3K pathway seen during diabetic retinopathy [48], the most common complication of
diabetes mellitus (DM), a chronic metabolic disease characterized by hyperglycemia [49,50].
These findings support a putative relationship between p53 and the mTOR/AKT/PI3K
pathway in the pathogenesis of diabetic retinopathy [48,51–53].

Activation of p53 relies on its intracellular increase via several mechanisms including
the downregulation of p53 degradation, migration to the mitochondria and nucleus, and
post-translational modification [54–57], which in turn suppress the interaction of p53 and
MDM2 [58]. Once activated and phosphorylated at Ser15, p53 oligomerizes and forms
tetramers that bind DNA to regulate transcription of target genes such as CDKN1A (p21,
CIP1, WAF1), GADD45A13, pro-apoptotic genes such as NFRSF10B/TRAIL-R2, PUMA,
and BAX, the pro-apoptotic Sept4/Apoptosis-related protein in the TGF-β signaling path-
way (ARTS) gene, and interestingly also MDM2 [59–66]. Thus, the p53–MDM2 interaction
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is involved in a negative feedback loop that is important for p53 expression [67]. In addition,
p21, which is a 21 kDa protein also known as WAF1, acts as a potent cyclin-dependent
kinase 4 (CdK4)/cyclin D1 complex inhibitor essential for inducing cell cycle arrest me-
diating the downregulation of G1/S genes [68] and halting the cell cycle in the S and G2
phases in response to DNA damage [69]. Alternatively, activation of CdK4/Cyclin D1 leads
to phosphorylation of the retinoblastoma protein (pRb) and cell cycle progression from
G1 to S [70]. Many genes are under the p53-p21-pRb signaling pathway whereby DNA
replication and repair processes are most prominently associated and in which p21 plays a
crucial role in regulating pRb phosphorylation [71]. The resulting loss of function of the
RB1 locus, following genetic mutation or deletion, leads to the activation of E2F family
proteins, uncontrolled cell proliferation, and initiation of retinoblastoma [72,73].

Along with the nuclear migration and the regulation of the cell cycle, p53 may also
promote the intrinsic apoptotic pathway, also known as mitochondrial apoptosis [63,74].
The intrinsic apoptotic pathway is driven by the Bcl-2 family of proteins, the activation
of which depends on the p53 activity. This family includes many anti-apoptotic proteins
(BCL-2, BCL-XL, BCL-W, MCL-1, and BFL-1/A1) and pro-apoptotic proteins (pore-formers
BAX, BAK, and BOK as well as BH3-only BAD, BID, BIK, BIM, BMF, HRK, NOXA, and
PUMA) [75]. The balance of these proteins determines the fate of the cell. The protein p53
exerts its apoptotic function through both direct and indirect protein–protein interactions.
Once it has migrated to the nucleus, p53 may act as transcriptional activator, upregulating
the expression of PUMA. PUMA acts as key a mediator of p53-driven apoptosis in two
ways [76]: it directly mediates the inhibition of anti-apoptotic BCL-2, the inhibitor of cell
death, thereby removing the direct the effect on other BCL-2 family protein, as well as
by engaging and activating the pro-apoptotic BAX and BAK proteins [77,78]. The homo-
oligomerization of BAX and BAK results in concomitant mitochondrial outer membrane
permeabilization (MOMP) and the release of pro-apoptotic cytochrome c located in the
mitochondrial membrane gap. Alternatively, p53 may mediate the mitochondrial release of
cytochrome c through direct interaction in the cytosol with BAX [79].

Cytochrome c can then activate a cascade of sequential activation of caspases by the
formation of a complex so-called “apoptosome”, which contains cytochrome c, Apaf-1, and
pro-caspase-9 [80]. Once caspase-9 is activated and associated with the apoptosome as a
holoenzyme [81], it cleaves and activates downstream effector caspases as caspase-3 and
caspase-7 [82]. Effector caspases are ultimately responsible for executing apoptosis by DNA
fragmentation, subsequent cell shrinkage, and membrane blebbing (Figure 1).

Hypoxic stress also induces the accumulation of the p53 protein, which mediates the
mitochondrial apoptotic pathway [83]. Conversely, most solid tumors contain regions with
inadequate oxygen supply where the hypoxia-inducible factor (HIF), an oxygen-sensitive
transcription factor, promotes tissue neovascularization aiding tumor cells to survive
in the hypoxic environment, thereby contributing tumor growth. HIF-1α induces the
protein phosphatase-1 nuclear-targeting subunit (PNUTS), which increases the proteasomal-
dependent degradation of MDM2, indirectly rescuing p53 from the MDM2-mediated
ubiquitination and leading it to p53-activation and mediated apoptosis [84]. In this cancer
model, further evidence suggests that MDM2 also regulates angiogenesis by increasing
the expression levels of transcription factors such as HIF-1α and vascular endothelial
growth factor (VEGF), thereby promoting tissue neovascularization [85]. Hypoxia is a
hallmark factor in the development of solid tumors as well as in the development of retinal
diseases, including diabetic retinopathy (DR), age-related macular degeneration (AMD),
and degeneration of retinal ganglion cells (RGCs) [48,86,87]. Among these, during retinal
ischemia, hypoxic conditions invoke both p53 gene and protein expression, which in turn
induce cell death [88,89]. This highlights that the pharmacological targeting of p53-related
pathways may provide additional therapeutic benefits also to non-cancer ocular disease.
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Figure 1. p53 molecular pathway and pharmacological activators. The drugs under investigation in
ocular pathologies are highlighted in bold.

