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Deep‑learning survival analysis 
for patients with calcific aortic 
valve disease undergoing valve 
replacement
Parvin Mohammadyari 1,8, Francesco Vieceli Dalla Sega 2,8, Francesca Fortini 2,8, 
Giada Minghini 3, Paola Rizzo 2,4,5*, Paolo Cimaglia 2, Elisa Mikus 2, Elena Tremoli 2, 
Gianluca Campo 4,6, Enrico Calore 1, Sebastiano Fabio Schifano 1,3* & Cristian Zambelli 7

Calcification of the aortic valve (CAVDS) is a major cause of aortic stenosis (AS) leading to loss of valve 
function which requires the substitution by surgical aortic valve replacement (SAVR) or transcatheter 
aortic valve intervention (TAVI). These procedures are associated with high post-intervention 
mortality, then the corresponding risk assessment is relevant from a clinical standpoint. This study 
compares the traditional Cox Proportional Hazard (CPH) against Machine Learning (ML) based 
methods, such as Deep Learning Survival (DeepSurv) and Random Survival Forest (RSF), to identify 
variables able to estimate the risk of death one year after the intervention, in patients undergoing 
either to SAVR or TAVI. We found that with all three approaches the combination of six variables, 
named albumin, age, BMI, glucose, hypertension, and clonal hemopoiesis of indeterminate potential 
(CHIP), allows for predicting mortality with a c-index of approximately 80% . Importantly, we found 
that the ML models have a better prediction capability, making them as effective for statistical 
analysis in medicine as most state-of-the-art approaches, with the additional advantage that they 
may expose non-linear relationships. This study aims to improve the early identification of patients at 
higher risk of death, who could then benefit from a more appropriate therapeutic intervention.

Cardiovascular diseases are the leading cause of death in adults1. Among them, calcific aortic valve disease 
(CAVD) leading to a degeneration of valve tissue with a significant impact on hemodynamic changes  2,3, namely 
aortic stenosis (AS) exhibits an age-dependent increase in prevalence, affecting approximately 5% of the popula-
tion at 65 years of age1.

Aortic valve calcification involves molecular and cellular mechanisms similar to those of atherosclerosis but 
several clinical studies have shown that the management of those factors, such as dyslipidemia and hyperten-
sion, are not effective in slowing the progression of AS delaying the time of intervention4. Among genetic fac-
tors, Notch1 mutations5 or polymorphisms in the LPA (lipoprotein A) gene are involved in the calcification of 
the aortic valve3,6,7 and lipoprotein(a) lowering therapies have been giving promising results in these patients4.

As of today, the relevant factors in the progression of CAVD are still mostly unknown6–9, there are no standard 
treatments to slow the progression of valve disease and, thus, AS patients need to undergo surgical aortic valve 
replacement (SAVR) or transcatheter aortic valve implementation (TAVI)10 when the stenosis becomes severe 
and symptomatic. Nevertheless, following SAVR, life expectancy is lower than in the general population due to 
an increased relative risk of cardiovascular death11 , and one-third to half of patients that underwent TAVI either 
died or received no symptomatic benefit from the procedure at 1 year  12. In fact, some studies compared the 
risks related to the SAVR and TAVI for short, intermediate, and long-term follow-up using meta-analysis, and 
have shown no significant differences in all-cause mortality 13,14. Therefore, from our perspective, the patients 
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undergoing either the SAVR or the TAVI procedure both share the same severe cause of disease, namely the AS, 
and for this reason, to the end of our study, we include both in the same population for life expectancy.

The identification of factors able to predict mortality after valve substitution could be used to develop more 
tailored treatments to increase survival in patients undergoing SAVR or TAVI or to identify AS patients in which 
the intervention could be futile. We15 and other16 have reported that clonal hematopoiesis of indeterminate poten-
tial (CHIP), defined as the presence of mutated hematopoietic cell clones in patients without any hematological 
disease17, is linked to an increase of all-cause mortality 1 year after SAVR or TAVI. How the presence of CHIP 
contributes, together with other factors, to the mortality in AS patients, is currently unknown. Of interest, CHIP 
is a condition that has been recently linked to a 40% increase in the risk of cardiovascular disease and death, 
independently from other risk factors18.

To gain further insights into specific pathology, medical researchers usually deal with large amounts of 
complex and intertwined data, including patients clinical and genetic features, interventions, hospitalizations, 
and follow-ups. In this context, survival analysis is a key activity in investigating the link between individual 
characteristics or medical procedures and clinical endpoints. Usually, well-known statistics methods such as the 
Kaplan–Meier (KM) and the Cox Proportional Hazard (CPH), are exploited under the assumption that features 
are independent and there are multiple linear relationships among them19. However, these assumptions are not 
necessarily true when numerous and complex bio-factors are concerned, and especially when the results depend 
on a low number of observations19.

With the advent of Artificial Intelligence in many scientific fields, recently also Machine Learning (ML) 
methods came into play to process and find relationships in biomedical data, and to improve survival analysis 
predictions20–22. Different survival ML models such as Deep Learning-based (DeepSurv) and Random Survival 
Forest (RSF) have been developed and used to evaluate the importance of prognostic variables in predicting 
patients life expectancy. For example, in20,21, authors extensively rely on such methods to predict cancer recur-
rence after diagnosis or intervention. In particular, Kim et al.21 compared the performance of CPH, DeepSurv, 
and RSF on survival prediction of 255 patients who received surgical treatment for oral cancer. The results of 
their study suggested that DeepSurv features higher prediction accuracy, allowing this method to guide clinicians 
in better diagnostic and treatment planning.

