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Abstract 

Application of smart meters to the residential sector can help understanding where and when water is used, 

thus enabling utilities to achieve an efficient management of water distribution systems. Moreover, detailed 

information about domestic water use can be obtained by disaggregating smart meter data collected at the 

household inlet point. In this paper, a rule-based, automated methodology for disaggregating household 

water use data into end-uses is presented. The methodology is applicable to one-minute temporal resolution 

data, whose granularity is slightly lower than the one generally used in other methodologies, allowing it to 

be potentially applied to several contexts in the field of water use monitoring. The methodology was set up 

and validated with data collected for two months through intrusive monitoring of four households in 

Bologna (Italy) and represents a pioneering case in which disaggregation performance is directly assessed 



 

by the comparison against data collected at each end-use. The results obtained showed that the methodology 

enables household water use to be efficiently disaggregated even if detailed information about end-use 

features is not available.  

 

Introduction 

Due to population growth and urbanization it is necessary to supply a continuously increasing amount of 

freshwater in cities (Suero et al. 2012; Cosgrove and Loucks 2015). Where new development is not possible 

(given limitations in the availability of water resources) or economically infeasible, better management of 

the currently available water resources is the only way to cope with rising demand. This goal can be 

achieved through several measures (Gleick et al. 2003): new water-saving technologies; smarter water 

policies, regulations and incentives; proper water pricing; and information and education. However, in order 

to adequately and effectively manage water infrastructure, it is essential to accurately estimate water 

demand (Aksela and Aksela 2011) based on an understanding of how water resources are used across space 

and time (Sanchez et al. 2018). 

Water demand characterization typically starts from household water meter readings. In most cases, 

readings are still taken manually by water utility employees at a monthly or lower frequency for the purpose 

of recording consumption data for the billing system (Sønderlund et al. 2016). In recent years, several 

advantages have been brought by smart meters, which allow high-frequency data recording, logging and 

transmitting. Sparse, approximate water use information can hence be replaced by data obtained through 

an automated and nearly continuous reading system, which provides a more accurate and detailed overview 

of householders’ behaviour in terms of water consumption. 

Smart-metering technology can lead to multiple benefits for both water utilities and their customers. It 

enables water utilities to continuously monitor their customers’ water consumption without the need for 

manual readings, enabling them to gain a better understanding of how water is used at household level and 



 

detecting any anomalous consumption patterns (e.g. leaks) (Luciani et al. 2019). This, in turn, can help the 

development of improved demand forecasts (both short and long term) and hence improve the operation 

and long-term planning of water supply and distribution systems (Stewart et al. 2018). In addition, smart 

meters can be used by utilities to implement different tariff models for billing. At the same time, receiving 

information about the water consumed may increase householders’ awareness of their own (and other 

people’s) water use and is likely to encourage them to save water and money, as demonstrated by several 

empirical studies (e.g. Davies et al. 2014). 

Detailed knowledge about water consumption at the household level can also aid to water-saving 

technologies. For example, it can support the development of systems for greywater reuse (e.g. Dixon et al. 

1999), bringing benefits to both utilities and customers: on one hand, demand for water from the water 

mains could decrease, leading to a reduced network load and, on the other hand, water savings would 

translate into money savings for householders. However, the above improvements depend on information 

about individual end-uses. Where this information is not available (e.g. Agudelo-Vera et al. 2013), 

stochastic demand models (e.g. Blokker et al. 2010) can be used to simulate residential water demand; 

however, even these models need to be calibrated using realistic water end-use data. 

Information about water demand at the end-use level could be obtained through direct measurements via 

intrusive monitoring, i.e. by installing smart meters at all domestic end-uses. However, this is often time-

consuming and expensive. Besides, the installation of smart meters at the end-uses may sometimes be 

practically unfeasible, since some of these could have inaccessible inlet points (e.g. wall-mounted toilet 

tanks) and it could also be rejected by the householders because of the intrusiveness of the smart meters. 

Limits to directly collecting water use data at the domestic end-uses has led to the development of several 

non-intrusive techniques, which show the advantage of allowing the decomposition (i.e. disaggregation) of 

a signal measured at the household level (i.e. aggregate water use) into the individual contribution of each 

end-use (Cominola et al. 2017). Generally, these techniques are applied on flow (or volume) smart meter 

data collected at the household water inlet point, but techniques also exploiting other sensor data (e.g. 



 

pressure data) have been proposed as well (e.g. Kim et al. 2008; Froehlich et al. 2009, 2011; Srinivasan et 

al. 2011; Ellert et al. 2015; Vitter and Webber 2018). 