p53 is expressed at high levels during normal embryogenesis and development, regu-
lating cell cycle and apoptosis [90], in the central nervous system (CNS) as well as other
anatomical compartments such as olfactory bulb and eye [91–96]. Studies in an animal
model showed a marked role of p53 during early embryonic ocular development, high-
lighting ocular abnormalities of hyaloid vasculature, vitreal opacities, retinal folding, and
nerve fiber hypoplasia in mice defective for p53, according to their genetic background [97].
It is noteworthy that p53 exhibits widespread expression in various regions of the brain
and the entire eye of adult mice. The expression is particularly high in the retina and optic
nerve, while also accounting for a substantial portion, up to 70%, of the overall promoter
activity expression in the cornea [98–100]. These observations are consistent with the high
cytoplasmic expression of p53 in both the corneal and conjunctival epithelium of a typical
murine eye, as well as the lack of its inhibitory modulator [98,101].

In this view, it is noteworthy that p53 is widely expressed in the normal eye, and it may
play a role during ocular malignancies. The eye is an anatomic site exposed to multiple
stressors such as microorganisms (viruses, bacteria, and protozoa), environments (UV
radiation leads to oxidative photodegradation), and degenerative disorders all of which led
to moderate-to-severe vision impairment and blindness [102–104]. Chronic inflammation
resulting from the infectious disease may lead to the initiation of cancer, hampering growth
regulators such as tumor suppressor p53 and affecting pathways of DNA repair with
an accumulation of DNA damage [105]. Among these microorganisms, viruses have the
capability to control physiological functions and pathways of host cells regulating growth
arrest and apoptosis. Several studies have shown that human papillomavirus (HPV) is
implicated in the development of pterygia and other related neoplasia of the ocular adnexa
by the expression of viral oncoprotein that suppresses p53 activity [106–108]. However,
Dushku et al. reported that HPV is not required as a cofactor in the development of pterygia
and limbal tumors [109].

Intense light exposure can cause photochemical injury to the retina, ultimately leading
to damage and apoptosis of retinal pigmented epithelial (RPE) cells, photoreceptors, and
the entire neural retina [110–112]. The role of p53 in light-induced ocular degeneration may
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be mixed. As shown in the p53-/- mice model exposed to the intense blue light, apoptosis
of photoreceptors may be both p53-independent [113,114], with the ocular degeneration
mainly driven by the accumulation of the lipofuscin in response of the RPE cells to the light,
and p53-dependent, with the upregulation of p53 and related genes leading to RPE cell
death [115–117]. On the other hand, blue light clearly induces apoptosis of retinal Müller
Cells [118].

Further, the eye is constantly subjected to oxidative stress due to its exposure to light,
its high metabolic activity, and the oxygen-rich environment. Among those, UV radiation is
the major source of reactive oxygen species, inducing a redox imbalance affecting various
structures of the eye including the cornea, sclera, lens, and retina [119]. Under normal
physiological conditions p53-induced processes cooperate to lower the ROS by promoting
glutathione-dependent ROS scavenging and stimulating the expression of genes that reduce
oxidative stress [120–122]. Consequently, oxidative stress also triggers oxidative DNA
damage and cellular senescence, upregulating the p16INk4a/Rb and p53/p21Cip1 pathway
and finally leading to cell cycle arrest [123]. In this light, oxidative stress and p53 become
key factors in the development of eye-related diseases.

Therefore, p53 is widely expressed in the healthy human eye and plays an important
role in the various function of eye tissues. Based on the relationship existing between
p53/MDM2 in the ocular tissues, it appears that a therapeutic intervention with drugs that
disrupt p53 inhibition by MDM2 and MDMX becomes interesting in the field of ocular
diseases and merits pursuit.