One of the main limitations of survival analysis for medical studies concerns data mining since data collection 
on a large scale is a complex, costly, and time-consuming process23,24. Nonetheless, the accuracy of ML methods 
is tightly bound to the size of the data set and the number of variables involved. In23, authors pointed out that in 
medical research most of the disease modeling and prediction activities address limited-size data, which con-
trasts the necessity of ML methods to work on large training data. Their approach was based on using multiple 
model runs and surrogate data analysis. Despite this seems to mitigate the issue, one must bear in mind that the 
hyper-parameters employed by the ML methods play a substantial role in the performance and reliability of the 
ML models, and their finding and tuning is a difficult task uncorrelated with the data-set size25. Hyper-parameter 
search methods typically have limited production-strength implementations or do not target scalability on com-
modity hardware, therefore requesting the use of High-Performance Computing (HPC) platforms26.

In this contribution, the focus of our study is on the survival analysis for small-size data sets related to aortic 
valve calcification. Considering the importance of follow-up for cardiac disease patients and the long necessary 
follow-up time for CAVD cases, the pivotal goal of such early analysis is to achieve a certain level of how specific 
biomarkers affect survival probability in a short time. Moreover, investigating whether implementing more 
advanced statistical methods such as DeepSurv and RSF is capable of providing insights that the traditional 
methods such as KM and CPH can not.

To reach the goal, we took the benefit of both the conventional statistical analysis and ML approaches and 
the use of HPC machines. Three different approaches, namely CPH, DeepSurv, and RSF prediction models 
are exploited, assessing the accuracy of predictions in running them. Also, we discuss how we have tuned the 
hyper-parameters used in the ML methods we have used that play an important role in the accuracy predictions 
of the models.

Methods
In this section, we present the characteristics of our data set used for the survival analysis and the motivations 
that have led to exploring ML methods along with their optimization in terms of feature selection and hyper-
parameter tuning.

Dataset characteristics and statistics at a glance
The work here presented is part of a clinical study named CHARADE to evaluate the association between CHIP 
and CAVD in the elderly. Medical records of patients were collected at Maria Cecilia Hospital of Cotignola 
(Italy). The population under study consists of 165 patients undergoing valve replacement for calcific severe 
aortic stenosis in the time frame from March 2018 to March 2020. Of these, 111 patients had cardiac surgery 
(SAVR) while 54 patients had TAVI. The study was approved by the Ethics Committee of “Romagna” and was 
conducted according to the Declaration of Helsinki, and all patients gave written informed consent. The study 
had a non-interventional retrospective design and all data were analyzed anonymously. The data set analyzed is 
available from the corresponding authors on motivated request. The data set consists of a relatively large amount 
of clinical parameters retrieved. Survival was assessed at 12 ± 2 months follow-up after valve replacement. The 
study variables were downsized from the original dataset to reduce the redundancy, dimension, and complexity 
of the database. The procedure was performed by the clinician who was in charge of data acquisition, yielding 
a data set featuring 18 independent variables (death event occurrence, follow-up time, and other 16 clinical 
features). The selected clinical features are: age, sex, body mass index (BMI), AVR treatment type, smoking 
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status, hypertension presence, atrial fibrillation presence, CHIP, hemoglobin, glucose, Crockoft-gault estimated 
glomerular filtration rate (eGFR), albumin, low density lipoprotein (LDL) cholesterol, left ventricle ejection 
fraction (LV-EF), mean aortic gradient, and atherosclerotic cardiovascular disease (ASCVD). This latter variable 
also includes patients with peripheral artery disease (PAD) and with coronary artery disease such as prior MI, 
prior CABG, atherosclerotic coronary disease, and prior PCI.

The data-set variables were then split into categorical and numerical to perform statistical analysis using the 
Scipy-1.4.1 library27. For categorical variables, the χ2-test with Yates correction has been used. This correction 
for continuity has been necessary since the event population has been found between 40 and 200. The χ2 distri-
bution to interpret Pearson χ2 statistic requires the assumption that the discrete probability of observed bino-
mial frequencies can be approximated by the continuous chi-squared distribution. This assumption is not quite 
correct and introduces some errors calling for the correction proposed in Yates work28. Concerning numerical 
variables, the Shapiro-Wilk test with a 95% confidence level was performed first to assess the normality of their 
distribution29. The null hypothesis of such a statistical test is that the variable under investigation is normally dis-
tributed. If the p-value is less than a chosen confidence level (indicated as α ), then the null hypothesis is rejected 
and there is evidence that the variable under consideration is not normally distributed. The Student’s t-test30 
has been applied in the case of normally distributed variables and the Kruskal–Wallis test for the non-normally 
distributed variables31. The former test is a statistical hypothesis test used to test whether the difference between 
the responses of two groups is statistically significant or not. The latter test is a non-parametric method for test-
ing whether samples originate from the same distribution. It is used for comparing two or more independent 
samples of equal or different sample sizes.

