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Abstract: [18F]F-FDG (FDG) PET is emerging as a relevant diagnostic and prognostic tool in neuroen-
docrine neoplasms (NENs), as a simultaneous decrease in [68Ga]Ga-DOTA peptides and increase
in FDG uptake (the “flip-flop” phenomenon) occurs during the natural history of these tumors.
The aim of this study was to evaluate the variations on FDG PET in NEN patients treated with
two different schemes of radioligand therapy (RLT) and to correlate them with clinical–pathologic
variables. A prospective evaluation of 108 lesions in 56 patients (33 males and 23 females; median age,
64.5 years) affected by NENs of various primary origins (28 pancreatic, 13 gastrointestinal, 9 bronchial,
6 unknown primary (CUP-NENs) and 1 pheochromocytoma) and grades (median Ki-67 = 9%) was
performed. The patients were treated with RLT within the phase II clinical trial FENET-2016 (CTID:
NCT04790708). RLT was offered for 32 patients with the MONO scheme (five cycles of [177Lu]Lu-
DOTATOC) and for 24 with the DUO scheme (three cycles of [177Lu]Lu-DOTATOC alternated with
two cycles of [90Y]Y-DOTATOC). Variations in terms of the ∆SUVmax of a maximum of three target
lesions per patient (58 for MONO and 50 for DUO RLT) were assessed between baseline and 3 months
post-RLT FDG PET. In patients with negative baseline FDG PET, the three most relevant lesions on
[68Ga]Ga-DOTA-peptide PET were assessed and matched on post-RLT FDG PET, to check for any
possible changes in FDG avidity. Thirty-five patients (62.5%) had at least one pathological FDG
uptake at the baseline scans, but the number was reduced to 29 (52%) after RLT. In the patients
treated with DUO-scheme RLT, 20 out of 50 lesions were FDG positive before therapy, whereas only
14 were confirmed after RLT (p = 0.03). Moreover, none of the 30 FDG-negative lesions showed an
increased FDG uptake after RLT. The lesions of patients with pancreatic and CUP-NENs treated with
the DUO scheme demonstrated a significant reduction in ∆SUVmax in comparison to those treated
with MONO RLT (p = 0.03 and p = 0.04, respectively). Moreover, we found a mild positive correlation
between the grading and ∆SUVmax in patients treated with the MONO scheme (r = 0.39, p < 0.02),
while no evidence was detected for patients treated with the DUO scheme. Our results suggest that
RLT, mostly with the DUO scheme, could be effective in changing NEN lesions’ glycometabolism,
in particular, in patients affected by pancreatic and CUP-NENs, regardless of their Ki-67 index.
Probably, associating [90Y]Y-labelled peptides, which have high energy emission and a crossfire effect,
and [177Lu]Lu ones, characterized by a longer half-life and a safer profile for organs at risk, might
represent a valid option in FDG-positive NENs addressed to RLT. Further studies are needed to
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validate our preliminary findings. In our opinion, FDG PET/CT should represent a potent tool for
fully assessing a patient’s disease characteristics, both before and after RLT.

Keywords: neuroendocrine neoplasms; NEN; NET; radioligand therapy; RLT; peptide receptor
radionuclide therapy; PRRT; 18F-FDG PET/CT; FDG PET; therapy response evaluation

1. Introduction

Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors, arising
from diffuse neuroendocrine system cells [1]. These neoplasms can potentially occur
from any part of the body, even though the entero-pancreatic district is the most common
site of disease, including about two thirds of all NENs [2,3]. NENs can have a wide-
ranging spectrum of clinical behavior, presenting as indolent well-differentiated tumors or
aggressive and poorly differentiated cancers [4].

Beyond the primary role of histological and immuno-histochemical tests for a proper
biological classification of the neoplasm, imaging-based techniques may play a pivotal
role to help clinicians both in choosing the best patient-tailored therapeutic option and
in managing the response to treatment. Well-differentiated NENs usually overexpress
somatostatin receptors (SSTr) on their cells, providing a suitable target for radiolabeled
somatostatin analogues (SSTa) [5]. Therefore, among imaging techniques, nuclear medicine
functional investigations play a main role. According to a theranostic approach, SSTa
can bind a positron-emitting isotope, [68Ga]Ga, for diagnostic purposes ([68Ga]Ga-DOTA-
SSTa PET/CT) or a high-energy beta emitter, such as [90Y]Y or [177Lu]Lu, for radioligand
therapy (RLT) [6]. In particular, [68Ga]Ga-DOTA-SSTa PET/CT contributes to the initial
characterization of the neuroendocrine lesions, to the staging and re-staging of the NEN
patients over time and, above all, to the selection of those patients who will be candidates
for RLT [7,8].