3. Pharmacological Activators of the p53 Pathway

Several strategies can be used to target MDM2/MDMX for cancer therapy [124]. The
currently available p53 cancer therapy relies on the interaction of p53 with its negative
regulator MDM2, which can, in turn, be inhibited by the MDM2–p53 binding inhibitors
including Nutlins. Nutlins (Nutlin-1, -2, and -3) are the first synthetic molecules developed
by Hoffmann-La Roche in Nutley, based on 1,2,4,5-tetrasubstituted 4,5-cis-imidazolines,
which interact with the p53-binding pocket of MDM2 and activate the p53 pathway, leading
to cell proliferation arrest and/or apoptosis [125–127]. Nutlins are selective non-genotoxic
inhibitors that do not induce the phosphorylation of p53 on Ser15 [65]. Among these,
Nutlin-3 is a synthetic small molecule cis-imidazoline analog that mimics highly con-
served hydrophobic amino acid residues including Phe19, Trp23, Leu22, and Leu26 within
the hydrophobic pocket of MDM2 [126]. Nutlins have been shown to induce cell cycle
arrest and cell death in a variety of solid tumors as well as in several types of hemato-
logical malignancies, viral infections, and cancer models with wild-type p53 including
osteosarcoma, prostate cancer, Kaposi’s sarcoma-associated herpesvirus lymphomas, and
neuroblastoma [128–134].

Since the discovery of Nutlins in 2004, several p53–MDM2 interaction inhibitors have
been investigated for use in patients with various solid tumors and hematological cancers,
as reported in Table 1.

These inhibitors include Idasanutlin (also known as RG7388 or RO5503781) [135,136],
RG7112 (also known as RO5045337) [137], Alrizomadlin (also known as APG-115) [138],
SAR405838 (also known as MI-77301) [139], MK-8242 [140], Kevetrin [141], ALRN-6924 [142],
Siremadlin (also known as HDM201) [143], Milademetan [144], CGM097 (also known as
NVP-CGM097) [145], and AMG-232 (also known as KRT-232) [146]. In addition to small
molecule inhibitors of MDM2, other compounds such as CEP-1347, originally developed
for the treatment of other diseases (i.e., Parkinson’s Disease), have shown effectiveness in
the activation of the p53 pathway [147]. An overview of mechanisms of actions, synonyms,
molecular formulas, and chemical structures of these various drugs under investigation is
shown in Table 2 and Figure 2.
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Table 1. p53–MDM2 interaction inhibitors under clinical trials.

Drug Conditions Phases, N Status NCT Number

Idasanutlin (RG7388, RO5503781)
PV II, 27 Terminated NCT03287245

PV, ET I, 13 Completed NCT02407080
AML I/II, 24 Terminated NCT03850535
AML I, 88 Completed NCT02670044
AML III, 447 Terminated NCT02545283

AML, Acute Lymphoblastic
Leukemia, Neuroblastoma I/II, 183 Recruiting NCT04029688

AML I, 122 Completed NCT01773408
NHL I/II, 25 Terminated NCT02624986
NHL I/II, 29 Terminated NCT03135262

Recurrent Plasma Cell Myeloma I/II, 33 Active, not recruiting NCT02633059
CC I/II, 94 Terminated NCT03555149
BC I/II, 12 Terminated NCT03566485
ST I, 8 Completed NCT02828930
ST I, 48 Completed NCT03362723
ST II, 770 Recruiting NCT04589845
GB I/II, 350 Recruiting NCT03158389
ST I, 99 Completed NCT01462175
ST I, 61 Completed NCT01901172

Nutlin (RO5045337, RG7112)
PV, ET n.a., 131 Completed NCT01970930
AML I, 43 Completed NCT01635296

Hematologic Cancers I, 116 Completed NCT00623870
AML I, 11 Completed NCT01677780

Sarcoma I, 23 Completed NCT01605526
Sarcoma I, 20 Completed NCT01143740

ST I, 76 Completed NCT01164033
ST I, 106 Completed NCT00559533

Alrizomadlin (APG-115)
T-Prolymphocytic Leukemia II, 36 Recruiting NCT04496349

AML, Chronic Myelomonocytic
Leukemia, MDS I/II, 69 Recruiting NCT04358393

AML, MDS I, 102 Recruiting NCT04275518
Lymphoma, ST I, 50 Completed NCT02935907

Neuroblastoma, ST I, 100 Recruiting NCT05701306
Liposarcoma, ST I/II, 92 Recruiting NCT04785196

Uveal Melanoma, Melanoma, ST I/II, 224 Recruiting NCT03611868
Salivary Gland Cancer I/II, 34 Recruiting NCT03781986

SAR405838 (MI-77301)
ST I, 26 Completed NCT01985191
ST I, 77 Completed NCT01636479

MK-8242
AML I, 26 Terminated NCT01451437

ST I, 48 Terminated NCT01463696
Kevetrin

Ovarian Cancer II, 2 Completed NCT03042702
ST I, 48 Completed NCT01664000

Sulanemadlin (ALRN-6924)
BC I, 6 Terminated NCT05622058

AML, MDS I, 55 Completed NCT02909972
BC, ST I, 35 Active, not recruiting NCT03725436

Retinoblastoma, Leukemia,
Lymphoma, Brain Tumor, ST I, 69 Active, not recruiting NCT03654716

Lymphoma, ST I/II, 149 Completed NCT02264613
Lung Cancer I, 35 Terminated NCT04022876
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Table 1. Cont.

