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Amylase/trypsin-inhibitors (ATIs) comprise about 2–4% of the total wheat grain proteins

and may contribute to natural defense against pests and pathogens. However, they are

currently among the most widely studied wheat components because of their proposed

role in adverse reactions to wheat consumption in humans. ATIs have long been known

to contribute to IgE-mediated allergy (notably Bakers’ asthma), but interest has increased

since 2012 when they were shown to be able to trigger the innate immune system, with

attention focused on their role in coeliac disease which affects about 1% of the population

and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of

the population. This has led to studies of their structure, inhibitory properties, genetics,

control of expression, behavior during processing, effects on human adverse reactions

to wheat and, most recently, strategies to modify their expression in the plant using gene

editing. We therefore present an integrated account of this range of research, identifying

inconsistencies, and gaps in our knowledge and identifying future research needs.

Note

This paper is the outcome of an invited international ATI expert meeting held in

Amsterdam, February 3-5 2020

Keywords: wheat, amylase/trypsin-inhibitors, health, pathology, food technology, genetics

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2021.667370
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2021.667370&domain=pdf&date_stamp=2021-05-28
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.weegels@wur.nl
http://orcid.org/0000-0002-6811-4069
http://orcid.org/0000-0001-9585-9536
http://orcid.org/0000-0001-9017-3367
http://orcid.org/0000-0002-2993-8196
http://orcid.org/0000-0003-0591-0858
https://doi.org/10.3389/fnut.2021.667370
https://www.frontiersin.org/articles/10.3389/fnut.2021.667370/full


Geisslitz et al. Wheat ATIs in Human Disease

INTRODUCTION

This paper reviews our current knowledge of ATIs from genetical,
structural, functional, and health perspectives (Figure 1).

Importance of Wheat-Based Foods
Wheat is the staple food in Europe, North Africa, West and
Central Asia and most of North and South America with
about 750 million tons being harvested annually (http://www.
fao.org/faostat/en/#data/QC). About 95% is modern hexaploid
bread wheat (Triticum aestivum L subsp. aestivum, genome
constitution ABD) with most of the remaining 5% being
tetraploid pasta wheat (T. turgidum L. subsp. durum, AB
genomes). In addition, small amounts of traditional types
of wheat, i.e., diploid einkorn (T. monococcum L. subsp.
monococcum, Am genome), tetraploid emmer (T. turgidum
L. subsp. dicoccum Thell., AB genomes), or Khorasan wheat
(T. turanicum Jakubz., AB genomes), and hexaploid spelt (T.
aestivum L. subsp. spelta Thell., ABD genomes) are grown either
for the production of traditional foods or because of perceived
health benefits.

Wheat-based foods provide 20–50% of the daily intake of
dietary calories in diets and contribute substantially to intakes
of protein, fiber, vitamins, and minerals (1). The wheat grain
typically contains about 10–15% protein of which 70–80% is
gluten, a mixture of between 50 and 100 different proteins which
form a visco-elastic network in dough. Gluten provides cohesion
to dough and enables the entrapment of carbon dioxide produced
during fermentation, resulting in expansion of the dough and the
light porous crumb structure of bread. The unique properties of
gluten therefore underpin the use of wheat in food processing
and have contributed to the dominance of wheat-based foods in
temperate countries.

The non-gluten proteins comprise a mixture of components
with structural, metabolic, and putative protective functions (2).
The latter include proteins which inhibit hydrolytic enzymes of
pest insects and pathogenic fungi, notably the amylase/trypsin
inhibitors (widely referred to as ATIs) which account for 2–4%
of the total wheat protein (3). ATIs were first reported in the
1940s (4) and had been the subject of over 70 papers by the mid-
1970s (5). They have well-established roles in allergic responses
to wheat (as discussed below), but there has been increased
interest over the past few years because they have been suggested
to contribute to the development of coeliac disease (CD) in
genetically susceptible individuals, affecting about a mean of 1%
of theWestern population. In addition, ATIs have been proposed
to play a role in non-coeliac wheat sensitivity (NCWS), which has
an estimated prevalence between 1 and 10% of the population,
being significantly higher in women (6) than in men, and mainly
based on self-diagnosis (7). The remainder of the population
tolerates wheat consumption without problems. An important
challenge for the study of ATIs in CD and NCWS is the lack of
well-characterized protein preparations for testing. For example,
it has recently become acknowledged that gluten preparations
that are assumed to be pure are frequently used in vitro studies,
animal studies and human studies addressing adverse reactions
to gluten, also contain substantial amounts of other protein

components, including ATIs. In addition, isolated ATI fractions
used to study in vitro bioactivity, contain unidentified proteins
which could contribute to the observed effects (8). Accordingly,
as long as pure ATIs of known composition are not available, it
cannot be excluded that these compounds may also play a role in
the observed responses. Insight in the gaps in our knowledge and
related challenges for future research are crucial in this respect.

ATIs are Members of the Prolamin
Superfamily
Wheat gluten proteins, and related storage proteins from other
cereal grains, are defined as prolamins because of their solubility
in alcohol-water mixtures (9). Although prolamins were long
thought to be unique, comparisons of amino acid sequences
showed that they are related to several groups of small sulfur-rich
proteins and are together defined as the “prolamin superfamily”
of plant proteins (10). They include ATIs and puroindolines
in cereal seeds, non-specific lipid transfer proteins in many
plant tissues and 2S storage globulins present in seeds of
dicotyledonous plants. These proteins are characterized by
having low molecular weights, high stability to digestion and
denaturation and a conserved pattern of intrachain disulphide
bonds. Although the sequence identity between the conserved
regions from different members of the family is low (Figure 2A),
their 3D structures are highly similar, consisting of bundles of
α-helices stabilized by disulphide bonds (15). This structure is
illustrated in Figure 2C.

