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On the weak Lefschetz principle

in birational geometry

César Lozano Huerta ∗ Alex Massarenti †

The lay of the land

Algebraic geometers study the solution sets to finite
collections of polynomial equations in Cn or in the
complex projective space Pn. Often, the goal is to un-
derstand the basic geometric properties of these sets
such as connectedness, smoothness, dimension, etc.
The most important and familiar examples are solu-
tion sets to finite collections of linear equations and
in this case, we notice that their geometry exhibits
many similarities to that of their ambient spaces Cn

or Pn.

When one analyzes solution sets of higher degree
equations, the situation changes radically. These sets
no longer have an easily recognizable structure, such
as that of a vector space or a group. Unlike the lin-
ear case, they may have many connected components
and its dimension may be challenging to compute.
Despite all these difficulties, this article will discuss
scenarios in which the geometry of the solution set
is similar to that of the space in which it sits. Such
situations are somewhat unexpected and have had a
profound impact in mathematics.

Our departing point is the influential work of
Solomon Lefschetz started in 1924 [Lef24]. Consider a
collection of finitely many homogeneous polynomials
whose solution set in Pn has dimension bigger than
one. Lefschetz analyzed the following: if one consid-
ers an additional generic linear equation and looks
at the resulting solution set, the so-called hyperplane
section, often one finds that many geometric proper-
ties of it are determined by the original solution set.

In what follows, we will look at the hyperplane theo-
rem of Lefschetz in different contexts. We will re-
visit its original formulation in algebraic topology,
and build up to recent developments of it in bira-
tional geometry. In doing so, we will emphasize the
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main theme of this article: there are many contexts
in geometry in which analogous versions of the Lef-
schetz hyperplane theorem hold. Even though it was
originally stated in the context of algebraic topology,
there are versions of it in algebraic geometry, homo-
topy theory, complex geometry and birational geom-
etry. Intuitively speaking, all these results focus on
a solution set (or a submanifold, depending on the
context) whose geometric properties are determined
by the space in which it sits.
We have tried to present the development of the ideas
somehow chronologically. We apologize for the omis-
sions we unintentionally made due to our lack of his-
torical understanding.

Notions from algebraic topology

Started in the early 20th century and known as com-
binatorial topology until the early 1940s, the field
of algebraic topology constructs algebraic invariants
in order to distinguish two topological spaces. Ho-
mology and cohomology groups are two such invari-
ants and central notions of this article. These groups,
whose definitions are subtle, turn out to be accessi-
ble to computations and are for this reason commonly
used. Let us recall some of their properties.
The kth homology group of a topological space X ,
with coefficients in a field F, can be defined in terms
of cycles and boundaries when a triangulation of X
is available. Indeed, the kth homology group of X is
defined as the quotient

Hk(X,F) = {k-cycles of X}/{k-boundaries of X}

where the coefficients in question are in the field F.
In this case, the group Hk(X,F) has the structure of
a vector space over F and in the remainder of this
article our homology groups will have Q-coefficients.
A key feature of homology is the following: any
continuous morphism between topological spaces f :
X → Y induces a corresponding morphism

f∗ : Hk(X,Q) → Hk(Y,Q)
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which is a linear transformation between vector
spaces over Q.
Alongside the kth homology group there is the kth
cohomology group denoted by Hk(X,Q). If X is an
oriented manifold, the former is the dual vector space
to the latter, but the following property of cohomol-
ogy is different: any continuous morphism between
topological spaces f : X → Y induces a correspond-
ing morphism

f∗ : Hk(Y,Q) → Hk(X,Q)

which is a linear transformation between vector
spaces over Q.
Cohomology has a distinctive advantage over homol-
ogy: not only can we add cohomology classes, we can
multiply them as well. When X is an oriented mani-
fold, this product has a rich geometric meaning which
is often given by the intersection of two submanifolds.
(We could do this in homology, but the labels in co-
homology work better. For one thing, they yield a
graded ring: if α ∈ Hk(X,Q) and β ∈ H l(X,Q),
then α.β ∈ Hk+l(X,Q)). This is the so-called cup
product and will appear a bit later.