Focusing on techniques using only flow (or volume) smart meter data collected at the household water inlet 

point, these can be classified according to the temporal resolution of smart meter data (Clifford et al. 2018) 

distinguishing between data at a high temporal resolution (e.g. 1-10 seconds) and data at a medium temporal 

resolution (e.g. in the order of a minute). As suggested by Cominola et al. (2015) and Yang et al. (2018), in 

the case of smart meter data at a high temporal resolution (e.g. 1-10 seconds), two main approaches have 

been introduced: (1) decision tree algorithms and (2) machine learning algorithms. Decision tree 

algorithms include rule-based tools such as Trace Wizard® (DeOreo et al. 1996) and Identiflow® 

(Kowalski and Marshallsay 2003), which disaggregate flow data based on the observation of water use 

volume, duration and flow rate. Both tools provide results with an average classification accuracy of around 

70% (Cominola et al. 2015). However, Trace Wizard® parameters must be “fine-tuned” by the analyst to 

fit the end-uses (Cominola et al. 2015), requiring approximately one hour per week of data to complete 

flow trace analysis when working for the first time with data from a household (Mayer et al. 1999). On the 

other hand, Identiflow® performance can be significantly affected by water end-use physical features input 

into the software (Yang et al. 2018). Machine learning and data mining methods include tools such as the 

Autoflow® software (Nguyen et al. 2013, 2015; Yang et al. 2018), which is able to achieve considerably 

higher accuracy in end-use recognition (i.e. above 94%). However, such data-driven tools require consistent 

training datasets. Considering techniques using smart meter data collected at a medium temporal resolution 

(e.g. in the order of a minute), it is first of all worth noting that they can represent a more widely applicable 

tool than methods using high temporal resolution data, since in practice a water utility may not be in 

possession of data at such fine temporal resolution. In fact, even though several commercial smart meters 

with sampling frequency higher than one-minute (e.g. 15 sec) exist (e.g. Sensus iPerl®) data logging is 

often limited to one-minute frequency to not saturate the device’s memory and to increase the battery life. 

Again in this context (i.e. medium temporal resolution data), some machine learning methods (Cominola 



 

et al. 2017) or optimization algorithms (Piga et al. 2015) have been developed to disaggregate data into 

end-uses. However, as far as the authors are aware, the above approaches have been tested for 

disaggregating water consumption only by using a set of synthetic data. Finally, as demonstrated by 

Cominola et al. (2018), a complete end-use disaggregation cannot generally be performed efficiently in the 

case of water use data at lower resolutions, although some results in terms of indoor-outdoor disaggregation 

(Cole and Stewart 2013) can still be obtained. 

Given the above limitations in disaggregating water use data at medium or low temporal resolutions, the 

current research aimed at developing a new methodology which would enable water end-use disaggregation 

to be performed for granular smart meter data, i.e. data at one-minute resolution. Specifically, a rule-based, 

automated disaggregation methodology is presented here; it allows the disaggregation of water use data 

collected at one-minute frequency at the household inlet point. Like rule-based tools such as Trace Wizard® 

and Identiflow®, the methodology developed was based on deterministic rules relying on water use 

physical parameters (i.e. duration, flow rate, consumed volume, etc.) to perform water end-use 

disaggregation. However, accurate results were achieved with data whose resolution was close to that of 

the most widespread commercial smart meters (i.e. one minute instead of 1-10 seconds), thus making the 

methodology potentially applicable to several contexts in the field of water demand monitoring. Moreover, 

unlike in the case of some of the above-mentioned tools, performance was not dependent on the experience 

of the analyst. The methodology was applied to a real two-month water use dataset collected both at the 

inlet point of four households and at their end-use points. Although the sample of monitored households 

was limited, it is worth noting that, as far as the authors are aware, this represented the first case reported 

in the literature in which disaggregation performance was directly assessed through a comparison against 

water use data collected at each domestic end-use point. 

In the following paragraphs, the phases of the monitoring operation for the collection of smart meter data 

and the new, automated and rule-based methodology for water end-use disaggregation are presented. The 

methodology developed was then tested and validated with different groups of parameter values and its 



 

performance was assessed by means of metrics defined in similar studies. Finally, the outcomes provided 

by the application of the automated methodology and the related key findings, as well as limitations and 

future work recommendations, are discussed by way of conclusion. 

 

Methods 

Data Collection 

In order to develop and test the disaggregation methodology, a preliminary water use monitoring operation 

was conducted to obtain: (1) household aggregate water use time series and (2) household end-use time 

series (i.e. water use time series for each domestic end-use). The monitoring took place in early 2018, in 

four households (denoted here as H1, H2, H3 and H4) located in the city of Bologna, Italy. Although they 

represent a relatively small sample of water use data (coming from the same geographic region as well), 

the selected households were different in terms of inhabitants, consumption and end-uses, as reported in 

Table 1. Therefore, and as will be demonstrated later on in the paper, the limited data acquired still presented 

a (sufficiently) complex challenge when it came to the task of automated water use disaggregation. 

The intrusive sub-metering phase was initiated by installing smart meters at the domestic water inlet point 

and at each end-use point. All the (mechanical) smart meters, provided by Itron®, were equipped with an 

optical reader and a radio transmitter (EquaScan wMIU-RF, making use of the Wireless M-Bus 

communication protocol). Data collected were transmitted to a receiver kit, logged at one-minute resolution 

(as cumulative volume information) and sent to a digital platform once a day by means of the domestic Wi-

Fi connection. Based on the available technology, and taking into account the intrusiveness of the end-use 

monitoring system and users’ readiness to cooperate, it was possible to record water use data for 8 weeks 

(i.e. 56 days, from 1 January to 25 February 2018) at one-minute resolution and with litre accuracy. 

In addition, surveys and interviews of householders were conducted, in order to collect information both 

about the householders themselves and their habits (e.g. daily use frequency for each end-use) and 



 

characteristics of the end-uses (e.g. manufacturer and model). However, apart from data about the 

householders’ age and number (see Table 1), the information collected via surveys was omitted from 

consideration in this study. This was done intentionally, in order to develop a methodology which can be 

used even when such information is not available.  

