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SUMMARY

To identify novel genes associated with ALS, we undertook two lines of investigation. We carried 

out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. 

Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS 

cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A 
(KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-

terminal motor domain of KIF5A are causative for two neurodegenerative diseases, hereditary 

spastic paraplegia (SPG10) and Charcot-Marie-Tooth Type 2 (CMT2). In contrast, ALS associated 

mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring 

loss of function mutations displayed an extended survival relative to typical ALS cases. Taken 

together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and 

strengthen the role of cytoskeletal defects in the pathogenesis of ALS.

eTOC

Using large-scale genome-wide association study and exome sequencing, we identified KIF5A as 

a novel gene associated with ALS. Our data broaden the phenotype resulting from mutations in 

KIF5A and highlight the importance of cytoskeletal defects in the pathogenesis of ALS.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS, OMIM #105400) is a neurodegenerative disorder 

clinically characterized by rapidly progressive muscle weakness and death due to respiratory 

failure, typically within two to four years of symptom onset (van Es et al., 2017). Although 

ALS is perceived as being rare, approximately 6,000 Americans die annually from the 

condition (Hirtz et al., 2007). Furthermore, the number of ALS cases across the globe will 

increase to nearly 400,000 in 2040, predominantly due to aging of the population (Arthur et 

al., 2016). This increase is anticipated to place an enormous socioeconomic burden on global 

healthcare systems, in particular because the annual healthcare cost per patient with ALS is 

among the highest for any neurological disease (Gladman and Zinman, 2015).

Approximately 10% of ALS display a family history (FALS) whereas the remaining 90% of 

ALS cases are sporadic (SALS) in nature. Driven in large part by advances in genotyping 

and sequencing technology, the genetic etiology of two-thirds of familial cases and about 

10% of sporadic ALS cases is now known (Chia et al., 2018; Renton et al., 2014). Mutations 

in SOD1 were the first identified cause of ALS (Rosen et al., 1993) contributing to ~20% of 

FALS and ~2% of SALS. More recently, pathogenic hexanucleotide repeat expansions 

located within the first intron of the C9orf72 gene on chromosome 9p21 were identified as 

the most common cause of both FALS (~40%) and SALS (~7%) (DeJesus-Hernandez et al., 

2011; Renton et al., 2011). Interestingly, this repeat expansion contributes to ~10% of all 

FTD cases thus genetically explaining much of the overlap between these clinical syndromes 

(Majounie et al., 2012). As a result of these major discoveries, there are several ongoing 

Nicolas et al. Page 2

Neuron. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efforts towards directed silencing of these mutant genes which could result in a therapeutic 

treatment for up to 10% of all ALS cases and for a similar portion of FTD cases.

In addition to the insights provided by each novel ALS gene, the collective knowledge 

gained from genetic factors provides a more comprehensive understanding of the interacting 

pathways underlying motor neuron degeneration. For example, the identification of ALS 

genes has revealed at least three pathways believed to contribute to the development of ALS: 

(1) RNA metabolism (based on the observation of mutations in C9orf72, TDP-43, FUS, 

HNRNPA1, and MATR3); (2) protein homeostasis (UBQLN2, VCP, OPTN, VAPB); (3) 

cytoskeletal dynamics (PFN1, TUBA4A, DCTN1) (Chia et al., 2018; Robberecht and 

Eykens, 2015; Taylor et al., 2016). Understanding the mechanisms leading to disease 

pathogenesis again provides targets for therapeutic intervention that may be applicable to all 

forms of ALS.

Due to the decreased accessibility of multiple affected family members with unknown 

genetic etiology, there has been an increased focus on the identification of ALS associated 

genes with moderate to low impact. Despite their lower effect, such genes continue to 

provide valuable insight into ALS pathogenesis. For example, the product of the risk factor 

TBK1 is known to interact with the product of ALS associated gene OPTN, further 

solidifying the role of autophagy and protein homeostasis in disease development (Cirulli et 

al., 2015; Freischmidt et al., 2015; Maruyama et al., 2010; Morton et al., 2008). Similarly, 

the risk factor NEK1, identified through a rare variant burden analysis of index FALS (i.e., 

one affected sample per family), is a known binding partner of C21orf2, an ALS risk factor 

found through genome-wide association studies (GWAS) (Cirulli et al., 2015; Kenna et al., 

2016; Malovannaya et al., 2011; van Rheenen et al., 2016). The interaction of these two 

proteins is required for efficient DNA damage repair (Fang et al., 2015), a pathway which is 

becoming increasingly implicated as a contributing factor in ALS and other 

neurodegenerative diseases (Coppedè and Migliore, 2015; Lopez-Gonzalez et al., 2016; 

Madabhushi et al., 2014; Wang et al., 2013).

RESULTS

Genome-wide Association Studies Identify KIF5A as a Novel ALS Associated Gene

To identify new susceptibility loci operating in ALS, we undertook a large-scale GWAS 

involving 12,663 patients diagnosed with ALS and 53,439 control subjects (Table S1, S2). 