The role of [18F]F-FDG (FDG) PET/CT in NENs has gained a progressive relevance
in recent years. Several studies have demonstrated a correlation between increasing FDG
avidity and dedifferentiation changes in NEN cells, making FDG PET/CT a potential
baseline prognostic test [2,4,9]. The reason behind the progressive increase in FDG avidity
in advanced NENs has to be related to the heterogeneity of tumor cells. In a certain
tumor mass, some aggressive FDG avid clones—characterized by a predominant anaerobic
glycolytic activity (known as the “Warburg effect”)—may lay beside more indolent clones,
marked by a high cell expression of SSTr [10–13]. As the disease progresses, a “flip-
flop” phenomenon has been described, with a progressive decrease in SSTr expression on
[68Ga]Ga-DOTA-SSTa PET/CT and a parallel increase in GLUT-1 density and consequently
in FDG avidity [4,14–16].

The proliferation index, expressed by Ki-67, just indicates a punctual representation of
the disease in a certain site of the lesion at a specific time point, but it does not necessarily
reflect the current situation for the whole tumor burden [17]. With this in mind, FDG
PET/CT might be considered a complementary tool to be associated with [68Ga]Ga-DOTA-
SSTa PET/CT to have an all-round evaluation of the disease burden.

As for the assessment of the response to RLT, response-evaluation criteria in solid
tumors (RECIST) 1.1, applied to contrast enhanced computed tomography (ceCT), is in-
dicated as the main tool by current ENETS guidelines [18]. However, several data in
the literature have reported questionable reliability for the morphologic parameters. In
particular, the pseudo-progression phenomenon, related to temporary radiation-induced
inflammation or necrosis, rather than due to effective disease progression, has been de-
scribed as a source of error for response assessment [4,19]. Another issue is the delayed
morphological response in comparison with the molecular/functional one [5,20]. Therefore,
new response-evaluation tools are needed, in particular, when assessing the response to
NEN therapy, including RLT [21].
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Based on the above-mentioned premises, the aim of our study was to evaluate
whether RLT could induce modifications in advanced NEN lesions’ glycometabolism
on FDG PET/CT.

The secondary aims were to assess the possible concordance of the RLT response
evaluated with [68Ga]Ga-DOTA-SSTa and FDG PET/CT, and, finally, whether two different
therapeutic schemes, offered within our clinical trial (FENET 2016), might provide different
FDG responses to treatment in NENs according to a) primary origin and b) clinical and
pathological variables.

2. Materials and Methods

This is a pilot study within the prospective phase II clinical trial FENET-2016 (EudraCT:
2016-005129-35—Clinical Trials ID: NCT04790708), currently ongoing at the University
Hospital of Ferrara, Italy. The current study has been conducted following the approval
of the local institutional ethical committee (“Comitato Etico Unico della Provincia di
Ferrara”, Protocol N◦ 160990 approved on the 13 October 2016) and in accordance with the
Declaration of Helsinki and Good Clinical Practice guidelines. Written informed consent
was obtained from every patient.

2.1. Patients Identification

At the time of the study, 140 patients were enrolled in the FENET-2016 trial on the basis
of the following inclusion criteria: (a) established diagnosis of advanced NEN according
to the ENETS criteria [22]; (b) positive [68Ga]Ga-DOTA-SSTa PET/CT performed within
2 months from the RLT’s first cycle; (c) a radiological examination (ceCT/MRI) and an FDG
PET/CT scan performed within 2 months before starting RLT; (d) age ≥ 18. Further details
regarding the FENET-2016 trial are available on the trials page on the clinicaltrials.gov
website [23].

