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Abstract: Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte
responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage
and inflammation. P2 receptor expression and function are affected by numerous single nucleotide
polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nu-
cleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy
metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activa-
tion, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor
(P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can
be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle,
markers of immune-mediated disease conditions.
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tumour microenvironment

1. Introduction

T lymphocytes (T cells) are key components of the adaptive immune response and
are endowed with the ability to migrate across tissues, ready for pathogen or tumour-
antigen recognition. Antigen binding drives T-cell activation and differentiation into
specific effector cells with distinct functions and ability to secrete cytokines and other
molecular mediators, thus affecting neighbouring and distant cells. Two major subsets
of T cells are known: CD8+ T cells, mainly specialized in cytotoxic effector functions;
and CD4+ T cells, also designated as T helper (Th) cells, which differentiate into many
effector subsets [1]. The most frequent CD4+-T-cell subtypes are: interferon-gamma (IFN-
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)-
secreting Th1 cells, typically involved in chronic inflammation and anti-viral immunity;
Th2 cells, which support allergic responses and immunity against metazoan parasites
(e.g., Ascaris lumbricoides) and also promote immunosuppression; Th17 cells releasing
IL-17 in response to fungal or bacterial infection and promoting autoimmunity [2]; Treg
cells that suppress effector-T-cell functions, dampening inflammation and preventing the
development of autoimmune diseases [3].

During T-cell differentiation and activation, substrate requirement and energy metabolism
change dramatically. Naïve T cells have low metabolic activity with minimal nutrient
uptake, whereas during differentiation nutrient uptake is stimulated, the size of the mi-
tochondrial pool is expanded and the energy requirement is mainly met by oxidative
phosphorylation. By contrast, activated T cells primarily use aerobic glycolysis for ATP syn-
thesis, a metabolic switch reminiscent of the so called “Warburg effect” [4]. The “Warburg
effect”, named after German Nobel Prize laureate Otto Warburg, indicates the co-existence
of vigorous glycolysis followed by a large lactic acid production in the presence of physio-
logical O2 ambient levels (aerobic glycolysis). T-cell fate is also determined by changes in
additional factors derived from the mitochondria or affecting their function, such as mito-
chondrial reactive oxygen species (mROS), mitochondrial matrix calcium, ATP, β-oxidation
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or other products, thus hinting to the key roles of mitochondria and their metabolic pro-
grammes in T-cell proliferation, differentiation and effector functions [5,6]. Intriguingly,
we now know that the main product of mitochondrial energy metabolism, that is, ATP, is
also an extracellular messenger released by virtually all cells, T cells included. Thus, the
mitochondria participate in immunomodulation not only as sources of energy but also by
producing a paracrine immunoregulatory factor, i.e., extracellular ATP, eATP. Thus, eATP
can be considered for all intents and purposes a mitochondrially derived immunomodu-
latory messenger that links metabolism to immunity. Of course, eATP is not of exclusive
mitochondrial origin as other messenger molecules, such as ROS, can be produced by
additional pathways (glycolysis also generates ATP via substrate level phosphorylation in
the cytoplasm), but without doubt the mitochondria are the main source.

2. Role of Energy Metabolism in T-Cell Activation and Proliferation

T cells enter the circulation from the thymus as naïve T cells, which are maintained
in a quiescent G0 state by IL-17 stimulation [7]. Naïve T cells have low metabolic activity
mainly centred on oxidative phosphorylation (OXPHOS) to support glucose-, glutamine-
and fatty-acid-supported ATP generation [8]. When naïve T cells encounter their cognate
antigen on an antigen-presenting cell (APC), the high-affinity T-cell receptor–major histo-
compatibility (TCR-MHC) peptide complex promotes the formation of an immune synapse
(IS) and drives a change in metabolic programmes [9]. The mitochondria are relocated at the
IS providing local ATP to maintain IS architecture and to sustain the intracellular calcium
signalling cascade [10]. The local Ca2+ influx triggered by TCR stimulation increases the
Ca2+ concentration in the cytosol and in the mitochondrial matrix with an overall critical
effect on T-cell homeostasis, activation, differentiation and apoptosis. Moreover, extracel-
lular Ca2+ influx and mitochondrial Ca2+ uptake are required for ROS production [11], as
mROS generated by complexes I, II and III of the mitochondrial electron transport chain
(ETC) fulfil a key second messenger role in the modulation of ROS-dependent transcription
factors, such as nuclear factor of activated T cells (NFAT), nuclear factor-kB (NF-kB) and
activator protein-1 (AP-1) [11]. T cells with a deficient complex III fail to activate NFAT
transcription and the associated IL-2 production, but treatment with exogenous H2O2 is
sufficient to recover IL-2 production [11]. The downregulation of complex I also impairs
TCR-dependent ROS generation and the secretion of IL-2 and IL-4 [12]. In a mouse model
of infection, antioxidant treatment reduced T-cell proliferation, further supporting the need
for mROS in T-cell activation [13]. Of note, while low ROS concentrations support cell
activation and proliferation, high levels are injurious and detrimental for cell viability. T
cells producing increased levels of mROS due to their inability to prevent the formation
of the mitochondrial permeability transition pore (mPTP) are highly susceptible to cell
death [14]. The key role of the intracellular redox state in T-cell activation is also supported
by the finding that the inability to keep a sufficient level of antioxidant glutathione (GSH)
to buffer ROS prevents T-cell activation [15]. These observations suggest that titrating ROS
levels is crucial for proper metabolic programming [16].