Although the households were different in terms of the number and characteristics of the end-uses, it was 

possible to distinguish six main end-use categories: dishwasher, kitchen sink, washing machine, shower, 

bathroom taps (i.e. washbasin and bidet) and toilet. Some of the selected households also included outdoor 

end-uses (e.g. irrigation systems or outdoor sinks) but the lack of use thereof during the monitored period 

did not enable them to be considered in the study. 

A preliminary phase was aimed at detecting smart meter data gaps, i.e. periods of time when data were not 

recorded due to disturbances affecting the equipment (e.g. blackouts) or data transmission (e.g. Wi-Fi 

connection drops). All water use data for each of the four households were analysed by using Microsoft 

Excel® software, in order to detect data gaps. In detail, households H1 and H2 showed no data gaps across 

the monitoring period (i.e. 56/56 days of available data), whereas the other two revealed some gaps 

(specifically, households H3 and H4 included 53/56 and 42/56 days of available data, respectively). 

Moreover, the water use data collected was checked for consistency to avoid considering long periods 

without any water use in the analysed households (e.g. due to occupants’ absence). This was done using a 

threshold time period of 3 days without any water use. The aggregate volume of water used was calculated 

for each day and for each household and no periods without water use longer than 3 days were observed in 

any household. 

In addition, the following aspects regarding the available dataset were observed: (1) per capita daily water 

use for each household in the monitoring period (see Table 1) was in line with – and actually slightly lower 

than – the Bologna average domestic water use for the year 2017, i.e. 154 L/person/day (Comune di Bologna 

2019); (2) the households were not affected by leakages, since the volume of water used in every household 

over the monitored period equalled the sum of domestic end-use volumes; (3) only 9.4% of the monitored 



 

water uses were combined uses (i.e. simultaneous water uses) and the majority of those (i.e. 6.1% out of 

9.4%) were a combined use of a toilet and a tap. 

The aggregate water use and end-use time series for households H1, H2 and H3 were split into two subsets 

as follows: (1) a calibration dataset (for the development and calibration of the automated methodology) 

including water use time series from 1 to 31 January 2018 and (2) a validation dataset (for testing the 

methodology) including water use time series from 1 to 25 February 2018. Household H4 end-use time 

series, although available, were not considered for the development of the methodology, i.e. the method 

was not calibrated on the basis of household H4 information. Hence, the above-mentioned household was 

kept exclusively as a test sample and used for validation of the methodology. 

 

Disaggregation Methodology 

The methodology for automated water use disaggregation is based on a set of rules. This methodology 

detects, disaggregates and classifies individual water uses one end-use category at a time. Specifically, the 

disaggregation of the aggregate water use time series collected at the domestic water inlet point is performed 

by means of a set of functions. Such functions are applied in a specific order, starting with functions aimed 

at detecting end-uses that, given their very nature, are generally more regular in terms of water use, and 

ending with the most irregular ones. 

The main structure of the automated methodology is shown in Fig. 1. First, the use of electronic appliances 

is investigated through the dishwasher function (𝐹_𝐷𝑊) and washing machine function (𝐹_𝑊𝑀). Then, 

shower uses are assessed through the shower function (𝐹_𝑆). Lastly, toilet and tap uses (which are generally 

less recognisable at one-minute resolution or often overlap in time with other uses) are detected and 

classified by means of the tap and toilet function (𝐹_𝑇𝑇). On completion of the process, the water use time 

series for each end-use category is available. 



 

From an operational standpoint, the automated methodology for water use disaggregation was developed 

by using MATLAB® programming software and consists of a main code, where the Microsoft Excel® 

datasheet including the collected aggregate water use is loaded and the functions for water use 

disaggregation are applied in turn. The developed MATLAB® code is available online (more details are 

provided in the Data Availability section), whereas underlying ideas and main characteristics of the 

functions for water use disaggregation and their parameters are described in the following paragraphs. 

 Dishwasher. Dishwasher water uses (cycles) are typically discontinuous and include long periods 

of time during which the appliance works without taking water from the network. Such intervals 

are separated by short periods of continuous inflow (withdrawals). Cycles can be different from 

each other based on the overall volume of water used and duration. However, they all include a 

group of water withdrawals whose number, volume, duration and time of occurrence depend on 

appliance manufacturer, model and selected program. The function for dishwasher water use 

detection and classification (𝐹_𝐷𝑊) makes use of a moving window to first identify all the possible 

daily water withdrawals, according to their typical duration and volume. Then, a group of possible 

withdrawals is classified as a dishwasher cycle if the number of possible withdrawals and the time 

of occurrence of each of them fall within the acceptance parameter values (and if, additionally, the 

number of already detected dishwasher uses is lower than a given daily threshold). Overlapping or 

excessively long cycles are not allowed. The function flow chart is shown in Fig. S1. 

 Washing machine. Washing machine water use is similar to dishwasher water use (i.e. based on a 

number of water inflows) but withdrawal volumes and durations are considerably different. 

Therefore, the function for washing machine use detection and classification (𝐹_𝑊𝑀) is the same 

as the one for dishwashers (𝐹_𝐷𝑊) but with different parameter values. As in the case of the 

dishwasher function, it is assumed that two (or more) simultaneous washing machine water uses 

cannot occur. 