Table 1 reports the statistical characteristics of the variables in the dataset including the p-value resulting 
from the tests. Categorical variables are reported with the entity count (i.e., the number of patients having that 
clinical condition). Numerical variables that are normally distributed are reported with their mean and standard 
deviation values, whereas for the non-normally distributed variables their median and their interquartile range 
were reported. A preliminary analysis of the data set shows that the categorical variables are mostly unbalanced 
and that the numerical features are non-normally distributed except for Age and BMI. To explain better the 
variables unbalancing in the data set, the normalized value of the data distribution of four variables is shown in 
Supplementary Material S1. The statistical significance of the variables is reported only for CHIP, hemoglobin, 
and albumin since their p-value is less than 0.05. Despite the Age variable in the data set having a p-value of 
0.054, we can assume that it would play a role in the survival analysis, therefore we include it in the count of 
statistically significant variables.

Statistical frameworks for survival analysis
The Kaplan–Meier (KM) estimator is frequently used in survival analysis as a non-parametric method to predict 
the patients’ lifespan after diagnosis or receiving a treatment for a certain amount of time32. Such an estimator 
has been discussed as a primary tool for survival analysis. The KM statistic Ŝ(t) is defined as

Table 1.   Statistical characteristics of the full data-set. Results are reported as mean ± standard deviation for 
normally distributed variables and median and inter-quartile range for non-normally distributed. The entity 
count and percentage are reported for categorical variables, and statistically significant values (p-value < 0.05) 
are in bold.

Features Total subjects p-value

AVR type (TAVI) 54 (33%) 0.262

Sex (male) 80 (48%) 0.147

Smoking 45 (27%) 0.200

Hypertension 136 (73%) 0.154

ASCVD 33 (20%) 0.958

Atrial fibrillation 42 (25%) 0.96

CHIP 49 (30%) 0.025

Age 79.15 ± 5.19 0.054

BMI 26.989 ± 3.853 0.093

Hemoglobin 12.832 (11.800–13.800) 0.048

Glucose 111.62 (92.000–119.000) 0.260

eGFR 61.58 (46.000–74.000) 0.302

Albumin 4.03 (3.800–4.300) 0.002

LDL 89.69 (71.800–103.200) 0.202

LV-EF (%) 59.20 (54.233–66.670) 0.189

Mean aortic gradient 45.93 (39.750–51.000) 0.938

Death (event) 22 (13%) –

Time (days) 88 (373–448) –
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where di and ni are the number of death events at time t ascribed to a certain disease and the number of subjects 
at risk just before time t, respectively. When multiple populations of subjects or different subsets of the study 
group are considered, the KM estimate is complemented by the logrank test32. Such a tool is used in survival 
analysis to test the null hypothesis that there is no difference between the populations in the probability of an 
event (here a death) at any time point. The analysis is based on the times of event occurrence. By considering two 
groups of patients on which we want to compare their hazard functions, let 1, . . . ,M be the event times observed 
for each group. Let N1,m and N2,m be the number of patients not yet featuring an event (death) or being censored 
at the start of period m in the two groups, respectively. Let O1,m and O2,m be the number of observed events in 
the two groups at time m, respectively. Define Nm = N1,m + N2,m and Om = O1,m + O2,m . The null hypothesis 
to be tested is that both groups have the same hazard function so that H0 : h1(t) = h2(t) . For all m = 1, . . . ,M 
we can compute the logrank statistics as:

where i = 1, 2 , E(i, m) and V(i, m) are the expected value and the variance of the hypergeometric distribution 
with parameters Nm , Ni,m , and Om . A one-sided level α test will reject the null hypothesis when Z > zα , given 
that zα represents the upper α-quantile of the standard normal distribution. The logrank test is based on the same 
assumptions as the KM survival curve, namely, that censoring is unrelated to prognosis, the survival probabilities 
are the same for subjects recruited early and late in the study, and the events happened at the times specified33. 
We remind that using the logrank test cannot provide an estimate of the size of the difference between the groups 
or a confidence interval, but is rather used as a pure test of significance. In this work, we performed the KM 
estimate and the logrank test on our data set by using the Lifelines-0.26.4 library34.

Semi-parametric models are an alternative to non-parametric ones in medical studies20,21,35. Their predic-
tion capability is based on the reproducibility of the hazard function, which has been defined as a cumulative 
function that expresses the probability that the death event will occur within a specific amount of time. The Cox 
Proportional Hazard (CPH) is a standard semi-parametric model to evaluate the effects of prognostic parameters 
on the hazard function individually (i.e., univariate) or by combining different factors (i.e., multivariate). This 
model assumes the linear relationship between the factors, also defined as covariates. The proportional hazard 
is calculated as