TYPES AND PROPERTIES OF ATIs IN
BREAD WHEAT

At least 19 isoforms of ATI have been described (16) which are
classified into four groups (Table 1). The first group comprises
monomeric inhibitors with the major form named 0.28 (based
on its electrophoretic mobility) while the second group includes
the two homodimeric inhibitors called 0.19 and 0.53. These
proteins havemasses between 13,000 and 13,500. The third group
comprises heterotetrameric inhibitors which were originally
defined as CM proteins (CM1, CM2, CM3, CM16, CM17) based
on their solubility in chloroform:methanol mixtures (18). They
have at the subunit level similar masses to the monomeric
and dimeric types, except for CM3 which has a mass of about
15,500. However, most of our knowledge is based on the analysis
of a small number of genotypes of wheat and we know little
about the extent of variation in the sequences of components
between genotypes.

All of these proteins inhibit exogenous (i.e., non-wheat) α-
amylases from insect and mammalian sources but their precise
specificities differ. Monomeric inhibitor 0.28 has high activity
against amylases from insect pests (the Coleopteran beetle
Tenebrio molitor and larvae of the moth Ephestia kuehniella) but
is less active against human salivary amylase (19). The dimeric
0.19 and 0.58 inhibitors are both active against human salivary
and porcine pancreatic amylases, although the 0.53 inhibitor
shows less activity against the porcine enzyme, and against
enzymes from a range of insects, while the tetrameric inhibitors
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FIGURE 1 | Condensed overview of the presence and key-characteristics of ATIs in wheat and their potential effects in the human body.

have been reported to be more active against the Lepidopteran
α-amylases than the monomeric and dimeric inhibitors (19–21).
They also inhibit papain, bovine trypsin, and subtilisin (22) with
one monomer being able to inhibit one molecule of α-amylase
and one molecule of trypsin at the same time (23).

Finally, wheat also contains inhibitors of trypsin only which
have masses between 11,400 and 11,500 and are termed CMX
based on their homology with the barley trypsin inhibitor.
Proteomics studies have shown that at least some of the subunits
occur in isoforms. For example, sequences corresponding to
15 distinct ATI proteins, comprising two monomeric, four
dimeric, and six tetrameric subunits and three forms of CMX
were identified in a single bread wheat variety (16). Subunit
CM16 also occurs in non-glycosylated and glycosylated forms
(24). More recently, Bose et al. (25) identified 33 ATI-like
proteins in bread wheat using untargeted LC-MS/MS and
developed a targeted LC-MS/MS method for 63 peptides that
covered 18 different ATI variants. Many of the selected peptides
occurred in multiple ATI variants and were also overlapping
between different classes of ATI showing the complexity of
ATI isoforms.

Phylogenetic analysis based on amino acid sequences shows
that the monomeric and dimeric forms cluster together, with
the tetrameric subunits and trypsin inhibitors forming separate
clusters (Figure 2B).

Carbonaro et al. (26) proposed a unified system to name
and classify ATIs based on their activities and whether they
are present in the plant as monomers, dimers or tetramers
(Table 1). Although this classification was an important advance
in understanding the complexity of the protein family, it has not
been widely adopted with most studies using a combination of
the mobility-based and CM classifications.

ATIs accumulate in the grain from about seven days after
pollination until maturity, but there is a small time lag before
inhibitory activity is detected which may be due to the time
required for subunit assembly (27). They are primarily located
in the starchy endosperm and therefore enriched in white
flour derived from this tissue by milling (28, 29). They are
secretory proteins, being synthesized with N-terminal signal
peptides which direct the nascent chains into the lumen of the
endoplasmic reticulum. They are presumed to be located in the
vacuoles of developing grain cells, but the starchy endosperm
cells die during the later stages of grain development and their
contents merge. Hence, ATIs may become associated with starch
or gluten preparations made from flour. Although there is no
evidence for specific binding of ATIs to starch, two proteins
corresponding to CM16 and CM3 were identified as tightly
bound to gluten proteins. They were called DSG (durum wheat
sulfur-rich glutenin) and it was suggested that they contributed
to dough quality (30).
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FIGURE 2 | (A), Multiple sequence alignment including wheat ATIs (signal peptides have been removed). The wheat ATIs only share very few fully conserved positions

including some of the disulphide bonds (numbered 1–5 below the alignment). The α-helices above the alignment indicate the secondary structure elements based on

the 3D structure of ATI 0.19 (part C), and the alignment is colored according to amino acid properties. (B), Phylogenetic tree generated based on alignment shown in

(A). (C), Three-dimensional structure of wheat homodimeric ATI 0.19 [PDB entry 1HSS (11)]. Although only one 3D structure has been determined for 0.19, and the

sequence identity is low, all wheat ATIs are predicted to share the following overall structure: four α-helices connected by irregular loop regions and stabilized by

disulphide bonds (a four-α-helix bundle). Software used: MEGA X (12) (Muscle for alignment preparation and Maximum likelihood for phylogenetic analysis),

Dendroscope (13), Jalview (14), and PyMOL (Schrödinger, LLC).

ROLES OF ATIs IN CROP RESISTANCE TO
PESTS AND PATHOGENS

Cereal grains are attractive to pests and pathogens because they
have high contents of storage reserves (starch and protein).
They have therefore evolved to contain a range of proteins
which inhibit the hydrolytic enzymes of these organisms,
including ATIs able to inhibit α-amylases from Lepidopteran
and Coleopteran insects (Table 1). They are also able to inhibit
a range of proteases (as discussed above), but effects on other

hydrolases (such as xylanases, glucanases, and lipases) have not
been determined.