At the time of the present study, 90 patients had already completed RLT. Among those,
60 pts were suitable for this preliminary pilot study since they had already performed their
first follow-up within 3 months after the end of RLT. The follow-up consisted of clinical
and instrumental evaluation, with the latter including ceCT/MRI, [68Ga]Ga-DOTA-SSTa
and FDG PET/CT. Four patients were excluded due to their primary brain disease, poorly
evaluable with FDG PET/CT. The remaining 56 patients were thus considered.

2.2. Therapy Protocol

A minimum of 30 days of washout from any previous therapy was required, except
for cold somatostatin analogues, which were withdrawn only in the 14 days preceding
the therapeutic infusion of radiopharmaceuticals. Prior to every therapy administration, a
blood routine was performed, to evaluate the patient’s eligibility for therapy and exclude
hematological and renal impairment.

RLT was proposed with two mutually exclusive therapeutic schemes, tailored em-
pirically to each patient’s characteristics and extension of disease. The first, the “MONO”
scheme, comprised 5 cycles of 3.7–5.55 GBq of [177Lu]Lu-DOTATOC, with a cumulative
activity of 18.5–27.75 GBq (500–750 mCi); the second, the “DUO” scheme, comprised
3 cycles of 3.7–5.55 GBq of [177Lu]Lu-DOTATOC alternated with 2 cycles of 1.85–2.75 GBq
of [90Y]Y-DOTATOC, for a cumulative activity of 11.1–16.65 GBq of [177Lu]Lu-DOTATOC
and 3.7–5.55 GBq of [90Y]Y-DOTATOC. Between every cycle, an interval of 8–10 weeks
was observed.

The main criteria guiding the choice of the therapy scheme were (a) the lesion size;
(b) the grading; and (c) comorbidities (such as carcinoid syndrome; impaired renal, hepatic
or cardiac functionality; diabetes; and hypertension). In particular, the “MONO” scheme
was preferred in the presence of prevalent small lesions, low grading and relevant con-
comitant disease/affections. On the contrary, the “DUO” scheme was proposed in patients
presenting large and aggressive lesions. Despite these premises, the choice of the treat-
ment scheme was—albeit marginally—conditioned by the commercial availability of the
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2 radioisotopes used: [90Y]Y and [177Lu]Lu. The treatment selection, balanced between
the patient clinical status and tumor intrinsic biology, was discussed and shared by the
institutional NEN multidisciplinary board, in which nuclear medicine physicians, endocri-
nologists, surgeons, oncologists, gastroenterologists, radiotherapists and radiologists are
all represented.

2.3. Response Assessment and Follow-Up

The response assessment was performed 3 months after the last cycle of RLT and
included a clinical evaluation of the patient, the repetition of the ceCT/MRI scan, [68Ga]Ga-
DOTA-SSTa and FDG PET/CT, which had to be compared with the baseline studies.

2.4. Image Acquisition

The patients were required to fast for at least 6–8 h and maintain adequate hydration
before the FDG PET/CT scans. Diabetic patients had their blood glucose measured before
FDG delivery, and those with values above 200 mg/dL were rescheduled. Images were
acquired 50–70 min after FDG injection (3.5 MBq/Kg) using a standard technique on a
dedicated 3D PET/CT system (Biograph mCT Flow; Siemens Medical Solutions, Malvern,
PA, USA). A concomitant low-dose CT scan (120 kV and 80 mA/s) was performed for
the attenuation correction of the PET emission data acquired from the mid-thigh to the
skull vertex.

[68Ga]Ga-DOTATOC PET/CT was performed 50–70 min after the intravenous adminis-
tration of a mean dose of 150 ± 50 MBq of [68Ga]Ga-DOTATOC, using the same tomograph
and acquisition protocol described above. The two PET/CT scans were obtained on two
different days, within three weeks.

2.5. Image Review

The PET/CT images were all processed and analyzed by using a Syngo.via Worksta-
tion (Siemens Healthineers, Enlargen, Germany). The PET/CT images were all assessed by
two experienced board-certified nuclear medicine physicians. The criteria for a positive
finding in the PET/CT studies were (a) focal area(s) of increased tracer uptake or diffusely
increased uptake, excluding sites of physiological distribution, in comparison with sur-
rounding tissues. Patients were considered “FDG positive” if at least a positive finding was
detected on FDG PET/CT.