During T-cell exit from quiescence, TCR stimulation turns on energy metabolism to
satisfy the increased bioenergetic and biosynthetic needs associated with proliferation,
shifting from a quiescent state to a highly active anabolic state [17]. Mammalian target
of rapamycin complex 1 (mTORC1) is the main regulator of quiescence exit through
transcriptional, translational and post-translational mechanisms, but an important role
is also played by mTORC2, which facilitates quiescence exit by activating AKT (protein
kinase B) and up-regulating glucose transporter 1 (GLUT1) to enhance glucose uptake and
glycolytic flux [18]. Upon antigen recognition, activated T cells increase aerobic glycolysis,
the pentose phosphate pathway and glutaminolysis to support proliferation and maintain
effector functions [19]. Metabolic reprogramming towards aerobic glycolysis and lactate
production, the Warburg effect, is constantly associated with proliferating T cells, yet TCR
stimulation dramatically increases mitochondrial mass and mitochondrial DNA levels,
suggesting that the mitochondria may also play crucial roles in supporting T-cell activation
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and proliferation [20]. Mitochondrial respiration provides not only ATP but also building
blocks for the anabolic processes supporting cell proliferation and growth. For instance, the
NAD+-dependent conversion of malate into oxolacetate catalysed by mitochondrial malate
dehydrogenase-2 (MDH2) is necessary for the synthesis of aspartate (a precursor of purine
and pyrimidines) from oxalacetate. When the NAD+ pool is decreased due to compromised
mitochondrial respiration, the de novo synthesis of aspartate is impaired, causing cell-
cycle arrest [21]. Accordingly, MDH2 inhibition impairs T-cell proliferation [22]. Another
mitochondrial anabolic pathway up-regulated during proliferation is glutaminolysis, in
which glutamine is converted into α-ketoglutarate, which is then fed into the citric acid
cycle (TCA). The production of α-ketoglutarate is thought to be a critical step, given
that glutaminolysis inhibition impairs T-cell proliferation and cytokine production [23].
Overall, these observations support the importance of mitochondrial metabolism alongside
glycolysis in T-cell proliferation.

3. Metabolic Reprogramming during T-Cell Differentiation

Activated T cells differentiate into different subsets depending on the given specific
stimulated signalling pathway and the expression of downstream transcription factors.
Each lineage displays a unique metabolic phenotype; however, the general assumption is
that an increase in glycolysis boosts the differentiation of pro-inflammatory effector T cells
(Teffs), whereas stimuli that increase mitochondrial metabolism boost the differentiation of
regulatory T cells (Tregs) and CD8+ memory T cells [24] (Figure 1).
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Figure 1. Mitochondrial metabolism and dynamics determine T-cell differentiation. Increasing aerobic
glycolysis and glutaminolysis leads to a pro-inflammatory effector phenotype, whereas stimuli that
promote OXPHOS and mitochondrial respiration boost the differentiation of regulatory and memory
T cells. Morphological changes in the mitochondria also control metabolic reprogramming: the
mitochondria of effector T cells undergo fission regulated by the GTPase dynamin-related protein 1
(Drp1), while regulatory and memory T cells maintain a fused mitochondrial network supported by
protein Optic atrophy 1 (Opa1). FAO, fatty acid oxidation.

3.1. CD4+ T Cells

CD4+ T-cell subsets comprise pro-inflammatory Teff cells, among which there are
Th1, Th2 and Th17, and suppressive Treg cells. Glycolysis is the main metabolic pathway
for pro-inflammatory differentiation, and accordingly, Teff cells display elevated levels
of glycolytic enzymes and lactate production [25]. GLUT1 down-modulation impairs
whereas its overexpression increases glycolysis and Th1-, Th2- and Th17-cell prolifera-
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tion [26]. Accordingly, the pharmacological inhibition of glycolysis by 2-deoxyglucose
(2-DG) decreases Th17-cell differentiation and enhances Treg generation [27,28]. These
data are further supported by the observation that mice deficient in hypoxia inducible
factor-1α (HIF-1α), a key regulator of glycolysis in Teff cells, relied on OXPHOS and
showed increased Treg-cell differentiation [27]. A recent study demonstrated that the acti-
vation of pyruvate dehydrogenase (PDH) through PDH kinase inhibition promoted Treg
differentiation, whereas PDH inhibition (which causes increased glycolytic flux) boosted
Th17-cell differentiation [25]. The administration of cell-permeant α ketoglutarate to CD4+

lymphocytes reprogrammed towards a mitochondrial metabolism, which skewed Treg
cells towards a more pro-inflammatory phenotype [29]. Moreover, the administration of
pan-antioxidant N-acetylcysteine (NAC) prevented Treg differentiation, suggesting that
increased levels of mROS, on one hand, are necessary to drive Treg formation, and on the
other, they may suppress Th17-cell differentiation [25]. It was suggested that mROS may in-
directly modulate expression of forkhead box protein P3 (Foxp3), the transcriptional factor
that promotes Treg differentiation by suppressing glycolysis-related genes and inducing
the expressions of genes associated with lipid and oxidative metabolisms [30]. Cells ex-
pressing Foxp3 up-regulated all components of the ETC and enhanced fatty acid oxidation
(FAO) [31], thus supporting the finding that Treg cells rely on FAO to fuel OXPHOS, which
is required for maximal suppressive ability [32,33]. Accordingly, transforming growth
factor-β (TGF-β) drove Treg differentiation [34] via AMP-activated protein kinase (AMPK)-
dependent FAO, thus skewing inflammatory Th17 cells toward a Treg phenotype [24,35].
In addition, FAO inhibition using small-molecule drug etomoxir impaired Treg-cell dif-
ferentiation, while FAO promotion by the pharmacological inhibition or genetic deletion
of fatty acid synthase led to impaired Th17-cell differentiation and increased in vitro and
in vivo Treg differentiation [24,36]. Moreover, the complex-I-mediated oxidation of NADH
to NAD+ was essential for Treg suppressive function [33]. On the other hand, T cells with
dysfunctional mitochondria become more glycolytic, differentiate into pro-inflammatory
Th1 cells and secrete large amounts of IFN-γ [37]. These observations suggest that the
balance between OXPHOS and aerobic glycolysis is crucial to ensure Treg lineage stability
and support the hypothesis that mitochondrial metabolism is differentially required during
T-cell subset differentiation.