Our data were then incorporated into a meta-analysis with a recently published GWAS 

involving 12,577 ALS cases and 23,475 control subjects (van Rheenen et al., 2016). After 

imputation and quality-control measures (see Methods, Figure S1 for the workflow and 

Figure S2 for the multidimensional scaling plot), 10,031,630 genotyped and imputed 

variants from 20,806 ALS cases and 59,804 control samples were available for association 

analysis (Figure 1A). Quantile-quantile plots did not show evidence of significant population 

stratification (λ1000 = 1.001, Figure S3). Single nucleotide polymorphisms (SNPs) achieving 

genome-wide significance (P < 5.0×10−8) are listed in Table 1, Table S3 and suggestive loci 

with SNPs associated at P < 5.0×10−7 are listed in Table S4.
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Our analysis revealed five previously identified loci that achieved genome-wide significance 

(loci including TNIP1, C9orf72, TBK1, UNC13A, C21orf2) (Benyamin et al., 2017; 

Laaksovirta et al., 2010; Shatunov et al., 2010; van Es et al., 2009; van Rheenen et al., 

2016). In addition, we observed a strong association signal for five SNPs in linkage 

disequilibrium on chromosome 12q14.1 that reached genome-wide statistical significance 

(Table 1, Figure 1B) spanning a region of several hundred kilobases. Of the five SNPs, two 

of them resided in close proximity to each other within a large intergenic region and two in 

proximity to short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), a gene 

expressed primarily in skin. However, one SNP (rs113247976) results in a p.Pro986Leu 

coding change within the kinesin family member 5A (KIF5A) gene (P = 6.4×10−10, OR = 

1.38, 95% CI = 1.24–1.53). The case:control allele frequencies for the combined discovery 

cohort were 2.07%:1.55% and genotype counts were 5: 529: 12,043 to 7: 786: 22,682 

(homozygotes alternative allele: heterozygotes: homozygous reference allele, Figure 2). 

Calculations based on our cohort size as well as the OR and allele frequency of rs113247976 

result in a ~99.5% power to detect this as an ALS associated SNP.

Rare Variant Burden Analysis Identifies KIF5A as an ALS gene

In an independent line of investigation, we attempted to identify novel ALS genes through 

exome-wide rare variant burden analysis (RVB). In brief, RVB compares the frequency of 

variants within each gene below a user defined frequency threshold in a case-control cohort. 

As the last two ALS associated genes identified by this methodology (TBK1, NEK1) 

displayed an increased frequency of loss of function (LOF) variants, we focused our initial 

analysis on such variants (consisting of nonsense and predicted splice-altering) (Cirulli et al., 

2015; Freischmidt et al., 2015; Kenna et al., 2016).

Towards this end, we performed RVB testing for association of LOF variants in a cohort of 

1,138 index FALS cases and 19,494 controls, after applying quality control filters 

(Experimental Methods, Figure S4, Table S5, S6). Genes displaying P < 5.0×10−4 are 

shown in Table 2. The previously identified ALS genes, TBK1 (P = 5.58×10−7, OR = 15.11, 

95% CI = 5.81–38.69) and NEK1 (P = 1.68×10−6, OR = 6.64, 95% CI = 3.32–12.51), 

yielded strong associations with ALS reaching exome-wide significance (Figure 3). In 

addition, we observed a single novel gene reaching exome-wide significance, KIF5A (P = 

5.55×10−7; OR = 32.07, 95% CI = 9.05–135.27). Within this gene, we observed 6 LOF 

variants in our 1,138 cases (0.53%) compared to 3 such variants in our comparison cohort of 

19,494 controls (0.015%, Table 2). There was no evidence of genomic inflation (λ=0.93, 

Figure S5), sequencing center or other sub-cohort bias (Figure S6), or call rate bias (Figure 

S7) in our analysis. Of the index FALS cases carrying KIF5A LOF mutations, we obtained 

DNA from two siblings of the proband carrying a c.2993-3C>T, exon 27 - 5′ splice junction 

variant, and from a sibling of a different proband carrying a c.3020+2T>A, exon 27 - 3′ 
splice junction variant. These variants segregated with disease within each of these families. 

Sanger sequencing validated all identified LOF variant containing samples in the discovery 

set and affected relatives.

Interestingly, when we investigated the location of the six ALS associated variants present in 

KIF5A, all occurred within a 34 bp stretch of DNA and were predicted to effect splicing of 
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exon 27 that encodes amino acids 998–1007 (Table 3, Figure 4A). Five of the six variants 

were located on sequential base pairs on the 3′ end of the exon, whereas one was located 5′ 
end of the exon. We used the application ASSEDA (Automated Splice Site and Exon 

Definition Analyses) to predict any mutant mRNA splice isoforms resulting from these 

variants (Tompson et al., 2007). This algorithm was chosen as it is known to have high 

performance in splice prediction (Caminsky et al., 2014). ASSEDA predicted a complete 

skipping of exon 27 for all variants, yielding a transcript with a frameshift at coding amino 

acid 998, the deletion of the normal C-terminal 34 amino acids of the cargo-binding domain, 

and the extension of an aberrant 39 amino acids to the C-terminus (Table 3, Figure 4B, 4C). 

The presence of transcripts with skipped exon 27 was demonstrated by performing RT-PCR 

in two patients carrying exon 27 - 3′ splice junction variants (c.3020+2T>A and c.

3020+1G>A) using RNA from lymphoblasts and peripheral blood mononuclear cells, 

respectively. This splice form was not detected in four control lines (Figure 4D). Sequence 

analysis of the smaller RT-PCR products obtained from the patient cells confirmed the exon 

26–28 splicing event. Material for RT-PCR was not available for any other patient carrying a 

KIF5A LOF variant.