Tracing back the Lefschetz hyper-

plane theorem

In this section we formulate the theorem that sets
the theme of this article: the Lefschetz hyperplane
theorem. We start by describing its context.
Let us consider a smooth complex algebraic surface
S ⊂ Pn; such an S is a manifold of dimension 4
over R. We are interested in describing the homology
group H1(S,Q) of the surface S with coefficients in
the rationals.
Since the surface S lies inside the projective space
Pn, one may take a smooth hyperplane section of it by
throwing in an additional linear equation to the defin-
ing equations of S such that the result is a smooth
algebraic curve C ⊂ S of genus g. One can also con-
sider a generic family of hyperplane sections of S con-
taining C as follows. Linear polynomials in Pn form
a family isomorphic to Pn for their n+ 1 coefficients
can be thought of as coordinates. One point p in this
family gives rise to C. Pick another general point q of
this family and consider the unique line pq = L that
contains them. We now may think of the hyperplane
sections of S parametrized by t ∈ L ∼= P1. That is,
for each value t ∈ L ∼= P1 there is a curve Ct ⊂ S.1

1The family {Ct} is called a Lefschetz pencil and its key

The advantage of considering C within this family is
that one may try to describe the homology of the sur-
face H1(S,Q) as a linear combination of the 1-cycles
of Ct. That is, we may consider a 1-cycle of Ct and
then think of it as a 1-cycle of S. A result by Lefschetz
says this is possible: any 1-cycle of S is homologous

on S to a 1-cycle lying on a generic Ct. Since the
homology of the generic Ct is H1(Ct,Q) ∼= Q2g, this
yields H1(S,Q) as a quotient of a well-known space.
The following figure

σ1

σ2

σ3

σ4

σ5

σ6

depicts the generating 1-cycles of H1(C,Z), where C
is a smooth curve of genus 3.

Let us state again the previous result. Let i : C →֒ S
be the inclusion of a smooth hyperplane section of S.
Then the result above asserts that the induced map

i∗ : H1(C,Q) → H1(S,Q)

is surjective. In this setting, this is the Lefschetz hy-
perplane theorem. In order to fully describe the first
homology group of S we need to further investigate
the kernel of i∗; which consists of the so-called van-

ishing cycles. The necessary information about such
cycles can now be extracted from thinking of C in
the family {Ct}. From this analysis, one gets an im-
portant theorem: the dimension of H1(S,Q), called
the first Betti number of S and denoted by b1(S), is
even.

In general it is quite challenging to deduce properties
of 1-cycles on S from their behavior as 1-cycles on
the curves Ct. In fact, Zariski points out that such
arguments are the most difficult part of all the topo-
logical arguments by Lefschetz [Zar71, p. 136]. For
example, Zariski comments that Lefschetz’s topolog-
ical proof of the fact that the Betti number b1(S) is
even seems to be incomplete.2

This difficulty, however, can be overcome via Hodge
theory in which case the key is the following claim:

property is that its generic member is smooth and the singular
members have all mild singularities.

2Zariski comments that Lefschetz’ proof is based on an un-
proven statement of Picard.
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intersection with the curve Ct defines an isomorphism

φ̃ : H3(S,Q) → H1(S,Q). (0.1)

The proof that φ̃ is an isomorphism was first com-
pleted in [Hod48]. We will come back to this map in
the next section.

Notice that φ̃ factors through H1(Ct,Q). In fact,
one can deduce that φ̃ is an isomorphism from the
surjectivity of i∗

i∗ : H1(Ct,Q) → H1(S,Q) (0.2)

by verifying that its kernel consists of vanishing cy-
cles and is orthogonal to the cycles that generate
H3(S,Q).

The previous discussion is part of Lefschetz’s original
approach to the study of the topology of an algebraic
surface S. In what follows we will examine a general-
ization of this discussion which goes under the name
of the weak Lefschetz theorem. Before that, we de-
cided to include a brief description of the strong Lef-
schetz theorem so the reader may contrast. Strong
Lefschetz will concern the map φ̃ while weak Lef-
schetz will concern the map i∗ above.

Strong Lefschetz theorem

The previous isomorphism (0.1) admits a dual formu-
lation involving cohomology which builds up to the
Strong Lefschetz Theorem. Indeed, the cup product
with the cohomology class ω of the hyperplane sec-
tion Ct yields the map

φ : H1(S,Q) → H3(S,Q)

and φ is an isomorphism. A generalization now may
be formulated as follows. Let X be a smooth com-
plex algebraic variety of dimension n. Then the map
defined by the cup product with the powers ωn−k

φn−k : Hk(X,Q) → H2n−k(X,Q)

is an isomorphism [Hod48]. This result by Hodge is
carried out over the field of complex numbers. In
characteristic p > 0 it was studied by Grothendieck,
Artin and Verdier in [AGV63] and they called it the
strong3 Lefschetz theorem.

3This is also known as the ‘hard Lefschetz theorem’.