ATIs are defined as pathogenesis-related (PR) proteins, being
part of a group of proteins which are induced in response to
damage or infection (31). They would be expected to contribute
to defense against pathogens which can have significant impacts
on wheat yields and quality (32). In fact, the contents of ATIs
in the wheat endosperm increase by 3–10-fold during grain
development, compared with an average increase of three times
for other defensive proteins (33) while the amounts of the
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TABLE 1 | Nomenclature, amylase inhibitory activity, and abundance of wheat ATIs.

Aggregation state Protein subunit Widely used names Amylase inhibitory activity % total flour protein

Monomeric WMAI-1 0.28 human and insects 0.5

Homodimer WDAI-1 0.53 human and insects 1.0

WDAI-2 0.19

Tetramer 1st subunit WTAI-CM1 CM1 human and insects 1.7

WTAI-CM2 CM2

2nd subunit WTAI-CM16 CM16

WTAI-CM16 glycosylated form CM16

WTAI-CM17 CM17

3rd subunit (2 copies) WTAI-CM3 CM3

Monomeric CMx1/2/3 Trypsin inhibitors No known activity to amylases 0.2

The table is based on Carbonero and Garcia-Olmedo (17) and includes data from Dupont et al. (3) and Altenbach et al. (16).

tetrameric CM1, CM3, CM17 also increase with abiotic stresses
such as drought and heat (34).

Fusarium graminearum (Fusarium head blight), Blumeria
graminis f.sp. tritici (powderymildew) and F. culmorum (seedling
blight, head blight, and foot rot) are important wheat diseases.
Infection of wheat with these pathogens has been variously
reported to result in increased contents of some ATI isoforms
(35), no change in ATIs (36) or a decrease in other isoforms (37).
Fusarium-resistant wheat had higher contents ofmonomeric 0.28
and one dimeric 0.19 isoform, but resistance was not related
to the levels of other ATIs (37). Hence, no consistent effects of
pathogen infection on ATI accumulation or amount are observed
in Fusarium-resistant wheat. There are no strong correlations
between activity or content of ATIs and presence of pathogens
and no specific wheat metabolic pathways that are induced by
biotic and abiotic stress and that are linked to ATIs. It is possible
that the mode of action of ATIs on fungi is more complex as
described for other species (19) or there are synergistic PR effects
as described in barley for thionins, barley trypsin inhibitor and
Bowman Birk trypsin inhibitor (38).

GENETIC AND ENVIRONMENTAL
CONTROL ATIs IN BREAD WHEAT

The genes encoding ATIs were initially mapped to individual
chromosomes and chromosome arms of hexaploid bread wheat
by analyzing genetic stocks (especially using lines which differ
in their complements of chromosomes, such as deletion lines).
Most ATIs are encoded by the B and D genomes with genes
encoding the monomeric inhibitors (0.28) on the short arms of
chromosomes 6B and 6D and the dimeric 0.19 and 0.53 inhibitors
on the short arms of chromosomes 3B and 3D. The subunits of
the tetrameric inhibitors are encoded by genes on chromosomes
4B, 4D, 7B, and 7D. The trypsin inhibitor CMX is reported
to be encoded by genes on the group 4 chromosomes of all
three genomes.

Gene locations have since been determined by multiple
sequence alignment using the wheat reference genome (25, 39).
This essentially confirmed the earlier mapping with monomeric
and dimeric ATIs being mapped to chromosomes 6 and 3,

respectively, and tetrameric types to chromosomes 4 (CM3,
CM16, CM17) and 7 (CM1, CM2). Additionally, some ATI genes
were annotated to group 2 chromosomes (39). It also confirmed
that all ATIs are encoded by the B and D genomes, with genes on
the A genome appearing to be silenced (17, 40).

Although the individual ATI forms are encoded by single
genes, the total ATI concentration shows polygenic inheritance
due to the high number of isoforms.

Several studies have investigated the effects of the
environment on inhibitor activities in different wheat genotypes,
although most have measured total activity in unfractionated
extracts rather than characterized ATI fractions components.
Priya et al. (41) showed wide variation in the inhibitory activity
of amylase and trypsin from two storage pests (the Coleopteran
beetles Tenebrio molitor and Rhyzopertha dominica) and
mammals (human salivary and porcine pancreatic amylases and
bovine trypsin) in unfractionated extracts from 54 genotypes
of bread wheat, with some lines having high activity against
insect enzymes and low activity against mammalian enzymes.
Similarly, Piasecka-Kwiatkowska et al. (42, 43) showed significant
effects of genotype, harvest year, environment (precipitation),
and interactions between these factors on inhibitory activity
against amylases and trypsin from mammalian and insect
sources (the wheat weevil Sitophilus granaries, the flour beetle
Tribolium confusum and larvae of the flour moth Ephestia
kuehniella) in genotypes of wheat, rye and triticale grown over
4 years. Significant effects of genotype and of genotype-by-year
interactions, but not of year were also reported for bread
wheat (44) using an assay based on trypsin inhibition whereas
significant effects of genotype and location but not genotype-by-
location interactions were reported for the amount of the CM3
subunit (which forms part of a tetrameric complex) determined
by proteomic analysis of durum wheat (45).

ANALYSIS OF ATIs

The selection and availability of appropriate reference materials
are essential for the identification and quantification of ATIs
which in turn are crucial to enable their monitoring in food
systems and to provide well-characterized fractions to determine
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their bioactivity and adverse reactions in the human body. The
presence of enzyme inhibitors other than ATIs should also be
taken into consideration as they can contribute to measurements
of inhibitory activity.

