# Vaccine 40 (2022) 5971-5996

Contents lists available at ScienceDirect

# Vaccine

journal homepage: www.elsevier.com/locate/vaccine

# Genotype prevalence and age distribution of human papillomavirus from infection to cervical cancer in Japanese women: A systematic review and *meta*-analysis



Vaccine

Matthew Palmer<sup>a,b,\*</sup>, Kota Katanoda<sup>b</sup>, Eiko Saito<sup>c</sup>, Cecilia Acuti Martellucci<sup>d</sup>, Shiori Tanaka<sup>e,f</sup>, Sayaka Ikeda<sup>b</sup>, Haruka Sakamoto<sup>e</sup>, Dorothy Machelek<sup>g</sup>, Julia ML Brotherton<sup>a,h</sup>, Jane S Hocking<sup>a</sup>

<sup>a</sup> Melbourne School of Population and Global Health, The University of Melbourne, Melbourne Australia

<sup>b</sup> Division of Surveillance and Policy Evaluation, National Cancer Center Institute for Cancer Control, Tokyo, Japan

<sup>c</sup> Institute for Global Health Policy Research, National Center for Global Health Medicine, Tokyo, Japan

<sup>d</sup> Department of Medical Sciences, University of Ferrara, Ferrara, Italy

<sup>e</sup> Department of Global Health Policy, Graduate School of Medicine, The University of Teokyo, Tokyo, Japan

<sup>f</sup> Division of Prevention, Center for Public Health Sciences, National Cancer Center, Japan

<sup>g</sup>Royal Women's Hospital, Melbourne, Victoria, Australia

<sup>h</sup> Australian Centre for the Prevention of Cervical Cancer, Carlton, Australia

#### ARTICLE INFO

Article history: Received 11 April 2022 Accepted 31 July 2022 Available online 6 September 2022

Keywords: HPV Cervical Cancer Japan

# ABSTRACT

*Background:* National HPV vaccination coverage in Japan is less than one percent of the eligible population and cervical cancer incidence and mortality are increasing. This systematic review and *meta*-analysis aimed to provide a comprehensive estimate of HPV genotype prevalence for Japan.

*Methods*: English and Japanese databases were searched to March 2021 for research reporting HPV genotypes in cytology and histology samples from Japanese women. Summary estimates were calculated by disease stage from cytology only assessment – Normal, ASCUS, LSIL, HSIL and from histological assessment – CIN1, CIN2, CIN3/AIS, ICC (ICC-SCC, and ICC-ADC), and other. A random-effects meta–analysis was used to calculate summary prevalence estimates of any-HPV, high-risk (HR) and low-risk (LR) vaccine types, and vaccine genotypes (bivalent, quadrivalent, or nonavalent). This study was registered with PROSPERO: CRD42018117596.

*Results:* A total of 57759 women with normal cytology, 1766 ASCUS, 3764 LSIL, 2017 HSIL, 3130 CIN1, 1219 CIN2, 869 CIN3/AIS, and 4306 ICC (which included 1032 ICC-SCC, and 638 ICC-ADC) were tested for HPV. The summary estimate of any-HPV genotype in women with normal cytology was 15.6% (95% CI: 12.3–19.4) and in invasive cervical cancer (ICC) was 85.6% (80.7-89.8). The prevalence of HR-HPV was 86.0% (95% CI: 73.9–94.9) for cytological cases of HSIL, 76.9% (52.1-94.7) for histological cases of CIN3/AIS, and 75.7% (68.0-82.6) for ICC. In women with ICC, the summary prevalence of bivalent vaccine genotypes was 58.5% (95% CI: 52.1-64.9), for quadrivalent genotypes was 58.6% (52.2-64.9) and for non-avalent genotypes was 71.5% (64.9-77.6), and of ICC cases that were HPV positive over 90% of infections are nonavalent vaccine preventable. There was considerable heterogeneity in all HPV summary estimates and for ICC, this heterogeneity was not explained by variability in study design, sample type, HPV assay type, or HPV DNA detection method, although studies published in the 1990s had lower prevalence estimates of any-HPV and HR HPV genotypes.

*Interpretations:* HPV prevalence is high among Japanese women. The nonavalent vaccine is likely to have the greatest impact on reducing cervical cancer incidence and mortality in Japan.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

# 1. Introduction:

The WHO global strategy to accelerate the elimination of cervical cancer as a public health problem has stated an ambitious goal to achieve cervical cancer incidence of <4/100,000 in all countries within 100 years.[1] It's goals to set all countries on the path to

\* Corresponding author. E-mail address: mpalmer@ncc.go.jp (M. Palmer).

https://doi.org/10.1016/j.vaccine.2022.07.052

0264-410X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). elimination are that by 2030, 90% of girls are fully vaccinated with the human papillomavirus (HPV) vaccine by 15 years of age, 70% of women are screened with a high performance HPV test by 35 and again by 45 years of age, and 90% of women identified with cervical disease receive treatment and care. In Japan, urgent action is needed if these goals are to be met by 2030.

First-generation HPV vaccines have both been available since 2007 in Japan and initially, vaccination coverage for eligible adolescent girls in some prefectures was as high as 80%. [2] In light of such success, the HPV vaccine was added to the national routine vaccination register in April 2013. It was recommended under the Preventative Vaccination Law that the vaccine should be made available to all girls between the age of 12 to 16. However, in response to a series of media reported adverse events, the HPV immunisation programme was partially suspended by the Japanese Ministry of Health, Labour and Welfare (MHLW) in June 2013. [3] Since then, the MHLW has suspended proactive recommendation of adolescent HPV immunisation. [4,5] HPV vaccination coverage remains below 1.0%. [2,5,6,22,23] Encouragingly, in late 2020 the nonavalent vaccine was approved for use, but resumption of widescale use of the vaccination is yet to occur.

National level data for HPV-type distribution is a prerequisite to predict and then assess the impact of HPV vaccination policy. In most comprehensive reviews of global HPV prevalence, Japanese studies are under-represented or grouped with Asia or other East Asian countries, limiting their usefulness for guiding vaccination policy in Japan. We undertook a comprehensive systemic review and *meta*-analysis to provide estimates for Japan of HPV genotype prevalence and age distribution of human papillomavirus across the disease trajectory from infection to cervical cancer in Japanese women.

# 2. Methods:

This review was conducted according to a registered protocol (PROSPERO: CRD42018117596), and published elsewhere. [7] There were no deviations from the original protocol with the exception of including a sensitivity analysis (see below for details). This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (Appendix Table A1).

## 2.1. Search strategy

A systematic search of PubMed, EMBASE, and ICHUSHI for all studies reporting HPV prevalence data in Japan was conducted to March 2021. The search strategy was developed in both English (MP) and Japanese (ES, HS) and included combinations of general terms, expanded, and adapted to each database: 'Japan' and 'human papillomavirus' or 'HPV,' and 'cervical cancer,' and 'genotype,' and'normal cytology,' and 'cervical disease' or 'cervical intraepithelial neoplasia' (Appendix Table A2). Conference papers specific to HPV and cervical cancer were manually searched, Japanese government documents, and published guidelines from the Japan National Diet Library were also manually reviewed.

## 2.2. Eligibility criteria

The population of interest was Japanese women with no restriction on the age of participants. Studies were eligible if they were randomised control trials, case control studies, cohort studies or cross-sectional studies and reported primary data for Japan. Systematic reviews were not eligible, but their reference lists were searched. Based on previous global HPV genotype prevalence systematic reviews, eligible studies needed to include: at least 20 cases of histology confirmed cervical intraepithelial neoplasia 1 (CIN1), cervical intraepithelial neoplasia 2 (CIN2), cervical intraepithelial neoplasia 3 (CIN3) or invasive cervical cancer (ICC); at least 20 cases of cytology reported low–grade squamous intraepithelial lesion (LSIL) or high–grade squamous intraepithelial lesions (HSIL), atypical squamous cells of undetermined significance (ASCUS), [8-10] or; iii. 100 cases of normal cytology. [11-13] Studies needed to use PCR (polymerase chain reaction) based assays (RNA/DNA), or HC2 (Hybrid Capture 2); and include a detailed description of sampling techniques.

# 2.3. Selection of studies

Covidence Review Software was used to merge search results and remove duplicate records of the same report. The titles and abstracts of all records were screened by two independent reviewers (MP, CAM – English, HS, and SI – Japanese). [14] Text of all potentially relevant studies was evaluated in detail against the selection criteria by two independent reviewers (MP, CAM – English, HS, and SI – Japanese).

#### 2.4. Primary outcome

The outcome of interest was HPV prevalence measured as HPV test positivity where the numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test with an assay able to detect the respective type.

# 2.5. Data extraction

Data from studies published in English were extracted by three independent reviewers (MP, CAM, HS). Data from studies published in Japanese were extracted by two independent Japanese reviewers (SO, SI, HS). Variables extracted were author and year of publication; location of study, study year, setting, study design, sample collection method (practitioner, self, or other), sample collection method (cervical swab, cytobrush or surgical), type of cervical specimen (biopsy or exfoliated), and HPV assay (PCR or HC2). If PCR was used, the primer type and typing method (DNA/RNA) was recorded. Primer type was further classified as broad spectrum (MY09/11, GP5+/6+ and SPF10) or narrow spectrum (GP5/6, L1C1/ C2 or PU1M/2R). If HC2 was used, the high-risk probe or the lowrisk probe was recorded. For cohort and randomised studies, only baseline data were extracted. Additional information was requested from authors of both English and Japanese studies regarding PCR primer, sample collection method, age specific prevalence and HPV genotype-specific prevalence. The PRISMA diagram is summarised in Appendix Fig. 1, and Appendix Table A3 lists all the included studies. Sample size (N), and number of HPV-positive samples (n), were extracted for all studies. Data were extracted by cytological disease stage (Normal, ASCUS, LSIL, HSIL, ICC) and or histological disease stage (CIN1, CIN2, CIN3/AIS, ICC) depending on the study. Cases of ICC were further classified as ICC-ADC (ICC of adenocarcinoma type), and ICC-SCC (ICC of squamous cell carcinoma type), or other. Multiple infections were separated and recorded as their constituent types.

## 2.6. Statistical analysis

Analysis was performed using a Freeman Tukey double arcsine transformation and Der Simonian-Laird random effects model to compute summary estimates with confidence intervals (CIs). [15] Summary prevalence estimates were calculated for any-HPV geno-type, and for the following sub-groups: any high risk (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) genotype, any low risk vaccine genotype (HPV6 or 11), any vaccine genotype (bivalent – HPV16 or

18), quadrivalent – HPV6, 11, 16 or 18, or nonavalent – HPV6, 11, 16, 18, 31, 33, 45, 52 and 58) vaccine or cross-protection genotypes (HPV31, 33, or 45). We also calculated summary estimates of possibly (HPV26, 53, 66, 67, 70, 73, 82, 30, 34, 69, 85, or 97) or probably carcinogenic genotypes (HPV68) according to the IARC classification of human carcinogens[16] separately for each cytological or histological diagnosis (Appendix Table A4). Summary estimates of individual HPV genotypes were also calculated where possible. All studies contributed data to the estimates of any-HPV. Studies that did not provide genotype specific data and were excluded from sub-group estimates.

Statistical heterogeneity was quantified using Cochrane's Q and  $I^2$  test statistic to determine the extent of variation in summary estimates due to heterogeneity rather than chance. We anticipated high heterogeneity and opted to use the random effects model for analysis. Sources of heterogeneity were assessed in our sub-group and *meta*-regression analysis. A sensitivity analysis was conducted to investigate impact of older studies with expected less-sensitive detection methods published in the 1990s on summary estimates of any-HPV and HR-HPV genotype prevalence for cases of ICC. Age specific prevalence of any-HPV was calculated for 10-year age groups for the interval 10 to >80 years. This analysis was limited to those studies that provided data in these 10-year age groups. Age standardised estimates were calculated using the 2020 standard Japanese female population. [17]

## 2.7. Quality assessment and publication bias

The Joana Briggs assessment tool for prevalence studies was used to assess the quality of studies (Appendix Table A5) and the results presented in Appendix Table A6. Publication bias was assessed using funnel plots and Egger's test (Appendix Fig. 2).

# 3. Results:

# 3.1. Literature search

The literature search resulted in a total of 714 citations, from which 113 (15.8%) full text articles were screened in detail and 87 (12.2%) studies were eligible for inclusion (Appendix Fig. 1). Study sample sizes varied from 20 to 62625 with a total of 504035 women. Overall, there were 57759 women tested for HPV with normal cytology, 1766 with ASCUS, 3764 with LSIL, 2017 with HSIL, 3130 with CIN1, 1219 with CIN2, 960 with CIN3/AIS and 4306 with ICC including 1032 ICC-SCC and 638 ICC-ADC. Most studies used either PCR with an HPV DNA array (28, 32.1%), or L1C1/L1C2 primer (25, 28.7%). The age of women ranged from 14 to 95 years and all studies were published between 1990 and 2019. The majority were cohort (49, 56.3%) or cross-sectional studies (26, 29.8%). Overall, 65.5% (57) of studies used exfoliated samples, and 82.5% (71) samples were practitioner collected. Thirty-seven (37) studies (42.5%)used a cytobrush, followed by 25.3% (22) which used a cervical swab for sample collection. Most studies were from the Kanto (28, 32.2%), or Kansai (18, 20.7%) region.

3.2. HPV prevalence (any-HPV, any-HR or LR vaccine type) in women with normal cytology through to invasive cervical cancer

The total number of studies that provided prevalence data by cytological or histological stage were: Normal cytology(26), [18-44] ASCUS(14), [19,23,27,32,34,35,37,39,42,45-49] LSIL(20), [18,20-24,27,29,32,34,38,39,42,45,47,49-52] HSIL(15),[18,20,21, 23,24,27,29,34,39,46,47,49-52] CIN1(21), [18,19,21,49,53-69] CIN2(17), [18,48,49,53-55,59-63,66,67,69-71,92] CIN3/AIS(17), [18,21,43,52,54,59-61,63,67,69,71-77] and ICC (31), [20,21,26,28,



**Fig. 1. Any detectable, any high risk, and vaccine low risk HPV genotype prevalence in women with normal cytology through to invasive cervical cancer.** Summary estimates of HPV prevalence are measured as HPV test positivity where the numerator was the number who tested HPV positive for any one of the HPV genotypes (i.e. an individual can only count once in the numerator regardless of how many genotypes they test positive for), and the denominator was the number who had an HPV test. Error bars represent 95% confidence intervals for each summary estimate. Any-HPV prevalence represents the detection of any detectable HPV genotype. Any-HR represents the detection of any of the following: HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59. Any vaccine LR represents the detection of HPV6 or 11. Total number of women tested stratified as follows: 57759 for normal cytology, 1766 for ASCUS, 3764 for LSIL, 2017 for HSIL, 3130 for CIN1, 1219 for CIN2, 960 for CIN3/AIS, 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. A high level of heterogeneity (I<sup>2</sup> > 90%) was observed in most summary estimates. I-squared not quantifiable with fewer than three estimates. For detailed stage specific information see Appendix Table A7. NB: All studies contributed data to the estimates of any-HPV, but not all studies provided genotype specific data and were excluded from the HR and LR estimates.

49,50,58,59,64,65,67,68,71,72,75,77-92] ICC-SCC(6), [68,71,90, 93-95] and ICC-ADC(9) [68,71,79,81,82,90,93-95]. Not all studies provided genotype specific data and contributed to summary prevalence estimates for any-HPV, any-HR or LR vaccine types [113–120]. The summary prevalence estimates for any-HPV detection stratified by cytology results were: Normal cytology – 15.6% (95% CI: 12.3–19.4), ASCUS – 53.9% (26.9–79.7), LSIL – 70.2% (47.7–88.5), HSIL – 88.8% (74.6–97.9); and stratified by biopsy results were: CIN1 – 77.4% (95% CI: 62.4–89.5), CIN2 – 87.6% (70.7–98.2), CIN3/AIS – 95.4% (90.4–98.9), ICC – 85.6% (80.7–89. 8), SCC – 86.1% (61.9–99.6), and ADC – 80.5% (70.0–89.4) (Fig. 1). There was high heterogeneity in all summary estimates ( $I^2 > 90\%$ ) (Appendix Table A7).

The summary prevalence estimates of any-HR HPV genotype increased across the cytological spectrum from 8.4% (95% CI:  $3\cdot8-14\cdot6$ ) in normal cytology to  $86\cdot0\%$  ( $73\cdot9-94\cdot9$ ) in HSIL. The prevalence of any-HR HPV genotype by histological stage was lowest for CIN1 [ $37\cdot8\%$  (95% CI:  $29\cdot1-46\cdot9$ )] and highest for ICC [ $75\cdot7\%$  ( $68\cdot0-82\cdot6$ )]. The summary prevalence of any vaccine LR-HPV genotype by cytology stage was lowest in normal cytology [ $0\cdot8\%$  (95% CI:  $0\cdot2-1\cdot8$ )], and highest in HSIL [ $4\cdot2\%$  ( $0\cdot8-9\cdot8$ )]. The prevalence of any vaccine LR-HPV genotype by histological stage was lowest in CIN1 [ $2\cdot4\%$  (95% CI:  $0\cdot4-5\cdot7$ )] and highest in CIN2 [ $4\cdot1\%$  ( $0\cdot4-10\cdot5$ )]. There was considerable heterogeneity in all summary estimates ( $I^2 > 90\%$ ) (Appendix Table A7).

# 3.3. Vaccine preventable HPV genotype prevalence in women with normal cytology

For women with normal cytology, the summary prevalence of bivalent vaccine genotypes was 2.4% (95% CI: 1.1–4.2), 2.7% (1.2–

4.7) for quadrivalent genotypes and 6.8% (3.1–11.8) for nonavalent vaccine genotypes (Fig. 2). The highest prevalence for individual vaccine genotypes was 3.1% (95% CI: 1.5–5.3) for HPV52 (Fig. 3). There was considerable heterogeneity in all summary estimates (I2 > 90%) (Appendix Table A7, Appendix Table A8).