Weak Lefschetz theorem

Let us keep using cohomology notation in this sec-
tion so the contrast between the weak and strong
versions of the Lefschetz theorem becomes clear. The
weak Lefschetz theorem, in our context, claims that
if i : H →֒ X is the inclusion morphism of a smooth
hyperplane section, then the induced map on the kth
cohomology groups

i∗ : Hk(X,Q) → Hk(H,Q) (0.3)

is an isomorphism for k ≤ n− 2 and an injection for
k = n−1. For complex varieties, the theorem follows
from the exact sequence

Hk
c (U,Q) → Hk(X,Q) → Hk(H,Q) → Hk+1

c (U,Q)

where U denotes the open set U = X \ H and
H∗

c (U,Q) stands for cohomology with compact sup-
port. Since Hk

c (U,Q) ∼= H2n−k(U,Q), the weak Lef-
schetz theorem is therefore equivalent to the van-
ishing of the homology groups: Hj(U,Q) = 0 for
j ≥ n+ 1.
The analogous result in characteristic p > 0 was
proved by Grothendieck, Artin and Verdier [AGV63]
in the context of étale cohomology with Ql-adic co-
efficients using exact sequences and cohomology van-
ishing. They called it the weak Lefschetz theorem.
It is important to mention that the Lefschetz theo-
rems, as formulated above, bear a close relation to the
Weil conjectures. We refer the reader to [GGK+68],
in particular Kleiman’s exposé X, for an account
about this fascinating part of algebraic geometry.
The isomorphism (0.3) is a crucial ingredient in what
follows. In fact, we will exhibit examples where this
isomorphism also preserves objects contained in the
2nd cohomology group which encode birational in-
formation about the varieties X and Y . This is the
‘weak Lefschetz’ of our title. In the following section
we will motivate the word ‘principle’.

Building up to a principle

A different approach to study the topology of a
smooth projective variety X was developed by Bott
[Bot59] and by Andreotti-Frankel [AF59] both in
1959. These two papers used Morse theory applied to
a non-degenerate real C∞-function f which satisfies
f(x) = 0 if x ∈ H and f(x) > 0 if x /∈ H , where
H ⊂ X is a smooth hyperplane section. Bott even
describes a cellular structure on X by attaching cells
to H . This decomposition allows him to analyze the
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topology of X in detail. In particular, Bott proves the
statement dual to the weak Lefschetz theorem above:
the induced morphism by the inclusion

i∗ : Hk(H,Q) → Hk(X,Q)

is bijective if 0 ≤ k ≤ n− 2, and

i∗ : Hn−1(H,Q) → Hn−1(X,Q)

is surjective.
Bott actually proves more. He argues that one may
focus on other topological invariants instead of ho-
mology or cohomology. For example, Bott applied
this theory to homotopy groups and showed that the
inclusion i : H →֒ X yields isomorphisms for the ho-
motopy groups

i∗ : πk(H) → πk(X).

This result, along with those for homology, starts
looking more like a principle. Indeed, the relation-
ship between the geometry of a variety X and that
of a hyperplane section H seems to be robust as we
are planning to exhibit in the rest of this article.

The weak Lefschetz principle

After the previous sections we have the following sit-
uation. Let X,Y be smooth complex projective va-
rieties equipped with embedding i : Y →֒ X . This
inclusion i may induce an isomorphism on the coho-
mology, homology or homotopy groups. It turns out
that it may also induce an isomorphism on objects in
some other contexts, for example the Picard groups,
étale cohomology or Hodge structures just to name
a few. One thus may be led to think that the weak
Lefschetz theorem seems to be robust, to the extent
of considering it part of a principle. This principle
says that often the geometry of the ambient variety
X determines that of the subvariety Y . Finding the
precise conditions for this principle to hold is subject
of current research.
In the rest of the article, we aim to exhibit exam-
ples in the context of birational geometry for which
the weak Lefschetz principle holds. The next section
contains the precise definitions to this end and is the
technical part of the article. It may be skipped on a
first reading.

Notions from birational geometry

Now we change the gears from topology to birational
geometry; that is, we return to studying zeros of poly-

nomials. The set of all algebraic varieties is vast, so
one tries to organize it into equivalence classes. Bira-
tional geometry studies algebraic varieties up to bi-
rational equivalence and often seeks to find the “sim-
pliest” representative in each equivalence class.
From now on, we assume some familiarity with el-
ementary concepts from algebraic geometry such as
Cartier divisor, linear equivalence, blowup and strict
transform. Since the definitions introduced in this
section might be hard to grasp, we have included an
explicit example that can be read independently in
Boxes 1, 2, and 3.
Let us consider X a smooth projective variety over C.
If D is a subvariety of codimension 1 in X , then one
can naturally think of the number D · C, the result
of intersecting D with a curve C. Loosely speaking,
should count the number of points in the intersection
between D and C. However, if C is a subset of D we
need a different description. Let us recall its formal
definition so we are on firm ground. Given a Cartier
divisor D on a normal variety X and a curve C ⊂ X
their intersection number is defined as