where �0(t) is the time-variant baseline hazard function, and the exponential argument is the log-partial hazard 
which represents a linear expressed risk function. Thus, the number of covariates affects both the baseline and 
the partial hazard through specific weight factors. In this work, we performed the CPH model training and fit-
ting on our dataset by using the Lifelines-0.26.4 library34. The Kaplan–Meier estimator is particularly useful for 
estimating the survival function over time, providing a non-parametric way to analyze the probability of an event 
occurring at or before a given time point. This method is used to estimate the survival probability over time in the 
presence of censored data. Censored data occurs when individuals are lost to follow-up or the event of interest 
has not yet occurred by the end of the study. The Kaplan–Meier estimator calculates the probability of survival or 
median survival time at different time points. It is commonly used for analyzing short-term survival data, such 
as within a few years. Its disadvantage is that its effectiveness decreases with the increase of the censoring over 
time. On the other hand, the Cox proportional hazards regression model is a flexible tool for survival analysis, 
and it can be applied to study the impact of covariates on the hazard of an event preferably for long-term survival 
scenarios, provided that the proportional hazards assumption is met or appropriately addressed. However, we 
want to report that there are other studies in the literature that devise Cox regression for short-term analysis 
given that proper statistical assumptions are met. Examples are the works in36,37. In our study, we are limited by 
the fact that we are dealing with elderly patients and this affects the follow-up time rendering it difficult also to 
discriminate between early and late mortality. However, the goal of this study is not to provide a detailed gold 
standard for CAVD analysis, but rather to prove the applicability of Machine and Deep Learning methods in this 
scenario compared to the standard Cox regression model. In the future, we will try to address all the limitations 
of this study by working on a longer follow-up time for early and late mortality split.

Despite the importance of CPH in survival analysis, the literature recently highlighted the limits of such mod-
eling strategy in fitting complex survival models20,21,24,38. To this extent, approaches based on machine learning 
and deep learning algorithms started to gain momentum. The basic idea is to analyze all of the variables together 
to reproduce a dynamic interaction between the frequency of the event happening and variables simultaneously24. 
DeepSurv is a non-linear Cox proportional hazards method based on a neural network20,38,39 whose implementa-
tion is provided in the PySurvival-0.1.2 library. Here the hazard function in a simplified way can be written as

where ψ establishing a non-linear risk function among the covariates40.

(1)Ŝ(t) =
∏

ti<t

ni − di

ni

(2)Zi =

∑

M

m=1

(

Oi,m − Ei,m

)

√

∑

M

m=1 Vi,m

(3)h(t|x) = �0(t)exp

(

n
∑

i=1
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)

(4)h(t, �xi) = �0(t)ψ( �xi)
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Another popular ML method used for data mining and survival analysis in medical scenarios is a decision 
tree approach called Random Survival Forest (RSF). The survival model developed in38 was used in this study, 
implemented by the PySurvival-0.1.2 python library. The algorithm grows the survival trees after randomly split-
ting the original database into the same size samples, setting aside the out-of-bag samples. The average cumula-
tive hazard function (CHF) of all decision trees is used to calculate the overall CHF while the prediction error is 
calculated only using the out-of-bag samples40. The difference between the out-of-bag error rate calculated for 
the baseline and the permuted model’s performance is defined as variable importance (VIMP). The VIMP has 
to be mentioned as an important advantage of RSF over other survival models since it provides scalar quantities 
to measure the variable influence on the model’s prediction accuracy and ranking41,42.

Feature selection
In advance of the survival analysis performed with different methods, variable or feature ranking must be per-
formed to select the optimal number of covariates in the models. In this regard, in this work, we have employed 
three different techniques based on the assessment of Pearson’s correlation coefficient: the principal component 
analysis (PCA), and the logrank test associated with a univariate CPH preliminary analysis.

Pearson’s correlation coefficient (indicated as ρ ) is used to find the redundant variables in the data set by 
understanding potential linear relationships between them22. In this study, we have used the PySurvival-0.1.2 
library40 with the function for correlation matrix calculation. We consider a suspect or strong linear correlation 
between features if ρ ≥ |0.5| , and in this case, the single variables are removed accordingly from the data set.

PCA is then devised to search for strong patterns or data clusters43. The goal of the algorithm is to allocate a 
loading score to the features that contribute to each principal component (PC) and that possibly explains most 
of the variance in the dataset44,45. More specifically, the principal components of a collection of points in a real 
coordinate space are a sequence of p unit vectors, where the i − th vector is the direction of a line that best fits the 
data while being orthogonal to the first i − 1 vectors. Many studies use the first two principal components to plot 
the data in two dimensions and to visually identify clusters of closely related data points46. The PCA algorithms 
of the decomposition module in the Scikit-learn-1.0.147 library were used. The loading scores were calculated 
for the most important PCs (i.e., PC1 to PC4).

In state-of-the-art survival analysis, the feature selection process also includes the Kaplan–Meier approach, 
the logrank test, and the assessment of the results provided by univariate and multivariate CPH methods. To 
evaluate the effects of the 16 features individually on the event of early death over the follow-up time, the uni-
variate CPH linear regression analysis and logrank test were performed with the Lifelines-0.26.4 library34. Here, 
the single variables with a p-value less than 0.05 will be considered as an effective feature for survival prediction. 
The multivariate CPH was then performed with the same library by adding one covariate at a time to death and 
follow-up time by which the baseline hazard is calculated. Therefore, to look for the effects of different grouped 
features, all possible combinations were tested and only those passing the logrank test (p-value < 0.05) were saved. 
A total number of 214420 feature combinations were found. The results were sorted according to the concord-
ance index (Harrell’s c-index48). The best results of each combination with the same feature number were chosen 
and labeled as a candidate for ML methods application and further optimization. The results of this process are 
reported in the Supplementary Material S1.