Our initial RVB was restricted to single nucleotide variants due to the limited sensitivity and 

comparatively high false positive rates associated with identifying small insertions and 

deletions (indels) within exome sequencing data (Fang et al., 2014). Based on our discovery 

of increased LOF variants within KIF5A, we re-evaluated this region for the presence of 

indels. Our analysis revealed two (0.026%) indels within our cohort of 1,138 FALS cases, 

compared to zero (0%) indels among 19,494 control samples. Both of these indels 

(p.Asp996fs, p.Asn999fs) resulted in a frameshift of the KIF5A protein coding sequence, 

and were located close to the splice junction variants that we previously observed to cause 

skipping of exon 27 resulting in a frameshift at amino acid 998 (Table 3). Sanger sequencing 

confirmed the presence of both indels. Combining the results of the single nucleotide and 

indel variant analysis yielded a highly significant P of 3.8×10−9 (OR = 41.16, 95% CI = 

12.61–167.57). We failed to detect any signals of RVB association for rare missense variants 

across KIF5A or within any sub-domain of the gene (Table S8).

Replication Analysis of rs113247976 and LOF Variants in KIF5A

Given the strong signal of the missense variant identified by our GWAS (p.Pro986Leu, 

rs113247976) and its close proximity to the LOF variants identified by our RVB analysis 

(amino acids 996–999), we attempted to replicate its association with ALS by analyzing 

additional cohorts. To accomplish this, we evaluated this variant in a cohort of 4,159 ALS 

cases and 18,650 controls that were non-overlapping with our GWAS discovery analysis 

(Methods, Figure S8). This included non-overlapping samples from our RVB analysis (673 

FALS, 17,696 controls). Analysis of the cohort revealed an allele frequency of 1.78% in 

cases and 1.32% in controls (rs113247976, P = 3.82×10−4, OR = 1.42, 95% CI = 1.17–1.70), 

thereby replicating the association of the original GWAS. A meta-analysis of the GWAS and 

replication cohort (n = 24,965 cases, 78,454 controls) yielded a highly significant P of 

7.09×10−13 (OR = 1.39, 95% CI = 1.33–1.45, Figure 2). These results support the 

association of KIF5A p.Pro986Leu with ALS. However, at this point we cannot definitely 
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state that the missense variant is the primary risk factor, as we cannot rule out other variants 

in linkage disequilibrium.

We next performed mutational screening of KIF5A in an additional cohort of 9,046 ALS 

cases that had not been included in our original RVB analysis. This revealed three additional 

carriers of C-terminal variants. One sporadic patient harbored an exon 26 frameshift 

mutation (p.Asn997fs) and a second sporadic patient harbored an exon 27 splice altering 

mutation (c.2993-1G>A, Table 3). The third patient carried a p.Arg1007Lys (c.3020G>A) 

mutation and had a familial history of ALS. This mutation was also observed in a FALS 

patients from our RVB analysis, however, a comparison of 240,715 common variant sites 

between the two patients failed to reveal a familial relationship (Experimental Methods). 

Additionally, one patient was observed to carry a predicted splice altering variant proximal 

to exon 3 (c.291+5G>A). However, this variant was not supported as creating an aberrant 

transcript by ASSEDA. The cohort used for this analysis was comprised mainly frequency 

of sporadic ALS cases. LOF variants were not observed in a follow up panel of 1,955 

controls. Comparison of the LOF variants in sporadic patients (2/9,046 cases, 0.022%) with 

either the 1,955 replication controls or all controls analyzed in this study (21,449 controls) 

both yielded insignificant P values (0.868 and 0.423, respectively). Interestingly, the 

frequency of LOF variants in sporadic cases is lower than that observed in our original 

FALS cohort (0.703%), suggesting that KIF5A LOF variants display a high penetrance. 

Furthermore, the rate of LOF variants reported in the Exome Aggregation Consortium 

(ExAC) database is lower than we observed in the control samples used in our discovery 

cohort (0.007% versus 0.015%).

ALS-Associated Mutations in KIF5A are Distinct from SPG10/CMT2 Mutations

Missense mutations within KIF5A are a known cause of hereditary spastic paraparesis 

(spastic paraplegia type 10, autosomal dominant; OMIM #604187) and of Charcot-Marie-

Tooth disease Type 2 (CMT2) (Crimella et al., 2011; Jennings et al., 2017; Liu et al., 2014; 

Reid et al., 2002). Although SPG10 and CMT2 share clinical features with ALS, a careful 

examination of the clinical records of the ALS cases with LOF mutations in KIF5A ruled 

out misdiagnosis. Furthermore, we detected no variants previously associated with SPG10 or 

CMT2 in our FALS cohort (Liu et al., 2014).

To further elucidate genotype-phenotype relationships, we evaluated the location of 

mutations within KIF5A. Interestingly, mutations contributing to SPG10 and to CMT2 are 

almost exclusively to be missense changes and are located in the N-terminal motor domain 

(amino acids 9–327) of KIF5A (Figure 5). In contrast, the mutations identified as 

contributing to ALS are found predominantly in the C-terminal cargo binding region of 

KIF5A (amino acids 907–1032) with the highly penetrant FALS mutations showing LOF. 

These results indicate that the functional domain mutated in KIF5A dictates the clinical 

phenotype, resulting in distinct yet overlapping neurodegenerative diseases.

Patients with KIF5A LOF Mutations Display Younger Age at Onset and Longer Survival

To establish the existence of any commonalities between patients with LOF mutations in the 

C-terminal region of KIF5A, we evaluated their clinical phenotype. Cases with LOF 

Nicolas et al. Page 6

Neuron. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutations exhibited a median age of onset at 46.5 years (n = 19, Table S7). This is lower 

than the age of onset reported for ALS in epidemiological studies (65.2 years, interquartile 

range 56.0 – 72.2) (ALSGEN Consortium et al., 2013). Interestingly, we also observed an 

increased disease duration (survival) in patients harboring these LOF mutations. The median 

survival time of ALS patients is 20 – 36 months (ALSGEN Consortium et al., 2013). In 

contrast, cases with LOF mutations exhibited a median survival of nearly 10 years (117 

months, n = 17, Table S7). ALS patients with symptom onset before 40 years of age have 

been shown to have longer survival, often exceeding 10 years (Chio et al., 2009). In contrast, 

patients with uncomplicated types of hereditary spastic paraparesis and CMT2 display a 

normal life expectancy (Patzkó and Shy, 2011).