D · C = degOC(D), (0.4)

where OC(D) is the restriction to C of the invert-
ible sheaf OX(D) associated to D. When D does not
contain C the number D · C is the number of points
of intersection between D and C counted with multi-
plicity. Note that this definition can be extended by
linearity to Q-Cartier divisors, that is Weil divisors
having a multiple that is Cartier, and arbitrary linear
combinations of irreducible curves; which are called
1-cycles of X .
Now the correct notion of intersection reveals struc-
ture in the set of divisors. Indeed, we say that two
Cartier divisors D,D′ ⊂ X are numerically equiv-
alent if D · C = D′ · C, for any irreducible curve
C ⊂ X . In this case, we write D ≡ D′. The group of
all Cartier divisors on X modulo numerical equiva-
lence is a finitely generated free abelian group, called
the Neron-Severi group and it is denoted by N1(X).
Hence, the vector space

N1(X)R = N1(X)⊗ R

is finite dimensional [Deb01, page 8] and its dimen-
sion, denoted by ρX , is called the Picard rank of X .
The study of the Picard rank has deep roots in al-
gebraic geometry. When X is a smooth surface over
C, the number ρX was carefully analyzed by Picard,
Severi and Lefschetz. In fact, Lefschetz observed
that curves in X , up to numerical equivalence, can
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be thought of as elements in the cohomology group
H2(X,Q). From this he was able to show that ρX is
less or equal than the dimension of H2(X,Q); hence
finite. This enhances the analysis mentioned earlier
in this article about the first Betti number b1(S) of
an algebraic surface S.
So far we have mentioned three equivalence rela-
tions that can be imposed on Cartier divisors: lin-
early equivalent, numerically equivalent, and coho-
mologous. These three relations may coincide, for
instance if X = Pn, but in general they are differ-
ent; for example on a general quartic surface in P3.
The first two relations give rise to the Picard group
Pic(X) and N1(X), respectively. Later in this sec-
tion, we will restrict our study to spaces where linear
and numerical equivalence coincide.
Let us now recall the definition of some cones con-
tained in the space N1(X)R which are important in
birational geometry and central for the rest of the
article. See the Boxes 1, 2, and 3 for an example.

Definition 0.5. Let D ⊂ X be a Q-Cartier divisor,
that is a divisor such that mD is Cartier for some
integer m > 0.

- The divisor class is said to be effective if it
represents an actual subvariety of codimension
1. The effective cone of X is the convex cone
Eff(X) ⊂ N1(X)R generated by classes of effec-
tive divisors.

- D is very ample if it induces an embedding, and
D is ample if mD is very ample for m ≫ 0. The
ample cone of X is the convex cone Amp(X) ⊂
N1(X)R generated by classes of ample divisors.

- D is nef if D · C ≥ 0 for any irreducible curve
C ⊂ X . Note that if D is ample then D · C > 0
for any curve C ⊂ X . Hence nefness is a mild
relaxation of ampleness. The nef cone of X is the
closed convex cone Nef(X) ⊂ N1(X)R generated
by classes of nef divisors.

- The stable base locus of D is the set of points
p ∈ X such that for all m > 0, if mD is integral,
all the divisors in the linear system of mD pass
through p. The movable cone of X is the convex
cone Mov(X) generated by classes of movable di-

visors ; these are divisors whose stable base locus
has codimension at least two in X .

We have inclusions among the previous cones

Amp(X) ⊂ Nef(X) ⊂ Mov(X) ⊂ Eff(X) ⊂ N1(X)R.

Box 1: the effective cone and the Mori
cone of curves

Let us work out explicitly the cone of effec-
tive divisors and the Mori cone of curves of
X , the blow-up of Pn at two points p, q ∈ Pn,
with n > 1. Let H,Hp, Hq, Hp,q be the strict
transforms respectively of a hyperplane, a hy-
perplane passing through p, through q, and
through both p and q. Moreover, let Ep, Eq

be the exceptional divisors over p and q re-
spectively. Note that Hp = H − Ep, Hq =
H − Eq and Hp,q = H − Ep − Eq. Then
N1(X) ∼= Z[H,Ep, Eq]. We will denote by
h the strict transform of a general line in Pn,
and by ep, eq classes of lines in Ep and Eq