Hyperparameters tuning for ML methods
The ML-based models require a training procedure and a subsequent validation process. Both steps rely on 
optimal hyperparameter settings to increase the c-index and enhance the survival prediction accuracy. An 
additional challenge is to avoid over- and under-fitting risks typical of ML models dealing with small datasets 
like that we are using in this work.

Figure 1 shows the steps performed for finding the best hyperparameters, training the models, and search-
ing for the best combination of features giving the highest c-index. The search starts with a set including the 3 
features with the highest c-index and increasingly adds one feature at a time and retrains the models. The best 
combinations are listed in the Supplementary Material S1. To find the best values for the hyper-parameters of 
the ML models we have used the Python library package Optuna49 (version 2.7.0) for each feature combination. 
Optuna allows for an automatic search of the hyperparameters values space trying to find the best combination 
that optimizes a user-defined objective function, applying several search strategies, and pruning those combina-
tions that do not improve the objective function, avoiding in this way making exhaustive searches. Despite this, 
the search process still results very expensively in terms of computing time, and for this reason, we have run 
the Optuna step on the COKA cluster installed at the University of Ferrara (Italy), a set of High-Performance 
Computing (HPC) nodes commonly used for scientific numerical simulations. COKA includes several nodes, 
each equipped with 2 16-core processors, 256 GB of DDR memory, and 16 NVIDIA K80 GPUs.

To account for the issues related to the use of a small dataset, we have applied for a Repeated Stratified K-fold 
strategy. The dataset was split randomly into 75% and 25% with 3 times repetitions as cross-validation, with 
different randomization as the best trade-off between model accuracy and running time. The Stratified K-Fold 
is an extension of the regular K-Fold cross-validation where rather than making train and test sets completely 
random, the ratio between classes in the full dataset is preserved (see Fig. 1 The block of Hyperparameters 
optimization by Optuna).

The survival predicting models of DeepSurv and RSF were built on the training and test datasets, separately 
with optimized hyperparameters selection found using the Optuna framework. To overcome the unbalancing 
in data distribution and minimize the possible bias due to the split of the number of events (death happened in 
22 patients, 13%) in the validation dataset, first the entire dataset was divided into two splits of dead (event = 1) 
and alive (event = 0), then the alive population was split randomly into 70% and 30% splits. The same process 
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was performed for the dead population. By that, the entire dataset is split into four subsets of two trains and 
two test sets. At last, the training and test sets were concatenated, separately. Therefore, there were no statistical 
differences between the training and test sets and we are sure the data variance after the split was maintained. 
In other words, three out of four are used for training, and one for validation, and within each fold the ratio 
between dead and alive patients is kept equal to that inside the full dataset (see Fig. 1 The block of Training, 
Testing and model validation).

For each model we have run Optuna with 5000 trials, to search for the best combination values that maximize 
the c-index of the test set, and for which the maximum brier score (MBS) results in less than the threshold of 
0.25 to ensure good accuracy of results40. Table 2 lists the value range of each hyperparameter for all models 
given as input to Optuna.

In Fig. 2 we show the hyperparameter importance plots for the objective function resulting from our search 
process. For the DeepSurv the most relevant are the activation function and the learning-rate (lr), while for the 
RSF the importance mode and the sample size percentage are those with the bigger impact.

ML models limits and biases
All the ML models considered in this work are subject to limitations and biases50 that are disclosed in this section. 
In this work, we tried to address all the principal limitations although we have to deal with a limited number of 
patients that represent a de-facto bias for the analysis. Once again, we want to highlight that the goal of this study 
is not to provide a gold standard for the CAVD survival analysis but rather prove, being aware of all the possible 
biases, that Machine and Deep Learning models can be applied together with the traditional Cox regression 
models for a superior prediction capability under proper assumptions.

The RSF combines the concepts of random forests and survival analysis techniques. While RSF has become 
popular due to its ability to handle high-dimensional data like in the case of our dataset, it is important to 
understand its limitations and biases.

Figure 1.   Workflow of our analysis to select the best combination of features, optimize hyperparameters, and 
perform training of machine learning models. Starting from a set of the three features with the highest c-index, 
we increasingly add one feature at a time, optimize the hyperparameters with Optuna, train the model, and 
make a test validation. The train set and test set do not overlap, and repeated stratified k-folding with four splits 
is used to avoid overfitting of the models.

Table 2.   DeepSurv and RSF hyperparameters search space value ranges used by the Optuna library to find the 
best combination that maximizes the test c-index value for both models. For DeepSurv Batch Normalization is 
fixed to True, Batch and Dropout to False, and the Number of Epochs to 1500; for RSF the Min node size if fixed 
to 10, and the Number of Epochs to 1000.

Hyperparameter DeepSurv values Hyperparameter RSF values

Activation Sigmoid, ReLU, SeLU Number of trees 100–1000; steps = 100

Layers 1, 2, 3, 4 Max features sqrt, log2
Units 8, 16, 32 Max depth 3–10; steps = 1

Init method Glorot, uniform Sample size percentage 0.60–0.85; step = 0.05

Optimizer Adam, SGD Importance mode Impurity corrected, permutation,

Learning rate 10−5 , 10−1 Normalized permutation

L2 reg 10−6 , 10−4

Dropout 0.1, 0.2, 0.4
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•	 Censoring Bias is one of the major limitations of RSF since survival analysis involves handling censored data, 
where the survival time is unknown for some individuals at the end of the study. RSF may underestimate the 
survival probabilities for censored cases, leading to biased estimations38.