3.4. Vaccine preventable HPV genotype prevalence in women with cytological or histological pre-cancerous abnormalities

In women with cytological or histological abnormalities, the prevalence of vaccine genotypes by cytology stage was highest in HSIL, where the summary prevalence of bivalent vaccine genotypes was  $33 \cdot 3\%$  (95% CI:  $26 \cdot 3 - 40 \cdot 6$ ), for quadrivalent genotypes was  $38 \cdot 0\%$  ( $33 \cdot 3 - 42 \cdot 8$ ) and for the nonavalent vaccine genotypes was  $86 \cdot 3\%$  ( $71 \cdot 7 - 96 \cdot 4$ ). The prevalence of vaccine genotypes by histology stage was highest in CIN3/AIS where the summary prevalence of bivalent vaccine genotypes was  $49 \cdot 0\%$  (95% CI:  $45 \cdot 2 - 52 \cdot 9$ ), for quadrivalent genotypes was  $49 \cdot 6\%$  ( $45 \cdot 4 - 53 \cdot 7$ ) and for the nonavalent vaccine genotypes was  $73 \cdot 0\%$  ( $48 \cdot 0 - 92 \cdot 3$ ) (Fig. 2). The distribution of individual vaccine genotypes varied across cytological or histological stages (Fig. 3). There was considerable heterogeneity in all summary estimates (12 > 90%) (Appendix Table A7, Appendix Table A8).

# 3.5. Vaccine preventable HPV genotype prevalence in women with invasive cervical cancer

In women with ICC, the summary prevalence of bivalent vaccine genotypes was 58.5% (95% CI: 52.1-64.9), for quadrivalent genotypes was 58.6% (52.2-64.9) and for nonavalent genotypes was 71.5% (64.9-77.6) (Fig. 2). The prevalence of individual



**Fig. 2. Vaccine preventable genotype prevalence in women with normal cytology through to invasive cervical cancer.** Summary estimates of HPV prevalence are measured as HPV test positivity where numerator was the number who tested HPV positive for any one of the vaccine genotypes (i.e. An individual can only count once in the numerator regardless of how many genotypes they test positive for), and the denominator was the number who had an HPV test able to detect that type. Error bars represent 95% confidence intervals for each summary estimate. Bivalent represents the detection of HPV16, or 18; Quadrivalent represents 6, 11, 16 or 18; Nonavalent represents: HPV61, 11, 6, 18, 31, 33, 45, 52, 58, Cross-protection represents: HPV31, 33, or 45. Total number of women tested stratified as follows: 57759 for normal cytology, 1766 for ASCUS, 3764 for LSIL, 2017 for HSIL, 3130 for CIN1, 1219 for CIN2, 960 for CIN3/AIS, 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. A high level of heterogeneity (I<sup>2</sup> > 90%) was observed in most summary estimates. I-squared not quantifiable with fewer than three estimates. Detailed stage specific information in Appendix Table A7. NB: Only those studies providing vaccine preventable genotype data are included in this Figure.



**Fig. 3. Individual vaccine preventable genotype prevalence in women with normal cytology through to invasive cervical cancer.** Summary estimates of HPV prevalence are measured as HPV test positivity where the numerator was the number who tested HPV positive for each genotype, and the denominator was the number who had an HPV test for that genotype. Error bars represent 95% confidence intervals for each summary estimate. Total number of women tested stratified as follows: 57759 for normal cytology, 1766 for ASCUS, 3764 for LSIL, 2017 for HSIL, 3130 for CIN1, 1219 for CIN2, 1041 for CIN3/AIS, 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. HPV 6 or 11 in ICC, ICC-SCC or ICC-ADC was not reported in any studies. A high level of heterogeneity (l<sup>2</sup> > 90%) was observed in most summary estimates. I–squared not quantifiable with fewer than three estimates. Detailed stage specific information in Appendix Table A8. NB: Prevalence estimates may be different from those in Fig. 2 because not all studies provided genotype specific data estimates for each vaccine type.

vaccine genotypes varied between ICC-SCC and ICC-ADC with HPV 16 being the most prevalent genotype for ICC-SCC and HPV 18 the most common for ICC-ADC (Fig. 3). The prevalence of cross-protective types was 7.3% (95% CI: 5.3-12.0) in ICC, 8.1% (1.8-17.8) in ICC-SCC and 3.7% (0.2-10.0) in ICC-ADC. There was considerable heterogeneity in all summary estimates (I2 > 90%) (Appendix Table A7, Appendix Table A8).

# 3.6. HPV prevalence estimates in possibly and probably carcinogenic genotypes

In women with normal cytology, the prevalence of possibly or probably carcinogenic genotypes were estimated to be 2.2% (95% CI: 0.5-4.9) and 0.7% (0.2-1.6), respectively (Fig. 4). The prevalence of possibly or probably carcinogenic genotypes were lower in high grade lesions (HSIL, CIN2, or CIN3/AIS) than low grade lesions (LSIL, or CIN1). There was considerable heterogeneity in all summary estimates (I2 > 90%) (Appendix Table A7).

# 4. Age specific HPV prevalence and age standardised estimates

For women with normal cytology the summary prevalence of any-HPV was highest at 20–29 years of age, peaking at 22.8% (95% CI: 12.8–34.6); before declining gradually to 1.6% (0.0–14.5) in women 80 years and over. For women with ICC, any-HPV prevalence fluctuated across age groups from 93.8% (95% CI: 79.9–100) at 20–29 to 71.1% (46.5–91.1) at 50 to 59 years, to 91.3% (75.5–9 9.8) at 80 and over (Fig. 5). There was considerable heterogeneity in all summary estimates (I2 > 90%) (Appendix Table A9). The age standardised prevalence for women with normal cytology was 9.6%, and for ICC was 87.0% (Appendix Table A10).

# 4.1. Subgroup analysis and sources of heterogeneity

Sub-group analysis and *meta*-regression showed that the prevalence of any-HPV genotype in ICC varied by whether it was an exfoliated or biopsy sample. The prevalence of HR-HPV genotypes was lower in studies published in the 1990s, but no other variables contributed to the heterogeneity (Table 1). Our sensitivity analysis found that removing studies published in the 1990s resulted in summary estimates of any-HPV and HR HPV genotype prevalence of 89.5% (95% CI: 85.9–93.2,  $I^2 = 91.9$ ) and 80.4% (70.5–88.2,  $I^2 = 96.9\%$ ) for ICC and heterogeneity was still marked.

#### 4.2. Quality assessment and publication bias

Quality assessment found that most studies were reported according to quality criteria including appropriate target population, and sampling method (Appendix Table A6). Visual assessment of forest plots, funnel plots and Egger's test indicated limited bias due to study size except for studies reporting LSIL and HSIL that tended to be biased towards smaller study sizes and higher prevalence estimates (Appendix Fig. 2, and Appendix Fig. 3).

# 5. Discussion:

In this systematic review and *meta*-analysis, we provide the most comprehensive review of HPV prevalence data for Japan to date, finding a prevalence of any-HPV of 15.6% for those with normal cytology and high prevalence of HR-HPV genotypes of 86.0% for cytological cases of HSIL, 76.9% for histological cases of CIN3/AIS, and 75.7% for ICC. There was considerable heterogeneity in all HPV summary estimates and for ICC, this heterogeneity was not explained by variability in study design, sample type, HPV assay type, or HPV DNA detection method, although studies published in the 1990s had lower prevalence estimates of any and HR-HPV genotypes.

Overall, the summary prevalence estimates for any-HPV for ICC was 85.6%. For cancers that could be further histologically classified, the prevalence of any-HPV was 86.1% for SCC and 80.5% for ADC and for any-HR, the summary prevalence estimates were 78.9% for SCC and 64.9% for adenocarcinomas. The lower HR prevalence for adenocarcinomas may be because a subset of cervical ADC occurs independently of HPV infection, and it is possible that



**Fig. 4. Possibly and probably carcinogenic HPV genotype prevalence in women with normal cytology through to invasive cervical cancer.** HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. Error bars represent 95% confidence intervals for each summary estimate. Possibly carcinogenic prevalence represents detection of any of the following: HPV26, 53, 66, 67, 70, 73, 82, 30, 34, 69, 85, or 97. Probably carcinogenic prevalence represents detection of the following: HPV26, 53, 66, 67, 70, 73, 82, 30, 34, 69, 85, or 97. Probably carcinogenic prevalence represents detection of the following: HPV26, 53, 66, 67, 70, 73, 82, 30, 34, 69, 85, or 97. Probably carcinogenic prevalence represents detection of HPV68. Total number of women tested stratified as follows: 57759 for normal cytology, 1766 for ASCUS, 3764 for LSIL, 2017 for HSIL, 3130 for CIN1, 1219 for CIN2, 960 for CIN3/AIS, 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. A high level of heterogeneity (I<sup>2</sup> > 90%) was observed in most summary estimates. I-squared not quantifiable with fewer than three estimates. Detailed stage specific information in Appendix Table A7. NB: Only those studies providing information about possibly or probably carcinogenic genotypes are included in this Figure.



Age group (years)

**Fig. 5. Age specific any-HPV prevalence women with normal cytology and invasive cervical cancer.** HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. Shaded areas represent 95% confidence intervals for each summary estimate. There were 112896 women with normal cytology tested. In this group, 178 women were 10–19, 7218 were 20–29, 32070 were 30–39, 31355 were 40–49, 25370 were 50–59, 10,281 were 60–69, 1049 were 70–79 years old, and 35 women were 80 years old and over. There were 431 women tested with ICC. This included no women tested and aged between 10 and 19 years old. There were 28 women 20–29, 86 were 30–39, 95 were 40–49, 77 were 50–59, 84 were 60–69, 38 were 70–79, and 23 were 80 years old and over. Detailed age specific data in Appendix Table A9.

some of these cases were included in our studies. Further, it is possible that some of the cases of ADC were misclassified and originated in the endometrium which are much less likely to be associated with HPV. [8,81,96] There was marked heterogeneity in these summary estimates and our sub-group analysis found some evidence to suggest that the prevalence of HR-HPV was lower in studies published in the 1990s than in more recent years and while we did not find any difference in prevalence between HPV assay types classified broadly as PCR or HC2, it is possible that the earlier studies used less sensitive assays contributing to lower prevalence estimates across all studies as reported elsewhere. [8] Our sensitivity analysis also showed that the summary prevalence estimates increased when studies published in the 1990s were excluded, but considerable heterogeneity still remained. The impact of increased sensitivity in detection methods over time has been well documented in other large global meta-analysis and the results of this study are consistent with their findings. [8,10,12,13] In an additional supplementary analysis, we investigated the summary prevalence estimates for vaccine genotypes among the subset of women whose ICC was HPV positive and found that 94.6% of SCC and 95.2% of ADC cases included were positive for a nonavalent HPV genotype suggesting that most of these infections would be prevented by the nonavalent vaccine (Fig. 6).

Globally, HPV16 and HPV18 have a higher likelihood of persistence and progression to cervical lesions compared with other oncogenic types and generally have the highest prevalence in ICC. [97-99] Together with HPV31, 33, 45, 52 and 58, these seven oncogenic genotypes of the nonvalent vaccine are responsible for approximately 90% of ICC globally. [100,101] However, the distribution of these genotypes varies geographically with a high prevalence of HPV52 and 58 observed in East Asian countries, while HPV31, 33, and 45 are more common in European populations. [13,102] We also observed considerable variation in the distribution in individual vaccine genotypes across the disease spectrum and a higher prevalence for HPV52 and HPV58 in SCC. The 5-additional oncogenic genotypes targeted by the nonavalent vaccine (HPV31, 33, 35, 52, and 58) accounted for more infections in SCC than ADC with HPV16 and HPV52 being the dominant genotypes for SCC and HPV16 and HPV18 dominant for ADC.

We found the age standardised prevalence of any-HPV in women with normal cytology in Japan was 9.6% which is comparable to other regions (10.4% worldwide, 8.1% in Europe and 8.0% in Asia). [13,101] Globally, it has been observed that HPV prevalence peaks in the period immediately following sexual debut and gradually declines with increasing age. In our study we observed the prevalence of any-HPV among women with normal cytology peaked in women at age 20-29 years and then decreased. In contrast, the prevalence of any-HPV was very high across all age groups for ICC. The lower HPV prevalence observed in women aged 50 to 59 may be due to sampling variability as the estimate was based on a sample size of 77 women from 2 studies. However, the confidence intervals for this curve also allow for a consistently high HPV prevalence across all age groups with ICC. Together both curves suggest that women may be infected at an early age and generate immunity thereafter, and that HPV infection is almost always present in ICC.

#### Table 1

Any-HPV prevalence in invasive cervical cancer cases reported in all included studies in Japan: Subgroup and meta-regression analysis.

|                          | Any HPV                          |                |                               |         | Any HR                           |                |                               |         |
|--------------------------|----------------------------------|----------------|-------------------------------|---------|----------------------------------|----------------|-------------------------------|---------|
|                          | Summary prevalence<br>% (95% CI) | I <sup>2</sup> | Mean difference<br>% (95% CI) | p-value | Summary prevalence<br>% (95% CI) | I <sup>2</sup> | Mean difference<br>% (95% CI) | p-value |
| Overall                  | 85.6 (80.7-89.8)                 | 92.8           | -                             | -       | 75.7 (68.0-82.6)                 | 95.6           | -                             | -       |
| Age group (years)        |                                  |                |                               |         |                                  |                |                               |         |
| 20 to 29                 | 93.8 (79.9-100)                  | NA             | Reference                     |         | NA                               | -              | -                             | -       |
| 30 to 39                 | 92.3 (84.3-98.1)                 | NA             | -3.2 (-45.2-38.7)             | 0.88    | NA                               | -              | -                             | -       |
| 40 to 49                 | 91.7 (73.9-100)                  | 50.9           | -6.4 (-47.9-35.1)             | 0.76    | NA                               | -              | -                             | -       |
| 50 to 59                 | 71.1 (46.5–91.1)                 | 42.4           | -18.9 (-61.5-23.7)            | 0.38    | NA                               | -              | -                             | -       |
| 60 to 69                 | 89.1 (80.5-95.9)                 | NA             | -5.1 (-48.0-36.2)             | 0.78    | NA                               | -              | -                             | -       |
| 70 to 79                 | 92.1 (80.9-98.9)                 | NA             | -0.7 (-48.9-47.4)             | 0.98    | NA                               | -              | -                             | -       |
| 80 +                     | 91.3 (75.5–99.8)                 | NA             | -1.5 (-55.8-52.9)             | 0.96    | NA                               | -              | -                             | -       |
| Year of publication      |                                  |                |                               |         |                                  |                |                               |         |
| 1990-1999                | 79.2 (59.1-84.9)                 | 90.4           | Reference                     |         | 71.8 (60.5-81.8)                 | 83.1           | Reference                     |         |
| 2000-2005                | 87.2 (78.9–93.7)                 | 92.8           | 8.9 (-3.0-20.9)               | 0.14    | 74.5 (56.8-88.9)                 | 97.2           | 2.8 (-14.2-19.8)              | 0.74    |
| 2006-2010                | 93.9 (80.6-100)                  | 90.0           | 14.4 (-1.6-30.5               | 0.08    | 81.1 (73.2-88.0)                 | 50.0           | 15.0 (-7.2-37.2)              | 0.18    |
| 2011-2015                | 91.7 (87.5-95.2)                 | NA             | 13.2 (-5.3-31.6)              | 0.16    | 99.2 (97.3-100)                  | NA             | 33.7 (7.5-60.0)               | 0.01    |
| 2016-2020                | 91.3 (78.9–93.8)                 | NA             | 9.2 (-3.3-21.7)               | 0.15    | 96.9 (94.5-99.3)                 | 95.6           | 32.8 (-19.8-55.5)             | 0.80    |
| Study design             |                                  |                |                               |         |                                  |                |                               |         |
| Cohort                   | 85.8 (81.1-89.9)                 | 90·1           | Reference                     |         | 78.0 (68.8-86.0)                 | 95.6           | Reference                     |         |
| Cross-sectional          | 88.3 (78.9–95.3)                 | 81.3           | 2.0 (-10.3-10.8)              | 0.97    | 73.7 (45.2-94.4)                 | 96.1           | -7.3 (28.1-13.5)              | 0.49    |
| Case-control             | 100.0 (99.3-100)                 | NA             | 12.4 (-0.9-25.8)              | 0.07    | 89.2 (85.6-92.4)                 | NA             | 12.2 (-14.8-39.2)             | 0.38    |
| Sample type              |                                  |                |                               |         |                                  |                |                               |         |
| Exfoliated               | 89.4 (84.4–93.6)                 | 93.4           | Reference                     |         | 72.3 (61.4-82.1)                 | 96.9           | Reference                     |         |
| Biopsy                   | 82.9 (75.1-89.7)                 | 88.4           | -9.4 (-17.5-1.3)              | 0.02    | 79.1 (66.5-89.4)                 | 92.7           | 3.6 (-11.4-18.6)              | 0.63    |
| HPV assay type           |                                  |                |                               |         |                                  |                |                               |         |
| HC2                      | 88.6 (81.8–94.1)                 | 0.0            | Reference                     |         | 66.6 (45.3-82.8)                 | NA             | Reference                     |         |
| PCR                      | 87.3 (80.1-89.6)                 | 92.9           | -1.4 (-20.4-17.5)             | 0.88    | 78.1 (70.3-85.2)                 | 96.0           | 9.1 (-44.5-58.7)              | 0.79    |
| HPV DNA detection method |                                  |                |                               |         |                                  |                |                               |         |
| HC2                      | 88.6 (81.8–94.1)                 | 0.0            | Reference                     |         | 66.6 (45.3-82.8)                 | NA             | Reference                     |         |
| Narrow spectrum          | 89.3 (80.1–96.0)                 | 95.6           | -0.3 (-20.1-19.5)             | 0.97    | 69.2 (55.9-81.1)                 | 96.3           | 3.7 (-40.7-68.1)              | 0.99    |
| Broad spectrum           | 93.1 (88.2–96.8)                 | 72.5           | 3.3 (-17.5-24.2)              | 0.76    | 89.3 (63.6-100)                  | 98.2           | 19.1 (-38.0–70.3)             | 0.56    |
| Other                    | 83.7 (72.5–92.5)                 | 92.9           | -5.0 (-25.7-15.6)             | 0.63    | 78.9 (60.6–92.8)                 | 93.7           | 13.7 (-40.6-68.2)             | 0.62    |
| Region                   |                                  |                |                               |         |                                  |                |                               |         |
| Kanto                    | 85.1 (77.6–91.4)                 | 91.9           | Reference                     |         | 74.4 (63.5-84.1)                 | 94.3           | Reference                     |         |
| Kyushu                   | 93.1 (77.0-99.9)                 | NA             | 5.4 (-6.3-17.2)               | 0.31    | 62.3 (30.6-89.1)                 | NA             | -11.9 (-32.7-8.8)             | 0.25    |
| Hokkaido                 | 94.4 (88.7-98.4)                 | NA             | 7.7 (-14.9-30.3)              | 0.50    | 96.3 (91.3-99.4)                 | NA             | 19.5 (-10.8-49.8)             | 0.20    |
| Kansai                   | 81.1 (69.8-90.3)                 | 86.1           | -6.2 (-18.5-5.6)              | 0.31    | 77.4 (59.9–91.2)                 | 90.4           | 1.3 (-17.8-20.5)              | 0.89    |
| Chubu                    | 84.8 (80.9-89.7)                 | NA             | -0.5 (-13.5-12.3)             | 0.92    | 72.1 (67.6–76.5)                 | NA             | -0.8 (-26.5-28.3)             | 0.95    |

HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. 95% confidence intervals are calculated for each summary prevalence estimate. Any-HPV prevalence represents the detection of any detectable HPV genotype. Any HR represents the detection of any of the following: HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, or 59. Primer type was defined as: Broad spectrum (MY09/11, CP5+/6 + and SPF10), or narrow spectrum (GP5/6, L1C1/C2 or PU1M/2R). Mean difference: Regression coefficient multiplied by 100; NA: I-squared not quantifiable with fewer than three estimates. NB: prevalence estimates may be different from those in Fig. 2 because not all studies provided genotype specific data estimates for each vaccine type. N/A: Not available - there were no studies reporting age stratified results for any HR genotype prevalence therefore subgroup analysis for this group could not be performed.