respectively. The intersection pairing (0.6) is
given by H ·h = 1, H ·ep = H ·eq = 0, Ep ·eq =
Eq · ep = 0, Ep · ep = Eq · eq = −1. The last
two intersections numbers might be not ob-
vious from a geometrical point of view. To
compute them one may reason as follows: the
divisor H−Ep represents the strict transform
of a general hyperplane through p, and h− ep
represents the strict transform of a general
line through p. In the blow-up X these strict
transforms do not intersect anymore, so 0 =
(H−Ep)·(h−ep) = H ·h−H ·ep−Ep ·h+Ep ·ep
and hence Ep · ep = −H · h = −1.
Now, let C ⊂ X be an irreducible curve. Then
either C is contained in an exceptional divi-
sor and then it is numerically equivalent to a
positive multiple of ep or eq, or it is mapped
by the blow-down map to an irreducible curve
Γ ⊂ Pn. Let d,mp,mq be respectively the de-
gree and the multiplicities of Γ at p and q.
Then C ≡ dh −mpep −mqeq. We may write
C ≡ d(h− ep− eq)+ (d−mp)ep +(d−mq)eq.
Furthermore, d − mp > 0 otherwise by Bé-
zout’s theorem Γ would contain a line through
p as a component, and similarly d −mq > 0.
Hence NE(X) is closed and generated by the
classes ep, eq and h − ep − eq. Note that the
latter is the strict transform of the line in Pn

through p, q. Similarly, it can be shown that
Eff(X) is closed and generated by the classes
of Ep, Eq and Hp,q.
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Similar to the case of divisors, two 1-cycles C,C′ ⊂ X
are numerically equivalent if D · C = D · C′ for any
irreducible Cartier divisor D ⊂ X . We will denote
by N1(X) the quotient of the group of 1-cycles by
this equivalent relation, and consider the vector space
N1(X)R = N1(X)⊗ R.

Intersecting curves and divisors according to (0.4) in-
duces a non-degenerate pairing

N1(X)×N1(X) → Z (0.6)

which implies that N1(X)R is finite dimensional.

The following cone is called the Mori cone of curves
and was introduced by S. Mori. Let NE(X) denote
the closure of the convex cone in N1(X)R of classes
of effective 1-cycles, that is classes in N1(X)R which
represent actual curves in X .

Box 2: the Nef cone and movable cone
(Box 1 continued)

Let us work out the nef cone of X when
n > 2. This is the cone of divisors intersecting
non negatively all the irreducible curves in X .
Since any curve in X can be written as a linear
combination with non-negative coefficients of
the generators of NE(X), it is enough to check
when a divisor intersects non-negatively these
generators. Let us write D ≡ aH+bEp+cEq.
Then D · (h− ep − eq) = a+ b+ c, D · ep = −b
and D · ep = −c, and Nef(X) is defined in
N1(X)R ∼= R3 by the inequalities a+ b + c ≥
0, b ≤ 0, c ≤ 0. Hence Nef(X) is generated by
〈H,Hp, Hq〉.
Finally, we determine the movable cone of X .
The divisor Hp,q represents the hyperplanes
of Pn passing through p, q. Hence the sta-
ble base locus of Hp,q consists of the strict
transform of the line through p, q. The stable
base locus of all divisors in the cone gener-
ated by 〈Hp, Hq, Hp,q〉 is contained in such a
strict transform as Hp, Hq have no base loci.
Hence all the divisors in this cone are mov-
able when n > 2. On the other hand, all di-
visors in the interior of the cone 〈H,Hp, Eq〉
contain Eq, all divisors in the interior of the
cone 〈H,Hq, Ep〉 contain Ep, and all divisors
in the interior of the cone 〈H,Ep, Eq〉 contain
Ep ∪ Eq. Therefore, Mov(X) is the cone gen-
erated by 〈H,Hp, Hq, Hp,q〉.

We now introduce the main notion of this section:
Mori dream spaces in the context of the minimal
model program. The goal of the minimal model pro-
gram is to construct a birational model of any com-
plex projective variety which is as simple as possible
in a suitable sense. This subject has its origins in
the classical birational geometry of surfaces studied
by the Italian school. In 1988 S. Mori extended the
concept of minimal model to 3-folds by allowing suit-
able singularities on them [Mor88] and was awarded
the Fields Medal for his contributions on this topic.
In 2010 there was another breakthrough in minimal
model theory when C. Birkar, P. Cascini, C. Hacon
and J. McKernan proved the existence of minimal
models for a suitable class of higher dimensional va-
rieties [BCHM10]. C. Birkar was awarded the Fields
Medal in 2018 for his contributions to birational ge-
ometry.

Mori dream spaces, introduced by Y. Hu and S. Keel
in 2000 [HK00], form a class of algebraic varieties
that behave very well from the point of view of the
minimal model program. In order to recall their def-
inition, let us first define Q-factorial modifications.