Extraction From Flour and Food
Because ATIs are soluble in dilute salt solutions they can be
extracted from milled grain or white flour using aqueous buffers
as part of the widely used Osborne fractionation. However,
they may also be present in other Osborne fractions, notably
the prolamins (gluten proteins). Several procedures have been
developed to prepare fractions highly enriched in ATIs. Lipids
are first removed with butan-1-ol followed by petroleum ether
(46) or with chloroform (47) at 4◦C. A combined salt-soluble
protein (albumin and globulin) fraction is then removed with
salt-containing buffers such as 150mmol/LNaCl (48), 50mmol/L
Tris-HCl, 100 mmol/L KCl, 5 mmol/L EDTA (49), or 50 mmol/L
ammonium bicarbonate with the procedure repeated three times,
resulting in a highly enriched ATI fraction (50). The extractability
is also affected by the redox state: upon reduction CM proteins
become insoluble in methanol (51).

Several studies have described the extraction of ATIs from
processed foods, such as bread and raw and cooked pasta,
using essentially the same methods as for flour. However,
the extractability from processed foods can be affected by
gelatinization of starch and denaturation of protein. For
example, increasing the drying temperature of pasta reduced the
extractability of ATIs (52, 53). This may limit quantification and
hence comparison of the ATI contents of preparations used for
determination of bioactivity.

Two main procedures have been developed for sub-
fractionation of ATI extracts. ATIs can be precipitated
sequentially by salting out with the addition of ammonium
sulfate at concentrations between 0.4 and 1.8 mmol/L (48, 54).
The second procedure exploits the solubility of inhibitors in
chloroform/methanol (49) to separate them from metabolic
proteins, although the fraction also contains some gluten
proteins (51). A second extraction with saline removes
gliadins and enriches ATIs, but other proteins of the prolamin
superfamily (farinins and non-specific lipid transfer proteins)
are still present (55). However, neither of these methods gives
pure isoforms and additional purification steps are required such
as chromatographic enrichment.

Challenges for Analysis of ATIs by Mass
Spectrometry (MS)
MS has the potential for very sensitive and selective detection
of multiple ATIs. The full repertoire of ATIs can be identified
by non-targeted discovery, using MS analysis after liquid
chromatography and matching of MS/MS spectra to protein
sequence databases. However, the development of targeted LC-
MS detection is required to facilitate the routine use in crop
and food science. For targeted detection, peptides are selected to
represent the different types and isoforms of ATIs. Many variants
and isoforms of ATIs have been reported in DNA and protein
sequence databases with peptide sequences overlapping between
multiple homeologues and isoforms (25). While some peptides

are unique for one protein, others can occur in several related
protein sequences. The choice of peptides for targeted LC-MS
therefore determines the sensitivity and selectivity of the analysis.

The precision of MS analysis also depends on the availability
of reliable genomic and proteome sequence databases fromwhich
incomplete and duplicated sequences are discarded and variant
sequences are considered in the selection of the optimal target
sequences. For example, the transcript TraesCS4B02G328100.1
encoding the CM3 protein (P17314) is associated with 146
variant alleles in EnsemblPlants database (56) whereas only a
single genomic sequence is present in the Chinese wheat landrace
Chinese Spring. Hence, the precise sequences of the isoforms in
the species or genotypes being studied may not be present in the
database and thus limiting their detection.

ATIs can also be quantified by determination of the
molecular weight of full-length proteins by MALDI-TOF-MS
(44, 57, 58).

Establishment of Routine Analytical
Methods
A combination of discovery and targeted proteomics by MS
is clearly the most attractive approach for identifying and
quantifying ATIs. Comparative results on the contents of
monomeric, dimeric and tetrameric ATIs have been obtained
by absolute and relative quantification (25, 59, 60). Especially,
targeted MS analysis is characterized by very low limits of
detection (LOD) with 0.1–3.9 µg peptide per g flour (60), while
discovery driven proteomics has at least 10 times higher LOD
(61). However, MS-based analysis may not be available to all
researchers and alternative methods have been used to provide
faster and cheaper analyses.

Routine biochemical analyses such as chromatographic or
electrophoretic separation followed by UV detection give
reproducible results, but the coverage is not complete (44).
Another simple method is to determine the inhibitory activity
of preparations toward target enzymes. However, the different
specificities of the inhibitors (see section Types and Properties
of ATIs in Bread Wheat) require the use of a range of substrate
enzymes (41), and the assays may also detect inhibitors of other
types (see Types and Properties of ATIs in Bread Wheat). These
limitations, together with variation in experimental protocols,
may account for the wide variation reported on inhibitory
activities of ATIs in cereals (41, 44, 57). Consequently, the
correlations between ATI concentrations and enzyme inhibitory
activities are generally poor (57).

Immunological approaches are rarely used, mainly due to
the lack of specific antibodies. Some studies have used serum
antibodies from patients with wheat allergy, since ATIs have been
identified as allergen in IgE-positive patients (Table 2). A cell
culture system has also been used to measure ATI-mediated Toll
Like Receptor-4 (TLR4) activation (discussed in section Effects
of ATIs on Human Physiology and Pathology), as a marker for
innate immunity related signaling induction by wheat extracts
(50, 67).

To date, no detailed comparisons of ATI contents and either
enzyme inhibition or TLR4 activation have been reported, and
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TABLE 2 | ATIs shown to elicit allergic responses.