Bivalent (HPV16 or 18)
 Quadrivalent (HPV6, 11, 16, or 18)
 Nonavalent (HPV6, 11, 16, 18, 31, 33, 45, 52, or 58)
 Cross-protection (HPV31, 33, or 45)

**Fig. 6. Vaccine preventable genotype prevalence in women with invasive cervical cancer and positive for any-HPV genotype.** HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number of ICC cases that were tested and positive for any detectable HPV. Error bars represent 95% confidence intervals for each summary estimate. Bivalent represents the detection of HPV16, or 18; Quadrivalent represents (5, 11, 16 or 18; and Nonavalent represents: HPV6, 11, 16, 18, 31, 33, 45, 52, or 58; Cross-protection represents: HPV31, 33 or 45. Total number of women tested stratified as follows: 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. A high level of heterogeneity (I<sup>2</sup> > 90%) was observed in most summary estimates. I–squared not quantifiable with fewer than three estimates. Detailed stage specific information in Appendix Table A7.

The nonavalent vaccine was approved for use in Japan in late 2020 in line with the WHO Global strategy to accelerate the elimination of cervical cancer. [103] The two-dose schedule is recommended for adolescents between 9 and 14 years of age, however to date, its uptake in Japan has remained low. [63,104,105] The high nonavalent HPV prevalence estimates observed in our *meta*-analysis highlight that further delays in its widespread uptake will

delay protection against HR-HPV types. [106] Our results confirm that the nonavalent vaccine in Japan is likely to have substantial impact on reducing cervical cancer incidence. It would be preferable to have a national and unified implementation of a single vaccination type that confers the greatest protection against vaccine genotypes in line with the best available evidence. The underlying cause of hesitancy against HPV vaccination in Japan must be understood first. Adequate reporting of adverse events, and national guidance to minimise misinformation and confusion is required to ensure successful implementation. Additionally, HPV DNA testing is not currently routinely performed in Japan for population-based screening. [107,108] A pooled analysis of four large RCTs indicated that, compared to conventional cytology, primary HPV DNA testing can prevent more invasive cervical cancer cases. [109] Importantly, adopting primary HPV DNA in place of the conventional cytology test with a high performance test could help directly to evaluate the impact of increasing the coverage of the HPV vaccine.

Our study has several limitations. First, there was considerable heterogeneity in the studies included in the review and our subgroup analysis of ICC did not identify much other than year of publication that contributed to this heterogeneity. However, our review included both English and Japanese language studies ensuring our review was comprehensive in capturing as much available data as possible. Second, the prevalence estimates were mainly derived from convenience samples of women attending clinical settings and do not necessarily represent the general population. However, this is mainly an issue for those studies reporting HPV prevalence among women with normal cytology; it is less an issue for studies reporting cytological and histological abnormalities where all women undergoing investigation for the lesions are usually seen in these settings were included. Thirdly, it is likely that the PCR primer used had an impact on the HPV prevalence reported in each study. Sensitivity varies by whether it is a broad or narrow spectrum assay. [110-112] The availability of these assays also varies over time and it has been previously shown that HPV prevalence increase over times related to improvements in HPV DNA testing protocols rather than due to increases in prevalence of infection. [8] While the primer used and year of study are likely sources of bias in our *meta*-analyses, only year of study was significant in our meta-regression of HPV prevalence for ICC

Table A1

PRISMA Checklist.

cases. Fourthly, not all studies reported genotype specific estimates with some studies only reporting data for any HPV. As a result, studies included in genotype specific estimates represent subsets of all studies included in the any HPV estimates – not all studies are included. Finally, studies included in this analysis were not uniformly drawn from all regions of Japan, limiting its representativeness across the country.

# 6. Conclusion

To our knowledge this is the most comprehensive assessment of the prevalence of cervical HPV infection in Japanese women across the disease trajectory from normal cytology to cervical cancer. It found that the nonavalent vaccine is likely to have the greatest impact on vaccine genotype infections for women with ICC. With the recent approval of the nonavalent vaccine in Japan, it is hoped that these results will guide and enhance future interventions for the prevention of cervical cancer in Japan.

# **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper: [Kota Katanoda reports financial support and article publishing charges were provided by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (17H03589), and The Grant of the National Cancer Center, Japan (Gan Kenkyu Kaihatsuhi 31-A-20)].

# Appendix

Tables A1-A10.

| Section & topic                           | ltem<br>No | Checklist item                                                                                                                                                                                                                | Page |
|-------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ADMINISTRATIVE INFORM<br>Title:           | IATION     |                                                                                                                                                                                                                               | 1    |
| Identification                            | 1a         | Identify the report as a protocol of a systematic review.                                                                                                                                                                     | NA   |
| Update                                    | 1b         | If the protocol is for an update of a previous systematic review- identify as such                                                                                                                                            | NA   |
| Registration                              | 2          | If registered- provide the name of the registry (such as PROSPERO) and registration number                                                                                                                                    | 6    |
| Contact                                   | 3a         | Provide name– institutional affiliation– e–mail address of all protocol authors; provide physical mailing address of corresponding author                                                                                     | 1    |
| Contributions                             | 3b         | Describe contributions of protocol authors and identify the guarantor of the review                                                                                                                                           | 6    |
| Amendments                                | 4          | If the protocol represents an amendment of a previously completed or published protocol- identify as such and list changes; otherwise- state plan for documenting important protocol amendments                               | NA   |
| Support:                                  |            |                                                                                                                                                                                                                               |      |
| Sources                                   | 5a         | Indicate sources of financial or other support for the review-                                                                                                                                                                | 2    |
| Sponsor                                   | 5b         | Provide name for the review funder and/or sponsor                                                                                                                                                                             | 2    |
| Role of sponsor or funder<br>INTRODUCTION | 5c         | Describe roles of funder(s)- sponsor(s)- and/or institution(s)- if any- in developing the protocol-                                                                                                                           | NA   |
| Rationale                                 | 6          | Describe the rationale for the review in the context of what is already known                                                                                                                                                 | 4    |
| Objectives                                | 7          | Provide an explicit statement of the question(s) the review will address with reference to participants- interventions-<br>comparators- and outcomes (PICO).                                                                  | 5    |
| METHODS                                   |            |                                                                                                                                                                                                                               |      |
| Eligibility criteria                      | 8          | Specify the study characteristics (such as PICO- study design- setting- time frame) and report characteristics (such as years considered- language- publication status) to be used as criteria for eligibility for the review | 6    |
| Information sources                       | 9          | Describe all intended information sources (such as electronic databases – contact with study authors – trial registers or other grey literature sources) with planned dates of coverage.                                      | 6    |
| Search strategy                           | 10         | Present draft of search strategy to be used for at least one electronic database- including planned limits- such that it could be repeated.                                                                                   | 75   |
| Study records:                            |            | •                                                                                                                                                                                                                             |      |
| Data management                           | 11a        | Describe the mechanism(s) that will be used to manage records and data throughout the review-                                                                                                                                 | 6,7  |

# Table A1 (continued)

| Section & topic                      | Item<br>No | Checklist item                                                                                                                                                                                                                                    | Page |
|--------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Selection process                    | 11b        | State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is- screening- eligibility and inclusion in meta-analysis).                                                  | 6,7  |
| Data collection process              | 11c        | Describe planned method of extracting data from reports (such as piloting forms- done independently- in duplicate)- any processes for obtaining and confirming data from investigators                                                            | 6,7  |
| Data items                           | 12         | List and define all variables for which data will be sought (such as PICO items- funding sources)- any pre-planned data assumptions and simplifications.                                                                                          | 7    |
| Outcomes and prioritization          | 13         | List and define all outcomes for which data will be sought- including prioritization of main and additional outcomes- with rationale                                                                                                              | 7    |
| Risk of bias in individual studies   | 14         | Describe anticipated methods for assessing risk of bias of individual studies- including whether this will be done at the outcome or study level- or both; state how this information will be used in data synthesis.                             | 7    |
| Data synthesis                       | 15a        | Describe criteria under which study data will be quantitatively synthesised                                                                                                                                                                       | 7    |
| -                                    | 15b        | If data are appropriate for quantitative synthesis- describe planned summary measures- methods of handling data and methods of combining data from studies- including any planned exploration of consistency (such as $I^2$ - Kendall's $\tau$ ). | 7    |
|                                      | 15c        | Describe any proposed additional analyses (such as sensitivity or subgroup analyses– meta–regression)                                                                                                                                             | 7    |
|                                      | 15d        | If quantitative synthesis is not appropriate- describe the type of summary planned                                                                                                                                                                | NA   |
| Meta-bias(es)                        | 16         | Specify any planned assessment of meta-bias(es) (such as publication bias across studies- selective reporting within studies)                                                                                                                     | 7    |
| Confidence in<br>cumulative evidence | 17         | Describe how the strength of the body of evidence will be assessed (such as GRADE)                                                                                                                                                                | 7    |

# Table A2

# Database search strategy.

| Search Set | Medline/ PubMed                                                                                                       | Embase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ichushi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Population | Japan ti– ab                                                                                                          | Japan ti- ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (日本/TH or 日本/AL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exposure   | 'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae' ti-ab                                                        | ʻHuman Papillomavirus' OR ʻHPV' OR<br>ʻPapillomaviridae' ti–ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ((パピローマウイルス科/TH or ヒトパピローマウイルス/AL))or<br>((パピローマウイルス科/TH or HPV/AL))or<br>((パピローマウイルス科/TH or パピローマウイルス科/AL))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Exposure   | 'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae'– [MeSH]                                                      | 'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae'– [Emtree]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Normal     | Normal AND Cytology [MeSH]                                                                                            | Normal AND Cytology [Emtree]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (細胞診陰性/AL) or ((細胞診/TH or 細胞診/AL))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Abnormal   | 'Cervical Cancer' OR 'Cervical Disease'<br>OR 'Cervical Intraepithelial Neoplasia'<br>[MeSH]                          | 'Cervical Cancer' OR 'Cervical Disease'<br>[Emtree]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ((子宮頚部腫瘍/TH or 子宮頸がん/AL)) or<br>((子宮頚/TH or 子宮頚部/AL)) or<br>((子宮頚/TH or 子宮頚部/AL)<br>and (上皮内癌/TH or 上皮内新生物/AL))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Detection  | Genotype [Mesh]                                                                                                       | Genotype [Emtree]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (遺伝子型/TH or 遺伝子型/AL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Complete   | #1 OR #2 OR #3 OR #4 OR #5 OR #6                                                                                      | #1 OR #2 OR #3 OR #4 OR #5 OR #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #1 OR #2 OR #4 OR #5 OR #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Abnormal   | #1 AND #2 AND #5 AND #6                                                                                               | #1 AND #2 AND #5 AND #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #1 AND #2 AND #5 AND #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | #1 AND #3 AND #5 AND #6                                                                                               | #1 AND #3 AND #5 AND #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Normal     | #1 AND #2 AND #4 AND #6<br>#1 AND #3 AND #4 AND #6                                                                    | #1 AND #2 AND #4 AND #6<br>#1 AND #3 AND #4 AND #6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #1 AND #2 AND #4 AND #6<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Search Set<br>Population<br>Exposure<br>Exposure<br>Normal<br>Abnormal<br>Detection<br>Complete<br>Abnormal<br>Normal | Search Set       Medline/ PubMed         Population       Japan ti- ab         Exposure       'Human Papillomavirus' OR 'HPV' OR         'Papillomaviridae' ti-ab         Exposure       'Human Papillomavirus' OR 'HPV' OR         'Papillomaviridae' [MeSH]         Normal       Normal AND Cytology [MeSH]         Abnormal       'Cervical Cancer' OR 'Cervical Disease'         OR 'Cervical Intraepithelial Neoplasia'       [MeSH]         Detection       Genotype [Mesh]         Complete       #1 QR #2 QR #3 QR #4 QR #5 QR #6         Abnormal       #1 AND #2 AND #5 AND #6         #1 AND #2 AND #4 AND #6       #1 AND #3 AND #4 AND #6 | Search SetMedline/ PubMedEmbasePopulation<br>ExposureJapan ti- ab<br>'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae' ti-abJapan ti- ab<br>'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae' ti-abJapan ti- ab<br>'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae' ti-abExposure'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae'- [MeSH]'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae'- [Emtree]NormalNormal AND Cytology [MeSH]<br>'Cervical Cancer' OR 'Cervical Disease'<br>OR 'Cervical Intraepithelial Neoplasia'<br>[MeSH]'Human Papillomavirus' OR 'HPV' OR<br>'Papillomaviridae'- [Emtree]DetectionGenotype [Mesh]<br>(MeSH]Genotype [Emtree]<br>#1 OR #2 OR #3 OR #4 OR #5 OR #6<br>#1 AND #2 AND #5 AND #6<br>#1 AND #3 AND #6 |

# Table A3

# Characteristics of included studies.

| Author                          | Year | Age<br>range     | Study<br>design    | Region   | HPV DNA<br>source | Sample<br>collection | Sample<br>collection<br>method | Year first<br>sample<br>collected | Year last<br>sample<br>collected | Primer        | Detection<br>method |
|---------------------------------|------|------------------|--------------------|----------|-------------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|---------------|---------------------|
| Abe <sup>35</sup>               | 2014 | 20-69            | Case<br>Control    | Kyushu   | Exfoliated        | Practitioner         | Other                          | 2007                              | 2011                             | PGMY09/11     | DNA                 |
| Aiko <sup>48</sup>              | 2017 | 20-69            | Cohort             | Kanto    | Fresh<br>Biopsy   | Practitioner         | Other                          | 2014                              | 2015                             | HC2           | DNA                 |
| Aoyama-<br>Kikawa <sup>63</sup> | 2018 | 20-69            | Cross<br>Sectional | Hokkaido | Fresh<br>Biopsy   | Practitioner         | Cytobrush                      | 2013                              | 2014                             | Cobas 4800    | DNA                 |
| Asato <sup>26</sup>             | 2004 | 18-85            | Case<br>Control    | Kyushu   | Exfoliated        | Practitioner         | Cervical<br>Swab               | 1993                              | 2000                             | L1C1/ L1C2    | DNA                 |
| Azuma <sup>71</sup>             | 2014 | Not<br>specified | Cohort             | Kanto    | Exfoliated        | Practitioner         | Cytobrush                      | 2009                              | 2013                             | PGMY09/11     | DNA                 |
| Chen <sup>33</sup>              | 2013 | Not<br>specified | Cohort             | Kyushu   | Fixed<br>Biopsy   | Not<br>Specified     | Cytobrush                      | NA                                | NA                               | PGMY09/11     | DNA                 |
| Fujinaga <sup>85</sup>          | 1991 | Not<br>specified | Cohort             | Hokkaido | Fresh<br>Biopsy   | Not<br>Specified     | Not<br>Specified               | NA                                | NA                               | PU-1 M/ pU-2R | DNA                 |
| Harima <sup>82</sup>            | 2002 | 29-90            | Cohort             | Kansai   | Fresh<br>Biopsy   | Practitioner         | Not<br>Specified               | 1995                              | 2000                             | PU-1 M/ pU-2R | DNA                 |
| Horikoshi <sup>58</sup>         | 2005 | Not<br>specified | Cross<br>Sectional | Kansai   | Exfoliated        | Not<br>Specified     | Cytobrush                      | 1998                              | 2000                             | HC2           | DNA                 |