 

 Shower.  Shower uses are harder to detect by means of rule-based functions, because of the way in 

which people use showers: some might be used to having a shower of near constant intensity (i.e. 

water flow) whilst the others may be used to turning the water on and off, sometimes several times 

during shower use. Given this fact, the function for shower use detection (𝐹_𝑆) includes a moving 

window approach aimed at first identifying every possible shower use. Deterministic rules are then 

applied to remove all those uses whose features are not compatible with shower use in terms of 

duration, volume of water used and shape of the water use trace. A maximum flow interruption 

lasting 𝑝ௌ
௠௔௫ is allowed during shower water use (more details about the value of this parameter 

are provided in the following sub-sections). The function flow chart is shown in Fig. S2. 

 Tap and toilet. On one hand, toilet uses are fairly homogeneous in terms of volume of water used 

and duration, although sometimes dual-flush systems are included. On the other hand, kitchen sink 

and bathroom tap use is much more heterogeneous, since the duration and volume of water used 

are totally dependent on householders’ habits and needs. However, both toilet and tap uses are hard 

to detect and disaggregate at one-minute resolution because such uses are often simultaneous (e.g. 

use of toilet and consequent handwashing in a same minute). The above difficulty led to the 

development of a single function (𝐹_𝑇𝑇) which disaggregates between toilet uses, tap uses and 

combined uses (i.e. toilet and tap uses). The main rules of the above function are as follows: (1) 

water uses are classified as short duration (one-minute) or longer duration (multiple-minute) uses 

and analysed in turn; (2) a maximum number of toilet flushes is imposed for longer duration 

(multiple-minute) uses; (3) disaggregation between kitchen sink and bathroom tap uses is based on 

the time of the day (i.e. water uses occurring at meal times are more likely to be associated with a 

kitchen sink). The function flow chart is shown in Fig. S3. 

An illustrative application of the methodology is included in Fig. 2 and discussed below. More specifically, 

the aggregate water use shown in Fig. 2 was taken from the water use time series of household H1. The 

disaggregation parameters given here by way of example refer specifically to household H1 and were 



 

obtained by analysing the end-use time series of this household for the calibration period. Additional details 

can be found in the sub-section Parameters and Their Calibration. The main steps of the automated 

methodology are as follows: 

a) Aggregate water use and disaggregation parameter values are loaded (Fig. 2a). 

b) All possible daily dishwasher withdrawals are selected, i.e. water uses whose duration is in the range 

𝑑஽ௐ
௠௜௡ − 𝑑஽ௐ

௠௔௫ (e.g. 2 − 5 𝑚𝑖𝑛) and whose volume is in the range 𝑉஽ௐ
௠௜௡ − 𝑉஽ௐ

௠௔௫ (e.g. 2 − 5 𝐿), without 

interruptions of flow. If some of the above uses are in a number (𝑥஽ௐ
௠௜௡ − 𝑥஽ௐ

௠௔௫) (e.g. 3 − 5) and time 

intervals between them are in the allowed range 𝑝஽ௐ
௠௜௡ − 𝑝஽ௐ

௠௔௫ (e.g. 10 − 110 𝑚𝑖𝑛), such uses would 

be classified as a dishwasher cycle. In this example, due to the lack of those conditions, no dishwasher 

cycles are found (Fig. 2b). 

c) All possible daily washing machine withdrawals are selected, i.e. water uses whose duration is in the 

range 𝑑ௐெ
௠௜௡ − 𝑑ௐெ

௠௔௫ (e.g. 2 − 4 𝑚𝑖𝑛) and whose volume is in the range 𝑉ௐெ
௠௜௡ − 𝑉ௐெ

௠௔௫ (e.g. 8 − 15 𝐿), 

without interruptions of flow. Then, the number of possible withdrawals and time intervals between 

them are analysed. In this example, some of the selected withdrawals are in the range 𝑥ௐெ
௠௜௡ − 𝑥ௐெ

௠௔௫ 

(e.g. 3 − 5) and time intervals between them are in the allowed range 𝑝ௐெ
௠௜௡ − 𝑝ௐெ

௠௔௫ (e.g. 15 − 95 𝑚𝑖𝑛), 

so the above water uses are classified as a washing machine cycle and removed from the aggregate 

trace (Fig. 2c). 

d) All daily shower uses are selected, i.e. water uses whose duration is in the range 𝐷ௌ
௠௜௡ − 𝐷ௌ

௠௔௫ (e.g. 

8 − 16 𝑚𝑖𝑛) and whose volume of water used is in range 𝑉ௌ
௠௜௡ − 𝑉ௌ

௠௔௫ (e.g. 20 − 90 𝐿), with a 

maximum flow interruption of 𝑝ௌ
௠௔௫ (e.g. 3 𝑚𝑖𝑛). The above uses are then removed from the aggregate 

trace (Fig. 2d). 

e) Residual water uses are analysed in turn. Each use is classified as toilet use, tap use (kitchen sink, 

bathroom taps) or combined use (toilet and tap uses) based on: (1) the duration of the selected water 

use; (2) toilet parameter values, i.e. half-flush volume (𝑉 ு
௠௜௡ − 𝑉 ு

௠௔௫) (e.g. 3 − 4 𝐿), and full-flush 



 

volume (𝑉 ி
௠௜௡ − 𝑉 ி

௠௔௫) (e.g. 8 − 9 𝐿); (3) the number of already occurring toilet flushes in the selected 

water use; and (4) time of day. All the residual water uses are classified and removed from the aggregate 

trace, as shown in Fig. 2e. 