ATI WHO/IUIS Allergen name Allergen isoform UniProt accession number Types of IgE-mediated allergy

Bakers’ asthma Food allergy

0.28 Tri a 15.0101 D2TGC3 Yesa No

None P01083 No Yese

0.19 Tri a 28.0101 Q4W0V7 Yesa No

None P01085 No Yesb,c

None Q5UHI0 No Yesd

None P01083 No Yesc,e

None Q5UHH6 No Yesc

0.53 None P01084 No Yesc

CM1 Tri a 29.0101 C7C4X0 Yesa No

None P16850 No Yesb,c

CM2 Tri a 29.0201 D2TGC2 Yesa No

None P16851 No Yesb,c

CM3 Tri a 30.0101 P17314 Yes Yesb,d

None Q53YX8 No Yese

CM16 None P16159 Yes Yesb,c,d,e

CMX1/CMX3 None Q43723 No Yesc

CM17 Tri a 40.0101 Q41540 Yesf Yesc,d

aSander et al. (62).
bPastorello et al. (63).
cSotkovský et al. (64).
dSotkovský et al. (65).
eTundo et al. (24).
fSander et al. (66).

little is known about the role of factors such as glycosylation
or oligomerization.

ATIs IN OTHER TYPES OF WHEAT AND
RELATED CEREALS

Proteins of the ATI family can be identified in protein
sequence databases by the presence of specific sequence motifs,
termed the PROSITE signature (68) PS00426 or the PRINTS
pattern PR00808. The ATI family (IPR006106) in the InterPro
classification database (69) of protein families currently contains
over a thousand protein accessions of which 35 are curated.
These include accessions from wheat (19), barley (10), rice (7),
sorghum (2), maize (1), and millet (1). It is clear therefore that
ATIs occur widely in grass species including other wheat species,
close relatives of wheat and other cultivated cereals (Figure 3).

Rogniaux et al. (59) used targeted MS analysis to determine
peptides corresponding to five ATIs (0.19, 0.28, CM1, CM2,
and CM3) in seven varieties from three wheat species (einkorn,
durum wheat and bread wheat). 0.19 and CM1 were exclusively
detected in bread wheat whereas 0.28, CM2, and CM3 were
detected in all species, although at a much lower level in einkorn.
Geisslitz et al. (60) quantified 13 ATIs including the predominant
0.19, 0.28, 0.53, CM1, CM2, CM3, CM16, and CM16 in eight
genotypes of five wheat species (bread wheat, durumwheat, spelt,
emmer and einkorn) which were cultivated at three locations
in Germany. Similar contents were detected in the hexaploid

and tetraploid wheats, while they were low or absent in diploid
einkorn (which fits in with the observation of low contribution
of ATIs from the A genome in hexaploid bread wheat; see
sections Introduction and Genetic and Environmental Control
of ATIs in Bread Wheat). Furthermore, the ATI content was
much more influenced by genotype than by environment (see
also section Genetic and Environmental Control of ATIs in
Bread Wheat).

Consistent with the low ATI concentrations determined by
MS (44, 60), einkorn showed no inhibition of Coleopteran
insect or mammalian α-amylases (70–74) and the lowest TRL4-
activating potential compared to other wheat species (50).
However, einkorn inhibited α-amylase from Lepidopteran insects
(72) and contains a trypsin inhibitor similar to rye and barley
(70) which may explain the high trypsin inhibitory activity
(44). Wild diploid wheats (T. urartu and T. boeoticum) showed
contrasting results with either low or no α-amylase inhibition
(70–74). Diploid Aegilops species with the D genome differed
greatly from bread wheat in their α-amylase inhibitor pattern
and their inhibitory activity (70, 73). Some tetraploid wheats,
such as durum wheat (60), Persian wheat and Armenian wild
emmer (71), lack monomeric 0.28. However, spelt, durum wheat
and emmer all contain the potent TLR4 activators 0.19 and CM3
(45, 54, 58).

Hexaploid and tetraploid wheat differ in their proportions
of monomeric, dimeric and tetrameric ATIs: the proportions
of tetrameric, monomeric, and dimeric ATIs are similar for
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FIGURE 3 | Phylogenetic analysis of ATIs in cereal species with wheat ATIs shown in bold. The sequence conservation of the ATIs is very low, but comparison of the

three ATIs for which 3D structures have been determined (indicated by stars) shows that structural conservation is high. The coloring of the subgroups follows that

used in Figure 1: blue and cyan, heterotetrameric; purple, trypsin/bifunctional inhibitors; orange, monomeric and homodimeric). Software used: MEGA X (12) (Muscle

for alignment preparation and Maximum likelihood for phylogeny analysis), and Dendroscope (13).

hexaploid wheat whereas the proportion of tetrameric CM-type
inhibitors is higher in tetraploid wheats (60).

Barley grains contain ATIs which are similar to those in
wheat, occurring in monomeric (BMAI), dimeric (BDAI) and
tetrameric (BTAI-C) forms with masses of 10,000 to 16,000
(75) and sharing over 80% sequence identity with homologs in
wheat (i.e., BTAI-CM andWTAI-CM, BDAI and 0.19/0.53) (76).
All have inhibitory activity toward α-amylase from Coleopteran
insects, but little or no activity against human salivary α-
amylase (77, 78). Rye grain contains dimeric inhibitors highly
homologous to the wheat dimeric 0.19 and 0.53 inhibitors (79,
80) and a trypsin inhibitor (81), but no tetrameric forms have
been reported. Seventeen ATI-like proteins which exhibit up to
60% similarity with wheat CM proteins have been reported in

oats (82). ATI-enriched extracts from barley and rye showed
TLR4 activation comparable to wheat, which was not detected
in extracts from oats and other non-gluten containing cereals
(50). In this study hexaploid bread wheat induced higher ATI
inflammatory bioactivity compared to ATI-enriched fractions
from diploid (einkorn), tetraploid wheat (emmer, Khorasan
wheat), and hexaploid spelt.

