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We present a new isocurvature mode present in scalar-tensor theories of grav-
ity that corresponds to a regular growing solution in which the energy of the
relativistic degrees of freedom and the scalar field that regulates the gravita-
tional strength compensate during the radiation dominated epoch on scales
much larger than the Hubble radius. We study this isocurvature mode and
its impact on anisotropies of the cosmic microwave background for the sim-
plest scalar-tensor theory, i.e. the extended Jordan-Brans-Dicke gravity, in
which the scalar field also drives the acceleration of the Universe. We use
Planck data to constrain the amplitude of this isocurvature mode in the case
of fixed correlation with the adiabatic mode and we show how this mode
could be generated in a simple two field inflation model.

Keywords: Cosmology, Cosmic Microwave Background, Early Universe,
Modified Gravity

1. Introduction

Since its discovery with the analysis of SNIa light curve of the Supernova
Cosmology Project [1] and High-Z Supernova Search Team [2], the accelera-
tion of the Universe at z ∼ 1 has been confirmed by a host of cosmological
observations in the last 20 years. A cosmological constant Λ, which is at the
core of the minimal concordance cosmological ΛCDM model in agreement
with observations, is the simplest explanation of the recent acceleration of
the Universe, but several alternatives have been proposed either replacing Λ
by a dynamical component or modifying Einstein gravity (see [3, 4, 5] for
reviews on dark energy/modified gravity).

If a dynamical component as quintessence, which varies in time and space,
drives the Universe into acceleration instead of Λ [6, 7], not only the homo-
geneous cosmology is modified, also its fluctuations cannot be neglected and
their behaviour can help in distinguishing structure formation in different
theoretical models. This dynamical component can, in combination with the
other cosmic fluids (radiation, baryons, cold dark matter, neutrinos), lead
not only to adiabatic curvature perturbations, but to a mixture which in-
cludes an isocurvature component. Isocurvature perturbations appear when
the relative energy density and pressure perturbations of the different fluid
species compensate to leave the overall curvature perturbations unchanged
for scales much larger than the Hubble radius.

In the case of quintessence, it was found that its fluctuations are very close
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to be adiabatic during a tracking regime in which the parameter of state of
quintessence mimics the one of the component dominating the total energy
density of the Universe [8]. In the case of thawing quintessence models, in
which a tracking regime is absent, isocurvature quintessence fluctuations are
instead allowed [8, 9]. From the phenomenological point of view, a mixture
of curvature and quintessence isocurvature perturbations is an interesting
explanation of the low amplitude of the quadrupole and more in general of
the low-` anomaly of the cosmic microwave background (CMB henceforth)
anisotropies pattern [9, 10].

In this paper we study a new isocurvature mode which is present in scalar-
tensor theories of gravity, in which the scalar field responsible for the accel-
eration of the Universe also regulates the gravitational strength through its
non minimal coupling to gravity [11, 12, 13, 14, 15, 16]. These models are
also known as extended quintessence [11]. We will study the effect of this new
isocurvature mode on CMB anisotropies and show that this can be generi-
cally excited during inflation with an amplitude allowed by Planck data.

2. The model

We consider the simplest scalar-tensor gravity theory, in the original Jor-
dan frame, describing the late time Universe:

S =

∫
d4x
√−g

[γσ2R

2
− gµν

2
∂µσ∂νσ − V (σ) + Lm

]
(1)

where Lm denotes the matter content (baryon, CDM, photons, neutrinos), σ
is the Jordan-Brans-Dicke (JBD) scalar field whose equation of motion is:

σ̈ + 3Hσ̇ +
σ̇2

σ
+

σ4

(1 + 6γ)

( V
σ4

)
,σ

=

∑
i(ρi − 3pi)

(1 + 6γ)σ
(2)

Note that the above induced gravity Lagrangian can be recast in a extended
JBD theory of gravity [17] by a redefinition of the scalar field φ = γσ2

and ωBD = (4γ)−1. We will consider the case of a non-tracking potential
as V (σ) ∝ σ4 [18, 19, 20] in the following (see [21] for other monomial
potentials). The background cosmological evolution is displayed in Fig. 1:
deep in the radiation era, σ is nearly frozen as demonstrated by analytic
methods [22, 20]; during the subsequent matter dominated era, σ is driven
by non-relativistic matter to larger values. These two stages of evolution
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Figure 1: Example of an evolution for σ/σ0 (left panel) and Ωi (right panel) as function
of a for different choices of γ for a quartic potential. The value σ0 of the scalar field at
present is fixed consistently with the Cavendish-type measurement of the gravitational
constant G = 6.67× 10−8 cm3 g−1 s−2: γσ2

0 = 1
8πG

1+8γ
1+6γ .

are quite model independent for σ with a very small effective mass and a
coupling γσ2R: the potential V (σ) kicks in only in a third stage at recent
times determining the rate of the accelerated expansion [23, 24] (see Fig. 1).
Following Ref. [15], we also plot the effective energy density fractions, as
defined in Eq. (2.5) of Ref. [25], in the right panel of Fig. 1.

The evolution of linear perturbations in the adiabatic initial conditions
has been considered for the most recent constraints on this class of scalar-
tensor theories [25, 21]. The so-called adiabatic initial condition [26] are
regular solution to the Boltzmann, Klein-Gordon and Einstein equations in
scalar-tensor gravity characterized by a constant curvature perturbation for
scales much larger the Hubble radius during the radiation dominated epoch.