A maximum of 3 target lesions were selected for every patient on baseline FDG
PET/CT scan, including a primary lesion (Target 1), lymph node metastasis (Target 2) and
metastasis at distance (Target 3).

In patients with negative FDG PET/CT at baseline, the ROI corresponding to the
most relevant lesion on [68Ga]Ga-DOTA-SSTa PET/CT was shifted on follow-up FDG
PET/CT imaging series, in order to evaluate any possible change in FDG uptake on the
target lesions.

In the case of multiple lesions for each district, the most representative one—in terms
of the extension and tracer uptake intensity—was selected (Figure 1).

For each lesion, the maximum standardized uptake value (SUVmax) was calculated
and compared between baseline and post-RLT FDG PET/CT scans (∆SUVmax) (Figure 2).
Similarly, the SUVmax and ∆SUVmax of the same target lesions were calculated on every
[68Ga]Ga-DOTATOC PET/CT.
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Figure 1. The figure shows the selection process for the target lesions on baseline FDG and [68Ga]Ga-
DOTATOC PET/CT in a patient of the series. Target 1 was selected on the pancreatic primary lesion,
and target 2, on a loco-regional lymph node metastasis. In this case, target 3 was identified only on
[68Ga]Ga-DOTATOC PET/CT, as the liver metastasis showed no FDG avidity. However, the same
target was re-evaluated on follow-up FDG PET/CT to identify any possible glycometabolic variation.

Figure 2. The figure shows the direct comparison made between baseline and post-RLT FDG PET/CT
scans, in terms of SUVmax variation (∆SUVmax) for target 2 and target 3. In this patient, target 1 was
not evaluated since the patient had received surgery on the primary lesion.

2.6. Statistical Analysis

The normality of the distribution of the continuous variables was assessed with the
Shapiro–Wilk test. In the case of symmetric distributions, the variables are represented
with the mean and standard deviation (SD), while for non-normal distributions, the median
value and interquartile range [1Q 3Q] are used; categorical data are expressed as total
numbers and percentages.
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Mcnemar’s test for the significance of changes was performed separately for the
“MONO” and “DUO” treatments to assess whether lesions became negative or became
positive following therapy.

The Kruskal–Wallis test was used to evaluate the presence of differences in lesions’
∆SUVmax on FDG PET/CT after RLT, divided by origin and for every target. The Mann–
Whitney test was used to evaluate the presence of differences, divided by origin, between
the variations of the lesions treated with the “MONO” or “DUO” schemes. Using Spear-
man’s rank correlation coefficient (ρ), the correlation between Ki-67, age and [90Y]Y activity
was calculated with the variation of FDG PET/CT, divided by the “MONO” and “DUO”
therapy schemes.

Wilcoxon’s paired test was used to evaluate the differences in median lesion changes
between FDG PET/CT and [68Ga]Ga-DOTATOC PET/CT, divided by target, for both
therapy schedules.

All the analyses were performed using Stata 15.1 SE (Stata Corporation, College
Station, TX, USA). A p value < 0.05 was defined as statistically significant.

3. Results

Overall, 56 patients (33 males and 23 females; median age, 64.5 years) affected by
advanced NENs of various origins (28 pancreas, 13 gastrointestinal, 9 lung, 6 unknown
primary (CUP-NENs) and 1 pheochromocytoma) and grades (9 G1, 43 G2, 3 G3 and 1
unknown) were enrolled. The detailed patients’ characteristics are described in Table 1.
Statistical elaboration of the data confirmed the homogeneity of the population.

Table 1. Population of the study.

Patients Mono (32) Duo (24) Total (56) p-Value

Gender, n (%)

ns

Male 18 (56.3) 15 (62.5) 33 (58.9)

Female 14 (43.7) 9 (37.5) 23 (41.7)

Age, median
[IQR] 60 [48 69] 68 [58.5 73] 64.5 [52 71] 0.018

Origin

I 7 (21.9) 3 (12.5) 11 (19.3) ns

P 14 (43.7) 14 (58.3) 28 (49.1) ns

R 1 (3.1) 1 (4.2) 2 (3.5) ns

B 5 (15.6) 4 (16.7) 9 (15.8) ns

U 4 (12.5) 2 (8.3) 6 (10.5) ns

SA 1 (3.1) 0 (0) 1 (1.7) ns

Grading (%)