EFFECTS OF ATIs ON HUMAN
PHYSIOLOGY AND PATHOLOGY

Data from in vitro and animal studies indicate that ATIs may
play roles in the initiation of CD and non-intestinal auto-immune
diseases. The proposedmechanisms are activation of the adaptive
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and innate immune systems, disruption of the intestinal barrier
function and intestinal as well as extra-intestinal inflammation.
In addition, ATIs have also been identified as potent triggers
of IgE mediated allergic responses such as bakers’ asthma.
NCWS has recently been suggested to be a non-specific, non-IgE
mediated type of a gut associated allergy in which ATIs may play
a prominent role. However, only limited information is available
about the immunogenic sequences of ATIs (83).

As in vivo human pathological studies are lacking, caution
is required when extrapolating results from in vitro and animal
studies. In addition to the possible presence of impurities in
ATI extracts, it is necessary to consider several other factors.
(a) Wheat is normally consumed after processing which may
include fermentation of dough (by yeast or sourdough culture),
exposure to heat and high humidity (cooking, baking, extrusion)
under various pH or ionic strength conditions. (b) Ingested
food is exposed to gastric acid and bile acids [bile is known to
affect proteolytic enzymes (84)] and proteolysis by pancreatic
enzymes. (c) Lactobacilli present in the intestine may secrete
proteolytic enzymes capable of degrading ATIs (6, 55). As a
consequence, the resistance of extracted ATIs to proteolysis in
in vitro digestibility studies may not reflect the situation in vivo.
An overview of our current knowledge is presented below and
a schematic representation of the proposed mechanisms given
in Figure 4.

In vitro and in vivo Animal Studies
Addressing ATI Bioactivity
Junker et al. (67) showed that ATIs, in particular CM3 and
0.19, induce an innate immune response and activate monocytes,
macrophages and dendritic cells in vitro via the TLR4-MD2-
CD14 complex with a subsequent release of pro-inflammatory
cytokines. The effect was not modified by in vitro pepsin-trypsin
digestion. Furthermore, ATIs, as shown for CM3, can interact
directly with the TLR4 receptor (86). Activation of TLR4 by
release of IL-8 in monocyte/macrophage cell lines has been
confirmed for ATI extracts derived from a wide range of foods,
especially of gluten-containing cereal foods and being (in part)
retained after food processing (50).

Administration of preparations enriched in ATI to non-
obese diabetic/DQ8 mice over 2 weeks triggered intestinal
intraepithelial lymphocytosis and barrier dysfunction in the
absence of overt inflammation or mucosal damage (6). The
presence of ATIs in the large intestine was shown to modify
microbiota composition and metabolism. For example, decreases
in Lactobacillus and the Firmicutes/Bacteroidetes ratio were
observed after exposure to ATIs (6). In line with these
observations, transplantation of microbiota from feces of mice
fed ATI-enriched diets into mice fed on control diets increased
the severity of colitis indicating a direct inflammatory stimulus
of intestinal microbiota. Pickert et al. (87) suggested that ATI-
associated dysbiosis and ATI-induced TLR4 activation are likely
to occur simultaneously and may synergistically promote the
overall inflammatory reaction and intestinal barrier function.

Although some studies have been carried out on inflammatory
responses to wheat consumption, the test foods used or samples

studied contained many other components in addition to ATIs
and it is therefore not possible to conclude that the observed
effects are exclusively caused by ATIs (88). This is supported by
the observation that the major non-gluten proteins recognized
by IgG and IgA antibodies from CD patients were ATIs, serpins,
globulins and two groups of gluten-related proteins termed
purinins and farinins (8).

Finally, it should be noted that the effects of ATIs on gut
microbial diversity and metabolism can be bidirectional. On the
one hand, as outlined above, the microbiota is influenced by
the presence of ATIs. On the other hand, selected Lactobacillus
strains from sourdough and human intestine were shown to
express proteases able to degrade ATIs and thereby reduce
inflammatory and immune responses (55, 89). In addition to
potentiating intestinal inflammation, ATI extracts also increase
liver and adipose tissue inflammation, liver fibrosis and insulin
resistance inmurinemodels of non-alcoholic steatohepatitis (90),
and exacerbation of the pathological hallmarks of Alzheimer’s
disease in 5xFAD mice (91). These observations and the critical
points listed above clearly indicate a need to study the effects
of pure and well-characterized ATIs in relevant human cohorts
suffering from inflammatory diseases.

Coeliac Disease (CD)
Several authors have suggested that ATIs play a role in the
etiology of CD by eliciting an innate immune response (67, 89).
They suggest that ATIs may reduce the digestion of gliadins,
leading to higher levels of digestion-resistant immunogenic
gliadin peptides passing the small intestinal gut epithelium, and
also potentiate the initiation of CD by enhancing the release
of pro-inflammatory cytokines and chemokines which may act
synergistically to gluten in causing CD.

