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Abstract. “Type 1” statements were introduced by Halpern in 1990
with the goal to represent statistical information about a domain of in-
terest. These are of the form “x% of the elements share the same prop-
erty”. The recently proposed language PASTA (Probabilistic Answer set
programming for STAtistical probabilities) extends Probabilistic Logic
Programs under the Distribution Semantics and allows the definition of
this type of statements. To perform exact inference, PASTA programs
are converted into probabilistic answer set programs under the Credal
Semantics. However, this algorithm is infeasible for scenarios when more
than a few random variables are involved. Here, we propose several algo-
rithms to perform both conditional and unconditional approximate in-
ference in PASTA programs and test them on different benchmarks. The
results show that approximate algorithms scale to hundreds of variables
and thus can manage real world domains.

Keywords: Probabilistic Answer Set Programming, Credal Semantics,
Statistical Statements, Approximate Inference.

1 Introduction

In [14] Halpern discusses the difference between “Type 1” (T1) and “Type 2”
(T2) statements: the former describes a statistical property of the world of inter-
est while the latter represents a degree of belief. “The probability that a random
person smokes is 20%” is an example of “Type 1” statement while “John smokes
with probability 30%”, where John is a particular individual, is an example of
“Type 2” statement.

Answer Set Programming (ASP) [7] is a powerful language that allows to
easily encode complex domains. However, ASP does not allow uncertainty on
the data. To handle this, we need to consider Probabilistic ASP (PASP) where
the uncertainty is expressed through probabilistic facts, as done in Probabilistic
Logic Programming [10]. We focus here on PASP under the Credal Semantics [9],
where each query is associated with a probability interval defined by a lower and
an upper bound.
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Recently, the authors of [3] introduced PASTA (”Probabilistic Answer set
programming for STAtistical probabilities”), a new language (and software)
where statistical statements are translated into PASP rules and inference is per-
formed by converting the PASP program into an equivalent answer set program.
However, performing exact inference is exponential in the number of probabilistic
facts, and thus it is infeasible in the case of more than a few dozens of variables.
In this paper, we propose four algorithms to perform approximate inference in
PASTA programs: one for unconditional sampling and three for conditional sam-
pling that adopt rejection sampling, Metropolis Hastings sampling, and Gibbs
sampling. Empirical results show that our algorithms can handle programs with
hundreds of variables. Moreover, we compare our algorithms with PASOCS [23],
a solver able to perform approximate inference in PASP program under the
Credal Semantics, showing that our algorithms reach a comparable accuracy in
a lower execution time.

The paper is structured as follows: Section 2 discusses some related works and
Section 3 introduces background concepts. Section 4 describes our algorithms for
approximate inference in PASTA programs that are tested in Section 5. Section 6
concludes the paper.

2 Related Work

PASTA [3] extends Probabilistic Logic Programming [20] under the Distribution
Semantics [21] by allowing the definition of Statistical statements. Statistical
statements, also referred to as “Probabilistic Conditionals”, are discussed in [16],
where the authors give a semantics to T1 statements leveraging the maximum
entropy principle. Under this interpretation, they consider the unique model that
yields the maximum entropy. Differently from them, we consider all the models,
thus obtaining a more general framework [3].

T1 statements are also studied in [15] and [24]: the former adopts the cross
entropy principle to assign a semantics to T1 statements while the latter iden-
tifies only a specific model and a sharp probability value, rather than all the
models and an interval for the probability, as we do.

We adopt the credal semantics [9] for PASP, where the probability of a query
is defined by a range. To the best of our knowledge, the only work which per-
forms inference in PASP under the Credal Semantics is PASOCS [23]. They
propose both an exact solver, which relies on the generation of all the possible
combinations of facts, and an approximate one, based on sampling. We compare
our approach with it in Section 5.

Other solutions for inference in PASP consider different semantics that assign
to a query a sharp probability value, such as [6,17,19,22].