 

Parameters and their Calibration 

The automated methodology requires a set of parameters to be defined in order to disaggregate water use. 

These parameters can be classified into two main groups: (1) parameters related to householders’ habits, 

i.e. the time of the day when the householders are likely to have lunch or dinner and (2) parameters related 

to end-use features, i.e. volume of water used, duration, time of day, etc. Parameters are listed and described 

in Table 2. Clearly, the values of each parameter vary from one household to another because of different 

habits or end-use features. 

Accordingly, the value for each parameter can be defined in a: (1) specific and (2) general way. Specific 

parameter values relate to individual household features and can be obtained through knowledge about the 

householders’ habits and the characteristics of the end-uses concerned. Obtaining such information often 

requires direct, intrusive monitoring, single household investigations, a detailed specification of electric 

appliances, and interaction with the householders (e.g. surveys), which may be infeasible given both cost 

and time required. General parameter values describe the average end-use features and householders’ habits 

in terms of water use. Such values can be obtained based on common-sense observations or by referring to 

information available in the literature.  

The automated methodology developed was applied considering both specific and general parameter 

values. Specific values were defined for each household by considering individual end-use time series. In 

particular, specific parameter values were defined by considering only households H1, H2 and H3 over the 

calibration period (i.e. using data from 1 to 31 January 2018). In addition, a set of general parameter values 

valid for all the households (i.e. H1, H2, H3 and H4) was defined by grouping the previously obtained sets 



 

of specific parameter values and enlarging their ranges of a few units (e.g. 1L for volumes, 1min for 

durations, etc.), in order to obtain a dataset covering as many cases as possible. All the general values of 

water use parameters are shown in Table 2. 

The automated methodology was thus tested by using the validation part of the water use dataset first 

considering households H1, H2 and H3 with a) specific parameter values and b) with general parameter 

values and then c) the methodology with general parameter values was applied to the test household (i.e. 

H4) with the aim of demonstrating its effectiveness. To summarise, three analyses were conducted: 

a) Automated disaggregation (with specific parameter values) of households H1, H2 and H3 water 

use; 

b) Automated disaggregation (with general parameter values) of households H1, H2 and H3 water 

use; 

c) Automated disaggregation (with general parameter values) of test household H4 water use; 

 

Evaluation of Disaggregation Methodology Performance 

The results of the automated methodology for water use disaggregation were assessed through a comparison 

against observed data. Thus, the collected water use data at the end-use level for each of the selected 

households were used as a benchmark against which to evaluate the performance of disaggregation. 

Following the approach adopted by Cominola et al. (2018), two evaluation metrics were used: (1) Water 

Contribution Accuracy (𝑊𝐶𝐴), involving an assessment of end-use accuracy at the level of aggregate end-

use combination; and (2) Normalized Root-Mean-Square Error (𝑁𝑅𝑀𝑆𝐸), which quantifies the over-and 

under-estimation of water use time series. The above-mentioned metrics were applied for each end-use 𝑘 

of household 𝑖, as shown in (1) and (2): 
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In the above equations, 𝑇 is the length of the monitoring period, 𝑉௜,௧ is the aggregate water use in household 

𝑖 at time 𝑡, 𝑣௜,௧
௞  is the observed water use of appliance 𝑘 in household 𝑖 at time 𝑡 and 𝑣ො௜,௧

௞  is the water use 

disaggregated and classified as use of appliance 𝑘 in household 𝑖 at time 𝑡. As reported by Cominola et al. 

(2018), since 𝑊𝐶𝐴 is an aggregate metric which could lead to inaccuracies especially in the case of 

occasionally-used appliances, a combined analysis of 𝑊𝐶𝐴 and other less aggregated metrics (such as 

𝑁𝑅𝑀𝑆𝐸) was useful to achieve a better interpretation of the results. 

The overall performance of the methodology with respect to a group of households was assessed through 

the Appliance Contribution Accuracy (𝐴𝐶𝐴) and Appliance Root-Mean-Square Error (𝐴𝑅𝑀𝑆𝐸), 

formulated as the average of the metrics 𝑊𝐶𝐴௜
௞ and 𝑁𝑅𝑀𝑆𝐸௜

௞ across all household 𝑖 and end-uses 𝑘. Given 

the number 𝑛 of monitored households and the number 𝑚௜ of end-uses in each household 𝑖, the above 

metrics were as expressed in (3) and (4): 
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It is worth noting that, given the nature of equations (1) and (3), the metrics 𝑊𝐶𝐴 and 𝐴𝐶𝐴 can take on a 

value between 0 and 1 with an accurate end-use disaggregation resulting in 𝑊𝐶𝐴 and 𝐴𝐶𝐴 values close to 



 

1. Given this fact, these metrics will hereinafter be expressed as a percentage. In contrast, the metrics 

𝑁𝑅𝑀𝑆𝐸 and 𝐴𝑅𝑀𝑆𝐸 can take on any positive value and an accurate end-use disaggregation would lead to 

values close to 0. 