Non-coeliac Wheat Sensitivity (NCWS)
NCWS is a condition characterized by intestinal and extra-
intestinal symptoms related to the ingestion of wheat and
other “gluten-containing” cereals in patients in whom CD and
wheat allergy had been excluded and who have symptomatic
improvement on their withdrawal (92). Early studies led to
the conclusion that gluten was responsible for the symptoms,
but these studies used either wheat-based foods (93) or foods
with added gluten (94), both of which contain other wheat
proteins (as discussed above). In addition, wheat also contains
FODMAPs (Fermentable Oligosaccharides, Disaccharides,
Monosaccharides, and Polyols) which induce distress in sensitive
individuals due to gas produced by fermentation. Consequently,
other components consumed in wheat-containing foods may
play a role, justifying the term NCWS for this condition. A
follow-up study by Biesiekierski et al. (7) addressed this issue
and observed no effects of added vital wheat gluten in patients
with self-reported NCWS after dietary reduction of FODMAPs.
Because this study used isolated gluten, which is known to
contain ATIs (50), it can be inferred that neither ATIs nor
gluten proteins were causative agents. Whereas, Vazquez Rogue
et al. (93) concluded that gluten (accompanied by ATIs) alters
bowel barrier functions in patients with diarrhea-predominant
IBS (IBS-D), Biesiekierski et al. (7) observed no change in

Frontiers in Nutrition | www.frontiersin.org 9 May 2021 | Volume 8 | Article 667370

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Geisslitz et al. Wheat ATIs in Human Disease

FIGURE 4 | Hypothetical mechanism of ATI bioactivity as innate triggers of intestinal and extraintestinal immune activation after ingestion of gluten containing foods

(e.g., wheat, spelt, rye, and barley). ATIs pass the intestinal epithelium as intact proteins and stimulate the toll-like receptor 4 (TLR4) on monocytes (MC), macrophages

(M8), and dendritic cells (DC). This leads to potentiation of existing adaptive immune activation and an increase of antigen-presenting cells (APC). These serve as

adjuvants for an ongoing adaptive T-cell response and intensify chronic and autoimmune diseases. It is supposed that the APC occur at extraintestinal sites, e.g.,

mesenteric lymph nodes. IEL, intraepithelial lymphocyte; HLA, human leukocyte antigen. Figure modified from Schuppan et al. (85).

permeability. Other observations lead to the conclusion that
the degree of increased small bowel permeability in NCWS
patients is low compared with that of CD patients and healthy
controls (95). A recent pilot study in irritable bowel syndrome
(IBS) patients with self-reported NCWS demonstrated no
significant differences in markers of low-grade inflammation and
gastrointestinal symptoms when consuming bread containing
reduced amounts of dimeric and tetrameric ATIs as a result of
sourdough fermentation (96).

No controlled human interventions have been carried
out with well-characterized purified compounds isolated from
processed wheat-containing foods. Consequently, the potential
effects of ATIs on the pathophysiology in NCWS remain
unclear. Overlaps in symptoms with CD, wheat allergy and
IBS are complicating factors and there are at present no
established biomarkers to diagnose NCWS (92). Recent reviews
have highlighted the clinical research challenges to help

overcome in this impasse (85, 97, 98). Note that self-reported
diagnosis plays a significant role in the perceived impact
of NCWS.

Wheat Allergy
Allergy to wheat occurs in two forms: (a) as inhalant or contact
occupational allergies to flour (the former known as bakers’
asthma) and (b) as classical food allergy triggered by ingestion
of wheat proteins, including several ATIs (99, 100) (Table 2).
The prevalence of wheat food allergy is relatively low (0.25%);
it occurs mostly in children that overgrow this allergy. Note also
that about 30 wheat proteins may cause IgE-related sensitization,
however without any clinical relevance [reviewed in Gilissen
et al. (101)]. According to Pastorello et al. (63) the allergenic
potential of ATIs is not reduced by cooking for 5min at
100◦C. However, ATIs do not appear to trigger the rare, but
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most severe allergic response to wheat consumption, wheat-
dependant exercise-induced anaphylaxis, which is triggered by
gluten proteins.

By contrast, ATIs appear to be the most potent activators of
allergic airway responses, such as bakers’ asthma (62, 63) which
is the second most common occupational trigger of asthma in
the UK (https://www.hse.gov.uk/statistics/causdis/asthma.pdf),
with glycosylated forms being particularly active (Table 2). It is
therefore important to reduce flour dust in mills and bakeries.

The addition of ATIs to the diet was shown to potentiate
allergic airway inflammation in vivo in OVA-challenged mice
(102) and IgE-dependent allergic airway inflammation in vivo in
humanized mice to which peripheral mononuclear blood cells
from individuals allergic to grass and/or birch pollen and non-
allergic individuals had been transferred (103). In this study, mice
were placed on a diet free of gluten and ATIs for 3 weeks after
which they were challenged by inclusion of a source of ATIs
in the diet. Since no ATIs could be detected in blood, it was
suggested that the potentiation of inflammation and increased
levels of IgE after exposure to ATIs resulted from myeloid cells
which were activated in the intestinal mucosa and migrated to
the periphery/lungs. These observations require confirmation by
studies in humans.

Effects of ATIs on Food Digestion
Extracts from wheat flour (which contain ATIs and other
inhibitors) have been shown to inhibit α-amylase activity and
slow the release rate of glucose from starch during digestion
resulting in modestly reduced glycemia and insulinemia (104–
106). It is possible that ATI-induced inhibition of trypsin in vivo
may result in increased levels of non-digested bioactive wheat
proteins whichmay trigger immune responses and inflammation,
but at present there is no evidence for this.

MODIFYING ATI CONTENT AND
BIOACTIVITY IN GRAIN AND FOOD

Dietary exclusion of wheat-based foods to avoid pathogenic
effects can result in depletion of essential dietary components
such as fiber, proteins and minerals. Such exclusion can therefore
be avoided by using plant breeding strategies to remove ATIs
from grain or to apply processing strategies to inactivate them
in foods.