DISCUSSION

We previously identified KIF5A as a candidate gene for ALS in our prior study that lacked 

the power to draw a definitive conclusion (Kenna et al., 2016). KIF5A was also a candidate 

ALS gene in a previous GWAS, though it similarly failed to reach genome-wide significance 

(McLaughlin et al., 2017; van Rheenen et al., 2016) as well as a single gene study selected 

based on the a priori knowledge of its role in HSP/CMT2 and cytoskeletal function (Brenner 

et al., 2018). Here, we have confirmed KIF5A as an ALS-associated gene with genome-wide 

significance through two independent approaches. By performing a GWAS involving 

~80,000 samples, in addition to replicating five previously published loci, as well as the 

previously reported locus SCFD1 using a linear mixed model analysis (data not shown), we 

identified a missense variant within the KIF5A gene that reached genome-wide significance 

for association with ALS risk. It should be stated though that, as with all GWAS, we cannot 

rule out that other variants in linkage disequilibrium represent the primary risk factor. In an 

independent line of investigation, we applied RVB analysis to exome sequencing of ~21,000 

samples and identified an exome-wide significant association between FALS risk and rare 

KIF5A LOF variants. Analyses of KIF5A in independent replication cohorts confirmed our 

initial finding for both the p.Pro986Leu variant and revealed three additional carriers of LOF 

variants in 9,046 ALS cases. Taken together our results indicate that the p.Pro986Leu 

KIF5A variant may represent a relatively common, but low penetrance risk allele for ALS, 

while LOF variants constitute rare, but high penetrance risk factors.

Kinesins are microtubule-based motor proteins involved in intracellular transport of 

organelles within eukaryotic cells. In mammals, there are three heavy chain isoforms of 

KIF5: KIF5A, KIF5B and KIF5C (Miki et al., 2001). The three proteins homo- and 

heterodimerize through their coiled-coiled stalk domain, and create a complex with two 

kinesin light chains via binding to the tail domain (Hirokawa et al., 1989). All three KIF5 

genes are expressed in neurons (Kanai et al., 2000) and function to transport many cargos by 

binding to distinct adaptor proteins.

The central role of kinesins in axonal transport leads us to speculate that mutations in KIF5A 
cause disease by disrupting axonal transport. Indeed, defects in axonal transport are a 

common observation in ALS patients and are already known to directly contribute to motor 

neuron degeneration pathogenesis (Chevalier-Larsen and Holzbaur, 2006; Hirokawa et al., 

2010; Millecamps and Julien, 2013). KIF5 mediates the transport of granules containing 
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both RNA and RNA binding proteins within neuronal dendrites and axons (Kanai et al., 

2004). Among these cargos are the ALS-associated proteins FUS and hnRNPA1 (Guo et al., 

2017; Kim et al., 2013; Kwiatkowski et al., 2009; Vance et al., 2009). Similarly, KIF5 

mediates the transport of VAPB through the adaptor protein protrudin (Matsuzaki et al., 

2011), and mutations in the VAPB gene have been identified in ALS and late-onset spinal 

muscular atrophy (Nishimura et al., 2005; 2004). KIF5 is responsible for the axonal 

transport of neurofilaments (Wang and Brown, 2010) and KIF5A knockout mice display 

abnormal transport of neurofilaments (Xia et al., 2003). Abnormal accumulation of 

neurofilaments are a pathological hallmark of ALS and rare mutations in neurofilament 

heavy polypeptide (NEFH) are associated with ALS (Al-Chalabi et al., 1999).

KIF5 also contributes to the transport of mitochondria (Kanai et al., 2000; Tanaka et al., 

1998) and motor neurons derived from KIF5A−/− mice display transport deficits and reduced 

survival (Karle et al., 2012). Impaired transport and dysfunction of mitochondria represent 

another common hallmark observed in ALS patients (Chevalier-Larsen and Holzbaur, 2006; 

Guo et al., 2017; Palomo and Manfredi, 2015; Smith et al., 2017). KIF5 also contributes to 

the transport of AMPA-type (Heisler et al., 2014; Setou et al., 2002) and GABAA receptors 

(Nakajima et al., 2012). In keeping with reported ALS genes such as NEK1 (Thiel et al., 

2011) and PFN1 (Wu et al., 2012), modulation of KIF5A expression has been shown to 

influence the formation of neurite like membrane protrusions (Matsuzaki et al., 2011). Given 

its critical interactions with the cytoskeleton, the identification of KIF5A mutations further 

extends the list of cytoskeletal related proteins implicated in ALS pathogenesis, such as 

PFN1, TUBA4A, NEFH and peripherin (Al-Chalabi et al., 1999; Gros-Louis, 2004; Smith et 

al., 2014; Wu et al., 2012).