G1 6 (19.3) 3 (12.5) 9 (16.4) ns

G2 24 (77.4) 19 (79.2) 43 (78.2) ns

G3 1 (3.3) 2 (8.3) 3 (5.5) ns

Functioning
Yes 15 (75) 5 (25%) 20 (35.7) ns

No 17 (47.2) 19 (52.8) 36 (64.3) ns
I: ileum NENs; P: pancreatic NENs; R: rectum NENs; B: bronchial NENs; U: unknown primary origin NENs
(CUP-NENs); SA: sympathetic–adrenergic axis NENs; ns: non-significant.

Among the 56 patients selected, 32 were treated with the MONO scheme and received a
median cumulative activity of 24.4 GBq (range, 23.47–25.75 GBq). The remaining 24 patients
received RLT with the DUO scheme, for a median cumulative activity of 19.7 GBq (range,
19.18–20.7 GBq), distributed in 14.24 GBq of [177Lu]Lu (range, 13.8–15.19 GBq) and 5.47 GBq
of [90Y]Y (range, 5.2–5.96 GBq).
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A total of 35 patients (62.5%) had an FDG-positive scan before RLT, while 21 were
FDG negative (37.5%). After RLT, 6 more patients (n = 27; 48.2%) demonstrated a complete
negative FDG PET/CT scan, while 29 (51.8%) remained positive (Figure 3).

Figure 3. Graphic representation of patients’ positive vs. negative FDG PET/CT at baseline and
post-RLT scan.

A total of 108 lesions were evaluated. The numbers of lesions studied in patients treated
with the MONO and DUO schemes were 58 (53.7%) and 50 (46.3%), respectively (Table 2).

Table 2. Overall FDG lesion modification according to therapeutic scheme.

Baseline POST-RLT TOTAL p Value

FDG+ FDG− FDG+ FDG−
MONO 31 27 30 28 58 (56.7%) 0.705

DUO 20 30 14 36 50 (46.3%) 0.025

TOTAL 51 57 44 64 108 (100%)

In the patients included in the MONO scheme treatment, 31 lesions (54.4%) were FDG
positive and 27 (45.6%) FDG negative at baseline. After RLT, 4 lesions shifted from FDG
positive to negative and 3 lesions from FDG negative to positive, with a total of 30 lesions
turning out to be FDG positive and 28 negative. Applying Mcnemar’s test, no statistically
significant difference was found. Moreover, among the 27 lesions that remained stably FDG
positive despite the treatment, 13 showed an increase in the ∆SUVmax value after therapy,
while the remaining 14 had a partial glycometabolic metabolic response.

As for the DUO scheme, 20 lesions were FDG positive (40%) and 30 negative (60%) at
the baseline scan. Within the 20 FDG-positive lesions, 6 (30%) showed a negative FDG scan
after RLT, while none of the FDG-negative lesions showed a significant FDG increase after
treatment (p = 0.025). Moreover, 9 out of the 14 lesions that remained FDG positive after
RLT had a decrease in ∆SUVmax value, while only 5 showed an increase. The distribution
of the results is displayed in Table 2.

Taking into account the FDG variation of the whole number of lesions studied, no sta-
tistically significant difference was found according to the NENs’ primary origin. However,
when separately considering patients bearing FDG-positive lesions from a pancreatic pri-
mary origin, a statistically significant reduction in the median ∆SUVmax on FDG PET/CT
was found between those treated with the DUO scheme vs. MONO scheme (−0.41 vs. 0.02,
respectively, p = 0.036) (Table 3). A similar result was obtained when considering the subset
of patients affected by FDG-positive lesions from CUP-NENs treated with the DUO scheme
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vs. MONO scheme (−1 vs. 0.26, respectively, p = 0.044). No significant difference for lesions
of NENs from midgut and bronchial primary origins between the two treatment schemes
was found.

Table 3. Analysis of stratified median ∆SUVmax on FDG PET/CT for primary origin in MONO vs.
DUO RLT. The single patient with metastatic pheochromocytoma is not included.