Manipulating the Content of ATIs in Grain
Two approaches can be used to reduce the amount or activity of
ATIs in plants, but both require more detailed knowledge of the
roles of individual proteins. The first is to exploit genetic variation
in the content and composition of ATIs in wheat species (as
discussed above). Variation between genotypes may also occur,
as described for coeliac-toxic gluten proteins (107), but this has
not been demonstrated for ATIs.

The second approach is to use mutagenesis or other
technologies, including gene editing, to disrupt ATI genes.
Transgenic lines of bread wheat silenced for CM3, CM16, and
0.28 ATI genes were produced using RNA-interference (108)
while marker-free genome editing using CRISPR-Cas9 has been

used to produce both small mutations and large deletions in CM3
and CM16 ATI genes in durum wheat (109). Mutations induced
by gene editing are considered as GM in the EU, which effectively
blocks their commercial exploitation, but they are not considered
as GM in other countries (110).

Gene-edited plants can also be used to provide material
to determine structure-function relationships of ATIs and to
identify gene targets for mutation breeding. Mutation breeding
has been used by plant breeders since the mid-20th century and
is now facilitated for bread and durum wheats by the availability
of TILLING (Targeting Induced Local Lesions IN Genomes)
populations in which the exomes have been sequenced (111).

Modification of ATIs by Food Processing
The effects of food processing on enzyme inhibition by ATIs are
relatively easy to study, but the results are inconsistent. Whereas,
enzyme inhibition has been reported to be increased in white
bread (112) and to remain high in commercial wholemeal bread
(113), it has also been reported to decrease during baking of bread
(113–115) and boiling of pasta (113, 114). Inhibitory activity
of the crust may also result from dusting of the loaves with
flour prior to baking (113, 115). These conflicting results require
further investigation.

Immunoassays generally require proteins to be soluble, which
is a challenge for assaying ATIs in food because processing
may result in protein denaturation, cross-linking, glycation and
insolubility. No binding of IgE from serum of patients with
allergy to wheat proteins including ATIs was observed after
drying and cooking of pasta (116), or after the pasta was
proteolytically digested in vitro (52, 116). However, ATIs were
still detected by staining after electrophoresis of proteins from
cooked pasta, indicating that processing resulted in a loss of
epitope recognition (116). By contrast, one study showed that
severe drying conditions induced molecular rearrangements of
proteins leading to the formation of large protein aggregates
which may have contributed to a moderate decrease in the
in vitro protein hydrolysis and increase in the residual in vitro
allergenicity (53).

ATIs have been reported to survive the in vitro digestion of
raw pasta, but not of cooked pasta (117). Nevertheless, when 20
patients with IBS were challenged with cooked pasta, almost all
had symptoms, and half had IgE against a range of wheat proteins
with ATIs being the most prominent allergenic proteins (118).
Several other in vitro studies have shown reduced immunogenic
activity in processed foods including various bread types, toasted
bread, pasta, and biscuits (50, 118–120). However, the reduced
allergenic reactions observed in vitro could result from steric
hindrance of epitopes in the denatured proteins rather than
destruction, allowing them to be exposed after digestion.

Targeted enzymatic treatment of ATIs, fermentation and
other approaches may be used to mitigate the effects of ATIs.
Sourdough fermentation is known to have proteolytic activity
resulting in digestion of ATIs (121), especially tetrameric ATIs,
resulting in lower inflammatory activity (122).

Salt-soluble proteins including ATIs are also hydrolysed
during fermentation by typical sourdough lactobacilli (L.
plantarum, L. brevis, and L. sanfranciscensis) (121, 123).
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Understanding the mechanisms of action of the bacteria could
therefore mitigate ATI pathology by processing. It should also
be noted that although ATIs are water-soluble, they are also
present in commercial gluten fractions that are widely used in
food processing as technological aid (50).

ATIs AND HUMAN HEALTH: WHERE DO
WE STAND IN 2021?

Wheat is an important staple food for humankind and has been
consumed for millennia. Its nutritional quality and other impacts
on health are therefore crucial for food security. Although most
people can eat wheat-based products safely, ATIs from wheat are
of concern for some groups of people.

What Do We Know?
• Enzyme inhibitors are present in all forms of cultivated wheat,

and in related wild species and cereals
• ATIs play a clear role in bakers’ eczema and asthma and in

food allergy.
• In vitro studies and in vivo studies in animals show that ATIs

play a role in the pathogenesis of gut-related disorders.
• Food processing and plant biotechnology offers

opportunities to reduce the amount and activity of ATIs
in food.

What We Do Not Know?
• The impact of ATIs and pure and well-defined isoforms on

pathologies in humans are not clear, including mechanisms
at the molecular level. In vivo studies on the pathogenesis of
gut-related disorders by ATIs in humans are lacking.

• The relationship, if any, between ATI activity in humans and
their enzyme inhibitory properties has not been established.

• The extent to which activity in humans varies between types
and isoforms of ATI present in wheat and other species is
not known.

• The impacts of food processing on the effects of ATIs upon
consumption are not understood.

The Challenges We are Faced With
• Developing accurate methods to quantify ATI isoforms: these

are currently limited by the complexity of the mixture and the
properties of the components, especially in processed foods.

• Providing sufficient quantities of pure ATI fractions and forms
to determine activity in humans.

• Understanding the mechanisms by which ATIs impact human
adverse reactions to wheat and related pathology, including
the induction of the autoimmune process with consequent
destruction of specific tissues.

• Understanding why the majority of consumers have no
pathological responses.

• Developing methods to reduce active ATIs in foods without
effects on food quality acceptability.

These challenges must be addressed, if wheat is to be accepted as
a safe and nutritious food in the future.
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