Drug Conditions Phases, N Status NCT Number

Siremadlin (HDM201)
Hepatic Impairment I, 48 Recruiting NCT05599932

AML, Allogeneic Stem Cell Transplantation I/II, 38 Recruiting NCT05447663
Sarcoma I/II, 58 Recruiting NCT05180695

AML I, 2 Terminated NCT04496999
CC, ST I, 24 Recruiting NCT03714958

Liposarcoma I, 74 Completed NCT02343172
AML I/II, 56 Recruiting NCT05155709

ST I, 208 Completed NCT02143635
AML, MDS I, 52 Active, not recruiting NCT03940352

AML I/II, 0 Withdrawn NCT03760445
Uveal Melanoma I, 107 Terminated NCT02601378

Myelofibrosis I/II, 45 Active, not recruiting NCT04097821
ST II, 425 Recruiting NCT04116541

CC, Lung Cancer, BC, Renal Cell
Carcinoma I, 298 Completed NCT02890069

Milademetan (RAIN-32, DS-3032)
AML I, 14 Completed NCT03671564
AML I, 10 Terminated NCT03552029

AML, Myelodysplastic Syndrome I, 74 Terminated NCT02319369
AML I/II, 21 Completed NCT03634228

Lymphoma, ST I, 108 Completed NCT01877382
ST II, 65 Recruiting NCT05012397

Liposarcoma III, 160 Active, not recruiting NCT04979442

CGM097 (NVP-CGM097)
ST I, 51 Completed NCT01760525

Navtemadlin (AMG-232, KRT-232)
AML I/II, 18 Active, not recruiting NCT04669067
AML I, 48 Suspended NCT03041688
AML I, 36 Completed NCT02016729
AML I, 24 Suspended NCT04190550
AML I/II, 86 Recruiting NCT04113616

Chronic Myeloid Leukemia I/II, 109 Recruiting NCT04835584
Chronic Lymphocytic Leukemia, NHL I/II, 84 Recruiting NCT04502394

PM, PV, ET I/II, 116 Recruiting NCT04640532
PM, PV, ET II, 52 Recruiting NCT04878003
PM, PV, ET II/III, 385 Recruiting NCT03662126

Myelofibrosis I/II, 36 Recruiting NCT04485260
PV II, 20 Unknown status NCT03669965

Plasma Cell Myeloma I, 40 Recruiting NCT03031730
GB, Multiple Myeloma, ST I, 107 Completed NCT01723020

Small cell Lung Cancer II, 38 Recruiting NCT05027867
Non Small Lung Cancer I/II, 92 Not yet recruiting NCT05705466
Merkel Cell Carcinoma I/II, 115 Recruiting NCT03787602

GB, Gliosarcoma I, 86 Suspended NCT03107780
Melanoma, ST I, 31 Completed NCT02110355

Sarcoma I, 46 Active, not recruiting NCT03217266
Endometrial Cancer II/III, 268 Not yet recruiting NCT05797831

Abbreviations: AML, Acute Myeloid Leukemia; BC, Breast Cancer; CC, Colorectal Cancer; ET, Essential Throm-
bocythemia; GB, Glioblastoma; MDS, Myelodysplastic Syndromes; n.a., not available; NHL, Non-Hodgkin’s
Lymphoma; PV, Polycythemia Vera; PM, Primary Myelofibrosis. The drugs under investigation in ocular patholo-
gies are highlighted in bold and italics.
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Table 2. p53–MDM2 interaction inhibitors.

Drugs Synonyms Molecular
Formula

Molecular
Weight (g/mol) Mechanism of Action

Alrizomadlin APG-115 C34H38Cl2FN3O4 642.6 Blocks HDM2 interaction with p53
CGM097 NVP-CGM097 C38H47ClN4O4 659.3 Blocks HDM2 interaction with p53

Idasanutlin RG7388, RO5503781 C31H29Cl2F2N3O4 616.5 Blocks MDM2 interaction with p53

Kevetrin 4-Isothioureidobutyronitrile,
thioureidobutyronitrile C5H9N3S 143.21

Induce activation of p53; Alters the E3
ligase processivity of MDM2; Induces

p21 and PUMA

Milademetan RAIN-32, DS-3032 C30H34Cl2FN5O4 618.5

Blocks MDM2 interaction with p53;
Inhibits proteasome-mediated enzymatic

degradation of p53; Restores p53
transcriptional activity and signaling

MK-8242 C41H47F6N3O7S 839.9 Blocks MDM2 interaction with p53;
Restores p53 signaling

Navtemadlin AMG-232, KRT-232 C28H35Cl2NO5S 568.6 Blocks MDM2 interaction with p53;
Restores p53 transcriptional activity

RG7112 RO5045337 C38H48Cl2N4O4S 727.8

Blocks MDM2 interaction with p53;
Stabilizes the p53 protein; Induces p53
target genes such as CDKN1A, NOXA,