An important question raised by the current study is why variation within the C-terminal 

cargo binding domain is associated with ALS, while missense variations of the N-terminal 

motor domain are associated with hereditary spastic paraparesis and Charcot-Marie-Tooth, 

type 2. Missense mutations within this latter domain have been shown to affect microtubule 

binding and/or ATP hydrolysis, resulting in a defective KIF5A-mediated anterograde 

transport of cargo along dendrites and axons. This, in turn, leads to the axonal retrograde 

degeneration observed both in hereditary spastic paraparesis and Charcot-Marie-Tooth, type 

2, two length-dependent axonopathies (Ebbing et al., 2008). In contrast, the primary cellular 

lesion in ALS is believed to occur within motor neuron cell bodies, where cytoplasmic 

protein aggregates are consistently observed, and to propagate anterograde along neurites. 

We anticipate that LOF variants within the C-terminal domain of KIF5A will disrupt binding 

with specific cargo proteins. This is supported by a study in zebrafish in which truncation of 

the C-terminal resulted in a dramatic disruption of axonal localization of mitochondria 

(Campbell et al., 2014). One possible mechanism is that disruption of binding to cargo may 

possibly lead to their accumulation and seed aggregation within the cell body resulting in a 

deficiency at neurite terminals. Deficiency in KIF5A expression and cargo binding has been 

associated with accumulation of phosphorylated neurofilaments and amyloid precursor 

protein within neuronal cell bodies, and subsequent neurodegeneration, in patients with 

multiple sclerosis (Hares et al., 2016). While differences in KIF5A kinetics and KIF5A 

interactions constitute one possibility to explain the phenotypic heterogeneity, it is also 

possible C-terminal and N-terminal variants act through a common mechanism, but that a 
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difference in the relative extent of loss or gain of function toxicities leads to milder (i.e. 

hereditary spastic paraplegia, Charcot-Marie-Tooth, type 2) or more severe (i.e. ALS) 

phenotypes.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, John Landers (john.landers@umassmed.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts

GWAS cohort I: We undertook a GWAS of patients diagnosed with ALS (case cohort) and 

neurologically normal control individuals (control cohort). DNA was extracted from either 

whole blood or frozen brain tissue samples using standard procedures. All 12,663 patients 

included in the case cohort had been diagnosed with ALS according to the El Escorial 

criteria (Brooks, 1994) by a neurologist specializing in ALS, had onset of symptoms after 

age 18 years, and were of non-Hispanic white race/ethnicity. Both patients with familial 

ALS and patients with sporadic ALS were included in the analysis.

For the control cohort, we used genotype data obtained from (a) the database of Genotypes 

and Phenotypes (dbGaP) web repository (n = 44,017 US samples); (b) the HYPERGENES 

Project (n = 887 Italian samples) (Salvi et al., 2012); and (c) the Wellcome Trust Case 

Control Consortium (n = 5,663 British samples). An additional 2,112 US and Italian control 

samples were genotyped in the Laboratory of Neurogenetics, National Institute on Aging. 

The control cohort was matched to the case cohort for race and ethnicity, but not for age or 

sex. A detailed description of the cohorts is available in Table S1, S2.

Written consent was obtained from all individuals enrolled in this study, and the study was 

approved by the institutional review board approval of the National Institute on Aging 

(protocol number 03-AG-N329).

GWAS cohort II: Summary statistics from a recently published GWAS based on logistic 

regression analysis involving 12,577 cases and 23,475 controls were downloaded from the 

Project MinE Variant Browser. Additional details of the cohorts used in this study are 

available in van Rheenen et al (van Rheenen et al., 2016).

FALS discovery cohort: A total of 1,463 FALS patients were included in the initial cohort 

(pre-QC). Patients were recruited at specialist clinics in Australia (n = 92), Belgium (n = 

13), Canada (n = 34), Germany (n = 228), Ireland (n = 18), Israel (n = 26), Italy (n = 230), 

Netherlands (n = 50), Spain (n = 60), Turkey (n = 72), UK (n = 223), and USA (n = 417). 

All samples were exome sequenced except those from the Netherlands which were whole 

genome sequenced. Familial history was considered positive for ALS if the proband had at 

least one affected relative within three degrees of relatedness.
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Control discovery cohort: Read level sequencing data were obtained from dbGAP and the 

European Genome-Phenome Archive (EGA) and are listed in Table S5.

ALS WXS/WGS replication cohort: Replication analyses included sequencing data for a 

further 9,046 ALS cases and 1,955 non-ALS controls that were not also represented in the 

FALS discovery set. These samples included 2,742 cases subjected to WXS by the ALS 

Sequencing Consortium, as described previously (Cirulli et al., 2015); 719 cases subjected to 

WXS by the Laboratory of Neurogenetics, National Institute on Aging; 307 cases and 296 

controls subjected to WGS by the Laboratory of Neurogenetics, National Institute on Aging; 

155 cases subjected to WGS by the CReATe Consortium; 1,017 cases subjected to WGS by 

the NYGC ALS Consortium, Genomic Translation for ALS Care (GTAC) Consortium and 

Answer ALS Foundation; and 4,100 cases and 1,659 controls subjected to WGS by the 

Project MinE Sequencing Consortium.

All samples included in the case cohort had been diagnosed with ALS according to the El 

Escorial criteria (Brooks, 1994) by a neurologist specializing in ALS. We received approval 

for this study from the institutional review boards of the participating centers, and written 

informed consent was obtained from all patients (consent for research).

METHOD DETAILS

Data generation and pre-processing

Generation of SNP array callset: The case cohort (n = 12,663 samples) and part of the 

control cohort (n = 2,112) were genotyped in the Laboratory of Neurogenetics, National 

Institute on Aging, using HumanOmniExpress BeadChips (version 1.0, Illumina Inc., San 

Diego, CA) according to the manufacturer’s protocol. These SNP genotyping arrays assay 

716,503 SNPs across the genome. Individual-level genotypes for these samples are available 

on the dbGaP web portal (accession number phs000101.v4.p1). The remainder of the control 

cohort had been previously genotyped on HumanOmni BeadChips (Illumina) as part of other 

GWAS efforts (see Table S2). Analyses were confined to the 595,692 autosomal SNPs that 

were common across the SNP genotyping arrays.