3 Background

We assume that the reader is familiar with the basic concepts of Logic Program-
ming. For a complete treatment of the field, see [18].
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An Answer Set Programming (ASP) [7] rule has the form h1 ; ... ; hm

:- b1, ... , bn. where each hi is an atom, each bi is a literal and :- is
called the neck operator. The disjunction of the his is called the head while the
conjunction of the bis is called the body of the rule. Particular configurations of
the atoms/literals in the head/body identify specific types of rules: if the head
is empty and the body is not, the rule is a constraint. Likewise, if the body is
empty and the head is not, the rule is a fact, and the neck operator is usually
omitted. We consider only rules where every variable also appears in a positive
literal in the body. These rules are called safe. Finally, a rule is called ground if
it does not contain variables.

In addition to atoms and literals, we also consider aggregate atoms of the
form γ1ω1 #ζ{ε1, . . . , εl} ω2γ2 where γ1 and γ2 are constants or variables called
guards, ω1 and ω2 are arithmetic comparison operators (such as >, ≥, <, and
≤), ζ is an aggregate function symbol, and each εi is an expression of the form
t1, . . . , ti : F where each tj is a term, F is a conjunction of literals, and i > 0.
Moreover, each variable in t1, . . . , ti also appears in F .

We denote an answer set program with P and its Herbrand base, i.e., the
set of atoms that can be constructed with all the symbols in it, as BP . An
interpretation I ⊂ BP satisfies a ground rule when at least one of the his is
true in I when the body is true in I. A model is an interpretation that satisfies
all the ground rules of a program P. The reduct [11] of a ground program Pg

with respect to an interpretation I is a new program Pr
g obtained from Pg by

removing the rules in which a bi is false in I. Finally, an interpretation I is an
answer set for P if it is a minimal model of Pr

g . We consider minimality in terms
of set inclusion and denote with AS(P) the set of all the answer sets of P.

Probabilistic Answer Set Programming (PASP) [8] is to Answer Set Pro-
gramming what Probabilistic Logic Programming [20] is to Logic Programming:
it allows the definition of uncertain data through probabilistic facts. Following
the ProbLog [10] syntax, these facts can be represented with Π :: f where f
is a ground atom and Π is its probability. If we assign a truth value to every
probabilistic fact (where > represents true and ⊥ represents false) we obtain a
world, i.e., an answer set program. There are 2n worlds for a probabilistic answer
set program, where n is the number of ground probabilistic facts. Many Prob-
abilistic Logic Programming languages rely on the distribution semantics [21],
according to which the probability of a world w is computed with the formula

P (w) =
∏

i|fi=>

Πi ·
∏

i|fi=⊥

(1−Πi)

while the probability of a query q (conjunction of ground literals), is computed
with the formula

P (q) =
∑
w|=q

P (w)

when the world has a single answer set.
For performing inference in PASP we consider the Credal Semantics [8],

where every query q is associated with a probability range: the upper probability



4 D. Azzolini et al.

bound P(q) is given by the sum of the probabilities of the worlds w where there
is at least one answer set of w where the query is present. Conversely, the lower
probability bound P(q) is given by the sum of the probabilities of the worlds w
where the query is present in all the answer sets of w, i.e.,

P(q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi), P(q) =
∑

wi||AS(wi)|>0 ∧ ∀m∈AS(wi), m|=q

P (wi)

Note that the credal semantics requires that every world has at least one answer
set. In the remaining part of the paper we consider only programs where this
requirement is satisfied.

Example 1 (PASP Example). We consider 3 objects whose components are un-
known and suppose that some of them may be made of iron with a given prob-
ability. An object made of iron may get rusty or not. We want to know the
probability that a particular object is rusty. This can be modelled with:

1 0.2:: iron (1). 0.9:: iron (2). 0.6:: iron (3).

2

3 rusty(X) ; not_rusty(X):- iron(X).

4 :- #count{X:rusty(X), iron(X)} = RI ,

5 #count{X:iron(X)} = I, 10*RI < 6*I.