•	 Variable Importance bias is also taken into account for RSF when the most influential predictors are to be 
determined. Indeed, these important measures can be biased in certain scenarios. For instance, RSF tends 
to assign more importance to predictors with more unique split points, which may not always reflect their 
true importance in survival analysis51.

•	 Random forests, including the RSF algorithm, are known for their black-box nature, making it difficult to 
interpret the underlying decision-making process. RSF can predict survival outcomes accurately; however, 
understanding the specific relationship between predictors and survival times may be challenging52.

•	 RSF assumes that the observations are independent and identically distributed, which may not always hold 
in real-world survival analysis scenarios. If the population under study exhibits heterogeneity, RSF may not 
capture the underlying dynamics accurately, leading to biased estimations53.

While DeepSurv has shown promising results in various domains even more than RSF, it also has some limita-
tions and biases that need to be considered as well.

•	 DeepSurv assumes that censoring is non-informative, meaning that the probability of censoring is independ-
ent of the survival time. However, in practice, censoring can be dependent on unobserved characteristics 
related to the event, introducing bias into the model predictions. This bias can impact the accuracy of survival 
predictions20.

•	 DeepSurv requires a considerable amount of data to train accurate survival models. Insufficient data can 
lead to overfitting or poor generalization in predictions. Additionally, the availability of large-scale labeled 
survival data for training deep learning models is limited, making it challenging to use DeepSurv in specific 
domains where data is scarce20.

•	 Since RSF and DeepSurv are both black-box models, they share the lack of interpretability issue54.
•	 DeepSurv’s performance is highly affected by the quality and representativeness of the training data. If the 

training data suffers from sampling bias, the model’s predictions may be biased and not generalize well to 
unseen data20. We addressed this specific issue in this work by using proper training procedures.

Results
In this section, we report the analysis performed on the full dataset, starting from the knowledge of the features 
included in the survival analysis models up to a comparison between ML methods and state-of-the-art CPH.

Covariates insight
In Fig. 3 we show on the left the Pearson correlation plot, and on the right the results of the PCA analysis. The 
correlation plot does not show strong correlations and linear dependencies between features. The ρ value for 
Age and AVR type is notable (0.51), which is ascribed to the TAVI  procedure preference in elders. However, the 
correlation is not sufficiently high to claim a marked statistical relationship. Other notable correlations found in 
the dataset are between Albumin and TAVI (0.45), and between Crockoft-gault eGFR and Age (0.43). Since also 
in this case there is no strong correlations, the dataset is ready to be used by survival analysis algorithms. Then, 
we performed a PCA analysis to understand data variance and how much a principal component contributes to 
the explanation of it. As the Scree plot evidence, the PC1 only explains about 16.5% of the variance. To explain at 
least 50% of the data variance, 5 PCs are necessary, whereas to increase the cumulative variance explanation up 
to 90% at least 13 PCs are needed. Further, we investigated which variables are significant on the relevant PCs. 
The results shown in Table 3 Left do not evidence a specific set of features in our dataset that explains a possible 
distribution into different clusters.

The univariate CPH was then performed for all the covariates in the dataset to understand which of them 
can be significant in a survival analysis context through the assessment of their hazard ratio. Figure 4 Left shows 
the logarithm of their hazard ratio value along with the 95% confidence interval. The c-index was computed for 

Figure 2.   Hyperparameters importance for objective function for DeepSurv (Left) and RSF (Right).
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each variable and reported in Table 3 Right; as shown, six variables were found significant: Albumin, Age, BMI, 
Glucose, CHIP and Hypertension.

All these variables were also tested in multivariate CPH analysis. The c-index for this covariates combination 
is equal to 0.78. Subsequently, we performed a logrank test specifically for the categorical covariates to understand 
which have the potential to describe the population subgroups (i.e., survival probability for censored or dead 
patients). Here, only CHIP was found significant through a logrank test (p-value < 0.05). KM survival curves 
were then plotted accordingly, as shown in Fig. 5. However, according to the table in the Supplementary mate-
rial S1, there is another combination of six covariates which maximizes the c-index up to 0.8. By using the best 
combination search strategy described in the previous section of this work, we found the statistically significant 
multivariate CPH with the maximum possible c-index for an incremental number of features. Figure 6a shows 
that running a multivariate CPH survival model with more than 9 features does not improve the c-index, since 
a larger number of statistically insignificant features is added.

Assessement of ML models performance
To assess the performance of DeepSurv and RSF we have trained both models with the combination of features 
described in section “Methods”, and compared the prediction accuracy with a multivariate CPH model used as 
a reference classic model. For all models, the full dataset has been split randomly into two sets, 70% is used for 
training and 30% for test validation, ensuring that each set contains a similar number of survivors. The multivari-
ate CPH model has been built starting with three statistically significant covariates (i.e., Glucose, Albumin and 
CHIP), and then we have increasingly incremented the number up to 16, following an approach similar to that 
presented in21. The same approach has been then also applied to the ML methods.

Figure 3.   (Left) Pearson’s correlation coefficient as a heat map where the color corresponds to the correlation 
index. (Right) Scree plot of the PCA with the percentage of variance explained individually and the cumulative 
value.

