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1. Supplementary Text

Introduction

The supporting information gives details on how and with which elements, mercury can
be fixed into sediment (Text S1). We clarify that, to evaluate the volcanic origin of the Hg
anomalies present in the Terche and Madeago sections, the relations between Hg and TOC,
clay minerals (phyllosilicates) and pyrite have been carefully evaluated though the record of
trace elements (TEs) data obtained by XRF. The Hg and TEs concentrations normalized against
Rb (Figure S1) and Th (Figure S2) for both sections allow to assume that Hg enrichments are
from volcanic origin and not directly related detrital input fluctuations or silicate dilution.


https://doi.org/10.1594/PANGAEA.967574

In the binary plots of Figures S3 we show that dissolution indices based on foraminifera and
calcareous nannofossil versus each other and the CaCO; content at the Madeago (in blu) and
Terche (in red) sections do not show correlation with CaCO; The low variations recorded by
our whole set of dissolution proxies indicate that dissolution at the ETM2 did not significantly
impacted the original signal of planktic foraminifera and calcareous nannofossil assemblages.

Text S1. How and with which elements, mercury can be fixed into sediment?

Mercury (Hg) can be preferentially adsorbed into organic matter, hydrous iron oxides
and pyrites, and/or clay minerals (Sanei et al.,, 2012; Sial et al., 2013; Percival et al., 2015; Font et
al., 2016; Grasby et al., 2013, 2019; Them et al., 2019; Shen et al.,, 2019). Organic matter is
generally the main Hg scavenging phase, mainly in the form of organic-Hg complexes
(Ravichandran, 2004). Clay soils also have a strong ability to retain Hg species and can also
adsorb Hgll due to their high surface area and surface charges (Farrah and Pickering, 1978,
Kongchum et al, 2011), providing significant terrestrial Hg contents to shallow-marine
sediments (Them et al., 2019). Sulfide minerals can be the main host for Hg in euxinic facies
because of their high affinity of Hg for sulfide (Bower et al., 2008). In such facies, aqueous Hgll
can be removed to the sediment by formation of HgS and adsorption onto iron sulfides
(Benoit et al., 1999; Bouffard and Amyot, 2009). Sulfide minerals such as pyrite (FeS2),
pyrrhotite (Fe1-xS), and mackinawite (FeS) may therefore host large amounts of Hg in some
natural settings (Wolfenden et al.,, 2005; Han et al., 2014). The two latter minerals are generally
not significantly present in sediments and will be therefore not discussed herein. Significant
correlations between Hg concentrations and Fe and Al oxides/hydroxydes and soil organic
matter have been thus observed by many authors (e.g. Schuster et al., 2002, Montoya et al,
2019).

Mercury has a strong affinity for organic matter (OM) in both marine and freshwater
environments, reflected by significant Hg enrichments in organic-rich deposits in comparison
to other sediments (Sanei et al., 2012). In the aquatic system a number of processes may affect
dissolved Hg2+. For example, in oxygen depleted water methyl-mercury (MeHg) is generated
by anaerobic microorganisms, which include sulfate-reducing bacteria, iron-reducing bacteria,
and methanogens (Wood et al., 1968; Hamelin et al., 2011; Lin et al., 2012, Gascon-Diez et al,
2016). Consequently, bioaccumulation of MeHg leads to the formation of organo-mercury
complexes (Hg-OM), which may amplify Hg concentrations recorded in OM-rich sediments.
Changes in OM deposition may therefore influence the rates of Hg drawdown (Outridge et al.,
2007; Gehrke et al., 2009; Stern et al., 2009), even if Hg sequestration is not directly related to
the degree of anoxia. A significative correlation has been observed between Hg and organic
carbon enrichments (Outridge et al., 2007; Grasby et al., 2013). Hg concentrations are therefore
normalized against total organic carbon (TOC) contents in order to ensure that Hg
enrichments are not directly related increased OM accumulation and /or preservation (Percival
et al., 2015). A significant correlation between Hg/TOC ratios and the raw Hg data indicate that
the Hg enrichments are not related to changes in OM deposition alone (Grasby et al., 2013;
Sanei et al., 2012; Font et al., 2016; Grasby, 2019). In this context, the effect of OM degradation
on Hg sequestration during burial and exposure remains poorly investigated, and it is yet
unclear to which extent the OM preservation history may affect Hg contents in ancient
sediments (Charbonnier et al, 2022).



In both Madeago and Terche sections, TOC contents are very low (Madeago :< 0.32 wt%,
mean value: 0.10wt% , Terche: <0.14wt%, mean value 0.07 wt%) (Figure S1, S2) Hg cannot be
therefore normalized by TOC (Grasby, 2019).

Cited references in the main text
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Figure S1. Mercury (Hg) and Total Organic Carbon (TOC) contents and X-ray fluorescence (XRF) trace element concentrations normalized to
Rb (a major detrital input tracer) from the Madeago (A) and Terche (B) sections plotted against stratigraphic logs and biostratigraphy. As in
the figures from the main text, the yellow and light-green bands highlight the ETM2 interval as defined by the 6"C shifts and the a CIE
interval respectively.
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Figure S2. Mercury (Hg) and Total Organic Carbon (TOC) contents and X-ray fluorescence (XRF) trace element concentrations normalized to
Th (a major detrital input tracer) from the Madeago (A) and Terche (B) sections plotted against stratigraphic logs and biostratigraphy. As in the
figures from the main text, the yellow and light-green bands highlight the ETM2 interval as defined by the §"C shifts and the a CIE interval
respectively.




Binary plots of foraminiferal dissolution proxies
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Figure S3. Binary plots of dissolution indices based on foraminifera and calcareous
nannofossil count versus each other and the CaCO; content at the Madeago (in blu) and
Terche (in red) sections. Note that, except for a slightly higher correlation CaCOs-
Fragmentation index at Terche, both foraminiferal and calcareous dissolution proxies do not
show correlation with CaCOs. We do not exclude that the increased dissolution at the ETM2
may have partly amplified abundance and size signals of chiloguembelinid and subbotinids
which are particularly prone to dissolution (Nguyen et al., 2009, 2011). However, the low
variations recorded by our whole set of dissolution proxies confirm that dissolution at the

ETM2 did not significantly impacted the original signal of planktic foraminifera and calcareous
nannofossil assemblages.
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Figure S4. Binary plots of Hg/Th vs planktic foraminiferal assemblages test-size (bulk,
95t percentile, um) at the Madeago (in blu) and Terche (in red) section (A); Hg/Th vs
Morozovella (95™ percentile, um) (B); Hg/Th vs Acarinina (95" percentile, um) (C); Hg/Th vs
Subbotina (95" percentile, um) (D); Hg/Th vs Chiloguembelina (95" percentile, um) (E). The
binary plots do not show correlation between Hg/Th and test-sizes, suggesting no direct
but a more indirect link of volcanism and dwarfing despite the peak of mercury in the
lower part of the ETM2 interval at both sections. This lack of correlation may derive, at
least in part, to the fact that trace metal analysis was performed on a small number of
samples. As warming and eutrophication alone cannot explain the recorded striking
size reduction we tentatively speculate that the volcanic input of biolimiting/toxic
metals could have acted synergistically with these to induce dwarfing and explain the
uniqueness of our findings.
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