The constraint states that at least 60% of the object made of iron are rusty.
This program has 23 = 8 worlds. For example, the world where all the three
probabilistic facts are true has 4 answer sets. If we consider the query q rusty(1),
this world only contributes to the upper probability since the query is present
only in 3 of the 4 answer sets. By considering all the worlds, we get P(q) = 0.092
and P(q) = 0.2, so the probability of the query lies in the range [0.092, 0.2].

If we want to compute the conditional probability for a query q given evidence
e, P (q | e), we need to consider two different formulas for the lower and upper
probability bounds [8]:

P(q | e) =
P(q, e)

P(q, e) + P(¬q, e)
, P(q | e) =

P(q, e)

P(q, e) + P(¬q, e)
(1)

Clearly, these are valid if the denominator is different from 0, otherwise the
value is undefined. If we consider again Example 1 with query q rusty(1) and
evidence e iron(2), we get P(q | e) = 0.08 and P(q | e) = 0.2.

Following the syntax proposed in [3], a probabilistic conditional is a formula
of the form (C | A)[Πl, Πu] stating that the fraction of As that are also Cs is
between Πl and Πu. Both C and A are two conjunctions of literals. To per-
form inference, a conditional is converted into three answer set rules: i) C ;

not C :- A, ii) :- #count{X : C, A} = V0, #count{X : A} = V1, 10*V0 <

10*Πl*V1, and iii) :- #count{X : C, A} = V0, #count{X : A} = V1, 10*V0

> 10*Πu*V1, where X is a vector of elements containing all the variables in C

and A. If Πl or Πu are respectively 0 or 1, the rules ii) or iii) can be omitted.
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Moreover, if the probability values Πl and Πu have n decimal digits, the 10 in
the multiplications above should be replaced with 10n, because ASP cannot deal
with floating point values.

A PASTA program [3] is composed of a set of probabilistic facts, a set of
ASP rules, and a set of probabilistic conditionals.

Example 2 (Probabilistic Conditional (PASTA program)). The following pro-
gram

1 0.2:: iron (1). 0.9:: iron (2). 0.6:: iron (3).

2 (rusty(X) | iron(X))[0.6 ,1].

is translated into the PASP program shown in Example 1. The rule iii) is omitted
since Πu = 1.

In [3] an exact inference algorithm was proposed to perform inference with
probabilistic conditionals, that basically requires the enumeration of all the
worlds. This is clearly infeasible when the number of variables is greater than
20-30. To overcome this issue, in the following section we present different algo-
rithms that compute the probability interval in an approximate way based on
sampling techniques.

4 Approximate Inference for PASTA Programs

To perform approximate inference in PASTA programs, we developed four algo-
rithms: one for unconditional sampling (Algorithm 1) and three for conditional
sampling that adopt rejection sampling (Algorithm 2), Metropolis Hastings sam-
pling (Algorithm 3), and Gibbs sampling (Algorithm 4) [4,5]. Algorithm 1 de-
scribes the basic procedure to sample a query (without evidence) in a PASTA
program. First, we keep a list of sampled worlds. Then, for a given n number of
times (number of samples), we sample a world id with function SampleWorld
by choosing a truth value for every probabilistic fact according to its probability.
For every probabilistic facts, the process is the following: we sample a random
value between 0 and 1, call it r. If r < Πi for a given probabilistic fact fi with
associated probability Πi, fi is set to true, otherwise false. id is a binary string
representing a world where, if the nth digit is 0, the nth probabilistic fact (in
order of appearance in the program) is false, true otherwise. To clarify this, if
we consider the program shown in Example 2, a possible world id could be 010,
indicating that iron(1) is not selected, iron(2) is selected, and iron(3) is not
selected. The probability of this world is (1 − 0.2) · 0.9 · (1 − 0.6) = 0.288. If
we have already considered the currently sampled world, we look in the list of
sampled worlds whether it contributes to the lower or upper counters (function
GetContribution) and update the lower (lp) and upper (up) counters accord-
ingly. In particular, GetContribution returns two values, one for the lower
and one for the upper probability, each of which can be either 0 (the world id
does not contribute to the probability) or 1 (the world id contributes to the
probability). If, instead, the world had never been encountered before, we assign
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a probability value to the probabilistic facts in the program according to the
truth value (probability Π for >, 1−Π for ⊥) that had been sampled (function
SetFacts), we compute its contribution to the lower and upper probabilities
(function CheckLowerUpper, with the same output as GetContribution),
and store the results in the list of already encountered worlds (function Insert-
Contribution). In this way, if we sample again the same world, there is no
need to compute again its contribution to the two probability bounds. Once we
have a number of samples equal to Samples, we simply return the number of
samples computed for the lower and upper probability divided by Samples.