Generation of FALS case-control callset for exome-wide RVB discovery 
analysis: Exome sequencing of cases was performed as previously described (Kenna et al., 

2016). Control exome sequences were generated as described under the relevant dbGAP and 

EGA project accessions. Sequence reads were aligned to human reference GRCh37 using 

BWA (Burrows-Wheeler Aligner) and processed according to recommended Genome 

Analysis Toolkit’s (GATK) best practices (https://software.broadinstitute.org/gatk/best-

practices/). Joint variant detection and genotyping of all samples were performed using the 

GATK HaplotypeCaller. Variant quality control was performed using the GATK variant 

quality score recalibration method with default filters. A minimum variant quality by depth 

(QD) score of 2 was also imposed and all genotypes associated with genotype quality (GQ)< 

20 were reset to missing. Variants were also excluded in the event of case or control call 

rates <70% (post genotype QC). Identified variants can be viewed through our web based 

ALS Variant Server (see link below).
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Generation of ALS case-control callset for KIF5A replication analysis: Data for the 

KIF5A locus was extracted from all independently generated sequencing datasets and 

remapped to GRCh37. Variant calling was performed using the GATK haplotype caller as 

described above. In addition to the KIF5A locus, data was also extracted for a panel of 

240,715 common variant sites and used to perform a single unified sample QC as described 

below.

Functional annotation of variants identified by WXS/WGS—Variant calls were 

assigned predicted functional consequences using snpEFF (Single Nucleotide Polymorphism 

Effect)(Cingolani et al., 2012), dbNSFP (A Database of Human Non-synonymous SNVs and 

Their Functional Predictions and Annotations)(Liu et al., 2013) and dbscSNV (database of 

splice site consequences of Single Nucleotide Variants)(Jian et al., 2014), which is 

incorporated into dbNSFP. Variants were classified as “loss of function” (LOF) where the 

sequence change was predicted to encode a premature stop codon, a frameshift causing 

insertion-deletion or a splice site disrupting SNV. Variants were classified as potentially 

splice altering if assigned an “ada” or “rf” score >0.7 by dbscSNV. Splice variants of 

potential interest were further assessed for putative effects on exon skipping using a 

secondary algorithm - automated splice site and exon definition server (ASSEDA)(Tompson 

et al., 2007).

RT-PCR Analysis—Total RNA was prepared from lymphoblast lines using Trizol reagent. 

Reverse transcription using Applied Biosystems RNA to cDNA kit (# 4368814) was 

performed with 0.5 ug with RNAse inhibitor in a 20 ul reaction according to the 

manufacturer’s protocol. PCR was carried out using New England Biolabs One Taq Hot 

Start DNA Polymerase (# M0481S), 2 ul RT reaction (representing 50 ng input RNA) and 

forward and reverse primer (0.15 uM each) in a 20 ul reaction volume. Amplification 

conditions were as follows: 94°C for 30 seconds, {94°C for 20 seconds, 58°C for 20 

seconds, 68°C for 1 minute} x 35 cycles, followed by an extension stage of 68°C for 5 

minutes and a 4°C hold. Amplification of both normal and mutant splice forms used primers 

F1 (CAGTGGAGCCACATCTTCTG) and R1 (TCTCTTGGTGGAGAGGGAAA). Primers 

used for the specific amplification of the mutant splice form were F2 

(CCAACATGGACAATGGAGTGA), which spans exons 26 and 28, and R1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses

Analysis of SNP array genotypes: Standard quality-control procedures were applied to our 

genotype data using PLINK software package (version 1.9)(Chang et al., 2015), and a 

summary of the workflow is shown in Figure S1. We excluded samples that demonstrated: 

call rates of less than 97.5%; non-European ancestry; abnormal F inbreeding coefficient; 

mismatch between phenotypic and genotypic gender; or, cryptic relatedness defined as 

identity-by-descent proportion of inheritance (pi_hat from PLINK) greater than 0.125. 

Samples in common between our study and van Rheenen’s study were identified using the 

checksum program id_geno_checksum and were removed from our analyses. We excluded 

palindromic SNPs, as well as SNPs with: call rates less than 95% in the US and Italian 

cohorts or less than 99% in the UK, French and Belgium cohorts; minor allele frequency 
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less than 0.05 in the control cohorts; Hardy-Weinberg equilibrium P less than 10−7 in the US 

and Italian control cohorts and less than 10−5 in the UK, French and Belgium cohorts; 

missingness by case-control status P less than 10−5; or SNPs associated between the UK and 

French control cohorts with P less than 5.0×10−8. After quality control, 8,229 case and 

36,329 control samples were included in the analysis, and 436,746 SNPs were available for 

imputation in the USA and Italy cohorts, and 420,131 SNPs were available in the UK, 

French and Belgium cohorts.

Estimation of the haplotypes was performed with SHAPEIT (version 2.r790)(Delaneau et 

al., 2013). Imputation was performed for individual batches based on ethnicity using the 

1000 Genomes Project dataset (phase 3, version 5a, release 2013-05-02, 1000genomes.org) 

as reference and using Minimac3 software (version 1.0.11)(Das et al., 2016) with default 

settings. After imputation, principal components were calculated using PLINK software 

after removing known hypervariable regions and the 1 MB surrounding the C9orf72 region. 