# Table A3 (continued)

| Author                                              | Year         | Age<br>range     | Study<br>design     | Region           | HPV DNA<br>source             | Sample collection            | Sample<br>collection<br>method | Year first<br>sample<br>collected | Year last<br>sample<br>collected | Primer                      | Detection<br>method |
|-----------------------------------------------------|--------------|------------------|---------------------|------------------|-------------------------------|------------------------------|--------------------------------|-----------------------------------|----------------------------------|-----------------------------|---------------------|
| Hosaka <sup>52</sup>                                | 2013         | 22-84            | Cross               | Kansai           | Fresh                         | Practitioner                 | Spatula                        | 2000                              | 2008                             | PU-1 M/ pU-2R               | DNA                 |
| Ichimura <sup>74</sup>                              | 2003         | 19-42            | Sectional<br>Cohort | Kansai           | Biopsy<br>Exfoliated          | Practitioner                 | Cervical<br>Swab               | 1999                              | 2001                             | L1C1/ L1C2                  | DNA                 |
| Imai <sup>31</sup>                                  | 2015         | 18-23+           | Cross<br>Sectional  | Kyushu           | Exfoliated                    | Self-<br>Collection          | Cervical<br>Swab               | 2011                              | 2012                             | HC2                         | DNA                 |
| Imajoh <sup>114</sup>                               | 2012         | 29-74            | Cohort              | Shikoku          | Fixed                         | Not                          | Not                            | NA                                | NA                               | PGMY09/11                   | DNA                 |
| Inoue <sup>18</sup>                                 | 2006         | 14-94            | Cross<br>Sectional  | Chubu            | Exfoliated                    | Practitioner                 | Cytobrush                      | 2003                              | 2004                             | HC2                         | DNA                 |
| Inoue <sup>54</sup>                                 | 2010         | 30-70            | Cohort              | Chubu            | Fresh<br>Bionsy               | Practitioner                 | Cytobrush                      | 2004                              | 2009                             | HC2                         | DNA                 |
| Ishi <sup>41</sup>                                  | 2000         | 18-48            | Cross<br>Sectional  | Kanto            | Exfoliated                    | Practitioner                 | Cervical<br>Swab               | 1998                              | 1999                             | HC2                         | DNA                 |
| Ishi <sup>21</sup>                                  | 2004         | 17-73            | Cohort              | Kanto            | Exfoliated                    | Practitioner                 | Cervical<br>Swab               | 1998                              | 2003                             | HC2                         | DNA                 |
| Ishikawa <sup>83</sup>                              | 2001         | 33-87            | Cohort              | Kanto            | Fixed<br>Biopsy               | Practitioner                 | Cytobrush                      | 1980                              | 1997                             | L1C1/ L1C2                  | DNA                 |
| Iwata <sup>62</sup>                                 | 2015         | 20-50            | Cohort              | Kanto            | Exfoliated                    | Practitioner                 | Cervix<br>Brush                | 2010                              | 2011                             | Cobas 4800                  | DNA                 |
| Kanao <sup>84</sup>                                 | 2005         | 31–67            | Cohort              | Kansai           | Fresh<br>Biopsy               | Practitioner                 | Surgical                       | Not<br>specified                  | Not<br>specifed                  | PU-1 M/ pU-2R               | DNA                 |
| Karube <sup>115</sup>                               | 2004         | 20-81            | Cohort              | Tohoku           | Exfoliated                    | Practitioner                 | Cervical<br>Swab               | 1992                              | 2000                             | PCR (HPV DNA<br>Arrav)      | DNA                 |
| Kashiwabara <sup>78</sup>                           | 1992         | Not<br>specified | Cohort              | Kanto            | Fixed<br>Biopsy               | Practitioner                 | Surgical                       | 1978                              | 1990                             | L1C1/ L1C2                  | DNA                 |
| Kina <sup>59</sup>                                  | 2009         | Not<br>specified | Cross<br>Sectional  | Kansai           | Exfoliated                    | Not<br>Specified             | Cytobrush                      | 1998                              | 2000                             | HC2                         | DNA                 |
| Konno <sup>45</sup>                                 | 1993         | 20-25            | Case<br>Control     | Tohoku           | Exfoliated                    | Practitioner                 | Cytobrush                      | Not<br>specified                  | Not<br>specified                 | Verapaz –<br>Southern Blot  | DNA                 |
| Konno <sup>42</sup>                                 | 2011         | 20–25            | Case<br>Control     | Kyushu           | Exfoliated                    | Practitioner                 | Cytobrush                      | 2006                              | 2006                             | SPF10 (L1)                  | DNA                 |
| Konno <sup>37</sup>                                 | 2014         | Not<br>specified | Cross<br>Sectional  | Kyushu           | Exfoliated                    | Practitioner                 | Cytobrush                      | 2010                              | 2014                             | SPF10 (L1)                  | DNA                 |
| Kubota <sup>40</sup>                                | 1999         | 18-49            | Case<br>Control     | Kanto            | Exfoliated                    | Practitioner                 | Cervical<br>Swab               | 1997                              | 1998                             | HC2                         | DNA                 |
| Kurokawa <sup>19</sup><br>Kusanagi <sup>81</sup>    | 2018<br>2010 | 25–69<br>26–78   | Cohort<br>Cohort    | Chubu<br>Kansai  | Exfoliated<br>Fixed           | Practitioner<br>Other        | Other<br>Not                   | 2015<br>2003                      | 2016<br>2006                     | Cobas 4800<br>PCR (HPV DNA  | DNA<br>DNA          |
| Maehama <sup>25</sup>                               | 2000         | 20-89            | Cohort              | Kyushu           | Biopsy<br>Exfoliated          | Practitioner                 | Specified<br>Cervical          | 1994                              | 1997                             | Array)<br>L1C1/ L1C2        | DNA                 |
| Maehama <sup>43</sup>                               | 2002         | 20-89            | Cohort              | Kyushu           | Exfoliated                    | Practitioner                 | Cervical                       | Not                               | Not                              | L1C1/ L1C2                  | DNA                 |
| Maehama <sup>28</sup>                               | 2005         | 20-89            | Cross<br>Sectional  | Kyushu           | Exfoliated                    | Practitioner                 | Cervical<br>Swab               | 1994                              | 1995                             | L1C1/ L1C2                  | DNA                 |
| Maki <sup>80</sup>                                  | 1991         | Not<br>specified | Cohort              | Kansai           | Fresh<br>Biopsy               | Practitioner                 | Surgical                       | Not<br>specified                  | Not<br>specified                 | L1C1/ L1C2–<br>PCR (HPV DNA | DNA                 |
| Matsumoto <sup>60</sup>                             | 2003         | Not              | Cohort              | Kanto            | Exfoliated                    | Practitioner                 | Cervex                         | 2000                              | 2001                             | Array)<br>HC2– L1C1/        | DNA                 |
| Masumoto <sup>67</sup>                              | 2004         | 20–89            | Cohort              | Kanto            | Exfoliated                    | Practitioner                 | Brush<br>Cytobrush             | 2000                              | 2001                             | HC2- L1C1/                  | DNA                 |
| Matsumoto <sup>61</sup>                             | 2011         | 18-54            | Cohort              | Kanto            | Exfoliated<br>- Fresh         | Practitioner                 | Surgical                       | 1998                              | 2004                             | L1C2<br>L1C1/ L1C2          | DNA                 |
| Matsushita <sup>38</sup><br>Minaguchi <sup>95</sup> | 2011<br>2004 | 18–45<br>31–78   | Cohort<br>Cross     | Kansai<br>Kansai | Biopsy<br>Exfoliated<br>Fixed | Practitioner<br>Practitioner | Cytobrush<br>Surgical          | 2007<br>1989                      | 2007<br>2003                     | PGMY09/11<br>L1C1/ L1C2     | DNA<br>DNA          |
| Morisada <sup>27</sup>                              | 2017         | 30-64            | Sectional<br>RCT    | Kanto –          | Biopsy<br>Exfoliated          | Practitioner                 | Other                          | 2013                              | 2015                             | Cervista <sup>™</sup>       | DNA                 |
| Nagai <sup>73</sup>                                 | 2000         | Not              | Cohort              | Chubu<br>Kyushu  | Exfoliated                    | Practitioner                 | Cervical                       | 1993                              | 1998                             | L1C1/ L1C2                  | DNA                 |
| Nagai <sup>96</sup>                                 | 2001         | specified 23–88  | Cohort              | Kyushu           | Exfoliated                    | Practitioner                 | Swab<br>Cervical               | 1993                              | 1997                             | L1C1/L1C2                   | DNA                 |
| Nakagawa <sup>68</sup>                              | 1996         | 31-79            | Cohort              | Kanto            | Fresh                         | Other                        | Swad<br>Not                    | 1977                              | 1994                             | L1C1/ L1C2                  | DNA                 |
| Nakagawa <sup>69</sup>                              | 2002         | Not              | Cross               | Kanto            | Exfoliated                    | Practitioner                 | Cervical                       | Not                               | Not                              | L1C1/ L1C2                  | DNA                 |
| Nakamura <sup>51</sup>                              | 2015         | 27–48            | Cohort              | Kanto            | Exfoliated                    | Practitioner                 | Not<br>Specified               | 2010                              | 2012                             | Clinichip <sup>™</sup> HPV  | DNA                 |
| Nakazawa <sup>75</sup>                              | 1992         | Not              | Cross               | Kansai           | Exfoliated                    | Practitioner                 | Cytobrush                      | 1989                              | 1989                             | PCR (HPV DNA                | DNA                 |
| Nawa <sup>116</sup>                                 | 1995         | 23-35            | Cohort              | Chubu            | Fresh                         | Not                          | Not                            | 1991                              | 1993                             | PCR (HPV DNA                | DNA                 |

# Table A3 (continued)

| Author                      | Year | Age<br>range       | Study<br>design                 | Region           | HPV DNA<br>source    | Sample collection         | Sample<br>collection<br>method | Year first<br>sample<br>collected | Year last<br>sample<br>collected | Primer                          | Detection<br>method |
|-----------------------------|------|--------------------|---------------------------------|------------------|----------------------|---------------------------|--------------------------------|-----------------------------------|----------------------------------|---------------------------------|---------------------|
|                             |      |                    |                                 |                  | Biopsy               | Specified                 | Specified                      |                                   |                                  | Array)                          |                     |
| Nishiwaki <sup>47</sup>     | 2008 | 19–70              | Cohort                          | Hokkaido         | Exfoliated           | Practitioner              | Cytobrush                      | Not                               | Not                              | PCR (HPV DNA                    | DNA                 |
| Niwa <sup>117</sup>         | 2003 | Not                | Case<br>Control                 | Chubu            | Exfoliated           | Practitioner              | Cervical<br>Swab               | specified 1999                    | specified 2001                   | Array)<br>L1C1/ L1C2            | DNA                 |
| Nobeyama <sup>91</sup>      | 2004 | Not                | Cross                           | Kansai           | Fresh<br>Bionsy      | Practitioner              | Surgical                       | 1993                              | 2003                             | PGMY09/11                       | DNA                 |
| Okadome <sup>70</sup>       | 2014 | 20–50              | Cross<br>Sectional              | Not<br>specified | Fresh<br>Biopsy      | Practitioner              | Cytobrush                      | 2007                              | 2008                             | PCR (HPV DNA<br>Array)          | DNA                 |
| Onuki <sup>64</sup>         | 2009 | 15-78              | Cohort                          | Kanto            | Exfoliated           | Practitioner              | Cytobrush                      | 1999                              | 2007                             | L1C1/ L1C2                      | DNA                 |
| Onuki                       | 2020 | 16-39              | Cohort                          | Kanto            | Exfoliated           | Nor                       | Not                            | 2012                              | 2017                             | PGMY09/11                       | DNA                 |
| Saito <sup>53</sup>         | 1995 | 18-72              | Cross                           | Kansai           | Exfoliated           | Practitioner              | Cervical                       | 1989                              | 1992                             | PCR (HPV DNA                    | DNA                 |
| Saito <sup>76</sup>         | 1999 | Not                | Cohort                          | Kansai           | Fixed                | Practitioner              | Surgical                       | 1966                              | 1993                             | PCR (HPV DNA                    | DNA                 |
| Saito <sup>92</sup>         | 2000 | specified<br>25–78 | Cross                           | Kansai           | Biopsy<br>Fixed      | Practitioner              | Surgical                       | 1990                              | 1993                             | Array)<br>pU–1 M/ pU–2R         | DNA                 |
| Spite <sup>49</sup>         | 2001 | Not                | Sectional                       | Kancai           | Biopsy               | Not                       | Cutobruch                      | 1009                              | 2000                             | 1101/1102                       | DNA                 |
| Salto                       | 2001 | specified          | Sectional                       | Kalisai          | Exioliated           | Specified                 | Cytobrush                      | 1998                              | 2000                             | LICI/LICZ                       | DINA                |
| Sasagawa <sup>20</sup>      | 1997 | 16-82              | Case<br>Control                 | Chubu            | Exfoliated           | Practitioner              | Cytobrush                      | 1995                              | 1996                             | pU–1 M/ pU–2R                   | DNA                 |
| Sasagawa <sup>24</sup>      | 2001 | 19–75              | Cohort                          | Chubu            | Exfoliated           | Practitioner              | Cytobrush                      | 1995                              | 1999                             | PCR (HPV DNA<br>Array)          | DNA                 |
| Sasagawa <sup>32</sup>      | 2005 | 15-59              | Cross<br>Sectional              | Chubu            | Exfoliated           | Practitioner              | Spatula                        | 2000                              | 2003                             | HC2                             | DNA                 |
| Sasagawa <sup>34</sup>      | 2016 | 20-54              | Cohort                          | Chubu            | Exfoliated           | Practitioner              | Cytobrush                      | 2011                              | 2012                             | HC2- Cobas<br>4800              | DNA                 |
| Sasagawa <sup>57</sup>      | 2018 | 16-72              | Cohort                          | Chubu            | Exfoliated           | Practitioner              | Other                          | 2014                              | 2015                             | HC2– Cobas<br>4800              | DNA                 |
| Sasaki <sup>118</sup>       | 2017 | 14-95              | Cohort                          | Chugoku          | Exfoliated           | Practitioner              | Cytobrush                      | 2005                              | 2011                             | HC2                             | DNA                 |
| Satoh <sup>49</sup>         | 2013 | 19-88              | Cohort                          | Kanto            | Exfoliated           | Practitioner              | Cytobrush                      | 2006                              | 2006                             | Clinichip <sup>™</sup>          | DNA                 |
| Takehara                    | 2011 | 15-98              | Cohort                          | Chugoku          | Exfoliated           | Practitioner              | Cytobrush                      | 2007                              | 2010                             | PCR (HPV DNA<br>Array)          | DNA                 |
| Tanaka <sup>119</sup>       | 2001 | 20-80              | Cross<br>Sectional              | Tohoku           | Exfoliated           | Practitioner              | Cervical<br>Swab               | 1994                              | 2006                             | PCR (HPV DNA<br>Array)          | DNA                 |
| Tenjimbayashi <sup>55</sup> | 2017 | 23-79              | Cohort                          | Kanto            | Exfoliated           | Practitioner              | Cytobrush                      | 2012                              | 2016                             | PGMY09/11                       | DNA                 |
| Tsuda®                      | 2003 | Not                | Cohort                          | Kansai           | Fixed                | Practitioner              | Surgical                       | Not                               | Not                              | L1C1/L1C2                       | DNA                 |
| Tsuji <sup>44</sup>         | 2003 | Not                | Cross                           | Kansai           | Exfoliated           | Not                       | Cytobrush                      | 1998                              | 2003                             | HC2                             | DNA                 |
| Watari <sup>90</sup>        | 2011 | specified<br>48.5  | Sectional                       | Hokkaido         | Fresh                | Specified<br>Not          | Cytobrush                      | 1999                              | 2004                             | PCR (HPV DNA                    | DNA                 |
| Watan                       | 2011 | 10 5               | conore                          | Hokkuldo         | Biopsy               | Specified                 | cytobrash                      | 1555                              | 2001                             | Array)                          | Dial                |
| Yamakawa <sup>79</sup>      | 1994 | Not                | Cohort                          | Kanto            | Fixed                | Not                       | Not                            | 1987                              | 1992                             | PCR (HPV DNA                    | DNA                 |
| Yamasaki <sup>39</sup>      | 2011 | specified<br>Not   | Cohort                          | Kyushu           | Biopsy<br>Fresh      | Specified<br>Practitioner | Specified<br>Cytobrush         | 2007                              | 2009                             | Array)<br>PGMY09/11             | DNA                 |
| Yamazaki <sup>29</sup>      | 2001 | specified<br>Not   | Cohort                          | Hokuriku         | Biopsy<br>Exfoliated | Practitioner              | Cytobrush                      | 1995                              | 1999                             | HC2                             | DNA                 |
| Yokota <sup>77</sup>        | 1990 | specified<br>Not   | Cross                           | Kanto            | Exfoliated           | Practitioner              | Cervical                       | Not                               | Not                              | FISH                            | DNA                 |
|                             |      | specified          | Sectional                       |                  |                      |                           | Swab                           | specified                         | specified                        |                                 |                     |
| Yokoyama <sup>66</sup>      | 2003 | 20–55              | Cross<br>Sectional              | Not<br>specified | Exfoliated           | Practitioner              | Cytobrush                      | 1995                              | 1996                             | L1C1/ L1C2                      | DNA                 |
| Yoshida <sup>46</sup>       | 2004 | 20-80              | Cohort                          | Kanto            | Fresh<br>Bionsy      | Practitioner              | Cytobrush                      | 2002                              | 2003                             | L1C1/ L1C2                      | DNA                 |
| Yoshida <sup>89</sup>       | 2009 | 27-62              | Cohort                          | Kanto            | Fixed<br>Biopsy      | Practitioner              | Surgical                       | 1998                              | 2008                             | L1C1/ L1C2                      | DNA                 |
| Yoshikawa <sup>72</sup>     | 1991 | Not<br>specified   | Cohort                          | Kanto            | Exfoliated           | Practitioner              | Cervical<br>Swab               | Not<br>specified                  | Not<br>specified                 | L1C1/ L1C2                      | DNA                 |
| Yoshikawa <sup>56</sup>     | 1999 | <55                | Case                            | Kanto            | Exfoliated           | Practitioner              | Cytobrush                      | 1995                              | 1996                             | L1C1/ L1C2                      | DNA                 |
| Hiromura <sup>120</sup>     | 2014 | 30-89              | Cohort                          | Kanto            | Exfoliated           | Practitioner              | Cervical<br>Swab               | 2010                              | 2013                             | Qiagen <sup>™</sup> Mini<br>Kit | DNA                 |
| Sakamoto <sup>87</sup>      | 2018 | 20-69              | Cohort                          | Not              | Exfoliated           | Not<br>Specified          | Not                            | 1990                              | 2017                             | Geno Search<br>31 + 5           | DNA                 |
| Sakamoto <sup>88</sup>      | 2017 | 20-69              | Cohort                          | Chubu            | Exfoliated           | Not                       | Not                            | Not                               | Not                              | Geno Search                     | DNA                 |
| 二井 美津穂 <sup>50</sup>        | 2007 | NA                 | Not                             | Kanto            | Exfoliated           | Practitioner              | Cytobrush                      | Not                               | Not                              | PGMY09/11                       | DNA                 |
| 二井 美津穂22                    | 2006 | NA                 | Specified<br>Not                | Kanto            | Exfoliated           | Practitioner              | Cytobrush                      | specified<br>Not                  | specified<br>Not                 | Roche <sup>™</sup> Linear       | DNA                 |
| 坂本 <sup>36</sup>            | 2015 | 19-80              | Specified<br>Cross<br>Sectional | Not<br>specified | Exfoliated           | Practitioner              | Cytobrush                      | specified<br>Not<br>specified     | specified<br>Not<br>specified    | Array<br>Geno Search<br>31 + 5  | DNA                 |