Algorithm 1 Function Sample: computation of the unconditional probability
from a PASTA program.

1: function Sample(Query,Samples,Program)
2: sampled ← {} . list of sampled worlds
3: lp← 0, up← 0, n← 0
4: while n ≤ Samples do . Samples is the number of samples
5: id ←SampleWorld(Program)
6: n← n + 1
7: if id ∈ sampled then . a world was already sampled
8: up0, lp0 ← GetContribution(sampled, id)
9: up ← up + up0
10: lp ← lp + lp0
11: else
12: Programd ←SetFacts(Program, id)
13: lp0, up0 ← CheckLowerUpper(Programd)
14: lp ← lp + lp0
15: up ← up + up0
16: InsertContribution(sampled, id, lp0, up0)
17: end if
18: end while
19: return lp

Samples ,
up

Samples

20: end function

When we need to account also for the evidence, other algorithms should
be applied, such as rejection sampling. It is described in Algorithm 2: as in
Algorithm 1, we maintain a list with the already sampled worlds. Moreover, we
need 4 variables to store the joint lower and upper counters of q and e (lpqe and
upqe) and ¬q and e (lpnqe and upnqe), see Equation 1. Then, with the same
procedure as before, we sample a world. If we have already considered it, we
retrieve its contribution from the sampled list. If not, we set the probabilistic
facts according to the sampled choices, compute the contribution to the four
values, update them accordingly, and store the results. lpqe0 is 1 if both the
evidence and the query are present in all the answer sets of the current world, 0
otherwise. upqe0 is 1 if both the evidence and the query are present in at least
one answer set of the current world, 0 otherwise. lpnqe0 is 1 if the evidence is
present and the query is absent in all the answer sets of the current world, 0
otherwise. upnqe0 is 1 if the evidence is present and the query is absent in at
least one answer set of the current world, 0 otherwise. As before, we return the
ratio between the number of samples combined as in Equation 1.
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Algorithm 2 Function RejectionSample: computation of the conditional
probability from a PASTA program using Rejection sampling.

1: function RejectionSample(Query,Evidence,Samples,Program)
2: lpqe ← 0, upqe ← 0, lpnqe ← 0, upnqe ← 0, n← 0, sampled ← {}
3: while n ≤ Samples do
4: id ←SampleWorld(Program)
5: n← n + 1
6: if id ∈ sampled then
7: lpqe0, upqe0, lpnqe0, upnqe0 ← GetContribution(sampled, id)
8: lpqe ← lpqe +lpqe0, upqe ← upqe + upqe0
9: lpnqe ← lpnqe + lpnqe0, upnqe ← upnqe + upnqe0
10: else
11: Programd ← SetFacts(Program, id)
12: lpqe0, upqe0, lpnqe0, upnqe0 ← CheckLowerUpper(Programd)
13: lpqe ← lpqe +lpqe0, upqe ← upqe + upqe0
14: lpnqe ← lpnqe + lpnqe0, upnqe ← upnqe + upnqe0
15: InsertContribution(sampled, id, lpqe0, upqe0, lpnqe0, upnqe0)
16: end if
17: end while
18: return lpqe