Over the years, different hypotheses were put forward to explain why glycolytic
T cells are more inflammatory than respiratory T cells. It was suggested that Th1-cell
differentiation and IFN-γ production depend on an epigenetic mechanism that promotes
an increased level of intracellular acetyl-CoA, which in turn leads to histone acetylation
at loci that are crucial for Th1 differentiation and function, such as the locus encoding
IFN-γ [38]. TCR stimulation was associated with the induction of the A chain of lactate
dehydrogenase (LDHA), the enzyme that converts pyruvate to lactate. Lactate accumu-
lation then indirectly promotes an increase in the acetyl-CoA cytoplasmic concentration.
A recent study showed that the loss of the T-cell gene encoding the A chain inhibited Th1
cytokine production, owing to the lower cytosolic levels of acetyl-CoA [38]. Moreover, the
glycolytic enzyme GAPDH post-transcriptionally down-modulated T-lymphocyte IFN-γ
production by binding to cytokine mRNA in the AU-rich 3′ UTR region [39,40]. Recent
evidence suggested that glutaminolysis besides glycolysis may also contribute to the in-
flammatory properties of Teff cells. Glutamine depletion or inhibition of glutaminolysis
convert CD4+ T cells into Treg cells, even under Th1 polarizing conditions [41]. In addition,
Th17 differentiation was associated with increased glutamine utilization, supporting the
role of glutamine metabolism in the modulation of T-cell effector functions [42]. Finally,
glycolytic inflammatory T cells are characterized by phosphoenolpyruvate accumulation,
a metabolite that increases cytosolic Ca2+ levels promoting NFAT signalling and T-cell
effector functions [43].

The metabolic reprogramming of CD4+ T cells is critically determined by mTOR
signalling as mTOR activation promotes Th1- and Th17-cell differentiation, while mTOR
inhibition induces Treg differentiation [44]. mTOR kinase exists in two different complexes:
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mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is indispensable
for Th1-cell differentiation, as T cells lacking the regulator of mTORC1 signalling (the
GTP-binding protein RAS homolog enriched in the brain, Rheb) fail to differentiate into Th1
cells, even under Th1 polarizing conditions [45]. mTORC1 modulates cellular metabolism
by regulating the expressions of the transcriptional regulators MYC and HIF-1α [46]. Tran-
scription factor MYC regulates the expressions of several enzymes involved in glycolysis
and glutaminolysis [47], while HIF-1α promotes Th17-cell differentiation by inducing mas-
ter transcription factor RAR-related orphan receptor (ROR) γt through the aryl hydrocarbon
receptor (AhR) pathway, but only in the presence of pro-inflammatory cytokines such as
TGF-β, IL-6, IL-23 and IL-1β [48,49]. On the other hand, mTORC2 is essential for Th2-cell
generation [45] by regulating the small GTPase RhoA. A recent study showed that RohA-
deficient cells exhibited impaired Th2 differentiation and mTORC2 activity, while mTORC1
activity and Th1-cell polarization were preserved [50]. Accordingly, mTORC2 deficiency
impaired Th2-, but not Th1- and Th17-cell differentiation both in vitro and in vivo [51].
Contrary to previous belief that CD4+-T-lymphocytes differentiation into various effector
subsets is an irreversible event, Teff cells retain functional plasticity, and these cells can
change their effector phenotype depending on the environmental conditions, for example,
during infections, autoimmune diseases or allergic reactions [52,53].

3.2. CD8+ T Cells

CD8+ T cells are usually sub-classified into Teff cells, T memory cells or T effec-
tor memory cells, depending on their expression of specific genes and on the overall
metabolic phenotype. Similarly to CD4+ T cells, an increase in the glycolytic flux and the
up-regulation of glucose transporter GLUT1 are critical steps in CD8+-T-cell activation
and differentiation and thus for proliferation and effector functions [54]. The correlation
between glycolytic metabolism and CD8+-Teff-cell function is further supported by the
observation that glycolysis is required for the rapid recall response of CD8+ memory T
cells as they differentiate into secondary Teff cells [55,56]. An immediate-early glycolytic
switch is required for rapid IFN-
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production, linked to mTORC1 activation and epigenetic
modifications [57,58]. Costimulatory and coinhibitory pathways are also critical regulators
of T-cell activation and metabolism. Activation through the TCR alone fails to induce
metabolic reprogramming, while activation together with costimulatory molecule CD28
greatly increases glycolysis and mitochondrial metabolism through the phosphatidylinosi-
tol 3 kinase (PI3K)/Akt/mTORC1 pathway, enhancing T-cell function and proliferation [59].
This is also true of tumour-infiltrating CD8+ lymphocytes (TILs), where CD28 stimulation
restores metabolism and functions by increasing glycolysis and mitochondrial activity [60].
Early metabolic studies showed that while glycolysis is a signal for effector functions, CD8+

memory T cells have a large capacity for OXPHOS and tend to be more quiescent [61–63].
CD8+ T cells treated with glycolysis inhibitor 2-DG show increased differentiation towards
memory T cells, whereas the up-regulation of glycolytic enzymes decreases memory-T-cell
differentiation [62]. Moreover, CD8+ memory T cells increase mitochondrial mass and have
high spare respiratory capacity, largely owing to their increased engagement of fatty acid
synthesis and FAO pathways [63].