PUMA, Fas, and BAX

SAR405838 MI-77301 C29H34Cl2FN3O3 562.5

Blocks MDM2 interaction with p53;
Inhibits proteasome-mediated enzymatic

degradation of p53; Restores p53
transcriptional activity and signaling

Siremadlin HDM201 C26H24Cl2N6O4 555.4

Blocks MDM2 interaction with p53;
Inhibits proteasome-mediated enzymatic

degradation of p53; Restores p53
transcriptional activity and signaling

Sulanemadlin ALRN-6924 C95H140N20O23 1930.2 Blocks HDM2 interaction with p53

Abbreviations: BAX, Bcl-2-associated X protein; CDKN1A, Cyclin-Dependent Kinase Inhibitor 1A; Fas, FS7-
associated cell surface antigen; HDM2, human homolog of double minute 2; MDM2, mouse double minute
2 homolog; NOXA, Nuclear pOlypeptide eXpressed in Apoptosis; PUMA, p53 up-regulated modulator
of apoptosis.
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4. Role of p53 Therapy in Pterygium

Although previously classified as a chronic degenerative condition, pterygium is now
considered an uncontrolled cellular proliferation secondary to an abnormal expression of
p53 protein within the conjunctival epithelium [148]. Histopathologically, pterygium is
characterized by a focal fibrovascular proliferation of the conjunctival tissue with alter-
ations in limbal stem cells, squamous metaplasia of conjunctival epithelium, dissolution of
Bowman’s membrane, and excess proliferation of the stroma and extracellular matrix. Pri-
mary pterygium is locally invasive exhibiting tumorigenicity ranging from mild dysplasia
to carcinoma in situ.

While the pathogenesis of pterygia remains poorly understood, the interaction be-
tween UV exposure and p53 mutations may likely play a role in its development and
recurrence. Extensive data have demonstrated a dose-related relationship between chronic
ultraviolet radiation and pterygium formation [149]. Similar to those seen in other skin can-
cer, UV irradiation may induce DNA damage in the p53 tumor suppressor gene including
C to T transitions and CC to TT tandem mutations [150,151].

In a study by Spandidos et al., 60% of pterygia exhibited several DNA mutations in-
cluding loss of heterozygosity and microsatellite instability, which result in alterations of the
DNA repair pathways [152]. Through immunohistochemical analysis, mutant p53 protein
has been found to be highly expressed in the epithelium overlying the
pterygium [153–156]. Variability in p53 immunopositivity may reflect differences in race or
environmental exposure [157]. The abnormal expression of p53 likely represents a failure
in the regulation and control of the cell cycle caused by ultraviolet radiation, a well-known
risk factor for pterygium formation [158]. Coupled expression of p53 and Bcl-2 is thought
to result in a disruption of the transcriptional fidelity of p53 [159].

Surgical intervention is indicated in cases associated with high astigmatism, recurrent
inflammation, or visual loss secondary to the involvement of the visual axis. However,
following surgical excision, pterygium is associated with high recurrence rates ranging
from 25% to up to 70% [156]. Thus, similar to the treatment of neoplastic diseases, the
management of pterygium requires a multimodal approach including wide excision, an-
timetabolite chemotherapy, and irradiation. In order to overcome surgical infection, the
intraoperative use of mitomycin C is commonly used. However, it is associated with several
complications including necrotizing scleritis, scleral calcification, ulceration, damage to
the corneal epithelium and endothelium, corneal edema, iritis, hypotony by injury of the
ciliary body, glaucoma, and cataracts [160].

Activation of p53 by small-molecule antagonists of MDM2 can potentially induce
apoptosis and regression in pterygium. Specifically, Nutlin has been proposed as a poten-
tial pharmacological treatment for pterygium. Indeed, experiments based on primary cell
cultures, established from surgically excised specimens of primary pterygium, have demon-
strated that treatment with Nutlin results in a 39-fold reduction in cell proliferation with
dose-dependent inhibition of cell migration [161]. Additionally, no significant changes in
cell viability and migration were observed in normal conjunctival cells treated with Nutlin.
Further studies are required to evaluate the use of Nutlin and other MDM2 antagonists for
the non-surgical treatment of pterygium.

5. Role of p53 Therapy in Conjunctival Melanoma

Conjunctival malignant melanoma is a rare, potentially life-threatening ocular ma-
lignancy that arises from the basal cells of the conjunctival epithelium [162]. Recognized
risk factors for malignant conjunctival tumors include white race, older age, and exposure
to ultraviolet light. Malignant transformation of primary acquired melanosis and, less
commonly, conjunctival nevi has also been reported [163]. The presence of significant
atypia associated with primary acquired melanosis is a significant prognostic indicator for
malignant transformation.



Cancers 2023, 15, 3593 11 of 22

Around 75% of conjunctival melanomas are believed to arise from primary acquired
melanosis while approximately 5–10% arise from melanocytic nevi with atypia. In the
remaining 5–10%, conjunctival melanoma arises de novo [164].