Figure 4.   Univariate (left) and multivariable (right) CPH analyses. The hazard ratio is reported in logarithmic 
scale and 95% confidence interval (CI).
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Table 3.   (Left) PCA loading scores, the highest values for each PC are highlighted in bold, (right) univariate 
CPH results for each clinical variable. The statistically significant values (p-value < 0.05) are in bold.

Features PC1 PC2 PC3 PC4

Age 0.397 0.050 0.251 0.024

Albumin 0.382 0.018 0.115 0.131

AVR type 0.377 0.161 0.288 0.111

Crockoft-gault eGFR 0.347 0.241 0.115 0.313

Hemoglobin 0.223 0.154 0.222 0.264

LV EF(%) 0.195 0.296 0.226 0.149

BMI 0.191 0.024 0.194 0.503

ASCVD 0.180 0.272 0.096 0.290

Smoking 0.175 0.147 0.286 0.218

Atrial fibrillation 0.169 0.182 0.102 0.197

CHIP 0.161 0.070 0.165 0.008

Glucose 0.151 0.159 0.288 0.171

LDL 0.141 0.010 0.181 0.287

Mean aortic gradient 0.068 0.241 0.297 0.136

Sex 0.053 0.427 0.344 0.039

Hypertension 0.016 0.083 0.244 0.469

 Features p-value c-index logrank test

AVR type 0.221 0.54 0.21

Sex 0.085 0.60 0.09

Age 0.010 0.65 –

BMI 0.008 0.70 –

Smoking status 0.124 0.59 0.15

Hypertension 0.047 0.57 0.09

Atherosclerotic cardiovascular disease 0.374 0.54 0.40

Atrial fibrillation/flutter 0.832 0.51 0.83

Hemoglobin 0.051 0.61 –

Glucose 0.017 0.57 –

Crockoft-gault eGFR 0.470 0.57 –

Albumin 0.003 0.71 –

LDL 0.191 0.59 –

LV-EF% 0.340 0.55 –

Mean aortic gradient 0.713 0.47 –

CHIP 0.039 0.59 0.03

Figure 5.   Kaplan–Meier plot segmented by CHIP. The logrank test evidences a p-value of 0.03.
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The c-index achieved as a function of the covariates number by the CPH is shown in Fig. 6a. Results evidence 
that a combination with 5 covariates is good enough to reach a c-index of approximately 80%. The maximum 
c-index value of 0.835 is reached with 9 features and then remains constant.

Figure 6b shows a survival probability plot predicted by the three models for a single patient for which the 
event (death) time occurs at day 264 of the follow-up period. As shown in the figure, the DeepSurv model exhibits 
higher prediction accuracy compared to the RSF and CPH, since a lower patient survival probability (<0.6 for 
DeepSurv, > 0.75 for RSF and CPH) is reported at the event time.

To further assess the prediction accuracy of the ML models, we have run 50 trials per each combination of 
model features with different random splits of the full dataset, and compared the distribution of the c-index 
achieved for train and test. Figure 6c shows that for all the models the train c-index slightly improves as the 
number of features increases, following the trend previously discussed. On the other hand, Fig. 6d proves that the 
ML models have a superior prediction capability concerning the test set for the data that models have not seen 
in training, e.g. with 5 features the c-index for CPH is approximately 0.69, while for both ML methods are 0.76.

Discussion
Aortic valve replacement is recommended for most patients with symptomatic aortic valve disease. Nevertheless, 
both SAVR and TAVI are associated with relatively high post-procedure mortality, and, thus, the knowledge 
of predictors for post-AVR survival could be helpful for the identification of novel approaches to improve the 
management of these patients. Here we report the results of multivariable CHP analysis showing that the com-
bination of six variables (albumin, age, BMI, glucose, hypertension, and CHIP) can predict mortality 1 year after 
aortic valve replacement, with a c-index of 0.78, in a population of 165 patients that underwent SAVR or TAVI.

The difference between the outcomes of TAVI and SAVR in 6891 patients with low and intermediate-risk 
patients has been studied after short and intermediate-term follow-up 14. In another similar purpose study, the 
risk outcomes for 20224 patients with moderate and high risk have been studied after a short and long-term 
follow-up 13. Both studies reported no significant differences in their follow-up time. According to our findings, 
in Table 1, the number of patients undergoing TAVI is 54 out of 165 total patients and the p-value is 0.26 (>0.05). 
In Table 3, the log-rank test is equal to 0.21 and the p-value for univariate CPH is 0.22 which is larger than 0.05 
and is not statistically significant in our study. The PCA analysis we have performed in our dataset does not 
show AVR type as a parameter that divides our patients into different subgroups, and for this reason, we have 
managed both in the same way.