During the life of T cells, mitochondrial morphology changes dynamically, and each
change is associated with the engagement of distinct metabolic pathway. Mitochondrial
dynamics, epitomized by changes in mitochondrial size, shape and cellular localization,
were recently implicated in the control of T-cell fate. Upon activation, CD8+ Teff cells
display fragmented mitochondria with loose cristae, a process known as fission, regulated
by GTPase dynamin-related protein 1 (Drp1), which is responsible for the recruitment to
the mitochondria of a protein complex inducing fragmentation [64]. In contrast to effector
cells, CD8+ memory T cells have elongated mitochondria with tightly associated cristae as a
result of the activity of protein Optic atrophy 1 (Opa1) that supports the fusion of the inner
mitochondrial membrane and the proper maintenance of mitochondrial cristae, facilitating
the assembly of the ETC complex and boosting OXPHOS activity [64,65] (Figure 1). The



Biomolecules 2022, 12, 983 6 of 20

loss of Opa1 leads to defective CD8+-memory-T-cell generation, whereas CD8+ effector
T cells treated with drugs that inhibit fission or promote fusion adopt a T-memory-like
phenotype, reducing glycolysis and thereby activation [64]. All these findings suggest
that not only mitochondrial metabolism but also mitochondrial dynamics control CD8+-T-
cell differentiation and effector functions. A short summary of key metabolic pathways
involved in CD4+ and CD8+ T-lymphocyte activation is reported in Table 1.

Table 1. Metabolic regulators of T-cell differentiation.

CD4+ (Th1, Th2, Th17) and
CD8+ Effector T Cells

Treg Cells
Memory CD8+ T Cells

Primary source of energy Glycolysis
Glutaminolysis

Fatty acid oxidation (FAO)
OXPHOS

Transporter Amino acid transporter
Glucose transporter (GLUT1) Low nutrient uptake

Kinases
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4. P2 Receptors in T-Cell Signalling and Metabolic Regulation

The expression of purinergic receptors by T cells was firstly suggested in 1978, when
Gregory and Kern showed that eATP was mitogenic for mouse thymocytes [66]. Several
years later, we confirmed these early findings by showing that eATP induced plasma
membrane depolarization and permeability increase to low MW dyes and promoted the
growth of human T lymphocytes [67,68]. About the same time, Sitkovsky and co-workers
showed that TCR cross-linking caused ATP release, which in turn promoted T-cell effector
functions via purinergic receptors [69]. Three families of purinergic receptors, P1, P2X and
P2Y, are known. P1 receptors recognize adenosine and comprise four subtypes (A1, A2a,
A2b and A3). P2X receptors (P2XRs) are ATP-gated ionotropic receptors permeable to small
inorganic cations (Na+, K+ and Ca2+), consisting of seven members (P2X1-7) [70]. P2Y
are metabotropic receptors (P2YRs) comprising eight members (P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11, P2Y12, P2Y13, P2Y14), gated by a wide range of nucleotide ligands [71]. Different
combinations of these receptors are expressed by immune cells [72], but P2X1, P2X4, P2X7,
P2Y11 and P2Y12 and emerged as key regulators of T-cell metabolism, migration and antigen
recognition [73,74].