# Table A3 (continued)

| Author                | Year | Age<br>range | Study<br>design    | Region | HPV DNA<br>source | Sample<br>collection | Sample<br>collection<br>method | Year first<br>sample<br>collected | Year last<br>sample<br>collected | Primer               | Detection<br>method |
|-----------------------|------|--------------|--------------------|--------|-------------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|----------------------|---------------------|
| 郡司 <sup>30</sup>      | 2011 | 19–79        | Cross<br>Sectional | Chubu  | Not<br>Specified  | Practitioner         | Cervical<br>Swab               | 2010                              | Not<br>specifed                  | Taq Man <sup>™</sup> | DNA                 |
| Kurosu <sup>121</sup> | 2013 | 20-69        | Cross<br>Sectional | Kanto  | Exfoliated        | Practitioner         | Cervical<br>Swab               | 2010                              | 2011                             | Cobas 4800           | DNA                 |

# Table A4

HPV genotype group definitions used to calculate summary prevalence estimates.

| HPV genotype group name                                                                                        | Definition                                                                                                                                                                                                                                                                                                                        | Included HPV genotype                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Any<br>Any HR<br>Any LR<br>Bivalent<br>Quadrivalent<br>Nonavalent<br>Cross protection<br>Probably carcinogenic | One or more detectable HPV genotypes<br>One or more high risk HPV genotypes<br>One or more low risk HPV genotypes<br>One or more bivalent vaccine genotypes<br>One or more quadrivalent vaccine genotypes<br>One or more nonavalent vaccine genotypes<br>One or more cross-protection genotypes<br>Probably carcinogenic genotype | One or more detectable HPV genotypes<br>HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, or 59<br>HPV6, or 11<br>HPV16, or 18<br>HPV6, 11, 16, or 18<br>HPV6, 11, 16, 18, 31, 33, 45, 52, or 58<br>HPV31, 33, or 45<br>HPV68 |
| Possibly carcinogenic                                                                                          | One or more cross-protection genotypes.                                                                                                                                                                                                                                                                                           | HPV26, 53, 66, 67, 70, 73, 82, 30, 34, 69, 85, or 97                                                                                                                                                                       |

# Table A5

Joanna Briggs within study quality assessment tool.

| Question                                                                                     | Yes | No | Unclear | NA |
|----------------------------------------------------------------------------------------------|-----|----|---------|----|
| Was the sample frame appropriate to address the target population?                           |     |    |         |    |
| Were study participants sampled in an appropriate way?                                       |     |    |         |    |
| Was the sample size adequate?                                                                |     |    |         |    |
| Were the study subjects and the setting described in detail?                                 |     |    |         |    |
| Was the data analysis conducted with sufficient coverage of the identified sample?           |     |    |         |    |
| Were valid methods used for the identification of the condition?                             |     |    |         |    |
| Was the condition measured in a standard- reliable way for all participants?                 |     |    |         |    |
| Was there appropriate statistical analysis?                                                  |     |    |         |    |
| Was the response rate adequate- and if not- was the low response rate managed appropriately? |     |    |         |    |

# Table A6

Detailed quality summary of included studies: By author and year of publication.

| Author (Year)        | 1 · Appropriate target population | 2. Appropriate sampling method | 3. Adequate sample size | 4. Details description of study subjects | 5 Adequate coverage of identified sample | 6 Description for methods for identification of condition | 7. Standard methodology for identification of condition | 8. Description of statistical analysis | 9 Adequate response rate |
|----------------------|-----------------------------------|--------------------------------|-------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|----------------------------------------|--------------------------|
| <b>A</b> be (2014)   | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Aiko (2017)          | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Aoyama–Kikawa (2018) | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Asato (2004)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Azuma (2014)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Chen (2013)          | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Fujinaga (1991)      | 1                                 | 1                              | 1                       | 3                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Harima (2002)        | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Nobeyama (2004)      | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Hiromura (2014)      | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 3                                      | 3                        |
| Horikoshi (2005)     | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Hosaka (2013)        | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Ichimura (2003)      | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Imai (2015)          | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Imajoh (2012)        | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Inoue (2006)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Inoue (2010)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Ishi (2000)          | 2                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Ishi (2004)          | 2                                 | 3                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Ishikawa (2001)      | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Iwata (2015)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Kanao (2004)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Karube (2004)        | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Kashiwabara (1992)   | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Kina (2009)          | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 3                                                         | 1                                                       | 1                                      | 1                        |
| Konno (1993)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Konno (2011)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Konno (2014)         | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Korosu (2013)        | 1                                 | 1                              | 1                       | 3                                        | 1                                        | 1                                                         | 1                                                       | 3                                      | 3                        |
| Kubota (1999)        | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |
| Kurokawa (2018)      | 1                                 | 1                              | 1                       | 1                                        | 1                                        | 1                                                         | 1                                                       | 1                                      | 1                        |

| Author (Year)     | 1 Appropriate target population | 2. Appropriate sampling method | 3 · Adequate sample size | 4. Details description of study subjects | 5 Adequate coverage of identified sample | 6 Description for methods for<br>identification of condition | 7- Standard methodology for<br>identification of condition | 8 · Description of statistical analysis | 9. Adequate response rate |
|-------------------|---------------------------------|--------------------------------|--------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|---------------------------|
| Kusanagi (2010)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Maehama (2000)    | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Maehama (2002)    | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Maehama (2005)    | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Maki (1991)       | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Masumoto (2003)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Masumoto (2004)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Matsumoto (2011)  | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Matsushita (2011) | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Minaguchi (2004)  | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Morisada (2017)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nagai (2000)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nagai (2001)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nakagawa (1996)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nakagawa (2002)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nakamura (2015)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nakazawa (1992)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nawa (1995)       | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Nishiwaki (2008)  | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Niwa (2003)       | 1                               | 1                              | 3                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Okadome (2014)    | 1                               | 3                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Onuki (2009)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Saito (1995)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Saito (1999)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Saito (2000)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Saito (2001)      | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sakamoto (2017)   | 1                               | 1                              | 1                        | 3                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sakamoto (2018)   | 1                               | 1                              | 1                        | 3                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sasagawa (1997)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sasagawa (2001)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sasagawa (2005)   | 1                               | 3                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sasagawa (2016)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |
| Sasagawa (2018)   | 1                               | 1                              | 1                        | 1                                        | 1                                        | 1                                                            | 1                                                          | 1                                       | 1                         |

T

-

T

----

1

Т

----

\_

Г

| Author (Year)        | 1 · Appropriate target population | 2. Appropriate sampling method | 3 · Adequate sample size | <ol> <li>Details description of study<br/>subjects</li> </ol> | 5 · Adequate coverage of identified<br>sample | 6 Description for methods for<br>identification of condition | 7. Standard methodology for<br>identification of condition | 8 · Description of statistical analysis | 9- Adequate response rate |
|----------------------|-----------------------------------|--------------------------------|--------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|---------------------------|
| Sasaki (2017)        | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Satoh (2013)         | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Takehara (2011)      | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Tanaka (2001)        | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Tenjimbayashi (2018) | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Tsuda (2003)         | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Tsuji (2003)         | 1                                 | 1                              | 3                        | 1                                                             | 3                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Watari (2011)        | 2                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yamakawa (1994)      | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yamasaki (2011)      | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yamazaki (2001)      | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yokota (1990)        | 1                                 | 3                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yokoyama (2003)      | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yoshida (2004)       | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yoshida (2009)       | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yoshikawa (1991)     | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 1                                       | 1                         |
| Yoshikawa (1999)     | 1                                 | 1                              | 1                        | 1                                                             | 1                                             | 1                                                            | 1                                                          | 3                                       | 3                         |
| 二井 (2006)            | 1                                 | 1                              | 1                        | 3                                                             | 1                                             | 3                                                            | 3                                                          | 3                                       | 3                         |
| 二井 (2007)            | 1                                 | 1                              | 1                        | 3                                                             | 1                                             | 3                                                            | 3                                                          | 3                                       | 3                         |
| 坂本(2015)             | 1                                 | 1                              | 1                        | 3                                                             | 1                                             | 3                                                            | 3                                                          | 1                                       | 1                         |
| 竹原 (2012)            | 1                                 | 1                              | 1                        | 3                                                             | 1                                             | 3                                                            | 3                                                          | 1                                       | 1                         |
| 郡司(2011)             | 1                                 | 1                              | 1                        | 3                                                             | 1                                             | 3                                                            | 1                                                          | 1                                       | 1                         |

1 = Yes- 2 = No- 3 = Unclear and additional information requested.

# Table A7

HPV genotype prevalence for women with normal cytology through to cervical cancer: All groups.

| Disease stage | HPV genotype group                | No. of studies | No. of women tested (N) | No. of women HPV positive (n) | Pooled prevalence % (95% CI)        | I <sup>2</sup> | p-<br>value |
|---------------|-----------------------------------|----------------|-------------------------|-------------------------------|-------------------------------------|----------------|-------------|
| Normal        | HPV genotype groups               |                |                         |                               |                                     |                |             |
|               | Any HPV prevalence                | 26             | 57759                   | 6331                          | 15.6 (12.3-19.4)                    | 99.2           | <0.01       |
|               | Any HR                            | 13             | 27338                   | 2501                          | 8.4 (3.8–14.6)                      | 99·6           | <0.01       |
|               | Any LR                            | 7              | 4031                    | 146                           | 0.8(0.2-1.8)                        | 94.9           | <0.01       |
|               | Possibly carcinogenic             | 7              | 13506                   | 460                           | 2.2(0.5-4.9)                        | 98.5           | <0.01       |
|               | Prohably                          | 4              | 11071                   | 112                           | 0.7(0.2-1.6)                        | 94.5           | <0.01       |
|               | carcinogenic                      | 1              | 110/1                   | 112                           | 07(0210)                            | 515            | .0.01       |
|               | Vaccino gonotuno prov             | alonco         |                         |                               |                                     |                |             |
|               | Bivalent                          | 12             | 26560                   | 564                           | 24(1.1-42)                          | 08.3           | <0.01       |
|               | Quadrivalent                      | 12             | 20300                   | 710                           | 2.4(1.1-4.2)                        | 09.7           | <0.01       |
|               | Nonavalent                        | 13             | 27338                   | 1862                          | 68(31-118)                          | 00.5           | <0.01       |
|               |                                   | 10             | 27338                   | 318                           | 1.2(0.6-1.9)                        | 99.5           | <0.01       |
| ASCUS         |                                   | 10             | 20500                   | 518                           | 1.2 (0.0-1.9)                       | 54.5           | \$0.01      |
| ABCOB         | Any HPV provolonco                | 7              | 1766                    | 700                           | 520(260, 70, 7)                     | 08.4           | <0.01       |
|               | Any HPV prevalence                | 7              | 1060                    | /00                           | 33.9(20.9-79.7)                     | 98·4           | <0.01       |
|               |                                   | 1              | 1000                    | 20                            | 41.0(20.7-57.5)                     | 97.5           | 0.54        |
|               | Ally LK<br>Dessibly sensing senio | 4              | 891                     | 32                            | $3 \cdot 2 (2 \cdot 1 - 4 \cdot 6)$ | 0.00           | 0.54        |
|               | Possibly carcinogenic             | 4              | 891                     | 98                            | 9.4(3.7-17.1)                       | 80-9<br>NA     | <0.01       |
|               | Probably                          | 2              | 035                     | 22                            | 3.1 (1.8-4.7)                       | INA            | INA         |
|               | carcinogenic                      |                |                         |                               |                                     |                |             |
|               | Vaccine genotype prev             | alence         |                         |                               |                                     |                |             |
|               | Bivalent                          | 6              | 995                     | 149                           | 14.7 (8.7–21.9)                     | 82.6           | <0.01       |
|               | Quadrivalent                      | 6              | 995                     | 181                           | 17.2 (10.1–25.6)                    | 85.9           | <0.01       |
|               | Nonavalent                        | 7              | 1060                    | 517                           | 38.2 (19.9–58.3)                    | 97.0           | <0.01       |
|               | Cross-protection                  | 6              | 1022                    | 80                            | 6.8 (3.8–10.6)                      | 66.0           | <0.01       |
| LSIL          | HPV genotype groups               |                |                         |                               |                                     |                |             |
|               | Any HPV prevalence                | 12             | 3764                    | 1712                          | 70.2 (47.7-88.5)                    | 99.2           | <0.01       |
|               | Any HR                            | 12             | 1937                    | 1477                          | 69.5 (51.4-84.9)                    | 98.9           | <0.01       |
|               | Any LR                            | 7              | 1362                    | 65                            | 4.1 (2.1-6.8)                       | 71.9           | <0.01       |
|               | Possibly carcinogenic             | 6              | 1322                    | 239                           | 14.4 (5.0-27.4)                     | 96.8           | <0.01       |
|               | Probably                          | 4              | 824                     | 38                            | 4.0 (2.4-6.1)                       | 33.7           | <0.01       |
|               | carcinogenic                      |                |                         |                               |                                     |                |             |
|               | Vaccine genotype prev             | alence         |                         |                               |                                     |                |             |
|               | Bivalent                          | 12             | 1937                    | 365                           | 17.3 (13.3-21.7)                    | 81.5           | <0.01       |
|               | Ouadrivalent                      | 12             | 1937                    | 430                           | 20.3 (15.9–25.1)                    | 82.1           | <0.01       |
|               | Nonavalent                        | 12             | 1937                    | 1117                          | 49.7 (36.7-62.7)                    | 96.8           | <0.01       |
|               | Cross-protection                  | 9              | 1674                    | 162                           | 9.4 (8.0-10.9)                      | 1.67           | 0.42        |
| HSIL          | HDV genotype groups               |                |                         |                               |                                     |                |             |
|               | Any HPV prevalence                | 9              | 2017                    | 1485                          | 88.8 (74.6-97.9)                    | 97.7           | <0.01       |
|               | Any HR                            | 9              | 1340                    | 1731                          | 86.0 (73.9-94.9)                    | 97.6           | <0.01       |
|               | Any IR                            | 5              | 924                     | 33                            | 4.2 (0.8-9.8)                       | 89.0           | <0.01       |
|               | Possibly carcinogenic             | 5              | 1009                    | 90                            | 7.3 (2.5–14.2)                      | 91.2           | <0.01       |
|               | Prohably                          | 2              | 453                     | 12                            | 2.6(1.3-4.3)                        | NA             | NA          |
|               | carcinogenic                      | 2              | 455                     | 12                            | 2.0 (1.5 4.5)                       | 14/1           | 14/1        |
|               | Vaccino construno marco           | -1             |                         |                               |                                     |                |             |
|               | Pivalent                          |                | 1240                    | 490                           | 22.2 (26.2, 40.6)                   | 9E 0           | <0.01       |
|               | Bivalent                          | 9              | 1340                    | 482                           | 33.3(20.3-40.6)                     | 85.0           | <0.01       |
|               | Quadrivalent                      | 9              | 1340                    | 515                           | 38.0(33.3-42.8)                     | 07.5           | 0.01        |
|               |                                   | 9              | 1340                    | 1184                          | 80.3(71.7-90.4)                     | 97.5           | <0.01       |
| CIN1          | cross-protection                  | 0              | 1007                    | 101                           | (0.61-0.11) C.CI                    | 0.11           | 0.20        |
| CIVI          | HPV genotype groups               | 21             | 2120                    | 1050                          | 77 4 (62 4 62 5)                    | 00.0           | .0.01       |
|               | Any HPV prevalence                | 21             | 3130                    | 1858                          | 1/.4 ( $62.4-89.5$ )                | 98.6           | <0.01       |
|               | Any HK                            | 14             | 1904                    | 917                           | 37.8(29.1-46.9)                     | 93·2           | <0.01       |
|               | Any LK                            | 2              | 432                     | 13                            | 2.4(0.4-5.7)                        | NA             | NA<br>0.50  |
|               | Possibly carcinogenic             | 6              | 1022                    | 48                            | 4.5 (3.3-5.9)                       | 0.00           | 0.56        |
|               | Probably                          | 6              | 1350                    | 20                            | 1.5(0.1-2.9)                        | 56.1           | 0.04        |
|               | carcinogenic                      |                |                         |                               |                                     |                |             |
|               | Vaccine genotype prev             | <u>alence</u>  |                         |                               |                                     |                |             |
|               | Bivalent                          | 13             | 1865                    | 244                           | 13.1 (9.8–16.6)                     | 74.9           | <0.01       |
|               | Quadrivalent                      | 13             | 1865                    | 257                           | 13.5 (10.1–17.3)                    | 76.9           | <0.01       |
|               | Nonavalent                        | 14             | 1904                    | 626                           | 28.9 (23.7-34.3)                    | 82.4           | <0.01       |
|               | Cross-protection                  | 7              | 1501                    | 60                            | 3.6 (2.5-4.9)                       | 24.6           | 0.24        |
| CIN2          | HPV genotype groups               |                |                         |                               |                                     |                |             |
|               | Any HPV prevalence                | 17             | 1219                    | 850                           | 87.6 (70.7-98.2)                    | 98.0           | <0.01       |
|               | Any HR                            | 13             | 796                     | 557                           | 68.7 (45.6-87.9)                    | 97.7           | <0.01       |
|               | Any LR                            | 4              | 420                     | 21                            | 4.1 (0.4-10.5)                      | 84.1           | <0.01       |
|               | Possibly carcinogenic             | 6              | 524                     | 54                            | 8.2 (3.5-14.4)                      | 78·9           | <0.01       |
|               | Probably                          | 5              | 433                     | 16                            | 3.4 (1.7-5.4)                       | 0.00           | 0.41        |
|               | carcinogenic                      |                |                         |                               |                                     |                |             |
|               | Vaccine genotype prev             | <u>alence</u>  |                         |                               |                                     |                |             |
|               | Bivalent                          | 12             | 773                     | 219                           | 27.7 (23.3-29.7)                    | 88.1           | <0.01       |
|               | Quadrivalent                      | 12             | 773                     | 240                           | 30.4 (24.7–36.4)                    | 65.8           | <0.01       |
|               |                                   |                |                         |                               | · ·                                 |                |             |