∆SUVmax FDG PET/CT MONO DUO p Value

Origin, median
[IQR]

Pancreas 0.02 [−0.23 1] −0.41 [−0.65 −0.09] 0.036

Bronchial −0.14 [−0.35 0.5] −0.4 [−1 0.19] 0.615

Ileum + rectum −0.36 [−0.7 0.07] 0.19 [0.17 0.21] 0.354

Unknown primary origin 0.26 [−0.04 0.67] −1 [−1 −1] 0.044

Analysis was not possible for the single patient with metastatic pheochromocytoma
included in the study. However, the patient was treated with the MONO scheme and
showed a relevant ∆SUVmax decrease on both PET/CT (−36.5% on the two targets on
FDG and −21% on [68Ga]Ga-DOTATOC PET/CT) after RLT.

Comparing the ∆SUVmax trends on both FDG PET/CT and [68Ga]Ga-DOTATOC, no
significant variations between the two different therapy schemes were found for any target.
In particular, for the MONO scheme, the median ∆SUVmax was −0.19 for FDG PET/CT
and −0.03 for [68Ga]Ga-DOTATOC, while for the DUO scheme, the median ∆SUVmax was
−1.60 for FDG PET/CT and −0.76 for [68Ga]Ga-DOTATOC.

In patients treated with the MONO scheme, a moderate positive correlation (ρ = 0.392,
p = 0.024) was found between the ∆SUVmax on FDG PET/CT and the mitotic index—
expressed by Ki-67—suggesting that more aggressive neoplasms showed a tendency to
progression on FDG PET/CT.

Conversely, among the patients treated with the DUO scheme, no significant correla-
tion between Ki-67 and the lesion’s ∆SUVmax on FDG PET/CT was identified (ρ = 0.076,
p = 0.748).

No significant correlation between age and the lesions’ ∆SUVmax on FDG PET/CT
was detected for both treatment schemes.

4. Discussion

In recent years, RLT has become widespread as a therapeutic option for advanced,
metastatic or inoperable NENs, since the NETTER-1 trial demonstrated a clear survival
advantage compared to “cold” SSTa therapy in midgut low-grade NENs [24]. While a
positive [68Ga]Ga-DOTA-SSTa PET/CT (or eventually 111In-Octreoscan) is mandatory for
starting RLT, the role of FDG PET/CT is still debated, and it is currently not recommended
by the ENETS guidelines, except in the case of G3 NENs [25,26]. Conversely, several studies
recently investigated the potential role of FDG PET/CT in NEN staging, focusing mainly
on the prognostic impact of FDG-positive lesions [27,28]. In particular, Binderup et al. [13]
recently reported a positive FDG PET/CT as the only identifier of high risk for death in
a large cohort of gastro-entero-pancreatic (GEP) NENs, proposing differentiating G1 and
G2 tumors into low- and high-risk groups depending on FDG-positive or negative scans.
Moreover, the same authors also reported a prolonged OS and PFS in FDG-positive patients
receiving RLT compared to patients receiving other kinds of therapies (4.4 vs. 1.4 years,
p = 0.001). Nevertheless, only a few other studies systematically assessed RLT-induced
changes on follow-up FDG PET/CT [1,29]. Oh et al. [1] reported for the first time that RLT
could also have a therapeutic effect on the glucose metabolism of NEN lesions, as long as
they showed a synchronous SSTr expression on [68Ga]Ga-DOTA-SSTa PET/CT. Moreover,
Nilica et al. [29] reported that a stable or decreased lesion SUVmax on FDG PET/CT after
RLT was associated with a good prognosis. Conversely, in three patients who died shortly
after RLT, the SUVmax value was increased by at least ≥40% from the baseline values.

The present study is consistent with data reported above confirming that RLT can
induce relevant metabolic variations on FDG-positive lesions in patients affected by NENs
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of various primary origins. Our most impacting result was that six patients evolved from
FDG positive to FDG negative after RLT, in what could be considered a positive response
to treatment in terms of outcome.

In the past, the “law of Bergonié and Tribondeau” described that highly proliferating
cells are more sensitive to radiation damage [30]. This statement was confirmed in more
recent studies assessing external beam radiation therapy (EBRT) outcomes in different
cancers. For instance, Ishibashi et al. [31] reported that a high Ki-67 proliferation index was
a predictive factor for a complete response after radiation therapy in small cell lung cancer.