Over the years, it was conclusively demonstrated that autocrine/paracrine stimulation
by released nucleotides (purinergic signalling) is an important mechanism of immune
cell regulation [72,73,75–77]. Under basal conditions, T cells release a small portion of
their intracellular ATP via vesicular exocytosis or ATP-permeable plasma membrane chan-
nels [78,79], but ATP release is quickly increased by the ligation of cell-surface receptors,
such as the TCR. Regulated ATP release modulates several different cell responses; however,
at sites of inflammation and tissue damage excessive amounts of ATP can accumulate with
untoward effects on the local immune response [80,81]. Among the ATP-release pathways,
pannexin-1 (panx-1) hemichannels, which are thought to be associated with the P2X7R
and mediate TCR-dependent ATP release, are especially important in immune cells [82,83].
The inhibition of panx-1-mediated ATP release and the associated autocrine–paracrine
P2X7R stimulation leads to decreased IL-2 secretion and T-cell proliferation, confirming
that panx-1-mediated ATP release is a locally acting costimulatory signal [83]. Converg-
ing experimental evidence suggests that P2XRs are main targets for panx1-dependent
autocrine-paracrine stimulation. In different non-immune cell types, the release of low
amounts of ATP via panx-1 from resting cells overexpressing P2X receptors is sufficient to
sustain the modest Ca2+ influx needed to maintain basal mitochondrial metabolism and
ATP synthesis [84]. On this same line, P2X1Rs were shown to support energy metabolism
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in resting naïve CD4+ T cells by facilitating Ca2+ influx and sustaining the basal mitochon-
drial activity needed for T-cell vigilance [85]. Moreover, during T-cell activation, panx-1
hemichannels, mitochondria, P2X1R and P2X4R localize to the IS between the T cell and the
APC (Figure 2). P2X1R and P2X4R trigger a localized Ca2+ influx that stimulates OXPHOS
and propagates TCR-induced signalling, culminating in cytokine secretion and T-cell pro-
liferation [86]. Junger and co-workers recently showed that mitochondrial trafficking to
the immune synapse is directed by P2Y11Rs [87], suggesting that these receptors cooperate
with P2X4Rs to recruit and stimulate mitochondria at the IS. P2X4Rs and P2Y11Rs fulfil
similar roles in promoting T-cell migration. The autocrine stimulation of P2X4R induces
cellular Ca2+ influx that supports the localized ATP synthesis required to promote the
formation of those plasma membrane protrusions (pseudopods) needed to drive forward
cell movement. The inhibition of P2X4R impairs T-cell polarization and migration in re-
sponse to chemokine-receptor stimulation, pointing to the key role of these receptors in
T-cell activation and migration [88]. While P2X4 receptors accumulate at the front of cells,
P2Y11 receptors accumulate at the rear of polarized T cells, where they trigger cAMP/PKA
signalling, which attenuates mitochondrial function at the back, preventing inappropriate
pseudopod extension and promoting uropod retraction [89]. Altogether, these data suggest
that P2Y11 and P2X4 receptors synergize to stabilize cell polarization and promote efficient
T-cell migration. However, P2X4R/P2X7R ligation by eATP may also give a “stop” signal
once immune cells have reached their destination, as, for example, lymphatic follicles [90].
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Figure 2. P2 receptors and mitochondria concur to support T-cell activation. Ligation of both T-
cell receptor (TCR) and the costimulatory molecule CD28 increases glycolysis and mitochondrial
metabolism through the phosphatidylinositol 3 kinase/Akt/mammalian target of rapamycin com-
plex 1 (PI3K/AKT/mTOR) pathway and the downstream activation of transcription factors such
as nuclear factor of activated T cells (NFAT) and nuclear kappa-light-chain-enhancer of activated
B cells (NFkB). Upon antigen recognition, mitochondria are relocated to the immune synapse to
sustain calcium signalling and supply local ATP, which is also partially released via pannexin 1
(panx-1) hemichannels. Extracellular ATP activates P2X1R, P2X4R and P2X7R, triggering a localized
calcium influx that stimulates oxidative phosphorylation (OXPHOS) and mitochondrial respiration.
Extracellular ATP is hydrolysed to ADP, which activates specific P2Y receptors such as P2Y1R and
P2Y12R, boosting intracellular calcium signalling and mitochondrial ATP synthesis. Moreover, extra-
cellular Ca2+ influx and mitochondrial Ca2+ uptake are required for reactive oxygen species (ROS)
production and the modulation of ROS-dependent transcription factors NFAT and NF-kB. APC,
antigen-presenting cell; panx-1, pannexin-1.
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Extracellular ATP is hydrolysed to ADP, AMP and adenosine by the ectonucleotidases
expressed by different cell types, including T cells [91]. In T cells, ADP may activate
specific P2YRs such as P2Y1Rs and P2Y12Rs [92]. In human CD4+ T cells, P2Y1Rs are
upmodulated upon stimulation. Moreover, P2Y1R inhibition or silencing downregulates
mitochondrial Ca2+ uptake, inhibits cytosolic Ca2+ signalling and, as a consequence, miti-
gates IL-2 production [93]. These findings demonstrate that P2Y1R activation participates in
the autocrine purinergic signalling mechanism that boosts intracellular Ca2+ signalling and
mitochondrial ATP synthesis in response to TCR stimulation. P2Y1Rs may also regulate
T-cell migration as demonstrated by the finding that the inhibition of P2Y1R impairs Teff
motility [93]. Although P2Y12R was thought to play a central role only in platelets, we
now know that this receptor is also expressed by other cells of the immune system, such as
monocytes and T cells, where it might promote proliferation, cytokine secretion, platelets–T-
lymphocyte interaction and Treg differentiation and function in vitro, and in vivo immune
response during sepsis [94–96]. These data support previous findings showing that P2Y12R
antagonism or deficiency is linked to altered circulating cytokine levels in different animal
models of inflammation [97–99].

P2Y6R signalling might also participate in the regulation of inflammation [100–102],
although it is not yet clear whether its activation has a triggering or a protective func-
tion [103,104]. The lack of CD4+-T-cell P2Y6R increased cytokine generation and T-cell
activation in an allergic lung model, suggesting that P2Y6R might have anti-inflammatory
activity in the lung [101]. Accordingly, a recent study showed that intestinal inflammation
in P2Y6-deficient mice was associated with an increased infiltration of macrophages, neu-
trophils, Th1 and Th17 cells and with the increased expressions of several inflammatory
cytokines, such as IL-23, IL-6 and IL-1β [105].