We say that a birational map f : X 99K X ′ to a
normal projective variety X ′ is a birational contrac-

tion if its inverse does not contract any divisor. We
say that it is a small Q-factorial modification if X ′

is Q-factorial, that is any Weil divisor on X ′ has a
multiple which is Cartier, and f is an isomorphism
in codimension one. If f : X 99K X ′ is a small Q-
factorial modification, then there is pull-back map

f∗ : N1(X ′) → N1(X)

which sends Mov(X ′) and Eff(X ′) isomorphically
onto Mov(X) and Eff(X), respectively. In particu-
lar, we have f∗(Nef(X ′)) ⊂ Mov(X).
The previous paragraph makes explicit the impor-
tance in birational geometry of the cones defined ear-
lier in this section. The next definition will restrict
our study to spaces whose birational geometry is en-
coded in finitely many of such cones.

Definition 0.7. [HK00, Definition 1.10] A normal
projective Q-factorial variety X is called a Mori

dream space if the following conditions hold:

- Pic(X)⊗Q = N1(X)⊗Q,

- Nef (X) is generated by the classes of finitely
many semi-ample divisors, that is, divisors hav-
ing a multiple with empty base locus,
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- there is a finite collection of small Q-factorial
modifications fi : X 99K Xi such that each
Xi satisfies the second condition above and
Mov (X) =

⋃
i f∗

i (Nef (Xi)).

The collection of all faces of all cones f∗
i (Nef (Xi)) in

Definition 0.7 forms a wall-and-chamber decomposi-
tion of Mov(X). If two maximal cones of this fan, say
f∗
i (Nef (Xi)) and f∗

j (Nef (Xj)), meet along a facet,
then there exist a normal projective variety Y , small
birational morphisms hi : Xi → Y and hj : Xj → Y
of relative Picard rank one, and a small modifica-
tion ϕ : Xi 99K Xj such that hj ◦ ϕ = hi. The fan
structure on Mov(X) can be extended to a fan sup-
ported on Eff(X) as follows. We refer the reader to
[HK00, Proposition 1.11] and [Oka16, Section 2.2] for
details and Box 3 for an example.

Definition 0.8. Let X be a Mori dream space. A
wall-and-chamber decomposition of the effective cone
Eff(X), called the Mori chamber decomposition and
denoted MCD(X), is described as follows. There
are finitely many birational contractions from X to
Mori dream spaces, denoted by gi : X 99K Yi. The
maximal cones C of the MCD(X) are of the form:
Ci = g∗i

(
Nef(Yi)

)
∗ R≥0 Exc(gi), where Exc(gi) is

the exceptional locus of gi. Here A ∗ B denotes the
join of the cones A and B. We call Ci a maximal

chamber of Eff(X). We thus have Eff(X) =
⋃

j Cj .

The importance of the previous definition is that it
tells us precisely how the cones in N1(X)R defined
earlier encode birational information of a Mori dream
space X . For one thing, it tells us the behavior of such
cones when X undergoes a Q-factorial modification.

Box 3: the Mori chamber
decomposition

We worked out explicitly the Mori chamber
decomposition of the blow-up of Pn at two
points X = Blp,qP

n in Boxes 1 and 2. The
following picture is a two dimensional cross-
section of Eff(X) displaying its Mori chamber
decomposition:

Ep Hp,q

Eq

H

Hp

Hq

The divisors H,Hp, Hq, Hp,q generate
Mov(X), and H,Hp, Hq generate Nef(X).
The chamber delimited by H,Hq, Ep corre-
sponds to the contraction of Ep, similarly
the chamber delimited by H,Hp, Eq corre-
sponds to the contraction of Eq, and chamber
delimited by H,Ep, Eq corresponds to the
contraction of both Ep and Eq.
In the case n ≥ 3, then X admits only one
small Q-factorial modification X ′ correspond-
ing to the chamber delimited by Hp, Hq, Hp,q.
In what follows (on this and the following
page), we will investigate the geometry of X ′.
Consider a divisor lying on the wall delimited
by Hp, Hq, for instance D = Hp +Hq = 2H−
Ep − Eq and let L be the strict transform of
the line through p and q. Then D ·L = 0 and
the linear system of quadrics in Pn through
p and q induces a morphism hD : X → Y
contracting L to a point.
On the other hand, a divisor in the maximal
chamber delimited by Hp, Hq, Hp,q must be
ample on X ′. We can write such a divisor as
aHp+bHq+cHp,q with a, b, c > 0 and observe
that (aHp + bHq + cHp,q) · L = −c < 0.
Note that the curve L prevents divisors in the
chamber 〈Hp, Hq, Hp,q〉 from being ample.
Let g : W → X be the blow-up of X along
L with exceptional divisor EL ⊂ W . Observe
that EL is a Pn−2-bundle over L.
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There is a morphism g′ : W → X ′ contracting
EL, in the direction of L, onto a subvariety
Z ⊂ X ′ such that Z ∼= Pn−2. Consider the di-
visor D′ ≡ Hp+Hq+Hp,q ≡ 3H−2Ep−2Eq.
The linear system of D′ induces a rational
map φD′ : X 99K X ′, and we have the fol-
lowing commutative diagram