Commonly, NEN lesions are widely heterogeneous in terms of cell population, since
clusters of well-differentiated elements overexpressing SSTr frequently locate beside other
undifferentiated FDG-positive clones, which are supposed to have a lower or absent SSTr
expression and a higher proliferation index [12]. Despite radiopeptides being selectively
accumulated by those cells overexpressing SSTr, they can also damage nearby undifferenti-
ated cells with less SSTr expression by the crossfire effect. In this context, [90Y]Y-DOTATOC
β-particles could be more effective than [177Lu]Lu-DOTATOC ones, thanks to their higher
emission energy and tissue penetration, which enhances the crossfire effect [32–35]. As
a result, we can speculate that DUO-scheme RLT might be able to clear-cut NEN lesions
from FDG-positive cell clones. Indeed, in our study, patients treated with the DUO scheme
showed a significant therapeutic benefit regarding FDG-positive lesions, since 30% of these
showed a complete FDG negativization (p = 0.025), and 9 out of the 14 who remained FDG
positive after RLT had a decreased ∆SUVmax.

Despite its pioneering role, [90Y]Y-based RLT has been employed discontinuously,
mainly because of its proven correlation with renal toxicity [36] and because of the con-
comitant introduction of [177Lu]Lu radiopeptides [37]. In the last 20 years, [177Lu]Lu-
DOTATATE/TOC has mainly been employed for RLT in NENs and demonstrated efficacy
and safety [6,33]. However, some authors have restored [90Y]Y-based RLT in mixed ther-
apeutic schemes with [177Lu]Lu radiopeptides [38–42]. The combined use of the two
radionuclides could theoretically ensure a better risk/benefit ratio in FDG-positive patients,
being effective on a wider range of lesions while preserving a safe dosimetric profile.

Our experience suggests that the “DUO” therapy scheme could potentially be pre-
ferred particularly in intermediate aggressive NENs, which present some FDG-positive
lesions. Nevertheless, a full FDG negativization of 4 lesions and a ∆SUVmax reduction of
14 lesions were found in patients treated with the “MONO” scheme. Although no statis-
tically significant correlation was found, a metabolic response obtained in some lesions
treated with the “MONO” scheme suggests that this therapy scheme may also induce
changes in FDG-positive lesions. Therefore, we can speculate that [177Lu]Lu single-agent
RLT probably represents a valid therapeutic approach in patients with mild and restricted
FDG tumor burdens and with concomitant comorbidities (renal impairment, hypertension
and diabetes). However, further studies with a larger number of lesions investigated are
required to confirm this hypothesis.

Several studies investigated the relationships between NEN primary origin and RLT
response. Particularly, pancreatic NENs seem to have better outcomes after RLT compared
to other GEP-NENs, while CUP-NENs probably have an intermediate response rate [43].
Moreover, neoadjuvant RLT seems promising in allowing second-step surgery in inoperable
or borderline-operable pancreatic NENs [44,45]. On the other hand, bronchial origin is
reported to be related to a poorer prognosis in comparison to other origins, even though
RLT seems to provide a favorable outcome when compared to other systemic therapies
that can be offered in this subset of patients [46–48]. When considering the entire cohort of
patients of this study, no statistically significant differences in the response to RLT were
identified by FDG PET/CT between different NEN primary origins. However, we found
that pancreatic NENs had a better response, in terms of FDG ∆SUVmax reduction, if
treated with the “DUO” scheme (p = 0.036). Interestingly, CUP-NENs also showed a similar
glycometabolic outcome after RLT (p = 0.044), even though this subgroup analysis was
affected by the low number of lesions studied. Probably, this finding has to be correlated
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with the higher energy charge of [90Y]Y-radiopeptides delivered to lesions, even though
the exact underlying pathophysiological mechanism deserves to be further investigated.
The message emerging from these considerations might suggest considering the use of
combined RLTs in FDG-positive pancreatic and, probably, CUP-NENs.