The P2X7 Receptor

In the P2XR family, the P2X7 subtype (P2X7R) plays an important role in the activation
of T cells, mast cells, macrophages, dendritic cells and polymorphonuclear neutrophilic
granulocytes [106–108]. The P2X7R is an ATP-gated ion channel associated with two
different permeability states: a small-conductance cation-selective channel, and a large-
conductance non-selective pore [109]. While following TCR stimulation other P2XRs
such as P2X1R and P2X4R are rapidly translocated to the immune synapse, the P2X7R
remains uniformly distributed on the plasma membrane, where it may function as a general
sensor of eATP concentration, possibly to provide a trophic signal [86,110]. The role of
P2X7R in T-cell activation was shown in human CD4+ T cells where P2X7R inhibition
by different strategies, such as siRNA silencing or pharmacological blockade, decreased
Ca2+ influx and inhibited T-cell activation [110], while genetic deletion in P2X7R-KO mice
impaired leukocyte function and attenuated the inflammatory response [111]. Over the
years, several reports highlighted the key role of the ATP/P2X7R axis in the modulation
of Th17-cell polarization and differentiation [112–114]. P2X7R blockade inhibited Th17-
cell differentiation and improved the outcome of heart and pancreatic islet experimental
transplantation [113,115]. Positive effects were also observed in lupus-prone mice and in a
study in myasthenia gravis patients, where the P2X7R blockade lowered the production
of IL-17, IL-6 and IL-1β in isolated peripheral blood mononuclear cells [116]. P2X7R is
differentially expressed by T-cell subsets; these, therefore, may be differentially susceptible
to eATP-stimulated cell death [117–119]. In murine Treg cells, P2X7R could also be activated
by ADP ribosylation catalysed by ADP-ribosyltransferase 2.2 (ART2.2) in the presence
of NAD+ [120]. P2X7R activation by ART2.2 triggers calcium flux, phosphatidylserine
exposure, L-selectin (CD62L) shedding, loss of the mitochondrial membrane potential and
pore formation, resulting in cell death [62,120]. CD62L shedding, which is fundamental for
T-cell migration, depends on the P2X7R-mediated activation of ADAM10 and ADAM17
metalloproteases, which also trigger CD27 and IL-6 receptor (IL-6R) shedding [121–123]. In
human naïve T cells, CD26L shedding may depend on the eATP-mediated enhancement
of mitochondrial superoxide generation [124]. Since CD62L promotes T-cell homing to
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secondary lymphoid organs, P2X7R may have a role in T-cell egress from lymph nodes,
as suggested by findings showing that P2X4/P2X7 activation inhibited T-cell motility [90].
The P2X7R-mediated shedding of CD27, a member of the tumour necrosis factor family
that supports antigen-specific expansion and T-cell memory generation [125,126], might
be relevant for the regulation of adaptive immunity and/or immunopathology. On the
other hand, the P2X7R-mediated shedding of IL-6R may skew T-cell polarization toward
pro-inflammatory rather than immunosuppressive programmes.

The P2X7R also has a substantial role in the expansion, metabolic reprogramming
and effector functions of CD8+ memory T cells [127]. P2X7R deficiency causes a defect in
memory T cells ever since the initial precursor level differentiation stages, with a typical
mitochondrial signature emphasized by lower mitochondrial mass and reduced spare
respiratory capacity. Effects on CD8+-memory-T-cell differentiation due to the lack of
the P2X7R may be mediated by AMPK/mTOR, since P2X7R-deficient T cells undergo an
increase in intracellular ATP concentration, which inhibits AMPK activity. On the other
hand, P2X7R activation triggers Ca2+ influx, which can activate AMPK. Finally, AMPK
activity promotes memory differentiation by the inhibition of mTOR signalling [128]. P2X7R
can also modulate ATP outflow through panx-1 channels, thus sustaining a memory-T-cell
survival-promoting positive feedback loop between the P2X7R and panx-1channel fuelled
by the constant efflux of intracellular ATP [129]. These data hint to the essential roles of
energy metabolism, intracellular ATP and Ca2+ levels in promoting P2X7R-dependent
T-cell differentiation.

Based on its immunomodulatory role, it is anticipated that an imbalance in P2X7R
expression and activation may be implicated in the pathogenesis and progression of mul-
tiple diseases. The human P2RX7 gene is highly polymorphic, with more than 150 non-
synonymous single nucleotide polymorphisms (SNPs) (of which sixteen affecting receptor
function were extensively characterized) being located in the extracellular loop or in the
cytoplasmic tail [130]. Notably, some P2RX7 SNPs are associated with various infectious,
inflammatory and autoimmune diseases, such as tuberculosis [131,132], sepsis [133], multi-
ple sclerosis (MS) [134] and rheumatoid arthritis (RA) [135]. The best characterized SNP is
rs3751143, where adenosine (A) changes to cytosine (C) at position 1513 of the P2RX7 gene.
This modification causes a glutamic acid to alanine substitution at position 496 (E496A),
generating a non-functional receptor [136]. ATP-induced IL-1β release in the whole blood
from subjects harbouring the E496A SNP is lower than in subjects harbouring the wild type
residue [137], suggesting that P2X7R loss-of-function SNPs may impair cytokine release by
immune cells. The E496A polymorphism was associated with increased susceptibility to
tuberculosis [138,139] and the less effective killing of other intracellular pathogens, such as
Toxoplasma gondii [140]. In chronic Q fever, a persistent infection caused by the intracellular
bacterium Coxiella burnetii [141], E496A may negatively affect the response to therapy [142].
On the other hand, the gain-of-function A348T (rs1718119) SNP, which is associated to
increased IL-1β secretion from monocytes [143], is protective in several infectious diseases,
such as toxoplasmosis [144], tuberculosis [145] and leprosy [146]. P2X7R SNPs may also
substantially modify human T-cell, monocyte and NK-cell responses, as for example during
graft-versus-host disease (GVHD) [147]. The expression of the loss-of-function E496A or
I568N SNP in recipient subjects reduces post-HSCT (hematopoietic stem-cell transplanta-
tion) GVHD, highlighting the potential role of the P2RX7 genotype in predicting GVHD
onset [147,148]. P2X7R SNPs may also associate to the increased risk of autoimmune disor-
ders characterized by a Th17/Treg disequilibrium [149,150], as P2X7R activation promotes
Th1 and Th17 differentiation, decreasing Treg-cell proliferation.