After analysis of the Scree plots, 2 to 4 principal components were retained per cohort as 

covariates in the association analyses to compensate for any residual population 

stratification.

Logistic regression was performed per batch using mach2dat software (version 1.0.24)

(Marchini and Howie, 2010) incorporating 2 to 4 principal components, age and gender as 

covariates, with dosage of imputed SNPs selected based on a Minimac3 R2 value of 

imputation accuracy greater than 0.3. SNPs with an absolute beta coefficient value above 5 

or with a minor allele frequency less than 0.01 were excluded from meta-analysis. Meta-

analysis was then performed combining the association results of the 13 batches of our 

individual-level studies with van Rheenen’s study summary statistics using METAL 

software (version 2011-03-25)(Willer et al., 2010) under an inverse-weighted, fixed effect 

model. A threshold P of 5.0×10−8 was set for genome-wide significance after Bonferroni 

correction for multiple testing in the GWAS (Pe’er et al., 2008).

The programming code used to analyze these data is freely available on GitHub (see link 

below), and GWAS summary statistics results for all tested SNPs are available from (link to 

be supplied at publication).

Analysis of WXS/WGS genotypes: For both the discovery and replication phases, samples 

were excluded from the study in the event of failing to meet standard genotype call rate, 

heterozygosity, duplication, relatedness or population stratification filters as summarized in 

Table S6. Each of these filters was performed using a set of autosomal markers meeting all 

of the following criteria: call rate > 0.95, minor allele frequency (MAF) > 0.01, P > 0.001 

for deviation from Hardy-Weinberg equilibrium, linkage disequilibrium pruning (R2 < 0.5, 

window size = 50, step = 5). Filtering of autosomal markers, sample call rate assessments 

and sample heterozygosity assessments were performed using PLINK software. Study 

duplicates and sample relatedness within the WXS/WGS cohorts was identified using KING 

software (Manichaikul et al., 2010). Study duplicates between WXS/WGS cohorts and 

GWAS datasets were identified using the checksum program id_geno_checksum. LASER 

was used to generate PCA coordinates for samples from the Human Genome Diversity Panel 

(HGDP). Samples from the FALS discovery cohort were then mapped to this reference co-
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ordinate space. The discovery cohort was restricted to cases and controls occurring within 3 

standard deviations of the mean for European HGDP samples along principal components 

1–4.

RVB analyses were performed by penalized logistic regression of case-control status with 

respect to number of minor alleles observed per sample per gene with and MAF <0.001. 

Analyses were only performed where the dataset contained more than 3 variant allele 

occurrences. Replication analyses of rs113247976 were performed using the same logistic 

regression protocol as used for RVB analyses. All analyses were conditioned on the first 4 

eigenvectors generated by principal components analysis of common variant profiles. 

Genomic inflation factors were calculated using genome-wide association analysis for 

quantitative, binary and time-till-event traits using GenABEL software. Candidate 

associations were tested for signs of call-rate or subcohort biases as outlined in Figures S6, 

S7. Meta-analysis of rs113247976 association results between sequencing and GWAS was 

performed using METAL. Unless otherwise indicated, all statistical analyses were 

performed using R (version 3.2.0).

Control-control analyses: To identify genes potentially subject to confounding biases in 

FALS RVB analyses and to assess the potential impact of batch effects with non-ALS-

related data, population or phenotypic stratifiers, the control sample cohort was divided into 

28 pseudo case-control groups based on the sequencing center or associated dbGaP/EGA 

project (Table S5). Genes shown in gray achieve for possible confounder association. Loci 

achieving a minimu P < 1 × 10–3 were deemed as displaying possible association with non-

ALS related batch effects.

DATA AND SOFTWARE AVAILABILITY

Datasets—The programming code used to analyze the GWAS data including the 

imputation with SHAPEIT and Minimac3, individual-based association analysis using 

Mach2dat and a meta-analysis using METAL is freely available on GitHub: https://

github.com/AudeDN/ALS_GWAS_1000G_mach2dat_2017). GWAS summary statistics 

results for all tested SNPs and identified SNVs from our 1,138 FALS cohort used for the 

RVB analysis can be viewed through our web based ALS Variant Server (http://

als.umassmed.edu). For each variant, information on over 50 annotation fields and the 

results can be downloaded directly into Excel.

Data Resources and Databases—1000 Genomes Project dataset: http://

www.internationalgenome.org

Database of Genotypes and Phenotypes (dbGaP): www.ncbi.nlm.nih.gov/gap

dbNSFP: https://sites.google.com/site/jpopgen/dbNSFP

dbscSNV: incorporated into dbNSFP (see previous link).

European Genome-phenome Archive (EGA): https://ega-archive.org

HapMap project: http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html.
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Human Genome Diversity Panel (HGDP): http://www.hagsc.org/hgdp/

HYPERGENES Project: http://www.hypergenes.eu

Project MinE Variant Browser: http://databrowser.projectmine.com

snpEFF: http://snpeff.sourceforge.net/SnpEff.html

Wellcome Trust Case Control Consortium: www.wtccc.org.uk

Software—ASSEDA: http://www.cytognomix.com/?post_type=duka&p=2670

BWA: http://bio-bwa.sourceforge.net

GenABEL: http://www.genabel.org

GATK: https://software.broadinstitute.org/gatk/

id_geno_checksum: https://personal.broadinstitute.org/sripke/share_links/

checksums_download/

KING: http://people.virginia.edu/~wc9c/KING/

LASER: http://csg.sph.umich.edu/chaolong/LASER/

Mach2dat: https://genome.sph.umich.edu/wiki/Mach2dat:_Association_with_MACH_output