 

Results and Discussion 

The results obtained for the validation period are presented in Figs. 3–4. Specifically, Fig. 3 includes results 

in terms of 𝑊𝐶𝐴 and 𝐴𝐶𝐴. As can be seen from this figure, the automated methodology had an 𝐴𝐶𝐴 of at 

least 90%, which was noteworthy given the difficulties and complexities associated with the disaggregation 

of water end-use in households. Furthermore, between case 𝑎 and case 𝑏, the most accurate case of 

automated disaggregation (𝐴𝐶𝐴 = 95.7%) was the one related to the use of specific parameter values (i.e. 

case 𝑎), which are typically more representative of domestic end-uses features than general ones. In fact, a 

lower accuracy (𝐴𝐶𝐴 = 90.4%) was achieved through automated disaggregation with general parameter 

values (i.e. case 𝑏). However, the relatively small loss of accuracy resulting from the use of general rather 

than specific parameter values may be acceptable given considerable time and effort needed to obtain 

specific parameter values for each household through, for example, surveys or intrusive monitoring.  

The automated disaggregation performance was also in line with that of the method in the study proposed 

by Cominola et al. (2018) for water end-use disaggregation with one-minute resolution. Indeed, in view of 

the fact that the case study and the disaggregation dataset considered by Cominola et al. (2018) were 

different from those here used (the cited authors used synthetically-generated water use time series for a 

sample of 500 households and for 1-year period), it can in any case be observed that the 𝐴𝐶𝐴 reported by 

Cominola et. al (2018) was around 89%. That is in line, or slightly lower than the 𝐴𝐶𝐴 obtained by applying 

the methodology proposed here to the collected dataset.  

Regarding end-uses (as shown in Fig. 3), in the case of automated disaggregation with specific parameter 

values (case 𝑎), the metric 𝑊𝐶𝐴 was generally the highest for electrical appliances and showers, the WCA 



 

in these cases being always above 97%. Lower WCA values were obtained for toilet and tap water uses, 

but this is comprehensible given that, at one-minute resolution, tap uses often overlap in time with other 

uses – especially toilet use – and are rather heterogeneous. A slight decrease in 𝑊𝐶𝐴 occurred in the case 

of automated disaggregation with general parameter values (case 𝑏), especially for electrical appliances, 

showers and bathroom taps, being 𝑊𝐶𝐴 around 94% for washing machines, around 90% for dishwashers 

and showers and around 85% for bathroom taps.  

Fig. 4 depicts the automated disaggregation results in terms of 𝑁𝑅𝑀𝑆𝐸 and 𝐴𝑅𝑀𝑆𝐸. The use of such 

metrics confirmed what had been observed with the metrics 𝑊𝐶𝐴 and 𝐴𝐶𝐴: in fact, as can be seen from 

Fig. 4, the lowest error was still related to automated disaggregation with specific parameter values (case 

𝑎;  𝐴𝑅𝑀𝑆𝐸 = 0.036), while increasing in the case of general parameter values (case 𝑏;  𝐴𝑅𝑀𝑆𝐸 = 0.045). 

Therefore, it was again shown that general parameter values lead to worse results than specific parameter 

values, but with a rather limited decrease in performance. The results in terms of ARMSE were likewise 

consistent with the ones reported by Cominola et al. (2018) for disaggregation at one-minute resolution 

(𝐴𝑅𝑀𝑆𝐸 = 0.04). 

Regarding 𝑁𝑅𝑀𝑆𝐸 for different end-uses, the automated disaggregation methodology generally resulted in 

the lowest errors for shower and washing machine uses, as expected. On the other hand, contrary to what 

one might expect, a rather large 𝑁𝑅𝑀𝑆𝐸 was related to dishwasher uses, when both specific (𝑁𝑅𝑀𝑆𝐸 =

0.044) and general (𝑁𝑅𝑀𝑆𝐸 = 0.076) parameter values were considered. However, this result might be 

explained by the limited range of dishwasher flow rates (i.e. from 1 to 3𝐿/𝑚𝑖𝑛) appearing in the 

denominator of NRMSE equation (2), which influenced its value. 

Figs. 3–4 also include the results of case c where the automated disaggregation methodology using general 

parameter values was applied to test household H4. As can be seen from these two figures, the automated 

disaggregation results for this case were similar to the ones obtained for the automated disaggregation of 

households H1, H2, H3 with general values (case 𝑏): the 𝑊𝐶𝐴 ranged between 93.8% (toilet) and 99.7% 

(shower) with an average rate (𝐴𝐶𝐴) of 95.7%, while the 𝑁𝑅𝑀𝑆𝐸 was between 0.041 (shower) and 0.077 



 

(dishwasher) with an average rate (𝐴𝑅𝑀𝑆𝐸) of 0.055. Thus, the results for case d were in line with the 

results of the other two cases and those reported in the literature despite the fact that household H4 end-use 

traces were not taken into account when calibrating the automated methodology parameters. 

 

Limitations of the Study 

The application of the automated methodology for water end-use disaggregation to the available water use 

dataset led to noteworthy results, i.e. an 𝐴𝐶𝐴 generally higher than 90% and 𝑁𝑅𝑀𝑆𝐸 typically around 

0.05, as shown in the previous section. Despite this, the methodology developed has some limitations.  