lpqe + upnqe ,
upqe

upqe + lpnqe

19: end function

In addition to rejection sampling, we developed two other algorithms that
mimic Metropolis Hastings sampling (Algorithm 3) and Gibbs sampling (Algo-
rithm 4). Algorithm 3 proceeds as follows. The overall structure is similar to
Algorithm 2. However, after sampling a world, we count the number of prob-
abilistic facts set to true (function CountTrueFacts). Then, with function
CheckContribution we check whether the current world has already been
considered. If so, we accept it with probability min(1, N0/N1) (line 18), where
N0 is the number of true probabilistic facts in the previous iteration and N1

is the number of true probabilistic facts in the current iteration. If the world
was never considered before, we set the truth values of the probabilistic facts
in the program (function SetFacts), compute its contribution with function
CheckLowerUpper, save the values (function InsertContribution), and
check whether the sample is accepted or not (line 27) with the same criteria just
discussed. As for rejection sampling, we return the ratio between the number of
samples combined as in Equation 1.

Finally, for Gibbs sampling (Algorithm 4), we first sample a world until e
is true (function TrueEvidence), saving, as before, the already encountered
worlds. Once we get a world that satisfies this requirement, we switch the truth
values of Block random probabilistic facts (function SwitchBlockValues,
line 19) and we check the contribution of this new world as in Algorithm 2.
Also there, the return value is the one described by Equation 1.

5 Experiments

We implemented the previously described algorithms in Python 3 and we in-
tegrated them into the PASTA4 solver [3]. We use clingo [12] to compute the

4 Source code and datasets available at https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta
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Algorithm 3 Function MHSample: computation of the conditional probability
from a PASTA program using Metropolis Hastings sampling.

1: function MHSample(Query,Evidence,Samples,Program)
2: sampled ← {}
3: lpqe ← 0, upqe ← 0, lpnqe ← 0, upnqe ← 0, n← 0, trueFacts0 ← 0
4: while n ≤ Samples do
5: id ←SampleWorld(Program)
6: n← n + 1
7: trueFacts1 ← CountTrueFacts(id)
8: lpqe0, upqe0, lpnqe0, upnqe0 ←
9: CheckContribution(Programd, trueFacts0, trueFacts1, id, sampled)
10: lpqe ← lpqe +lpqe0, upqe ← upqe + upqe0
11: lpnqe ← lpnqe + lpnqe0, upnqe ← upnqe + upnqe0
12: trueFacts0 ← trueFacts1
13: end while
14: return lpqe

lpqe + upnqe ,
upqe

upqe + lpnqe

15: end function
16: function CheckContribution(Programd, N0, N1, id, sampled)
17: if id ∈ sampled then
18: if random < min(1, N0/N1) then . random is a random value ∈ [0, 1]
19: return GetContribution(id, sampled)
20: else
21: return 0, 0, 0, 0
22: end if
23: else
24: Programd ← SetFacts(Program, id)
25: lpqe0, upqe0, lpnqe0, upnqe0 ← CheckLowerUpper(Programd)
26: InsertContribution(sampled, id, lpqe0, upqe0, lpnqe0, upnqe0)
27: if random < min(1, N0/N1) then
28: return lpqe0, upqe0, lpnqe0, upnqe0
29: else
30: return 0, 0, 0, 0
31: end if
32: end if
33: end function

answer sets. To assess the performance, we ran multiple experiments on a com-
puter with Intel R© Xeon R© E5-2630v3 running at 2.40 GHz with 16 Gb of RAM.
Execution times are computed with the bash command time. The reported val-
ues are from the real field.

We consider two datasets with different configurations. The first one, iron,
contains programs with the structure shown in Example 2. In this case, the size
of an instance indicates the number of probabilistic facts. The second dataset,
smoke, describes a network where some people are connected by a probabilistic
friendship relation. In this case the size of an instance is the number of involved
people. Some of the people in the network smoke. A conditional states that at
least 40% of the people that have a friend that smokes are smokers. An example
of instance of size 5 is

1 0.5:: friend(a,b). 0.5:: friend(b,c).