#### Table A7 (continued)

| Disease stage | HPV genotype group    | No. of studies           | No. of women tested (N) | No. of women HPV positive (n) | Pooled prevalence % (95% CI)     | l <sup>2</sup> | p-<br>value |
|---------------|-----------------------|--------------------------|-------------------------|-------------------------------|----------------------------------|----------------|-------------|
|               | Nonavalent            | 13                       | 796                     | 516                           | 61.2 (38.9-81.4)                 | 97.5           | <0.01       |
|               | Cross-protection      | 6                        | 524                     | 76                            | 13.8 (9.9–18.2)                  | 43.9           | 0.11        |
| CIN3/AIS      | UDV gopotypo groups   | 0                        | 021                     |                               | 100(00102)                       | 15 0           | 011         |
| 01107110      | Apy UDV provalance    | 10                       | 060                     | 806                           | 0 = 4 (00, 4, 08, 0)             | 96.2           | <0.01       |
|               | Any HPV prevalence    | 12                       | 960                     | 890                           | 95.4(90.4-98.9)                  | 80·2           | <0.01       |
|               |                       | 9                        | 224                     | 556                           | 18(0, 0, 2, 0)                   | 97.Z           |             |
|               | Ally LR               | 1                        | 334                     | 6                             | 1.8(0.0-3.0)                     | NA<br>0.00     | NA<br>0.54  |
|               | Possibly carcinogenic | 3                        | 408                     | 24                            | $5\cdot3(3\cdot2-7\cdot9)$       | 0.00           | 0.54        |
|               | Probably              | 2                        | 379                     | /                             | 1.9(0.0-5.7)                     | NA             | NA          |
|               | carcinogenic          |                          |                         |                               |                                  |                |             |
|               | Vaccine genotype prev | <u>alence</u>            |                         |                               |                                  |                |             |
|               | Bivalent              | 9                        | 667                     | 327                           | 49.0 (45.2–52.9)                 | 0.00           | <0.01       |
|               | Quadrivalent          | 9                        | 667                     | 333                           | 49.6 (45.4–53.7)                 | 4.3            | <0.01       |
|               | Nonavalent            | 9                        | 667                     | 550                           | 73.0 (48.0–92.3)                 | 97.2           | <0.01       |
|               | Cross-protection      | 6                        | 765                     | 104                           | 12.3 (6.8–19.1)                  | 77.7           | <0.01       |
| ICC           | HPV genotype groups   |                          |                         |                               |                                  |                |             |
|               | Any HPV prevalence    | 31                       | 4306                    | 3747                          | 85.6 (80.7-89.8)                 | 92.8           | <0.01       |
|               | Any HR                | 26                       | 3716                    | 2531                          | 75.7 (68.0-82.6)                 | 95.6           | <0.01       |
|               | Any LR                |                          |                         |                               |                                  |                |             |
|               | Possibly carcinogenic | 7                        | 2177                    | 8                             | 3.3(1.2-6.1)                     | 84.9           | <0.01       |
|               | Probably              | 5                        | 2092                    | 6                             | 1.4(0.7-2.2)                     | 80.8           | <0.01       |
|               | carcinogenic          | 5                        | 2002                    | 5                             | 11(0, 22)                        | 000            | 0.01        |
|               | Vaccino conotuno prov | alanca                   |                         |                               |                                  |                |             |
|               | Pivalent              |                          | 2716                    | 1070                          | $E_{2}E_{1}(E_{2}, 1, C_{4}, 0)$ | 02.2           | <0.01       |
|               | Divalent              | 20                       | 3710                    | 1072                          | 58.5(52.1-64.9)                  | 92.5           | <0.01       |
|               | Quadrivalent          | 26                       | 3710                    | 1973                          | 58.0(52.2-64.9)                  | 92.3           | <0.01       |
|               | Nonavalent            | 26                       | 3/16                    | 2419                          | /1.5 (64.9-77.6)                 | 93.4           | <0.01       |
|               | Cross-protection      | 19                       | 3346                    | 217                           | 7.3 (5.3–12.0)                   | 80.8           | <0.01       |
|               | Vaccine genotype prev | <u>alence (in HPV p</u>  | ositive cases)          |                               |                                  |                |             |
|               | Bivalent              | 26                       | 3279                    | 1970                          | 75.9 (68.6-82.7)                 | 93.8           | <0.01       |
|               | Quadrivalent          | 26                       | 3278                    | 1973                          | 76.5 (69.1–83.3)                 | 93.9           | <0.01       |
|               | Nonavalent            | 26                       | 3278                    | 2419                          | 90.2 (84.5–94.9)                 | 94.1           | <0.01       |
|               | Cross-protection      | 19                       | 2988                    | 217                           | 8.4 (5.3–12.0)                   | 86.8           | <0.01       |
| ICC-SCC       | HPV genotype groups   |                          |                         |                               |                                  |                |             |
|               | Any HPV prevalence    | 6                        | 1032                    | 891                           | 86.1 (61.9-99.6)                 | 97.8           | <0.01       |
|               | Any HR                | 6                        | 1032                    | 717                           | 78.9 (54.8–95.7)                 | 97.3           | <0.01       |
|               | Any LR                |                          |                         |                               |                                  |                |             |
|               | Vaccine genotype prev | alence                   |                         |                               |                                  |                |             |
|               | Bivalent              | 6                        | 1032                    | 603                           | 68.7 (51.2-83.8)                 | 94.3           | <0.01       |
|               | Quadrivalent          | 6                        | 1032                    | 604                           | 68.7(51.3 - 83.9)                | 94.3           | <0.01       |
|               | Nonavalent            | 6                        | 1032                    | 683                           | 76.5(54.1 - 93.3)                | 96.8           | <0.01       |
|               | Cross-protection      | 3                        | 853                     | 39                            | 8.1 (1.8-17.8)                   | 86.4           | <0.01       |
|               | Vaccine genotype prev | alence (in HPV r         | ositive cases)          |                               |                                  |                |             |
|               | Rivalent              | 6                        | 891                     | 603                           | 89.4 (68.5-100)                  | 96.3           | <0.01       |
|               | Quadrivalent          | 6                        | 801                     | 604                           | 89.4 (68.5-100)                  | 06.2           | <0.01       |
|               | Nonavalent            | 6                        | 801                     | 683                           | 94.6(76.5-100)                   | 96.4           | <0.01       |
|               |                       | 3                        | 805                     | 30                            | 85(18-178)                       | 90.4<br>85.4   | <0.01       |
|               |                       | 5                        | 805                     | 25                            | 8.5 (1.8-17.8)                   | 0.0-4          | \$0.01      |
| ICC-ADC       | HPV genotype groups   | 0                        | 622                     | 500                           |                                  |                | 0.01        |
|               | Any HPV prevalence    | 9                        | 638                     | 533                           | 80.5 (70.0-89.4)                 | 77.47          | <0.01       |
|               | Any HR                | 7                        | 638                     | 121                           | 64.9 (43.8-83.6)                 | 87.5           | <0.01       |
|               | Any LR                |                          |                         |                               |                                  |                |             |
|               | Vaccine genotype prev | <u>alence</u>            |                         |                               |                                  |                |             |
|               | Bivalent              | 7                        | 219                     | 121                           | 72.1 (59.5-83.6)                 | 81.0           | <0.01       |
|               | Quadrivalent          | 7                        | 219                     | 141                           | 72.1 (59.5-83.6)                 | 81.0           | <0.01       |
|               | Nonavalent            | 7                        | 219                     | 146                           | 74.3 (61.6-85.3)                 | 81.6           | <0.01       |
|               | Cross-protection      | 2                        | 74                      | 4                             | 3.7 (0.2-10.0)                   | NA             | NA          |
|               | Vaccine genotype prev | <u>alence (in HP</u> V p | ositive cases)          |                               |                                  |                |             |
|               | Bivalent              | 7                        | 170                     | 121                           | 93.7 (76.9-100)                  | 92.1           | <0.01       |
|               | Quadrivalent          | 7                        | 170                     | 121                           | 93.7 (76.9–100)                  | 92.1           | <0.01       |
|               | Nonavalent            | 7                        | 170                     | 146                           | 95-2 (79-9-100)                  | 91.4           | <0.01       |
|               | Cross-protection      | 2                        | 69                      | 4                             | 4.2 (0.3-10.9)                   | NA             | NA          |

HPV prevalence measured as HPV test positivity where the numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. Any-HPV prevalence represents the detection of any detectable HPV genotype. Any HR represents the detection of any of the following: HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, or 59. Any LR represents the detection of HPV6 or 11. Probably carcinogenic prevalence represents detection of HPV68. Possibly carcinogenic prevalence represents detection of any of the following: HPV26, 53, 66, 67, 67, 70, 73, 82, 30, 34, 69, 85, or 97. Bivalent represents the detection of HPV16, or 18; Quadrivalent represents 6, 11, 16 or 18; and nonavalent represents: HPV26, 11, 16, 18, 31, 33, 45, 52, 58; Cross protection represents: HPV31, 33 or 45. Total number of women tested stratified as follows: 57759 for normal cytology, 1766 for ASCUS, 3764 for LSIL, 2017 for HSIL, 3130 for CIN1, 1219 for CIN2, 896 for CIN3/AIS, 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. A high level of heterogeneity ( $l^2 > 90\%$ ) was observed in most summary estimates. NA: I-squared not quantifiable with fewer than three estimates.

# Table A8HPV genotype prevalence in women with normal cytology through to cervical cancer: Individual vaccine genotypes.

| Disease stage | HPV genotype | No- of studies | No $\cdot$ of women tested (N) | No- of women HPV positive (n) | Pooled prevalence (95% CI)                              | $I^2$        | p-value       |
|---------------|--------------|----------------|--------------------------------|-------------------------------|---------------------------------------------------------|--------------|---------------|
| Normal        | 6            | 7              | 14031                          | 112                           | 0.0 (0.0-1.3)                                           | 94.4         | <0.01         |
|               | 11           | 5              | 10668                          | 34                            | 0.0 (0.0-0.6)                                           | 68.2         | 0.01          |
|               | 16           | 13             | 27338                          | 403                           | 1.5 (0.7–2.7)                                           | 97.6         | <0.01         |
|               | 18           | 12             | 27184                          | 161                           | 0.4 (0.1–0.9)                                           | 94.3         | <0.01         |
|               | 31           | 10             | 26300                          | 187                           | 0.7 (0.4–1.2)                                           | 93.5         | <0.01         |
|               | 33           | 9              | 26047                          | 96                            | 0.2(0.2-0.4)                                            | 66.7         | <0.01         |
|               | 45           | 6              | 13917                          | 35                            | 0.0(0.0-0.3)                                            | 89.3         | <0.01         |
|               | 52           | 10             | 15208                          | 228<br>276                    | $3 \cdot 1 (1 \cdot 5 - 5 \cdot 3)$                     | 97.4         | <0.01         |
| ASCUS         | 58           | 11<br>Δ        | 891                            | 270                           | 2.8(1.8-4.2)                                            | 0.00         | 0.59          |
| nocos         | 11           | 4              | 891                            | 3                             | 0.0(0.0-0.5)                                            | 0.00         | 0.81          |
|               | 16           | 6              | 995                            | 115                           | 11.4 (6.4–17.6)                                         | 79.8         | <0.01         |
|               | 18           | 5              | 929                            | 34                            | 3.2 (2.1-4.5)                                           | 0.00         | 0.54          |
|               | 31           | 6              | 1022                           | 48                            | 4.2 (2.4-6.7)                                           | 44.6         | 0.10          |
|               | 33           | 4              | 891                            | 20                            | 1.8 (1.0-3.0)                                           | 0.00         | 0.54          |
|               | 45           | 4              | 891                            | 12                            | 0.9 (0.4–1.9)                                           | 0.00         | 0.61          |
|               | 52           | 6              | 995                            | 146                           | 12.0 (7.8–16.9)                                         | 67.8         | <0.01         |
| L CH          | 58           | 5              | 957                            | 110                           | 11.1(9.2-13.3)                                          | 0.00         | 0.46          |
| LSIL          | 6            | /              | 1362                           | 50                            | $2 \cdot 2 (0 \cdot 8 - 4 \cdot 7)$                     | /5·3         | <0.01         |
|               | 11           | / 12           | 1302                           | 15                            | 0.8 (0.0-2.7)<br>12.5 (0.3-16.3)                        | 74.9         | <0.01         |
|               | 18           | 10             | 1763                           | 99                            | 4.8 (3.3-7.0)                                           | 62.3         | <0.01         |
|               | 31           | 9              | 1674                           | 113                           | 6.7 (5.1-8.8)                                           | 44.8         | 0.07          |
|               | 33           | 8              | 1566                           | 29                            | 1.2(0.7-2.3)                                            | 21.3         | 0.26          |
|               | 45           | 7              | 1468                           | 20                            | 0.7 (0.2–1.9)                                           | 50.9         | 0.05          |
|               | 52           | 10             | 1790                           | 303                           | 14.7 (11.2–18.8)                                        | 77.3         | <0.01         |
|               | 58           | 8              | 1576                           | 222                           | 12.7 (9.1–17.1)                                         | 79.4         | <0.01         |
| HSIL          | 6            | 5              | 951                            | 15                            | 0.7 (0.1-2.6)                                           | 60.8         | 0.03          |
|               | 11           | 6              | 1061                           | 18                            | 1.3 (0.00-5.3)                                          | 88.8         | <0.01         |
|               | 16           | 9              | 1340                           | 409                           | 27.6 (20.4–35.5)                                        | 87.8         | <0.01         |
|               | 18           | 8              | 1307                           | 73                            | 4.7 (2.9–7.1)                                           | 56.7         | 0.02          |
|               | 31           | 8              | 1307                           | 122                           | 8.9 (7.5-10.7)                                          | 0.00         | 0.87          |
|               | 33<br>4E     | 8              | 1307                           | 46                            | 3.0(2.2-4.3)                                            | 0.00         | 0.46          |
|               | 40<br>52     | 7<br>9         | 1274                           | 15<br>203                     | 18.1(12.7-24.3)                                         | 0.00<br>84.0 | 0·57<br><0.01 |
|               | 52           | 7              | 1274                           | 243                           | 17.4(12.6-23.2)                                         | 81.9         | <0.01         |
| CIN1          | 6            | 3              | 1005                           | 13                            | 1.1 (0.6 - 2.0)                                         | 0.00         | 0.57          |
|               | 11           | 2              | 891                            | 8                             | 1.3 (0.3-1.5)                                           | NA           | NA            |
|               | 16           | 13             | 1865                           | 175                           | 9.2 (6.9–12.0)                                          | 64.5         | <0.01         |
|               | 18           | 10             | 1596                           | 69                            | 4.0 (2.7-5.8)                                           | 46.1         | <0.01         |
|               | 31           | 8              | 1994                           | 37                            | 1.4 (0.8–2.1)                                           | 0.00         | 0.77          |
|               | 33           | 6              | 1387                           | 29                            | 1.5(1.2-2.8)                                            | 0.00         | 0.74          |
|               | 45           | 4              | 1624                           | 7                             | 0.0(0.0-0.0)                                            | 70.4         | 0.02          |
|               | 52           | 12             | 21/8                           | 203                           | 10.0(6.3-11.7)                                          | 68.9         | <0.01         |
| CIN2          | 50           | 3              | 2115                           | 5                             | $9 \cdot 1 (0 \cdot 3 - 11 \cdot 0)$<br>1 0 (0 3 - 3 2) | 0.00         | <0.01<br>0.95 |
| CINZ          | 0<br>11      | 2              | 255                            | 16                            | 5.0(2.3-7.6)                                            | NA           | NA            |
|               | 16           | 11             | 682                            | 182                           | 26.0(21.7-30.5)                                         | 36.4         | 0.11          |
|               | 18           | 11             | 729                            | 37                            | 4.5 (2.5–7.2)                                           | 46.5         | 0.04          |
|               | 31           | 6              | 524                            | 38                            | 5.8 (2.9-10.4)                                          | 64.4         | 0.02          |
|               | 33           | 6              | 524                            | 21                            | 3.4 (2.1-5.6)                                           | 0.00         | 0.50          |
|               | 45           | 4              | 414                            | 17                            | 3.3 (1.0-8.0)                                           | 66.8         | 0.03          |
|               | 52           | 7              | 489                            | 119                           | 23.7 (19.5–28.2)                                        | 15.9         | 0.31          |
| CD 10 / 4 / 6 | 58           | 7              | 547                            | 90                            | 15.5(10.0-22.3)                                         | 71.2         | <0.01         |
| CIN3/AIS      | 0<br>11      | 2              | 360                            | 6                             | 0.9(0.1-2.6)                                            | NA<br>NA     | NA            |
|               | 16           | 2              | 1041                           | 362                           | 0.0(0.0-0.1)<br>37.2(280-467)                           | NA<br>87.2   | NA<br><0.01   |
|               | 18           | 12             | 995                            | 40                            | 3.2(1.4-5.1)                                            | 41.7         | 0.06          |
|               | 31           | 5              | 745                            | 63                            | 6.7(3.2-11.6)                                           | 71.0         | <0.01         |
|               | 33           | 5              | 736                            | 38                            | 5.9(2.6-10.6)                                           | 69.8         | 0.01          |
|               | 45           | 2              | 379                            | 3                             | 0.2 (0.0-1.7)                                           | NA           | NA            |
|               | 52           | 5              | 469                            | 111                           | 20.5 (14.5-27.2)                                        | 39.6         | 0.16          |
|               | 58           | 6              | 765                            | 82                            | 9.4 (2.9–18.7)                                          | 89.7         | <0.01         |
| ICC           | 6            | -              | -                              | -                             | -                                                       | -            | -             |
|               | 11           | -              | -                              | -                             |                                                         | -            | -             |
|               | 10<br>19     | 26             | 3/lb<br>2716                   | 146/                          | 40.6 (36.2-45.0)                                        | 82-3         | <0.01         |
|               | 1ð<br>21     | 20<br>14       | 5/10<br>2722                   | 323<br>07                     | 10.4 (12.1-21.2)                                        | 90.8<br>70.6 | <0.01         |
|               | 33           | 17             | 3262                           | 107                           | 4.1 (2.0-6.2)                                           | 70.0<br>86.8 | <0.01         |
|               | 45           | 5              | 2314                           | 13                            | 0.3(0.1-0.7)                                            | 0.00         | 0.41          |
|               | 52           | 14             | 2571                           | 143                           | 7.9 (4.1–12.6)                                          | 91.4         | <0.01         |
|               | 58           | 15             | 4306                           | 125                           | 4.3 (2.9-5.9)                                           | 65-3         | <0.01         |
| ICC - SCC     | 6            | -              | -                              | -                             | _                                                       | -            | -             |
|               | 11           | -              | -                              | -                             | -                                                       | -            | -             |