A large body of evidence supports a link between albumin level, age, BMI, diabetes mellitus (DM), and mor-
tality following aortic valve replacement. In healthy subjects and patients with acute or chronic illness, serum 
albumin concentration is inversely related to mortality risk55,56 and pre-procedural serum albumin level was 
found to be independently associated with 1-year mortality in patients who underwent TAVI57–59. We report, 
for the first time that albumin can predict mortality also in patients who underwent SAVR. High age has been 

Figure 6.   (a) The best multivariate CPH c-index for each number of combinations trained with the entire 
dataset. (b) Comparison of the performance of DeepSurv, RSF, and CPH model in terms of survival probability 
calculated for an example patient. The dashed line represents the actual event time. (c) Comparing the statistics 
of the c-index for the train set as a function of the number of model features evidencing the median, first and 
third quartiles, and upper and lower bounds. (d) Same as the previous case but considering the test set.
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identified as an independent prognostic factor of 30-day all-cause mortality after discharge from emergency 
department60, intensive care61, and of both in-hospital and post-discharge mortality rates in patients with first 
myocardial infarctions62. In 351 patients that underwent SAVR, the death risk at 5 years was 10%, 20%, and 34% 
in patients aged < 70 years, 70–79 years, and 80 years, respectively63.

Being overweight is associated with improved survival following TAVI when compared with normal 
weight64. Underweight SAVR patients (BMI<20) show an increased hazard ratio (1.519; 95% confidence inter-
val 1.028–2.245) with regards to all-cause mortality at the longest follow-up compared with normal weight 
patients65 and underweight in patients who underwent TAVI is associated with increased mortality66. Diabetes 
mellitus (DM) was associated with poor medium- to long-term overall survival after TAVI67 and it remained a 
strong risk factor for reduced 10-year survival after valve surgery68. Among patients with initial asymptomatic 
mild-to-moderate aortic stenosis, hypertension was associated with more abnormal left ventricular structure 
and increased cardiovascular morbidity and mortality but no impact on aortic valve replacement was found 
and there is moderate evidence linking hypertension and early mortality in aortic valve replacement69. Recently 
CHIP was found to be associated with increased mortality, after 1 year after valve replacement, in TAVI and 
SAVR patients15,16.

It is worth noting that in the list of variables related to long-term survival, some are identified in our study 
such as age, gender, and comorbidities like arterial hypertension69, and some not like LV EF%70. The reason 
why we did not use LV EF% is due to the lack of significance and correlation between LV EF and death. In this 
regard, we refer to the Pearson correlation reported in Fig. 3, and the p-values of 0.189 and 0.34 reported in 
Table 1 (p-value resulting from the t-tests) and Table 3 (p-value resulting from the log-rank test), respectively. Of 
course, this may be due to biases in our dataset due to a reduced number of patients unrolled, the high average 
age of the study population (79.15 ± 5.19 years), and the relatively short-term follow-up. However, we would like 
to underline that the major aim of our work is how machine learning methods can be applied to make survival 
analysis and compare to classical analysis. Additionally, we found that DeepSurv exhibits higher prediction 
accuracy compared to RSF and CPH since a lower patient survival probability ( < 0.6 for DeepSurv, > 0.75 for 
RSF and CPH) is reported at the event time. These data provide further evidence that ML methods are effective 
as state-of-the-art approaches broadly used for statistics in medicine, with the advantage that they may expose 
non-linear relationships and improve c-index, as also reported by others71.

The findings of this study could help identify more precisely patients at higher risk of death who could benefit 
from a more appropriate therapeutic intervention for the modification of the above-cited risk factor. For example, 
under specific conditions, hypertension could be a factor involved in reduced survival after valve substitution. 
Furthermore, these findings could reveal previously unrecognized interaction between CVD risk factors in 
influencing the survival of patients after valve replacement, shedding light on the role of CHIP in increasing the 
risk of cardiovascular disease and death.

Of interest, in our study, only CHIP was found significant through a log-rank test (p-value < 0.05) confirm-
ing the importance of this factor in affecting mortality following AVR. Our results, showing that CHIP together 
with 5 other factors, four of which (old age, low levels of albumin, and DM) are characterized by chronic pro-
inflammatory status72–74 suggest the notion of an increased risk of mortality in the studied population due to 
exacerbated inflammatory condition, based on the results of animal studies75 showing that CHIP acts by enhanc-
ing the inflammatory response.

Currently, patients are not routinely screened for CHIP since the ratio cost/effectiveness is still high, and for 
this reason, our dataset features a small number of patients yet is highly dimensional (i.e., with a high number 
of variables) and informative. However, once validated across diverse and larger patient cohorts, the methodol-
ogy used in this work can help to assess the survival probability and complement the standard clinical workflow 
of patients undergoing aortic valve substitution. In addition, the use of machine learning methods can enable 
the finding of non-linear relationships among bio-factors affecting the success of the clinical intervention. For 
example, in our case, a biomarker signature, including the CHIP, has been found relevant for predicting the 
survival probability in patients. Also, machine-learning methods can enhance clinical workflows by providing 
personalized prognostic information, and supporting informed decision-making based on individual patient 
data, potentially improving treatment strategies and patient outcomes. Integration could involve, for example, 
real-time risk assessments and tailored clinical practices.

In conclusion, our work shows how machine learning-based methodologies can be applied to support the 
analysis of bio-medical datasets, and how the more sophisticated statistical techniques like DeepSurv and RSF 
can offer insights beyond what conventional methods such as Kaplan–Meier and Cox Proportional Hazard are 
capable of providing. Moreover, it is ready to be used also to analyze datasets with moderate or long-term follow-
ups, once available, overcoming the limitations faced in the current study.

Data availibility
The raw data supporting the conclusions of this article will be made available by the authors, without undue 
reservation and upon reasonable request. Please contact the corresponding authors.
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