W

X X ′

Y
hD h

ϕD′

g g′

where h : X ′ → Y is a small modification
contracting Z ⊂ X ′ to hD(L). The rational
map φD′ : X 99K X ′ is an isomorphism be-
tween X \ L and X ′ \ Z and replaces L with
the variety Z which is covered by curves hav-
ing non-negative intersection with all divisors
in the chamber 〈Hp, Hq, Hp,q〉. Concretely, in
the case n = 3 for instance, we can fix homoge-
neous coordinates [x : y : z : w] on P3, assume
that p = [1 : 0 : 0 : 0], q = [0 : 0 : 0 : 1], and
consider the rational maps

α : P3
99K P7

defined by α([x : y : z : w]) = [xy : xz : xw :
y2 : yz : yw : z2 : zw], that is induced by the
quadrics of P3 passing through p and q, and

β : P3
99K P11

defined by β([x : y : z : w]) = [xy2 : xz2 :
xyz : xyw : xzw : y3 : y2z : y2w : yz2 : yzw :
z3, z2w], that is induced by the cubics of P3

having at least double points at p and q. Then
Y is the closure of the image of α and X ′ is
the closure of the image of β.
Let us give a geometric description of X ′. Let
Π ⊂ X be the strict transform of a 2-plane
through the line pq. The plane Π is contracted
to a point by the map πHp,q

: X 99K Pn−2

induced by Hp,q. Indeed, πHp,q
is induced by

the linear projection Pn
99K Pn−2 with center

pq. Observe that a divisor in the linear system
of D′ has a base component when restricted
to Π; namely the curve L.

Therefore, φD′|Π is the rational map induced
by the linear system of conics through p and
q, hence its image is a smooth quadric surface
QΠ

∼= P1 × P1. The quadric QΠ intersects
Z at a point. The morphism π̃Hp,q

: X ′
99K

Pn−2, induced by the strict transform of Hp,q

on X ′, contracts QΠ to the point πHp,q
(Π) and

maps Z isomorphically onto Pn−2. We have
the following commutative diagram

X X ′

Pn−2

πHp,q π̃Hp,q

ϕD′

and X ′ has a structure of (P1 × P1)-bundle
over Pn−2.
Summing up, the birational model of X cor-
responding to the chamber 〈Hp, Hq, Hp,q〉 is a
quadric bundle over Pn−2 and, as we already
noticed, the other chambers 〈H,Hp, Eq〉,
〈H,Hq, Ep〉 and 〈H,Ep, Eq〉 corresponds re-
spectively to P3 blown-up at q, P3 blown-up
at p and P3. The chamber 〈H,Hp, Hq〉 corre-
sponds to X itself.

Birational twin varieties

Our aim in this section is to study the weak Lef-
schetz principle in the context of birational geome-
try. In other words, if we consider two varieties X,Y
equipped with an embedding i : Y →֒ X , then we ask
about the objects encoding birational information of
Y which are fully determined by X . Such objects
may include effective and nef cones, or finer informa-
tion such as the Mori chamber decomposition. The
following definition focuses on two possible forms of
the weak Lefschetz principle in this context. They
were introduced and explored in [LHM20], [LMR20].

Definition 0.9. Let X,Y be Q-factorial projective
varieties and i : Y →֒ X be an embedding. These
varieties are said to be Lefschetz divisorially equiva-

lent if the pull-back i∗ : Pic(X) → Pic(Y ) induces an
isomorphism such that

i∗ Eff(X) = Eff(Y ), i∗ Mov(X) = Mov(Y ),

i∗ Nef(X) = Nef(Y ).
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We say that X and Y are birational twins if they are
Lefschetz divisorially equivalent Mori dream spaces
and in addition i∗ MCD(X) = MCD(Y ).

Example 0.10. Consider a linear subspace Pk ⊂ Pn

passing through the points p, q. Let Y ⊂ X =
Blp,qP

n be the strict transform of Pk in X . Then
Y is isomorphic to the blow-up of Pk at two points,
and via the embedding i : Y →֒ X all the conditions
of Definition 0.9 are satisfied when n, k > 1. In other
words, X and Y are birational twins.