Grading, expressed by Ki-67, is firmly considered a strong prognostic factor in
NENs [9,49]. The literature reports an inverse correlation between Ki-67 and therapeutic
outcomes in terms of overall survival and the disease control rate [38,49–51]. For these
reasons, we expected to find a positive correlation between Ki-67 and ∆SUVmax increase
on FDG PET/CT in our study. As a result, a moderate positive correlation was found
(ρ = 0.392, p = 0.024) only in patients treated with the MONO scheme. Thus, we hypothe-
size that patients with higher Ki-67 could present an increased risk of metabolic progression
on FDG PET/CT when treated with [177Lu]Lu-based RLT alone. Interestingly, no correla-
tion was found between Ki-67 and ∆SUVmax on FDG PET/CT in patients treated with
the DUO-therapy scheme. These data prompt us to speculate that this outcome might be
related to a better effectiveness of combined RLT in controlling FDG-positive lesions, which
are more frequent in patients with a higher Ki-67 index. Of course, larger cohort studies
with longer follow-up observations are needed to prove our assumption.

Furthermore, we did not find significant correlation between age and ∆SUVmax on
FDG PET/CT for both treatment schemes. This seems to suggest that age may not be a
relevant prognostic factor when assessing lesion glycometabolism in patients treated with
RLT, as long as the patient’s performance status is good enough to carry out the complete
course of therapy.

In 2011, Oh et al. [1] firstly showed a significant correlation between ∆SUVmax on
FDG and that on [68Ga]Ga-DOTATOC PET/CT in response to RLT. In our study, we could
not confirm this type of correlation. More frequently, a discrepancy—in the same patient—
between the ∆SUVmax on the two different PET examinations was seen in this study. In
our opinion, the most interesting scenario, for its potential prognostic impact, was that
presenting a negativization on FDG PET/CT even in the presence of a persistent positive
[68Ga]Ga-DOTATOC PET/CT. This result could be considered as a global downgrading of
disease determined by the elimination of high-grade clones and the mutual selection of
well-differentiated cells, which are probably less sensitive to the irradiation insult. Hence,
keeping in mind the limitations of the RECIST-based response assessment, FDG PET/CT
should be considered a useful tool for obtaining a complete evaluation of the response to
RLT, at least until more specific biomarkers (such as the NETest) become widely available
for staging and restaging [52,53]. Therefore, our suggestion is to perform a dual-tracer PET
evaluation at least during the early follow-up after RLT.

Our study presents a few limitations. Firstly, we decided to evaluate RLT-induced
modifications only on functional imaging, excluding morphological evaluation using
RECIST criteria on CT. This choice was taken to avoid possible inconsistencies between
morphological and functional imaging, due to the short time of follow-up (3 months) and
the relatively high possibility of radiation-induced pseudo-progression on CT [4,5,19,54].
Of note, we did not consider patient outcomes because the aim of this study was to
assess glycometabolic changes in NEN lesions following RLT and eventually to report
any differences between two alternative therapy schemes. Another limitation is that
our analysis was performed using only the SUVmax parameter and in a relative small
cohort of patients. Further studies with a larger sample size and considering the newest
volumetric parameters (such as the total lesion glycolysis—TLG—and metabolic tumor
volume—MTV), which have recently shown encouraging preliminary results, could add
more relevant information about this issue [55–57].

5. Conclusions

Our study suggests a possible role for RLT in inducing modifications in NENs present-
ing FDG avid lesions. In particular, we found that combined RLT, offered with alternated
cycles of [177Lu]Lu- and [90Y]Y-labelled radiopeptides, seems to be more effective on FDG-
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positive NEN lesions in comparison to [177Lu]Lu-RLT alone. Furthermore, our results
highlight that pancreatic and, apparently, CUP-NENs seem to have better outcomes if
treated with combined RLT, in terms of FDG lesion metabolism reduction. Moreover, the
DUO RLT response, evaluated with FDG PET/CT, does not show any correlation with
the Ki-67 index, while a moderate positive correlation was found in lesions in patients
treated with MONO RLT. This evidence should lead to a preferential choice of combined
RLT in patients with higher tumor grades, with pancreatic origins and presenting FDG
avid lesions. Further prospective studies with longer follow-up are needed to verify our
preliminary evidence. In our experience, FDG PET/CT represents a potent tool for fully
assessing a patient’s disease characteristics, both before and after RLT.
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