#### Table A8 (continued)

| Disease stage | HPV genotype | No $\boldsymbol{o}$ of studies | No $\cdot$ of women tested (N) | No $\circ$ of women HPV positive (n) | Pooled prevalence (95% CI) | $I^2$ | p-value |
|---------------|--------------|--------------------------------|--------------------------------|--------------------------------------|----------------------------|-------|---------|
|               | 16           | 6                              | 2479                           | 525                                  | 56.1 (42.1-69.7)           | 90.4  | <0.01   |
|               | 18           | 26                             | 2479                           | 86                                   | 11.0 (5.6–17.8)            | 76.8  | 0.03    |
|               | 31           | 3                              | 2674                           | 28                                   | 5.3 (0.8-12.9)             | 83.1  | <0.01   |
|               | 33           | 3                              | 2674                           | 8                                    | 1.4 (0.0-4.6)              | 65.7  | <0.01   |
|               | 45           | 2                              | 2734                           | 3                                    | 0.2 (0.0-0.7)              | NA    | NA      |
|               | 52           | 3                              | 2674                           | 36                                   | 19.7 (0.1-40.6)            | 97.2  | <0.01   |
|               | 58           | 3                              | 2674                           | 36                                   | 7.5 (1.5–17.1)             | 86.4  | <0.01   |
| ICC -ADC      | 6            | -                              | -                              | -                                    | _                          | -     | -       |
|               | 11           | -                              | -                              | -                                    | _                          | -     | -       |
|               | 16           | 6                              | 2411                           | 177                                  | 30.8 (22.4-40.0)           | 68.9  | <0.01   |
|               | 18           | 8                              | 2564                           | 179                                  | 43.8 (33.5-54.7)           | 69.5  | <0.01   |
|               | 31           | 2                              | 3116                           | 3                                    | 0.0(0.0-0.4)               | NA    | NA      |
|               | 33           | 2                              | 4097                           | 2                                    | 2.1 (0.0-7.5)              | NA    | NA      |
|               | 45           | 1                              | 3176                           | 4                                    | 1.0 (0.4-2.5)              | NA    | NA      |
|               | 52           | 2                              | 3027                           | 4                                    | 0.5 (0.0-1.5)              | NA    | NA      |
|               | 58           | 2                              | 3027                           | 5                                    | 0.7 (0.0-1.8)              | NA    | NA      |

HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. Total number of women tested stratified as follows: 57759 for normal histology confirmed cytology, 1766 for ASCUS, 3764 for LSIL, 2017 for HSIL, 3130 for CIN1, 1219 for CIN2, 1041 for CIN3/AIS, 4306 for ICC, 1032 for ICC-SCC, and 638 for ICC-ADC. A high level of heterogeneity ( $I^2 > 90\%$ ) was observed in most summary estimates. NA: I-squared not quantifiable with fewer than three estimates. NR: No result.

 Table A9

 Any-HPV prevalence in women with normal cytology and cervical cancer: By 10-year age group.

| Normal women (N = 112896)           10 to 19         5         178         45         20.3 (73.6-36.6)         64.7         <0.01           20 to 29         11         7218         900         22.8 (12.8-34.6)         98.9         <0.01           30 to 39         13         32070         1346         15.8 (9.3-23.7)         99.5         <0.01           40 to 49         13         31355         1053         9.1 (5.1-13.9)         99.2         <0.01           50 to 59         12         25370         756         6.1 (2.4-11.1)         99.3         <0.01           60 to 69         12         10281         535         5.5 (1.8-10.5)         98.3         <0.01           70 to 79         9         1049         96         3.9 (0.9-8.1)         63.9         <0.01 | e |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 10 to 1951784520.3 (73.6-36.6)64.7<0.0120 to 2911721890022.8 (12.8-34.6)98.9<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 20 to 2911721890022.8 (12.8-34.6)98.9<0.0130 to 391332070134615.8 (9.3-23.7)99.5<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 30 to 391332070134615·8 (9·3–23·7)99·5<0·0140 to 49133135510539·1 (5·1–13·9)99·2<0·01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 40 to 49133135510539.1 (5.1–13.9)99.2<0.0150 to 5912253707566.1 (2.4–11.1)99.3<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 50 to 59         12         25370         756         6·1 (2·4–11·1)         99·3         <0·01           60 to 69         12         10281         535         5·5 (1·8–10·5)         98·3         <0·01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| 60 to 69         12         10281         535         5.5 (1.8–10.5)         98.3         <0.01           70 to 79         9         1049         96         3.9 (0.9–8.1)         63.9         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 70 to 79         9         1049         96         3·9 (0·9-8·1)         63·9         <0·01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 80 and over 3 35 3 1 ·6 (0·0–14·5) NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| Invasive cervical cancer (N = 431)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 10 to 19 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 20 to 29 2 28 26 93·8 (79·9-100) NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 30 to 39 3 86 77 92·3 (84·3-98·1) NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 40 to 49 2 95 82 91.7 (73.9-100) 50.9 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 50 to 59         2         77         57         71.1 (46.5-91.1)         42.4         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 60 to 69 2 84 73 89·1 (80·5–95·9) NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 70 to 79 1 38 35 92·1 (80·9-98·9) NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 80 and over         1         23         21         91.3 (75.5-99.8)         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |

HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. There were 112896 women with normal cytology tested. In this group, 178 women were 10–19, 7218 were 20–29, 32,070 were 30–39, 31355 were 40–49, 25370 were 50– 59, 10281 were 60–691049 were 70–79 years old, and 35 women were 80 years old and over. There were 431 women tested with ICC. This included no women tested and aged between 10 and 19 years old. There were 28 women 20–29, 86 were 30–39, 95 were 40–49, 77 were 50–59, 84 were 60–69, 38 were 70–79, and 23 were 80 years old and over. A high level of heterogeneity ( $l^2 > 90\%$ ) was observed in most summary estimates. NA: I–squared not quantifiable with fewer than three estimates.

| Table A10                           |                         |                            |                      |
|-------------------------------------|-------------------------|----------------------------|----------------------|
| Age standardised any-HPV prevalence | in women with normal cy | ytology and invasive cervi | cal cancer in Japan. |

| Age group (years) | Age specific prevalence of infection (%) | National age standardised prevalence (%) |
|-------------------|------------------------------------------|------------------------------------------|
| Normal cytology   |                                          |                                          |
| 10 to 19          | 20.3 (73.6–36.6)                         | 9.6                                      |
| 20 to 29          | 22.8 (12.8-34.6)                         |                                          |
| 30 to 39          | 15.8 (9.3–23.7)                          |                                          |
| 40 to 49          | 9.1 (5.1–13.9)                           |                                          |
| 50 to 59          | 6.1 (2.4–11.1)                           |                                          |
| 60 to 69          | 5.5 (1.8–10.5)                           |                                          |
| 70 to 79          | 3.9 (0.9-8.1)                            |                                          |
| 80 and over       | 1.6 (0.0–14.5)                           |                                          |
| ICC               |                                          |                                          |
| 10 to 19          | No data                                  |                                          |
| 20 to 29          | 93.8 (79.9–100)                          | 87.0                                     |
| 30 to 39          | 92.3 (84.3-98.1)                         |                                          |
| 40 to 49          | 91.7 (73.9–100)                          |                                          |
| 50 to 59          | 71.1 (46.5–91.1)                         |                                          |
| 60 to 69          | 89.1 (80.5–95.9)                         |                                          |
| 70 to 79          | 92.1 (80.9–98.9)                         |                                          |
| 80 and over       | 91.3 (75.5–99.8)                         |                                          |
|                   |                                          |                                          |

HPV prevalence measured as HPV test positivity where numerator was the number who tested HPV positive, and the denominator was the number who had an HPV test. The 95% confidence intervals were calculated for each summary estimate. HPV prevalence is the detection of any detectable HPV genotype. National age standardise prevalence: Standardised using Japan 2020 standard population.<sup>17</sup> There were 112896 women with normal cytology tested. In this group, 178 women were 10–19, 7218 were 20–29, 32070 were 30–39, 31,355 were 40–49, 25,370 were 50–59, 10281 were 60–69, 1049 were 70–79 years old, and 35 women were 80 years old and over. There were 431 women tested with ICC. This included no women tested and aged between 10 and 19 years old. There were 28 women 20–29, 86 were 30–39, 95 were 40–49, 77 were 50–59, 84 were 60–69, 38 were 70–79, and 23 were 80 years old and over. Detailed age specific data in Appendix Table A9.



Appendix Fig. A1. PRISMA Diagram.



Appendix Fig. A2. Any-HPV prevalence in women with normal cytology through to cervical cancer: Funnel plots.

# (a) Normal









Appendix Fig. A3. Any-HPV prevalence in women with normal cytology through to cervical cancer: Forest plots.

# (b) ASCUS

#### (e) CIN1



## (g) CIN3/AIS







(h) ICC





#### References

- [1] World Health O. Global strategy to accelerate the elimination of cervical cancer as a public health problem. Geneva: World Health Organization; 2020.
- [2] Hanley SJ, Yoshioka E, Ito Y, Kishi R. HPV vaccination crisis in Japan. Lancet 2015;385(9987):2571.
- [3] Gilmour S, Kanda M, Kusumi E, Tanimoto T, Kami M, Shibuya K. HPV vaccination programme in Japan. Lancet 2013;382(9894):768.
- [4] Fujii T. Declaration to demand the resumption of recommendations for human papillomavirus (HPV) vaccination for cervical cancer prevention. J Obstet Gynaecol Res 2015;41(12):1859–60.
- [5] Ueda Y, Enomoto T, Sekine M, Egawa-Takata T, Morimoto A, Kimura T. Japan's failure to vaccinate girls against human papillomavirus. Am J Obstet Gynecol 2015;212(3):405–6.
- [6] Ministry of Health Labour and Welfare Demographic and Health Statistics Division. Municipalities survey 2018. https://www.e-stat.go.jp/stat-search/ files?page=1&layout=datalist&toukei=00450025&tstat=000001030884& cycle=8&month=0&tclass1=000001142306&tclass2=000001142307& tclass3=000001142308&cycle\_facet=cycle&tclass4val=0 (accessed 28 May 2021).
- [7] Palmer M, Katanoda K, Saito E, Martellucci CA, Ostuki, S, Nomura S, Ota E, Brotherton JML, Hocking J.J. E, National genotype prevalence and age distribution of human papillomavirus from infection to cervical cancer in

Japanese women: a systematic review and meta-analysis protocol. Syst Rev 2021.

- [8] Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int J Cancer 2011;128(4):927–35.
  [9] Clifford GM, Rana RK, Franceschi S, Smith JS, Gough G, Pimenta JM. Human
- [9] Clifford GM, Rana RK, Franceschi S, Smith JS, Gough G, Pimenta JM. Human papillomavirus genotype distribution in low-grade cervical lesions: comparison by geographic region and with cervical cancer. Cancer Epidemiol Biomarkers Prev 2005;14(5):1157–64.
- [10] Clifford GM, Smith JS, Aguado T, Franceschi S. Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a metaanalysis. Br J Cancer 2003;89(1):101–5.
- [11] Smith JS, Melendy A, Rana RK, Pimenta JM. Age-specific prevalence of infection with human papillomavirus in females: a global review. J Adolesc Health 2008; 43(4 Suppl): S5-25, S e1-41.
- [12] Clifford GM, Gallus S, Herrero R, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the international agency for research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 2005;366(9490):991–8.
- [13] Bruni L, Diaz M, Castellsague X, Ferrer E, Bosch FX, de Sanjose S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis 2010;202(12):1789–99.

- [14] Covidence systematic review software. Veritas Health Innovation, Melbourne, Australia.
- [15] Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health 2013;67(11):974-8.
- [16] Bouvard V, Baan R, Straif K, et al. A review of human carcinogens-Part B: biological agents. Lancet Oncol 2009;10(4):321–2.
- [17] Statistics Bureau of Japan. Population Estimates. 2020. https://www.stat.go. jp/english/data/jinsui/index.html (accessed 21 July 2020).
- [18] Inoue M, Sakaguchi J, Sasagawa T, Tango M. The evaluation of human papillomavirus DNA testing in primary screening for cervical lesions in a large Japanese population. Int J Gynecol Cancer 2006;16(3):1007–13.
- [19] Kurokawa T, Onuma T, Shinagawa A, Chino Y, Kobayashi M, Yoshida Y. The ideal strategy for cervical cancer screening in Japan: Result from the Fukui Cervical Cancer Screening Study. Cytopathol. official j. British Soc. for Clin. Cytol. 2018.
- [20] Sasagawa T, Dong Y, Saijoh K, Satake S, Tateno M, Inoue M. Human papillomavirus infection and risk determinants for squamous intraepithelial lesion and cervical cancer in Japan. Jpn J Cancer Res 1997;88(4):376–84.
- [21] Ishi K, Suzuki F, Yamasaki S, et al. Prevalence of human papillomavirus infection and correlation with cervical lesions in Japanese women. J Obstet Gynaecol Res 2004;30(5):380–5.
- [22] 二井 美, 角田 新, 川口 美, et al. HPV Genotypeと子宮頸部病変との関連. 日本臨床 細胞学会雑誌 2006;45(Suppl. 2):502.
- [23] Takehara K, Toda T, Nishimura T, et al. Human papillomavirus types 52 and 58 are prevalent in uterine cervical squamous lesions from Japanese women. Patholog Res Int 2011;2011:246936.
- [24] Sasagawa T, Basha W, Yamazaki H, Inoue M. High-risk and multiple human papillomavirus infections associated with cervical abnormalities in Japanese women. Cancer Epidemiol Biomarkers Prev 2001;10(1):45–52.
- [25] Maehama T, Asato T, Kanazawa K. Prevalence of HPV infection in cervical cytology-normal women in Okinawa, Japan, as determined by a polymerase chain reaction. Int J Gynaecol Obstet 2000;69(2):175–6.
- [26] Asato T, Maehama T, Nagai Y, Kanazawa K, Uezato H, Kariya K. A large casecontrol study of cervical cancer risk associated with human papillomavirus infection in Japan, by nucleotide sequencing-based genotyping. J Infect Dis 2004;189(10):1829–32.
- [27] Morisada T, Teramoto K, Takano H, et al. CITRUS, cervical cancer screening trial by randomization of HPV testing intervention for upcoming screening: design, methods and baseline data of 18,471 women. Cancer Epidemiol 2017;50(Pt A):60–7.
- [28] Maehama T. Epidemiological study in Okinawa, Japan, of human papillomavirus infection of the uterine cervix. Infectious dis obstetrics and gynecol 2005;13(2):77–80.
- [29] Yamazaki H, Sasagawa T, Basha W, Segawa T, Inoue M. Hybrid capture-II and LCR-E7 PCR assays for HPV typing in cervical cytologic samples. Int J Cancer 2001;94(2):222–7.
- [30].子宮頭がん検診における子宮頭部細胞診とハイリスクHPV genotyping併用検査の有 用性日本染色体遺伝子検査学会雑誌 2011;29(2):41.
- [31] Imai H, Nakao H, Shinohara H, et al. Prevalence, potential predictors, and genotype-specific prevalence of human papillomavirus infection among sexually active students in japan. PLoS ONE 2015;10(7):e0132462.
- [32] Sasagawa T, Tani M, Yasuda H, et al. Sexual behaviour and high risk human papillomavirus infections in Japanese women. Sex Transm Infect 2005;81 (3):280–2.
- [33] Chen L, Watanabe K, Haruyama T, Kobayashi N. Simple and rapid human papillomavirus genotyping method by restriction fragment length polymorphism analysis with two restriction enzymes. J Med Virol 2013;85 (7):1229–34.
- [34] Sasagawa T, Maehama T, Ideta K, Irie T, Fujiko Itoh JHSG. Population-based study for human papillomavirus (HPV) infection in young women in Japan: a multicenter study by the Japanese human papillomavirus disease education research survey group (J-HERS). J Med Virol 2016;88(2):324–35.
- [35] Abe S, Miura K, Kinoshita A, et al. Single human papillomavirus 16 or 52 infection and later cytological findings in Japanese women with NILM or ASC-US. J Hum Genet 2014;59(5):251–5.
- [36] . 日本の一般女性に多いHPVタイプと頭癌に多いHPVタイプ 日本性感染症学会誌 2015;26(2):58.
- [37] Konno R, Yoshikawa H, Okutani M, et al. Efficacy of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical intraepithelial neoplasia and cervical infection in young Japanese women. Hum Vaccin Immunother 2014;10(7):1781–94.
- [38] Matsushita K, Sasagawa T, Miyashita M, et al. Oral and cervical human papillomavirus infection among female sex workers in Japan. Japanese j infectious dis 2011;64(1):34–9.
- [**39**] Yamasaki K, Miura K, Shimada T, et al. Pre-vaccination epidemiology of human papillomavirus infections in Japanese women with abnormal cytology. J Obstet Gynaecol Res 2011;37(11):1666–70.
- [40] Kubota T, Ishi K, Suzuki M, Utsuno S, Igari J. Prevalence of human papillomavirus infection in women attending a sexually transmitted disease clinic. Kansenshogaku zasshi The J Japanese Association for Infectious Dis 1999;73(3):233–8.
- [41] Ishi K, Suzuki F, Saito A, Kubota T. Prevalence of human papillomavirus, Chlamydia trachomatis, and Neisseria gonorrhoeae in commercial sex workers in Japan. Infectious dis obstetrics and gynecol 2000;8(5–6):235–9.