Firstly, the method was calibrated and validated by considering only four households in the same 

geographical area and, even though the households differed in terms of end-use features, the automated 

disaggregation methodology calibration and validation were nonetheless limited by the small dataset. In 

addition, the sample of selected households included a limited number of inhabitants (i.e. 1 to 3, as shown 

in Table 1), which decreased the likelihood of overlapping water uses. Accordingly, different results in 

terms of accuracy may be obtained when the automated methodology for water end-use disaggregation is 

applied to households including a larger number of inhabitants. 

Furthermore, the automated methodology was calibrated and validated over a rather limited (winter) period, 

i.e. 8 weeks. This was mainly due to the fact that the calibration and validation data were smart meter data, 

i.e. data collected at each end-use through a complex and time-consuming intrusive monitoring procedure. 

The method’s application to real water use data led to promising outcomes, but it would be of interest to 

extend the aforementioned water use dataset in order to test the methodology on new households and for 

longer periods. Moreover, the availability of a larger dataset may enable new rules to be defined for the 

disaggregation of some end-uses that were not included in the current study (such as leakages) or prior rules 

to be adapted to different and more heterogeneous behaviours in terms of water use (such as unusually 

frequent or simultaneous use of washing machines). Extending the dataset would also allow the 



 

methodology to be calibrated and verified in other seasons (when different habits and outdoor end-uses are 

likely to be observed).  

Furthermore, as noted, the above-described version of the methodology was able to detect only combined 

uses of toilet and taps. Such combined water uses were the most common in the available dataset, but they 

are generally not the only ones (e.g. combined uses of other appliances could also be observed). As a result, 

the methodology did not allow to cover all possible water use combinations and, though the authors are 

aware that the task of disaggregating water uses may be efficiently addressed only using higher resolution 

data than the ones used here, future development of the proposed methodology will focus on this aspect.  

 

Conclusions 

This paper has introduced a novel, automated and rule-based methodology for water end-use disaggregation 

of smart meter data at one-minute resolution. The methodology was applied to a sample of four households 

in Italy where detailed water use data were collected at the inlet point and at each end-use over a period of 

two months. The performance of the method was evaluated by using metrics already introduced in the 

literature (Cominola et al. 2018) which quantify the success of detection by comparing disaggregated and 

observed water uses. 

Based on the results obtained, the proposed methodology was able to perform the task of household water 

end-use disaggregation both effectively and efficiently. The effectiveness was evidenced in the metrics 

values achieved (𝐴𝐶𝐴 generally higher than 90% and 𝑁𝑅𝑀𝑆𝐸 typically around 0.05, also when using a set 

of general parameter values based on typical water use and its most common features). Moreover, the results 

were consistent with the ones obtained in similar studies making use of synthetic data with one-minute 

resolution (i.e. Cominola et al. 2018). The efficiency of the proposed methodology was evidenced by the 

fact that it took only a few seconds to disaggregate one month of one-minute resolution aggregate water 

use data for a single household.  



 

In addition – and consistently with the aim of the present study – the methodology as developed was able 

to perform end-use disaggregation of water use data collected at one-minute resolution, i.e. at a temporal 

resolution that is closer to the resolutions of commercial smart water meters than the ones used in most 

other existing methods. In fact, most approaches described in the literature made use of data collected at a 

higher resolution (e.g. one-second or slightly lower), which may not be at a water utility’s disposal. Thus, 

the methodology proposed here could be potentially extended to broader and further contexts in the field 

of residential demand monitoring.  

The automated methodology is also transparent and easy to implement and use, since it includes 

deterministic rules based on the analysis of physical features for each individual water use (i.e. duration, 

volume, shape of the flow trace, daily period). No black box models such as stochastic models or machine 

learning methods were used here. 

In conclusion, future studies will mainly focus on enlarging the water use dataset and addressing the 

challenge of overlapping water uses, in order to test the methodology on a larger sample of households and 

make the method more versatile.  

 

Data availability 

The data and code generated and used during the study are available in an online repository in accordance 

with funder data retention policies. Specifically, anonymized water use data and the developed code are 

available on Zenodo repository (Mazzoni et al. 2020). 

 

Supplemental Data 

Figs. S1–S3 are available online in the ASCE Library (ascelibrary.org). 
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Tables 
 
Table 1. Main Features of Monitored Households  

Household Type 
N      
(person) 

Age 
(years) 

T 
(day) 

Q 
(L/person/day) 

End-uses 

Indoor Outdoor 

H1 Flat 1 40–45 56/56 108 6 - 

H2 Flat 1 40–45 56/56 83 7 - 

H3 Flat 2 50–60 53/56 121 12 3 

H4 Flat 3 30–65a 42/56 122 12 - 

Note: N = number of inhabitants; Age = inhabitants age range; T = period of available water use data; Q = 
per capita water consumption. 
aTwo inhabitants of age 60–65, one inhabitant of age 25–30. 
 