Rheumatoid arthritis (RA) patients showed a significantly higher frequency of P2X7R-
positive Th1 and Th17 cells and a decreased level of Treg cells compared to controls, sug-
gesting that P2X7R expression is correlated with enhanced autoimmunity [151]. The A348T,
Q460R and E496A SNPs were suggested to be susceptibility gene loci for RA [135,152],
while the gain-of-function H155Y SNP is thought to contribute to RA pathogenesis due to
increased P2X7R levels [153]. The gain-of-function H155Y and A348T SNPs were also im-
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plicated in the pathogenesis of systemic lupus erythematosus (SLE) [154,155], while P2X7R
variants H155Y and A76V may have a role in the pathogenesis of multiple sclerosis (MS).
A Spanish case-control study reported an increased frequency of P2X7R gain-of-function
SNPs in MS, suggesting that an overall increase in P2X7R expression and functions may be
a risk factor associated with its pathogenesis [134]. Interestingly, T cells isolated from the
inflamed central nervous system in a model of MS had a distinct phenotype, suggesting
that the priming site is a fundamental determinant of T-cell commitment to a defined
T-helper-cell lineage with specific effector functions [156]. Notably, T helper cells derived
from gut-draining mesenteric lymph nodes, which are primarily recruited to the white
matter, expressed higher P2X7R levels than those derived from inguinal lymph nodes.
These observations suggest that P2X7R may be a functional marker of effector T cells, and
the characterization of the disease-associated SNPs in the P2RX7 gene could help gain a
better understanding of disease mechanisms. Moreover, since it is also released into the
blood and its levels are significantly higher in diseased subjects [157], the P2X7R could be
used as a disease biomarker.

An association of other P2R SNPs with selected diseases was found, for example,
the P2RY12 rs680969 SNP, which was proposed to predict resistance in child Kawasaki
disease [158]. Other SNPs in P2RY12 were suggested to be predictive of cancer pain
severity [159] or to contribute to interindividual variability in the response to the widely
used antithrombotic agent cangrelor [160]. Finally, the rs2305795 SNP in the 3′ untranslated
region of the P2RY11 gene was associated with narcolepsy [161]. An appraisal of the main
disease-associated P2X7R SNPs is shown in Table 2.

Table 2. P2RX7 SNPs associated with inflammatory and autoimmune diseases.

dbSNP ID Nucleotide
Change

Amino Acid
Change Effect on Functions Implicated Conditions

rs3752243 1513 A > C E496A Loss

Tuberculosis [137,138]
Toxoplasma gondii infection [139]

Chronic Q fever [140,141]
Graft-versus-host disease (GVHD) [146]

Rheumatoid arthritis [151]

rs1718119 1068 G > A A348T Gain

Toxoplasmosis [142]
Tuberculosis [143]

Leprosy [144]
Rheumatoid arthritis [134]

Systemic lupus erythematosus [153]

rs1653624 1729 T > A I568N Loss Graft-versus-host disease (GVHD) [146]

rs2230912 1405 A > G Q460R Partial loss Rheumatoid arthritis [151]

rs208294 489 C > T H155Y Gain
Rheumatoid arthritis [152]

Systemic lupus erythematosus [154]
Multiple sclerosis [133]

rs17525809 370 T > V A76V Gain Multiple sclerosis [133]