The Grothendieck-Lefschetz theorem implies that a
smooth variety X of Picard rank one and dimension
at least four is Lefschetz divisorially equivalent to any
of its effective ample divisors. If the rank of the Pi-
card group is higher than 1, then B. Hassett, H-W.
Lin and C-L. Wang [HLW02] exhibited an example of
a variety X with a divisor D such that the inclusion
D →֒ X induces an isomorphism of Picard groups but
does not preserve the nef cone; hence, D and X are
not Lefschetz divisorially equivalent. In other words,
the weak Lefschetz principle fails for the Nef cone in
this example.
In general, we do not know a classification of the vari-
eties that admit a subvariety which is birational twin
to it nor do we know of natural conditions ensuring
that varieties X ⊆ Y are birational twins. There are
examples where the natural choice fails. However,
in the next section we exhibit a series of examples
for which the ample cone, the nef cone and even the
Mori chamber decomposition satisfy the weak Lef-
schetz principle.

Examples: complete quadrics and

collineations

Recently in [LH15, Mas18, Mas20, LHM20] the bira-
tional geometry of classical spaces, called spaces of
complete forms, have been studied from the perspec-
tive of Definition 0.9. We finish up the article by
mentioning some of the ingredients of such a study.
Let V be a K-vector space of dimension n + 1 over
an algebraically closed field K of characteristic zero.
We will denote by X (n) and Q(n) the spaces of com-
plete collineations and complete quadrics of V , re-
spectively. These spaces are very particular com-
pactifications of the spaces of full rank linear endo-
morphisms and full-rank symmetric linear endomor-
phisms of V , respectively.
In [Vai82], [Vai84], I. Vainsencher showed that these
spaces can be understood as sequences of blow-ups

of the projective spaces parametrizing (n + 1) ×
(n+ 1) matrices modulo scalars along the subvariety
parametrizing rank one matrices and the strict trans-
forms of their secant varieties in order of increasing
dimension.

Recall that given an irreducible and reduced non-
degenerate variety X ⊂ PN , and a positive integer
h ≤ N , the h-secant variety Sech(X) of X is the sub-
variety of PN obtained as the closure of the union
of all (h − 1)-planes spanned by h general points
of X . Spaces of matrices and symmetric matrices
admit a natural stratification dictated by the rank.
Observe that a general point of the h-secant variety
of a Segre, or a Veronese, corresponds to a matrix
of rank h. More precisely, let PN be the projective
space parametrizing (n+ 1)× (n+ 1) matrices mod-
ulo scalars, PN+ the subspace of symmetric matri-
ces, S ⊂ PN the Segre variety, and V ⊂ PN+ the
Veronese variety. Since Sech(V) = Sech(S) ∩ PN+ ,
the natural inclusion PN+ →֒ PN lifts to an embed-
ding i : Q(n) →֒ X (n).

We finish up by citing our contribution to the vast
realm of Lefschetz-type theorems: the spaces of com-
plete quadrics and complete collineations are Lef-
schetz divisorially equivalent, for all n > 1, via the
embedding i : Q(n) →֒ X (n) [LHM20, Theorem A].
Furthermore, in the case of complete quadric sur-
faces, we have that Q(3) and X (3) are birational
twins [LHM20, Theorem B].

Example 0.11. The space X (3) is the blow-up of
the projective space P15 along the Segre variety S ∼=
P3 × P3 ⊂ P15, and also along the strict transform
of Sec2(S). We will denote by H the strict trans-
form of a general hyperplane of P15 and by E1, E2

the exceptional divisors over S and Sec2(S) respec-
tively. Similarly, Q(3) is the blow-up of the projec-
tive space P9 along the Veronese variety V ⊂ P9, and
also along the strict transform of Sec2(V). We will
denote by H+, E+

1 , E+

2 the divisors on Q(3) corre-
sponding to the strict transform of a general hyper-
plane of P9 and the exceptional divisors over V and
Sec2(V) respectively. The Mori chamber decompo-
sition MCD(X (3)) is displayed in the following two
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dimensional cross-section of Eff(X (3)):

E1 E3

E2

D2

H D3

DM

where DM ≡ 6H − 3E1 − 2E2, D2 ≡ 2H −E1, D3 ≡
3H − 2E1 − E2. Here, E3 ≡ 4H − 3E1 − 2E2 is the
class of the strict transform of Sec3(S). The movable
cone Mov(X (3)) is generated by 〈H,D2, D3, DM 〉.
The spaces X (3) and Q(3) are birational twins.
Hence, the Mori chamber decomposition MCD(Q(3))
is obtained from MCD(X (3)) above by simply replac-
ing H,E1, E2 with H+, E+

1 , E+

2 .
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