- [42] Konno R, Tamura S, Dobbelaere K, Yoshikawa H. Prevalence and type distribution of human papillomavirus in healthy Japanese women aged 20 to 25 years old enrolled in a clinical study. Cancer Sci 2011;102(4):877–82.
- [43] Maehama T, Asato T, Kanazawa K. Prevalence of human papillomavirus in cervical swabs in the Okinawa Islands. Japan Archives of gynecol obstetrics 2002;267(2):64–6.
- [44] Tsuji K, Nakamura Y, Mori I, Tanaka M. Human papilloma virus infection in vaginal condyloma acuminatum. Rinsho byori The Japanese j clin pathol 2003;51(2):93–7.
- [45] Konno R, Sato S, Yajima A. Detection and typing of human papillomavirus DNA in the uterine cervix of Japanese women by nonradioactive dot blot and Southern blot hybridization. Diagn Cytopathol 1993;9(1):20–4.
- [46] Yoshida T, Fukuda T, Sano T, Kanuma T, Owada N, Nakajima T. Usefulness of liquid-based cytology specimens for the immunocytochemical study of p16 expression and human papillomavirus testing: a comparative study using simultaneously sampled histology materials. Cancer 2004;102(2):100–8.
- [47] Nishiwaki M, Yamamoto T, Tone S, et al. Genotyping of human papillomaviruses by a novel one-step typing method with multiplex PCR and clinical applications. J Clin Microbiol 2008;46(4):1161–8.
- [48] Aiko KY, Yoko M, Saito OM, et al. Accuracy of self-collected human papillomavirus samples from Japanese women with abnormal cervical cytology. J Obstet Gynaecol Res 2017;43(4):710–7.
- [49] Satoh T, Matsumoto K, Fujii T, et al. Rapid genotyping of carcinogenic human papillomavirus by loop-mediated isothermal amplification using a new automated DNA test (Clinichip HPV). J Virol Methods 2013;188(1-2):83–93.
- [50] 二井美, 角田新, 今井愛, et al. 子宮頭部病変におけるHPV Genotypeの検討. 日本 婦人科腫瘍学会雑誌 2007;25(3):230.
- [51] Nakamura Y, Matsumoto K, Satoh T, et al. HPV genotyping for triage of women with abnormal cervical cancer screening results: a multicenter prospective study. Int J Clin Oncol 2015;20(5):974–81.
- [52] Hosaka M, Fujita H, Hanley SJ, et al. Incidence risk of cervical intraepithelial neoplasia 3 or more severe lesions is a function of human papillomavirus genotypes and severity of cytological and histological abnormalities in adult Japanese women. Int J Cancer 2013;132(2):327–34.
- [53] Saito J, Sumiyoshi M, Nakatani H, Ikeda M, Hoshiai H, Noda K. Dysplasia and HPV infection initially detected by DNA analysis in cytomorphologically normal cervical smears. Int J Gynaecol Obstet 1995;51(1):43–8.
- [54] Inoue M, Okamura M, Hashimoto S, Tango M, Ukita T. Adoption of HPV testing as an adjunct to conventional cytology in cervical cancer screening in Japan. Int J Gynaecol Obstet 2010;111(2):110–4.
- [55] Tenjimbayashi Y, Onuki M, Hirose Y, et al. Whole-genome analysis of human papillomavirus genotypes 52 and 58 isolated from Japanese women with cervical intraepithelial neoplasia and invasive cervical cancer. Infect Agent Cancer 2017;12:44.
- [56] Yoshikawa H, Nagata C, Noda K, et al. Human papillomavirus infection and other risk factors for cervical intraepithelial neoplasia in Japan. Br J Cancer 1999;80(3–4):621–4.
- [57] Sasagawa T, Maehama T, Osaka Y, et al. Comparison of the digene hybrid capture 2 and Roche cobas 4800 HPV tests for detection of CIN2+ in a referral population in Japan. J Med Virol 2018;90(5):972–80.
- [58] Horikoshi M, Kina K, Ishi K, Izumi H, Kunii Y, Nojima M. Correlation between human papilloma virus infection in cervical lesions and expression of p53, p21 proteins and Ki-67. Rinsho byori The Japanese j clin pathol 2005;53 (6):494–8.
- [59] Kina K, Ishi K, Hashizume A, et al. The significance of the combined usage of cytology and the HPV test in cervical cancer screening. Rinsho byori The Japanese j clin pathol 2009;57(9):913–7.
- [60] Matsumoto K, Yoshikawa H, Yasugi T, et al. IgG antibodies to human papillomavirus 16, 52, 58, and 6 L1 capsids: case-control study of cervical intraepithelial neoplasia in Japan. J Med Virol 2003;69(3):441–6.
- [61] Matsumoto K, Oki A, Furuta R, et al. Predicting the progression of cervical precursor lesions by human papillomavirus genotyping: a prospective cohort study. Int J Cancer 2011;128(12):2898–910.
- [62] Iwata T, Hasegawa T, Ochiai K, et al. Human Papillomavirus Test for Triage of Japanese Women With Low-Grade Squamous Intraepithelial Lesions. Reproductive sci (Thousand Oaks, Calif) 2015;22(12):1509–15.
- [63] Aoyama-Kikawa S, Fujita H, Hanley SJB, et al. Comparison of human papillomavirus genotyping and cytology triage, COMPACT Study: design, methods and baseline results in 14 642 women. Cancer Sci 2018;109 (6):2003–12.
- [64] Onuki M, Matsumoto K, Satoh T, et al. Human papillomavirus infections among Japanese women: age-related prevalence and type-specific risk for cervical cancer. Cancer Sci 2009;100(7):1312–6.
- [65] Onuki M, Matsumoto K, Iwata T, et al. Human papillomavirus genotype contribution to cervical cancer and precancer: implications for screening and vaccination in Japan. Cancer Sci 2020;111(7):2546–57.
- [66] Yokoyama M, Iwasaka T, Nagata C, et al. Prognostic factors associated with the clinical outcome of cervical intraepithelial neoplasia: a cohort study in Japan. Cancer Lett 2003;192(2):171–9.
- [67] Matsumoto K, Yaegashi N, Iwata T, et al. Monitoring the impact of a national HPV vaccination program in Japan (MINT Study): rationale, design and methods. Jpn J Clin Oncol 2014;44(10):1000–3.
- [68] Nakagawa S, Yoshikawa H, Onda T, Kawana T, Iwamoto A, Taketani Y. Type of human papillomavirus is related to clinical features of cervical carcinoma. Cancer 1996;78(9):1935–41.

- [69] Nakagawa H, Sugano K, Fujii T, Kubushiro K, Tsukazaki K, Nozawa S. Frequent detection of human papilloma viruses in cervical dysplasia by PCR singlestrand DNA-conformational polymorphism analysis. Anticancer Res 2002;22 (3):1655–60.
- [70] Okadome M, Saito T, Tanaka H, et al. Potential impact of combined high- and low-risk human papillomavirus infection on the progression of cervical intraepithelial neoplasia 2. J Obstetrics and Gynaecol Res 2014;40(2):561–9.
- [71] Azuma Y, Kusumoto-Matsuo R, Takeuchi F, et al. Human Papillomavirus Genotype Distribution in Cervical Intraepithelial Neoplasia Grade 2/3 and Invasive Cervical Cancer in Japanese Women. Jpn J Clin Oncol 2014;44 (10):910–7.
- [72] Yoshikawa H, Kawana T, Kitagawa K, Mizuno M, Yoshikura H, Iwamoto A. Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. Jpn J Cancer Res 1991;82 (5):524–31.
- [73] Nagai Y, Maehama T, Asato T, Kanazawa K. Persistence of human papillomavirus infection after therapeutic conization for CIN3: is it an alarm for disease recurrence? Gynecol Oncol 2000;79(2):294–9.
- [74] Ichimura H, Yamaguchi S, Kojima A, et al. Eradication and reinfection of human papillomavirus after photodynamic therapy for cervical intraepithelial neoplasia. Int J Clin Oncol 2003;8(5):322–5.
- [75] Nakazawa A, Inoue M, Saito J, Sasagawa T, Ueda G, Tanizawa O. Detection of human papillomavirus types 16 and 18 in the exfoliated cervical cells using the polymerase chain reaction. Int J Gynaecol Obstet 1992;37(1):13–8.
- [76] Saito J, Fukuda T, Hoshiai H, Noda K. High-risk types of human papillomavirus associated with the progression of cervical dysplasia to carcinoma. J Obstet Gynaecol Res 1999;25(4):281–6.
- [77] Yokota H, Yoshikawa H, Shiromizu K, Kawana T, Mizuno M. Detection of human papillomavirus types 6/11, 16 and 18 in exfoliated cells from the uterine cervices of Japanese women with and without lesions. Jpn J Cancer Res 1990;81(9):896–901.
- [78] Kashiwabara K, Nakajima T. Detection of human papillomavirus DNA in invasive cervical cancers by the polymerase chain reaction and its clinical significance. Acta Pathol Jpn 1992;42(12):876–83.
- [79] Yamakawa Y, Forslund O, Teshima H, Hasumi K, Kitagawa T, Hansson BG. Human papillomavirus DNA in adenocarcinoma and adenosquamous carcinoma of the uterine cervix detected by polymerase chain reaction (PCR). Gynecol Oncol 1994;53(2):190–5.
- [80] Maki H, Saito S, Ibaraki T, Ichijo M, Yoshie O. Use of universal and typespecific primers in the polymerase chain reaction for the detection and typing of genital human papillomaviruses. Jpn J Cancer Res 1991;82(4):411–9.
- [81] Kusanagi Y, Kojima A, Mikami Y, et al. Absence of high-risk human papillomavirus (HPV) detection in endocervical adenocarcinoma with gastric morphology and phenotype. Am j pathol 2010;177(5):2169–75.
- [82] Harima Y, Sawada S, Nagata K, Sougawa M, Ohnishi T. Human papilloma virus (HPV) DNA associated with prognosis of cervical cancer after radiotherapy. Int J Radiat Oncol Biol Phys 2002;52(5):1345–51.
- [83] Ishikawa H, Mitsuhashi N, Sakurai H, Maebayashi K, Niibe H. The effects of p53 status and human papillomavirus infection on the clinical outcome of patients with stage IIIB cervical carcinoma treated with radiation therapy alone. Cancer 2001;91(1):80–9.
- [84] Kanao H, Enomoto T, Ueda Y, et al. Correlation between p14(ARF)/p16(INK4A) expression and HPV infection in uterine cervical cancer. Cancer Lett 2004;213 (1):31–7.
- [85] Fujinaga Y, Shimada M, Okazawa K, Fukushima M, Kato I, Fujinaga K. Simultaneous detection and typing of genital human papillomavirus DNA using the polymerase chain reaction. J Gen Virol 1991;72(Pt 5):1039–44.
- [86] Tsuda H, Hashiguchi Y, Nishimura S, Kawamura N, Inoue T, Yamamoto K. Relationship between HPV typing and abnormality of G1 cell cycle regulators in cervical neoplasm. Gynecol Oncol 2003;91(3):476–85.
- [87] Sakamoto J, Kamiura S, Okayama K, et al. Single type infection of human papillomavirus as a cause for high-grade cervical intraepithelial neoplasia and invasive cancer in Japan. Papillomavirus Res 2018;6:46–51.
- and invasive cancer in Japan. Papillomavirus Res 2018;6:46-51. [88] Sakamoto J, Shibata T, Oosaka Y, Fujita S, Takagi H, Sasagawa T. Human papillomavirus genotypes identified in high-grade CIN and invasive cervical cancer in Japanese women. 日本產科婦人科学会雑誌 2017;69(2):618.
- [89] Yoshida T, Sano T, Oyama T, Kanuma T, Fukuda T. Prevalence, viral load, and physical status of HPV 16 and 18 in cervical adenosquamous carcinoma. Virchows Archiv : an int j pathol 2009;455(3):253–9.
- [90] Watari H, Michimata R, Yasuda M, et al. High prevalence of multiple human papillomavirus infection in Japanese patients with invasive uterine cervical cancer. Pathobiology : j immunopathol mol cellular biol 2011;78(4):220-6.
- [91] Nobeyama H, Sumi T, Misugi F, et al. Association of HPV infection with prognosis after neoadjuvant chemotherapy in advanced uterine cervical cancer. Int J Mol Med 2004;14(1):101–5.
- [92] Saito J, Hoshiai H, Noda K. Type of human papillomavirus and expression of p53 in elderly women with cervical cancer. Gynecol Obstet Invest 2000;49 (3):190–3.
- [93] Masumoto N, Fujii T, Ishikawa M, et al. Papanicolaou tests and molecular analyses using new fluid-based specimen collection technology in 3000 Japanese women. Br J Cancer 2003;88(12):1883–8.

- [94] Minaguchi T, Yoshikawa H, Nakagawa S, et al. Association of PTEN mutation with HPV-negative adenocarcinoma of the uterine cervix. Cancer Lett 2004;210(1):57–62.
- [95] Nagai Y, Maehama T, Asato T, Kanazawa K. Detection of human papillomavirus DNA in primary and metastatic lesions of carcinoma of the cervix in women from Okinawa. Japan American journal of clinical oncology 2001;24(2):160–6.
- [96] Nishio S, Mikami Y, Tokunaga H, et al. Analysis of gastric-type mucinous carcinoma of the uterine cervix - an aggressive tumor with a poor prognosis: a multi-institutional study. Gynecol Oncol 2019;153(1):13–9.
- [97] Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003;348 (6):518–27.
- [98] de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 2010;11(11):1048–56.
- [99] Khan MJ, Castle PE, Lorincz AT, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Natl Cancer Inst 2005;97(14):1072–9.
- [100] de Martel CA-OX, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. (1097-0215 (Electronic)).
- [101] de Sanjose S, Diaz M, Castellsague X, et al. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis 2007;7(7):453–9.
- [102] Bruni L B-RL, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, Bosch FX, de Sanjosé S. Papillomavirus and Related Diseases in the World: ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre); 2017.
- [103] WHO. Global strategy towards eliminating cervical cancer as a public health problem. 2020. https://www.who.int/publications/i/item/9789240014107 (accessed 25 October 2021).
- [104] Iversen OE, Miranda MJ, Ulied A, et al. Immunogenicity of the 9-Valent HPV Vaccine Using 2-Dose Regimens in Girls and Boys vs a 3-Dose Regimen in Women. JAMA 2016;316(22):2411–21.
- [105] Brotherton JM. Human papillomavirus vaccination update: Nonavalent vaccine and the two-dose schedule. Aust J Gen Pract 2018;47(7):417–21.
- [106] Simms KT, Hanley SJB, Smith MA, Keane A, Canfell K. Impact of HPV vaccine hesitancy on cervical cancer in Japan: a modelling study. The Lancet Public Health 2020;5(4):e223–34.
- [107] National Cancer Center Center for Public Health Sciences. Cervical Cancer Screening Guidelines. 2020. http://canscreen.ncc.go.jp/guideline/ shikyukeireport2019.pdf.
- [108] WHO. WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention. 2013.
- [109] Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 2014;383(9916):524–32.
- [110] Kleter B, van Doorn LJ, Schrauwen L, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol 1999;37(8):2508–17.
- [111] Qu W, Jiang G, Cruz Y, et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol 1997;35(6):1304–10.
- [112] Iftner T, Villa LL. Chapter 12: Human papillomavirus technologies. J Natl Cancer Inst Monogr 2003; (31): 80-8.
- [113] Imajoh M, Hashida Y, Nemoto Y, et al. Detection of Merkel cell polyomavirus in cervical squamous cell carcinomas and adenocarcinomas from Japanese patients. Virol J 2012;9:154.
- [114] Karube A, Sasaki M, Tanaka H, et al. Human papilloma virus type 16 infection and the early onset of cervical cancer. Biochem Biophys Res Commun 2004;323(2):621–4.
- [115] Nawa A, Nishiyama Y, Kobayashi T, et al. Association of human leukocyte antigen-B1\*03 with cervical cancer in Japanese women aged 35 years and younger. Cancer 1995;75(2):518–21.
- [116] Niwa K, Tagami K, Lian Z, Gao J, Mori H, Tamaya T. Topical vidarabine or 5fluorouracil treatment against persistent HPV in genital (pre)cancerous lesions. Oncol Rep 2003;10(5):1437–41.
- [117] Sasaki Y, Iwanari O, Arakawa I, et al. Cervical Cancer Screening With Human Papillomavirus DNA and Cytology in Japan. Int J Gynecol Cancer 2017;27 (3):523–9.
- [118] Tanaka H, Karube A, Tanaka T, Nakagomi O. Much higher risk of premalignant and malignant cervical diseases in younger women positive for HPV16 than in older women positive for HPV16. Microbiol Immunol 2001;45(4):323–6.
- [119] Hiromura K, Gunji M, Fujino M, Ito M. Human papillomavirus infection in healthy women in Japan: An institutional experience of 320 cases. 日本臨床細 胞学会雑誌 2014;53(5):366-70.
- [120] Kurosu H, Yamazaki T, Akamata N, et al. Clinical benefits of HPV-16 and HPV-18 genotyping for women with ASC-US and LSIL cytology. 日本婦人科腫病学 会雑誌 2013;31(4):874.

5996