5. Targeting T-Cell Metabolism and P2 Receptors: Potential Clinical Application

Inappropriate T-cell responses are the main causes of disease; therefore, dissecting
the multiple pathways connecting T-cell metabolism, P2R signalling and immune function
can very likely be helpful to devise new and more effective therapeutic strategies [162,163].
Autoimmune disorders share common features such as the generation of pathogenic effec-
tor CD4+ and CD8+ T cells. A direct link between autoimmunity and dysregulated T-cell
energy metabolism was suggested by a large body of evidence. Naïve CD4+ T cells from
lupus-prone mice exhibited higher glycolytic activity than those from controls [164], and
the increased glucose uptake in mice overexpressing the GLUT1 transporter was by itself
sufficient to drive IFN-
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and IL-2 production [165]. Deletion of GLUT1 reduced CD4+-T-cell
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glycolytic activity, and at the same time, it impaired effector CD4+-T-cell generation and
mitigated the severity of colitis [26]. In addition, blocking glycolysis using 2-DG improved
the clinical outcome in mice with experimental autoimmune encephalomyelitis (EAE) [27].
The antidiabetic hypoglycaemic drug metformin displayed anti-inflammatory properties.
Treatment of a mouse model of SLE with a combination of metformin and 2-DG reversed
metabolic changes and alleviated the disease [164]. Furthermore, statins (inhibitors of
β-hydroxy β-methylglutaryl-CoA, HMG-CoA, reductase involved in cholesterol synthesis)
seem to have a moderate immunosuppressive effect as they inhibited Th17-cell differen-
tiation, ameliorating EAE and alleviating RA [166]. This is in line with the observations
that fatty acid and cholesterol synthesis are required for T-cell proliferation. Amino acid
restrictions can also affect T-cell activation and proliferation via the mTORC1 pathway [167].
Hence, limited nutrient availability can severely inhibit effector T-cell response and pro-
mote a tolerogenic environment [17]. While inhibiting T-cells response might be useful for
the treatment of inflammatory and autoimmune diseases, the opposite approach should
be used, in principle, for cancer treatment. The tumour microenvironment (TME) is char-
acterized by low pH, low oxygen levels, low nutrient and high eATP concentrations, and
other features that enforce dysfunctional T-cell metabolism and promote tumour immune
tolerance and tumour progression [168]. Hypoxia and nutrient deficiency affect CD8+-T-cell
responses by impairing fatty acids metabolism [169] and up-regulating various inhibitory
receptors, such as programmed cell death-1 (PD-1) [170]. PD-1 stimulation severely affects
cell metabolism by lowering the expression of the regulator of mitochondrial biogenesis
peroxisome proliferator-activated receptor-gamma coactivator (PGC) 1-α, resulting in the
reduction in glycolysis, the dysregulation of mitochondrial energetics and the increase
in ROS production [170]. Promoting the expression of PGC1α or targeting the PD-1/PD-
Ligand (PD-1L) 1 checkpoint with inhibitory antibodies restores mitochondrial function
and increases anti-tumour responses [171,172]. PD-L1 is normally expressed by self-tissues
to modulate peripheral tolerance but is also overexpressed by cancer cells, causing an
impairment of T-cell function [173]. Recently, antibodies blocking cytotoxic lymphocyte
antigen 4 (CTLA4) were also used in cancer therapy. CTLA4 is expressed on the surface of
activated T cells, where its activation inhibits the PI3K/Akt/mTOR signalling pathway,
impairing T-cell metabolism and proliferation [174–176] (Figure 3).
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Figure 3. Targeting cell metabolism and P2 receptors to modulate T-cell activation and differentiation.
Metabolic inhibitors such as 2-deoxyglucose (2DG), metformin or glucose transporter (GLUT) 1
blockers inhibit T-cell responses and reduce proliferation, providing potentially useful targets for the
treatment of inflammatory and autoimmune diseases. On the contrary, improving T-cell metabolism
and activation by inhibiting programmed cell death (PD)-1 or cytotoxic lymphocyte antigen (CTLA) 4
receptors is a current cancer treatment option. In addition, P2 receptors are emerging as useful targets
to inhibit or enhance T-cell metabolism and effector functions at inflammatory sites or in the tumour
microenvironment, respectively. 2-DG, 2-deoxyglucose; mTORC1, mammalian target of rapamycin
complex 1; AMPK, AMP-activated protein kinase; ART2.2, ADP-ribosyltransferase 2.2.
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In addition to metabolites and metabolic enzymes [for example, phosphoenolpyruvate
carboxikinase-1, PIM kinase (Proviral Integration site for Moloney murine leukemia virus,
a highly conserved serine/threonine protein kinase) or acyl-CoA acyltransferase] [177],
P2XRs are, in principle, useful targets for enhancing T-lymphocyte cytotoxicity in the
TME [178], although due to their widespread expression also by tumour cells, the out-
come of pharmacological P2XR stimulation or inhibition is difficult to anticipate. Biological
molecules or chemical compounds acting as positive allosteric modulators of the P2X7R (the
bactericidal peptide LL-37, the antibiotic polymixn B, the H1 histamine antagonist clemas-
tine or the anti-inflammatory compound Tenidap), or of the P2X4R (the anti-helminthic
drug Ivermectin) could be used to potentiate eATP-mediated T-lymphocyte activation, thus
promoting a more vigorous anti-tumour response [179–183]. These compounds may also
synergize with the elevated eATP levels typical of the TME to trigger cancer cell death
and to promote an anti-tumour protective response. On the other hand, P2X7R-expressing
immune cells in the TME may also be harmed by these positive allosteric drugs, thus
impeding immune-cell responses. Therefore, the net effect of P2X7R stimulation/blockade
on cancer progression is not as yet clear and very likely depends on given specific TME
and the specific T-lymphocyte subset. Grassi and co-workers recently reported that the
lack of P2X7R inhibited TIL senescence and enhanced cytotoxic-T-lymphocyte responses in
mouse solid tumours [184]. In a different tumour model, Adinolfi and co-workers showed
that the P2X7R blockade increased CD4+-T-cell infiltration, without affecting the CD8+ and
Treg populations. Moreover, in this model, P2X7R-inhibited CD4+ T cells down-modulated
CD39 and CD73 ectonucleotidases, suggesting that P2X7R blockade might promote the
generation of a less immunosuppressive TME [185]. While no clinical trials in cancer have
been ran so far, the P2X7R blockade was explored in a few chronic inflammatory diseases
in over 20 Phase I/II trials [186,187]. These trials showed an excellent tolerability of the
P2X7R blockade, but efficacy was not sufficient to warrant further clinical development. An
interesting therapeutic application of P2X7R-targeted reagents might be to deplete P2X7R-
overexpressing Treg cells, thus potentiating the anti-tumour immune response. Koch-Nolte
and co-workers showed that the in vivo administration of NAD+ caused a dramatic Treg
depletion and tumour regression in EL-4 or EG7 lymphomas, MCA fibrosarcoma and B16
melanoma mouse models [188]. More recently, specific anti-P2X7R nanobodies (small anti-
bodies derived from those found in camelids) were generated with either P2X7R-blocking
or -enhancing activity, potentially useful in the deletion of P2X7R-expressing cells or in the
tuning of the P2X7R-dependent responses in cancer as well as inflammation [189].

Few clinical applications are reported for compounds active at other P2 receptors,
besides the long-known and highly successful P2Y12R inhibitors (Prasugrel, Clopidogrel,
Cangrelor, Ticagrelor), widely used for the treatment of thrombotic diseases [190,191]. Two
P2Y2R agonists (diquafasol and denufosol) for the treatment of dry eye disease, a P2X3R
antagonist (gefapixant) and a P2X4R antagonist (NC-2600) for the treatment of chronic,
non-productive, cough were licensed (see [192] for review). Recently, the P2XR agonist αβ-
methylene ATP (αβ-ATP) was demonstrated to act as a mucosal cancer vaccine adjuvant,
leading to an enhanced antigen-specific cytotoxic-T-lymphocyte (CTL) response [193],
lithocholic acid was shown to potentiate the P2X4R [194], and aurintricarboxylic acid was
identified as a potent allosteric inhibitor of P2X1R [195], but no additional information
is available.

6. Conclusions

Thus, in conclusion, P2 receptors are emerging as potent modulators of T-lymphocyte
metabolism, differentiation and effector functions. Their expression is associated with sev-
eral widely diffused human pathologies, and a number of SNPs affecting receptor functions
have been identified, thus underscoring their potential as novel markers of disease.
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