2 0.5:: friend(a,d). 0.5:: friend(d,e).

3 0.5:: friend(e,c).

4 smokes(b). smokes(d).

5 (smokes(Y) | smokes(X), friend(X,Y))[0.4 ,1].
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Algorithm 4 Function GibbsSample: computation of the conditional proba-
bility from a PASTA program using Gibbs sampling.

1: function GibbsSample(Query,Evidence,Samples,Block ,Program)
2: sampledEvidence ← {}, sampledQuery ← {}
3: lpqe ← 0, upqe ← 0, lpnqe ← 0, upnqe ← 0, n← 0
4: while n ≤ Samples do
5: ev ← false, n← n + 1
6: while ev is false do
7: id ←SampleWorld(Program)
8: if id ∈ sampledEvidence then
9: ev ← sampledEvidence[id]
10: else
11: Programd ← SetFacts(Program, id)
12: if TrueEvidence(Programd) then
13: ev ← true, sampledEvidence[id]← true
14: else
15: sampledEvidence[id]← false
16: end if
17: end if
18: end while
19: ids ←SwitchBlockValues(id,Block ,Program,Evidence)
20: if ids ∈ sampled then
21: lpqe0, upqe0, lpnqe0, upnqe0 ← GetContribution(sampled, id)
22: lpqe ← lpqe +lpqe0, upqe ← upqe + upqe0
23: lpnqe ← lpnqe + lpnqe0, upnqe ← upnqe + upnqe0
24: else
25: Programd ← SetFacts(Program, id)
26: lpqe0, upqe0, lpnqe0, upnqe0 ← CheckLowerUpper(Programd)
27: lpqe ← lpqe +lpqe0, upqe ← upqe + upqe0
28: lpnqe ← lpnqe + lpnqe0, upnqe ← upnqe + upnqe0
29: InsertContribution(sampled, id, lpqe0, upqe0, lpnqe0, upnqe0)
30: end if
31: end while
32: return lpqe

lpqe + upnqe ,
upqe

upqe + lpnqe

33: end function

The number of probabilistic facts follows a Barabási-Albert preferential attach-
ment model generated with the networkx [13] Python package. The initial num-
ber of nodes of the graph, n, is the size of the instance while the number of edges
to connect a new node to an existing one, m, is 3.

In a first set of experiments, we fixed the number of probabilistic facts, for
iron, and the number of people, for smoke, to 10 and plotted the computed
lower and upper probabilities and the execution time by increasing the number
of samples. All the probabilistic facts have probability 0.5. The goal of these
experiments is to check how many samples are needed to converge and how
the execution time varies by increasing the number of samples, with a fixed
program. For the iron dataset, the query q is rusty(1) and the evidence e
is iron(2). Here, the exact values are P(q) = 0.009765625, P(q) = 0.5, P(q |
e) = 0.001953125, and P(q | e) = 0.5. For the smoke dataset, the program has
21 connections (probabilistic facts): node 0 is connected to all the other nodes,
node 2 with 4, 6, and 8, node 3 with 4, 5, and 7, node 4 with 5, 6, 7, and 9, and
node 7 with 8 and 9. All the connections have probability 0.5. Nodes 2, 5, 6, 7,
and 9 certainly smoke. The query q is smokes(8) and the evidence is smokes(4).
The targets are P(q) = 0.158, P(q) = 0.75, P(q | e) = 0, and P(q | e) = 0.923.
Results for all the four algorithms are shown in Figures 1 (iron) and 2 (smoke).
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Fig. 1: Comparison of the sampling algorithms on the iron dataset. Straight
lines are the results for PASTA while dashed lines for PASOCS.
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Fig. 2: Comparison of the sampling algorithms on the smoke dataset. Straight
lines are the results for PASTA while dashed lines for PASOCS. In Figure 2a
the target line at 0.75 is for the upper unconditional probability.