 
 
Table 2. Automated Methodology Parameters 

Category Parameter description Symbol General values 

Habits Lunch time 𝑡௅
௠௜௡ − 𝑡௅

௠௔௫  11: 00 − 14: 00  

Dinner time  𝑡஽
௠௜௡ − 𝑡஽

௠௔௫  19: 00 − 22: 00  

Dishwasher Time of day of dishwasher use 𝑡஽ௐ
௠௜௡ − 𝑡஽ௐ

௠௔௫  0: 00 − 24: 00  

Daily maximum frequency of use 𝑛஽ௐ
௠௔௫  3 

Maximum cycle duration 𝐷஽ௐ
௠௔௫  180 𝑚𝑖𝑛  

Number of water withdrawals per cycle 𝑥஽ௐ
௠௜௡ − 𝑥஽ௐ

௠௔௫   3 − 5  

Single withdrawal volume 𝑉஽ௐ
௠௜௡ − 𝑉஽ௐ

௠௔௫   1 − 5 𝐿  

Single withdrawal duration 𝑑஽ௐ
௠௜௡ − 𝑑஽ௐ

௠௔௫   1 − 5 𝑚𝑖𝑛  

Time from a withdrawal to the next 𝑝஽ௐ
௠௜௡ − 𝑝஽ௐ

௠௔௫  10 − 120 𝑚𝑖𝑛  

Washing 
machine 

Time of day of washing machine use 𝑡ௐெ
௠௜௡ − 𝑡ௐெ

௠௔௫  0: 00 − 24: 00  

Daily maximum frequency of use 𝑛ௐெ
௠௔௫  5 

Maximum cycle duration 𝐷ௐெ
௠௔௫  180 𝑚𝑖𝑛  

Number of water withdrawals per cycle 𝑥ௐெ
௠௜௡ − 𝑥ௐெ

௠௔௫  3 − 5  

Single withdrawal volume 𝑉ௐெ
௠௜௡ − 𝑉ௐெ

௠௔௫  5 − 20 𝐿  

Single withdrawal duration 𝑑ௐெ
௠௜௡ − 𝑑ௐெ

௠௔௫  1 − 5 𝑚𝑖𝑛  

Time from a withdrawal to the next 𝑝ௐெ
௠௜௡ − 𝑝ௐெ

௠௔௫  10 − 120 𝑚𝑖𝑛  

Shower Time of day of shower use  𝑡ௌ
௠௜௡ − 𝑡ௌ

௠௔௫  0: 00 − 24: 00  



 

Volume 𝑉ௌ
௠௜௡ − 𝑉ௌ

௠௔௫  20 − 150 𝐿  

Duration 𝐷ௌ
௠௜௡ − 𝐷ௌ

௠௔௫  3 − 30 𝑚𝑖𝑛  

Maximum duration of flow interruption 
during a shower 

𝑝ௌ
௠௔௫  3 𝑚𝑖𝑛  

 Toilet Maximum number of flushes per multiple-
minute water use 

𝑥்
௠௔௫  3  

Full-flush volume 𝑉 ி
௠௜௡ − 𝑉 ி

௠௔௫  4 − 12 𝐿  

Half-flush volume (if present) 𝑉 ு
௠௜௡ − 𝑉 ு

௠௔௫  3 𝐿  

Kitchen sink Manual dishwashing or meal preparation 
water use duration 

𝐷௄ௌ
௠௜௡ − 𝐷௄ௌ

௠௔௫  2 − 15 𝑚𝑖𝑛  

 
 
 
 
Figures and figure caption list 
 
 
 

 
 
Fig. 1. Structure of the automated methodology for water end-use disaggregation. 
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Fig. 2. Example of application of the automated methodology. Each panel (a – e) in the figure 
corresponds with steps a – e described in the Methods section (Disaggregation Methodology sub-section) 
 
 
 
 

 
Fig. 3. Disaggregation results in terms of Water Contribution Accuracy (𝑊𝐶𝐴) and Appliance 
Contribution Accuracy (𝐴𝐶𝐴). 
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Fig. 4. Disaggregation results in terms of Normalized Root-Mean-Square Error (𝑁𝑅𝑀𝑆𝐸) and Appliance 
Root-Mean-Square Error (𝐴𝑅𝑀𝑆𝐸). 
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Fig. S1. Function for dishwasher use detection (𝐹_𝐷𝑊) flow chart. 
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Fig. S2. Function for shower use detection (𝐹_𝑆) flow chart. 
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Fig. S3. Function for toilet and tap use detection (𝐹_𝑇𝑇) flow chart. 
 
 

YES

is volume multiple of 𝑉 ி
௠௜

(or 𝑉 ு
௠௜௡)?

water use split

TOILET AND TAP USE SEARCH
each residual water use is analysed in turn

is duration between 𝐷௄ௌ
௠௜௡ and  𝐷௄ௌ

௠௔௫ ?

NOYES

is time of day between 𝑡௅
௠௜௡and 𝑡௅

௠௔௫? 
(or is time of day between 𝑡஽

௠௜ and 𝑡஽
௠௔௫)?

NOYES

each residual water use is analysed in turn

RESIDUAL WATER USE ANALYSIS

ONE-MINUTE             
WATER USE

MULTIPLE-MINUTE             
WATER USE

is volume < 𝑉 ி
௠௜௡?                  

(𝑉 ு
௠௜ for dual-flush)

is volume < 𝑉 ி
௠௜௡?                  

(𝑉 ு
௠௜௡ for dual-flush)

YES NO YES NO

is time of 
day 

between 
𝑡௅

௠௜௡and 
𝑡௅

௠௔௫ (or 
between 
𝑡஽

௠௜௡and 
𝑡஽

௠௔ )?

NOYES   

TOILETTAP

is the number of possible 
toilet flushes ≥ 𝑥்

௠௔ ?

NO

water use split

TOILETTAP

TOILET                              
USE

BATHROOM TAP                
USE

KITCHEN SINK
USE