The typical presentation of conjunctival melanoma is a focal nodular melanotic epibul-
bar mass with multiple prominent feeder vessels extending to and from the lesion most
commonly found at the limbus within the interpalpebral fissure. Some melanomas may
be hypomelanotic or even amelanotic. Conjunctival melanomas have a strong propen-
sity to metastasize to the preauricular or anterior cervical lymph nodes. Even with wide
surgical excision and adjuvant chemotherapy, the overall response to treatment is poor
with high rates of local recurrence and metastasis [165]. Adjuvant therapy may include
topical mitomycin, plaque-brachytherapy, or proton-beam therapy. In advanced cases with
lymphatic and hematogenous spread, enucleation and even orbital exenteration may be
required [166]. Hence, novel therapeutic targets need to be explored to improve prognosis.

Immunohistopathology studies have shown that p53 is rarely expressed in conjunctival
melanomas [167]. Although no clinical studies have been performed, the tumor suppressor
p53 represents a potential therapeutic target for conjunctival melanoma. In conjunctival
melanoma cell lines, treatment with Nutlin-3, a p53/MDM2 inhibitor, resulted in a time
and dose-dependent decrease in cell viability with an increase in both MDM2 and p53.
Compared to mitomycin C, stabilization of p53 and downregulation of IGF-1R were more
effectively induced by Nutlin-3 [168].

6. Role of p53 Therapy for Retinoblastoma

Retinoblastoma is the most common neoplasm affecting the eye in children under
five years of age [169]. The typical presenting signs include leukocoria and strabismus. As
the tumor advances, affected individuals may develop hyphema, neovascular glaucoma,
vitreous hemorrhage, or exudative retinal detachment. Extraocular tumor extension may
be associated with significant proptosis and orbital inflammation [170].

While retinoblastoma represents a potentially life-threatening condition, current treat-
ment modalities have significantly improved the prognosis, with disease-free survival rates
approaching up to 100% [171]. However, the visual prognosis of retinoblastoma remains
poor. In advanced disease, enucleation remains the standard of care. Although various
strategies for globe salvage have been developed as alternative interventions, the rate of
successful ocular salvage rate remains around 50–70%. Moreover, current chemotherapies
are associated with toxicity resulting in various side effects. With an improved understand-
ing of the tumorigenesis of retinoblastoma, novel adjuvant agents have been developed to
target specific components and pathways. In particular, treatment using molecular genetics
may individualize therapy based on specific tumor characteristics [172].

In retinoblastoma, various genetic changes result in tumor growth, proliferation,
and metastasis. Consistent with the Knudson “two-hit hypothesis”, the development of
retinoblastoma requires two mutational events in both alleles of the RB1 tumor suppression
gene located in the long arm of chromosome 13 (13q14) [173]. Germline mutations of the
RB1 gene result in dysfunctional pRb, which is a 928 amino acid phosphoprotein respon-
sible for the regulation of gene transcription. In normal cells, pRb regulates progression
through the cell cycle by interacting with the cellular E2F transcription factor and thereby
blocking the transition from G1 to S phase [174]. Like the p53 family, alterations in the pRb
function can result from multiple mechanisms including mutations in the RB1 gene itself
and altered function of the promoter sequence [175]. In a normally healthy cell, loss of RB1
activity activates the transcription of p14ARF which in turn inactivates MDM2, leading to
p53-mediated apoptosis and exit from the cell cycle [176,177]. On the other hand, MDM2
is an E3 ubiquitin ligase that mediates the interaction of Rb with the C8 subunit of the
20S proteasome, resulting in the ubiquitin-proteasome-mediated degradation of the RB1
tumor suppression protein [178]. MDM2-dependent degradation of Rb also increases DNA
methyltransferase DNMT3A activity which is associated with the silencing of tumor sup-
pressor genes [179]. Nonetheless, MDMX may inhibit RB protein degradation via MDM2
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although it may contribute to the pRb degradation in a MDM2-dependent manner [180].
The pharmacological inhibition of MDMX by CEP1347 in wild-type p53 retinoblastoma
cell lines, which overexpresses MDMX, leads to an increased p53 expression and activation
of the p53 pathway [147]. Notably, greater than 70% of pediatric retinoblastoma patients
demonstrate MDMX overexpression [181]. In this context, it is important to remember
that MDMX also acts as a negative regulator by binding and sequestering p53 [182]. Ele-
vated levels of MDM2 and MDMX proteins have been observed in certain cancers such as
melanoma, Ewing’s sarcoma, and colon carcinoma [44].

Therefore, in the light of the interplay between pRb/E2F, MDM2/MDMX, and p53,
the pharmacological modulator of p53-MDM2 interaction may be an attractive therapeutic
target for retinoblastoma. Currently Nutlin-3, Kevetrin, ALRN-6924, and CEP-1347 are
under investigation for their potential use in treating retinoblastoma.