For Gibbs sampling, we set the number Block (i.e, number of probabilistic facts
to resample), to 1. All the algorithms seem to stabilize after a few thousands
of samples for both datasets. For iron, MH seems to slightly overestimate the
upper probability. Gibbs and rejection sampling require a few seconds to take 106

samples, while Metropolis Hastings (MH) requires almost 100 seconds. However,
for the smoke dataset, MH and Rejection sampling have comparable execution
times (more than 100 seconds for 5 · 105 samples) while Gibbs is the slowest
among the three. This may be due to a low probability of the evidence.

We compared our results with PASOCS [23] (after translating by hand the
probabilistic conditionals in PASP rules). We used the following settings: -n min

n -n max -1 -ut -1 -p 300 -sb 1 -b 0 where n is the number of considered
samples, n min is the minimum number of samples, n max is the maximum num-
ber of samples (-1 deactivates it), ut is the uncertainty threshold (-1 deacti-
vates it), p is the percentile (since they estimate values with gaussians), sb is
the number of samples to run at once during sampling, and b is the burnin value
for Gibbs and Metropolis Hastings sampling (0 deactivates it). We do not select
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Fig. 3: Comparison of Gibbs sampling on the iron dataset.
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(b) Metropolis Hastings.

Fig. 4: Comparison of Gibbs sampling and MH on the smoke dataset.

parallel solving, since PASTA is not parallelized yet (this may be the subject of
a future work). PASOCS adopts a different approach for conditional inference:
at each iteration, instead of sampling a world, it updates the probabilities of
the probabilistic facts and samples a world using these values. In Figure 1b, the
execution times of PASOCS for all the tested algorithms are comparable and
seem to grow exponentially with the number of samples. The lines for rejec-
tion and unconditional sampling for PASTA overlap. This also happens for the
lines for MH, Gibbs, and rejection sampling for PASOCS. PASOCS seems to be
slower also on the smoke dataset (Figure 2b), but the difference with PASTA is
smaller. We also plotted how PASTA and PASOCS perform in terms of number
of samples required to converge. In Figure 3, we compare Gibbs sampling on the
iron dataset. Here, PASTA seems to be more stable on both lower and upper
probability. However, even with 5000 samples, both still underestimate the lower
probability, even if the values are considerably small. In Figure 4 we compare
PASOCS and PASTA on Gibbs sampling and Metropolis Hastings sampling on
the iron dataset. Also here, PASTA seems more stable, but both algorithms
are not completely settled on the real probability after 5000 samples. Finally,
Figure 5 compares the unconditional sampling of PASTA and PASOCS on both
datasets. Here, the results are similar: after approximately 3000 samples, the
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Fig. 5: Comparison of unconditional sampling on the iron and the smoke

datasets.
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Fig. 6: Comparison between PASTA and PASOCS by increasing the number of
probabilistic facts for the iron dataset.

computed probability seems to be stabilized. In another experiment, we fixed
the number of samples to 1000, increased the size of the instances for the iron

dataset, and plot how the execution time varies with PASTA and PASOCS. The
goal is to check how the execution time varies by increasing the number of sam-
ples. The query is rusty(1). Results are shown in Figure 6. For PASOCS, we
get a memory error starting from size 32. PASTA requires approximately 500
seconds to take 1000 samples on a program with the structure of Example 2
with 1500 probabilistic facts. Note again that, during sampling, we assume that
every world has at least one answer set, since if we need to check this, all the
worlds must be generated and clearly the inference will not scale.

6 Conclusions

In this paper, we propose four algorithms to perform approximate inference,
both conditional and unconditional, in PASTA programs. We tested the exe-
cution time and the accuracy also against the PASOCS solver (after manually
performing the conversion of probabilistic conditionals). Empirical results show
that our algorithms reach a comparable accuracy in a lower execution time. As
future work, we plan to better investigate the convergence of the algorithms and
to develop approximate methods for abduction [1,2] in PASTA programs.
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