METAL: http://csg.sph.umich.edu/abecasis/metal/index.html

Minimac3: https://genome.sph.umich.edu/wiki/Minimac3

PLINK: http://zzz.bwh.harvard.edu/plink/

R: https://www.r-project.org

SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Loss of function mutations in KIF5A are a cause of amyotrophic lateral 

sclerosis

• ALS-associated KIF5A mutations are distinct from HSP and CMT mutations 

in KIF5A

• Identification of KIF5A highlights role of cytoskeleton in ALS pathogenesis
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Figure 1. Identification of association between KIF5A locus and ALS risk through GWAS
(A) Manhattan plot showing P values from the discovery set GWAS. Analysis of a combined 

set of 20,806 cases and 59,804 controls is shown. The dashed red line denotes the threshold 

for genome-wide significance after multiple test correction (P < 5.0×10−8). Five previously 

reported ALS associated loci are labeled in grey and one novel loci, containing the KIF5A 
gene, is labeled in black. (B) Regional association plot of the KIF5A locus. Recombination 

rates are from HapMap phase 2 European ancestry samples. The R2 pattern is based on the 

rs113247976 SNP using 85 European ancestry samples (CEU) from the November 2010 

release of the 1000 Genomes Project dataset. R2 of the p.Pro986Leu (rs113247976) with 

additional SNPs achieving genome-wide significance was 0.544 (rs117027576), 0.544 

(rs118082508), 0.741 (rs116900480), and 0.347 (rs142321490).
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Figure 2. Discovery and replication for the association of the KIF5A p.Pro986Leu (rs113247976) 
variant with ALS
Analysis of the p.Pro986Leu (rs113247976) variant within each of the described cohorts is 

shown. Allelic association for all subcohorts were analyzed by logistic regression followed 

by a fixed-effects meta-analysis. The Forest plot (right) displays the distribution of OR 

estimates across study cohorts with the vertical dotted line denoting the OR estimated under 

the meta-analysis.
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Figure 3. Identification of association between KIF5A and ALS risk through rare variant burden 
analysis of exome sequencing
Manhattan plot showing gene-level P values from an exome-wide rare variant burden 

analysis. Analyses of 1,138 index FALS cases versus 19,494 controls were restricted to rare 

LOF variants (splice altering/nonsense, MAF < 0.001). A minimum of 3 LOF gene variants 

were required for analysis. The dashed red line denotes the threshold for exome-wide 

significance after correction for 11,472 genes (4.36×10−6). Previously reported (grey) and 

novel (black) genes exhibiting a significant excess of rare LOF variants in patients are 

shown.

Nicolas et al. Page 31

Neuron. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. ALS associated loss of function variants of KIF5A disrupt C-terminal sequence by 
inducing skipping of exon 27
(A) Single nucleotide variants (SNVs) within KIF5A identified in ALS patients are clustered 

at the 5′ and 3′ splice junctions of exon 27. The consensus splice sequence is shown. (B) 

ALS associated SNVs are predicted to induce skipping of exon 27 and result in an aberrant 

mRNA transcript. (C) The skipping of exon 27 of KIF5A yields an out-of-frame and 

extended disrupted C-terminal peptide sequence. The amino acids in red signify the 

divergence from the normal protein. (D) RT-PCR was performed using RNA derived from 

ALS patients with the indicated LOF variant or without (controls) using primers to either 

amplify both wild-type (155 bp) and mutant (127 bp) splice forms or specifically the mutant 

splice form (80 bp, right panel). The arrow represents the position of the mutant specific 

product. The tick marks represent 200 bp (upper) and 100 bp (lower) markers.
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Figure 5. KIF5A ALS mutations show distinct localization from missense mutations previously 
associated with SPG10 and CMT2
Causative mutations for SPG10 and CMT2 described within the literature (Crimella et al., 

2011; Jennings et al., 2017; Liu et al., 2014; Reid et al., 2002) and ALS associated mutations 

identified within this study are shown. As illustrated, mutations causative for SPG10/CMT2 

are predominantly missense changes located in the N-terminal motor domain. In contrast, 

ALS mutations are primarily located at the C-terminal motor domain and are LOF.
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Table 2

Top ALS associations identified through RVB of FALS and control exome sequencing results

Gene FALS Control OR P

KIF5A 6 (0.53%) 3 (0.02%) 32.07 (9.05–135.27) 5.55×10−7

TBK1 8 (0.70%) 9 (0.05%) 15.11 (5.81–38.69) 5.58×10−7

NEK1 12 (1.05%) 32 (0.16%) 6.64 (3.32–12.51) 1.68×10−6

CALHM2 7 (0.62%) 9 (0.05%) 12.13 (4.47–31.79) 9.19×10−6

COL14A1 8 (0.70%) 16 (0.08%) 8.04 (3.32–18.08) 2.72×10−5

AK1 10 (0.88%) 34 (0.17%) 5.37 (2.55–10.41) 5.62×10−5

ATRN 5 (0.44%) 9 (0.05%) 11.06 (3.57–31.02) 1.66×10−4

VLDLR 5 (0.44%) 9 (0.05%) 10.87 (3.51–30.43) 1.79×10−4

FUS 4 (0.35%) 4 (0.02%) 16.53 (4.25–64.33) 2.08×10−4

ZMYND12 6 (0.53%) 12 (0.06%) 7.92 (2.86–19.96) 2.61×10−4
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