Much attention has been given to the recently developed Nutlin class of MDM2
antagonists (Nutlin-1, -2, -3, and -3a) because of their non-genotoxic nature and potency in
activating p53 [126,183,184]. By blocking the interaction between p53 and MDM2, Nutlin-3
releases p53 from negative control resulting in p53 stabilization and accumulation only
in cells expressing wild-type p53 protein, thereby activating p53-dependent cell cycle
arrest and apoptosis [185]. Nutlin-3 has been shown to suppress the proliferation of
retinoblastoma cells both in vitro and in vivo. Co-immunoprecipitation experiments have
demonstrated that Nutlin-3 not only binds MDM2 but also MDMX, although with much
lower affinity [186]. In contrast to the p53-deficient retinoblastoma cell line (SJMRBL-8),
retinoblastoma cells (Weri1) with wild-type p53 and MDMX overexpression were sensitive
to Nutlin-3 [187]. In preclinical retinoblastoma models, the combined subconjunctival
injection of Nutlin-3 with a topoisomerase inhibitor, topotecan, induced a p53 response
that is similar to that induced by 5 Gy of ionizing radiation. The combined topotecan and
Nutlin-3 improve the therapeutic index via a synergistic antineoplastic activity resulting in
an 82-fold reduction in tumor burden without causing systemic or ocular adverse effects
associated with prolonged exposure to broad-spectrum chemotherapeutic drugs [188].

Recently, the United States Food and Drug Administration has granted a rare disease
designation to Kevetrin (thioureidobutyronitrile or 3-cyanopropyl carbamimidothioate
hydrochloride). Kevetrin induces cell cycle arrest and apoptosis by altering the E3 ligase
of MDM2, activating of the p53 gene, and increasing expression of p53-associated tumor
suppressor proteins such as p21. Kevetrin also has therapeutic potential in advanced solid
tumors of the ovary, lung, and breast. In a phase 1 clinical trial, patients with advanced
solid tumors treated with Kevetrin exhibited a greater than 10% increase in p21 expression
7 to 24 h after treatment (NCT01664000). Additionally, Kevetrin potentially targets the
altered Rb-E2F tumor suppressor pathway by downregulating E2F1, thus becoming a
useful candidate for the treatment of this pathology [141]. Currently, Kevetrin has secured
orphan drug status for ovarian cancer, pancreatic cancer, and retinoblastoma.

Moreover, ALRN-6924, a stabilized, cell-permeating peptide that inhibits both MDM2
and MDMX, is under investigation (NCT03654716) for use in retinoblastoma. ALRN-6924
has shown antitumor activity in phase I clinical trial for patients with lymphoma and solid
tumors [142,189]. The mechanism of action of ALRN-6924 involves the inhibition of the
interaction between p53 and MDM2 and MDMX, thereby inducing cell-cycle arrest or
apoptosis in TP53-wild-type (WT) tumors.

Initially developed for Parkinson’s disease, CEP-1347 is a pharmacological inhibitor
of MDMX that has also been shown to suppress the expression of MDM4 in retinoblastoma
cell lines [147,190].

While several of these therapeutic agents are still under investigation, the future of
retinoblastoma treatment will likely include these forms of anti-cancer therapy that target
specific molecular genetic changes and aspects of the tumor microenvironment.
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7. Role of p53 in Uveal Melanoma

Uveal melanoma is the most common primary intraocular tumor in adults. Approxi-
mately 85 percent of all ocular melanomas arise from the melanocytes of the uveal tract
of the eye including the iris, ciliary body, and choroid [191]. The most common site for
uveal melanoma is the choroid [192]. Although the development of uveal melanoma is
largely considered sporadic, several risk factors including fair skin, light eyes, propensity
to sunburn, and cutaneous nevi may predispose individuals to uveal melanoma [193].
Common symptoms of uveal melanoma include blurring of vision, photophobia, floaters,
and visual field defects.

Uveal melanoma is a potentially fatal metastatic cancer. In approximately 50% of
patients, uveal melanoma of the choroid and ciliary body spreads through the bloodstream
to the liver, lung, bone, and skin [194]. Historically, enucleation was the only treatment
option for uveal melanoma. Most patients are currently treated conservatively by means of
plaque brachytherapy using iodine 125 or ruthenium 106 as an applicator [195]. Alterna-
tively, patients undergo surgical resection, proton beam radiation therapy, or stereotactic
radiosurgery using a cyber knife, gamma knife, or linear accelerator [196]. However, uveal
melanoma is highly radioresistant and therefore requires treatment with high doses of
radiation [194]. Moreover, radiotherapy is associated with several adverse events including
radiation retinopathy, secondary glaucoma, and phthisis bulbi [197,198]. Even after suc-
cessful radiation therapy, over 50% of patients with uveal melanoma eventually develop
metastatic disease [199]. Thus, there has been increased interest in finding alternative
therapy which results in a high tumor control rate and an improved safety profile.

In uveal melanoma, UV radiation may indirectly cause DNA damage through cytosine
to thymine (C > T) transitions [200]. p53 serves as the main mediator of radiation-induced
DNA damage [201], suggesting that uveal melanoma may be associated with functional
defects that interfere with the p53 pathway [202], where gene mutations of TP53 are
rare [203].

Defects within various downstream components of the p53 pathway, such as MDM2,
could contribute to the relative radio resistance of uveal melanoma [204]. Analysis of the p53
pathway’s functionality has revealed defects within various downstream components, such
as p21 and BAX [202]. Although this finding shows defects in the p53 pathway, Decaulin
et al. have also demonstrated Bcl-2/XL/W and MDM2 co-inhibition as a promising target
for treatment of uveal melanoma [205].

Hence, the restoration of p53 function by inhibiting its interaction with an MDM2
homolog represents a promising therapeutic strategy for this type of cancer. Consequently,
the combination therapy with targeted agents and immunotherapy may further improve
treatment response.

Recently, the United States Food and Drug Administration granted fast-track sta-
tus to a phase 2 trial of the novel MDM2–p53 inhibitor alrizomadlin (APG-115), which
demonstrated preliminary antitumor activity also in uveal melanoma [138]. Alrizomadlin
is a selective, orally active, and potent spirooxindole-based small-molecule MDM2–p53
antagonist that destabilizes the MDM2–p53 complex and restores TP53 function [206].
By inhibiting the interaction between MDM2 and p53, alrizomadlin acts also as an im-
munomodulator and a regulator of a tumor’s immune escape mechanism, leading to
enhanced T-cell mediated antitumor immunity. In various tumor models, alrizomadlin is
a pharmacological p53 activator that has been found to promote an antitumor microenvi-
ronment, sensitize tumors that are resistant to PD-1 blockade, and enhance the efficacy of
a PD-1 blockade independent of p53 status [207]. The combination of alrizomadlin and
immune checkpoint PD-1 inhibitor enhances an antitumor response by reprogramming
and downregulating of immunosuppressive M2 macrophages.

An open-label, sequential assignment, phase 1/2 clinical trial (NCT03611868) has
evaluated alrizomadlin combined with pembrolizumab in patients with immunotherapy-
resistant advanced solid tumors including melanoma, non–small cell lung cancer, STK-11–
mutated lung adenocarcinoma, liposarcoma, urothelial carcinoma, and malignant periph-
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eral nerve sheath tumors. Patients received 150 mg of alrizomadlin orally once every other
day for two weeks, with one week off, and 200 mg of pembrolizumab was administered
intravenously over 30 min on Day 1 of a 21-day cycle. Based on the preliminary and interim
results of this study, patients in the uveal melanoma cohort who received alrizomadlin
achieved an overall response rate of 14.3% due to one partial responder and a disease
control rate of 71.4% with four cases of stable disease [208].

Interestingly, the p53 apoptosis effector related to PMP-22 (PERP) protein acts as
the transcriptional target of p53 and has been found to influence tumorigenesis in uveal
melanoma. Primarily localized in the plasma membrane, PERP is a tetraspan protein that
stabilizes p53 through modulation of the interaction between p53 and MDM2. While its
precise mechanism and function are currently unknown, PERP has been shown to induce
p53-dependent apoptosis without resulting in cell cycle arrest [209]. Increased expression
of PERP results in phosphorylation of the serine residues of p53, thereby disrupting the
p53/MDM2 interaction between and enhancing pro-apoptotic gene transcription [210].
Preclinical studies have shown that PERP is a critical molecular determinant of apoptosis
in primary uveal melanoma, where its downregulation is associated with aggressive
disease. Therefore, PERP also represents a potential target for exploitation in enhancing
p53 activity [210,211].

Currently, there are no approved targeted therapies for the treatment of early-stage
ocular melanoma. However, the evolution of our understanding of the tumorigenesis and
molecular characteristics of uveal melanoma has opened the possibility for
targeted therapies.

8. Conclusions

Ocular tumors are a range of eye disorders that can cause moderate-to-severe vision
loss, contributing to undesirable health outcomes. Degenerative disorders and causative
agents (such as environmental and microbial factors) can prompt eye tissue alterations
through the loss of intracellular processes that regulate cell cycle, DNA repair, and senes-
cence and activate apoptotic pathways. The findings reported in this review suggest that
the p53 pathway may be modulated in ocular disease and could represent a promising
therapeutic target for ocular tumors. Although biological effects using ex vivo models
have been demonstrated, only a few clinical trials of MDM2–p53 binding inhibitors for the
treatment of ocular diseases have been conducted. Considering the multitude of effects
driven by p53 activity in eye physiology, in vitro experimentation and clinical trials of
these molecules could be undertaken to exploit the effects of p53 pathway activators for
ocular disease treatment and develop novel targeted therapies for the management of
ocular tumors.
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