In this paper we wish to present the original result for a more general
initial condition which include a mixture of the adiabatic and a new isocur-
vature solution between the relativistic degrees of freedom and the scalar
field. The latter is a new solution which is obviously absent in ΛCDM and is
an example of the generic new independent growing solution within scalar-
tensor theories of gravity.
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3. The initial conditions

In the following we use the synchronous gauge for metric fluctuations
(see Eqs. (1-4) of Ref. [26]) and we denote by δi the energy density con-
trasts, θi = ıkjv

j
i the velocity potentials and σν the neutrino anisotropic

pressure. The indices i = b, c, γ, ν denote baryons, CDM, photons, and neu-
trinos respectively. The scalar field fluctuation is δσ. The perturbed Einstein
equations are given by:

k2η − 1

2
Hh′ = −a

2δρ̃

2
, (3)

k2η′ =
a2(ρ̃+ P̃ )θ̃

2
, (4)

h′′ + 2Hh′ − 2k2η = −3a2δP̃ , (5)

(h′′ + 6η′′) + 2H(h′ + 6η′)− 2k2η = −3a2(ρ̃+ P̃ )σ̃, (6)

where

δρ̃ ≡δρm
γσ2

+
h′σ′

a2σ
− 2

a2

{
δσ′

σ

(
H− σ′

2γσ

)
+

+
δσ

σ

[
a2ρm
γσ2

+
σ′2

2γσ2
+
a2

γσ

(
V

σ
− V,σ

2

)
− 3Hσ′

σ
+ k2

]}
,

(ρ̃+ P̃ )θ̃ ≡ (ρm + Pm)θm
γσ2

+
2k2

a2

{
δσ

σ

[
σ′

2γσ
(1 + 2γ)−H

]
+
δσ′

σ

}
,

δP̃ ≡ 1

(1 + 6γ)σ2

(
2δρm +

δPm
γ

)
− 1

3a2

{
3δσ′

σ

(
2H− σ′

γσ

)
+

+
δσ

σ

[
6a2Pm
γσ2

+
12a2(ρm − 3Pm)

(1 + 6γ)σ2
+

3σ′

σ

(
σ′

γσ
− 2H

)
+ 2k2+

+
6a2

(1 + 6γ)

(
V,σσ +

V,σ
2γσ

(1− 4γ)− V

γσ2
(1− 2γ)

)]
+
h′σ′

σ

}
,

(ρ̃+ P̃ )σ̃ ≡ (ρm + Pm)σm
γσ2

+
1

3a2

[
4k2δσ

σ
+ 2(h′ + 6η′)

σ′

σ

]
. (7)
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Also, the perturbed Klein-Gordon equation is:

δσ′′ = −2δσ′
(
H +

σ′

σ

)
− δσ

[
k2 − σ′2

σ2
+
a2(ρm − 3Pm)

(1 + 6γ)σ2
+

+
a2

(1 + 6γ)

(
V,σσ +

4V

σ2
− 4V,σ

σ

)
+
a2(δρm − 3δPm)

(1 + 6γ)σ
− h′σ′

2

]
. (8)

The adiabatic plus the new isocurvature solution, in the background con-
sidered, is given by:

δγ = δν = C

[
−2

3
k2τ 2 +

2ω

15
k2τ 3

]
+D

[
− 1− 2ω

3
τ +

3(15γ + 2)ω2 + 4k2

24
τ 2
]
,

θγ = C
[
− k4τ 3

36
+
ω(5(1 + 6γ)Rb +Rγ)

240Rγ

k4τ 4]

+D
[
− k2

4
τ +

ω

48

(
9(1 + 6γ)Rb

Rγ

− 4

)
k2τ 2

]
,

δb = C
[
− k2

2
τ 2 +

ω

10
k2τ 3

]
+D

[
− ω

2
τ +

1

8

(
3(15γ + 2)ω2

4k
+ k

)
kτ 2
]
,

δc = C
[
− k2

2
τ 2 +

ω

10
k2τ 3

]
+D

[
− 1

2
ωτ +

3

32
(15γ + 2)ω2τ 2

]
,

δν = C
[
− 2

3
k2τ 2 +

2

15
k2τ 3ω

]
+D

[
− 1− 2ω

3
τ +

3(15γ + 2)ω2 + 4k2

24
τ 2
]
,

θν = C
[
− (4Rν + 23)

18(4Rν + 15)
k4τ 3 +

ω (8R2
ν + 60γ(5− 4Rν) + 50Rν + 275)

120(2Rν + 15)(4Rν + 15)
k4τ 4

]
+D

[
− 1

4
k2τ − 1

12
ωk2τ 2

]
,

σν = C
[ 4k2τ 2

3(4Rν + 15)
+

(1 + 6γ)(4Rν − 5)ωk2τ 3

3(4Rν + 15)(2Rν + 15)

]
+D

[ k2τ 2

6(4Rν + 15)
− 2ω(1 + 6γ)(Rν + 5)k2τ 3

3(2Rν + 15)(4Rν + 15)

]
,

h = C
[
k2τ 2 − 1

5
ωk2τ 3

]
+D

[
ωτ − 3

16
(15γ + 2)ω2τ 2

]
,
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η = C
[
2− (4Rν + 5)

6(4Rν + 15)
k2τ 2

]
+D

[
− ω

6
τ +

16k2(Rν + 5) + 3(15γ + 2)(4Rν + 15)ω2

96(4Rν + 15)
τ 2
]

δσ

σi
= C

[
− 1

4
γωk2τ 3 +

γω2

40
(4 + 15γ)k2τ 4

]
+D

[
− 1

2
+

3

4
γωτ

]
, (9)

where ω ≡ ρmat0√
3γρrad0(1+6γ)σi

and σi is the value of σ deep in the radiation era.

In the above equations C (D) encodes the primordial power spectrum for
curvature (isocurvature) perturbations.

This new mode is present in scalar-tensor theories of gravity and corre-
sponds to a regular growing solution in which the energy densities of the
relativistic degrees of freedom and the scalar field compensate at leading
order on scales much larger than the Hubble radius, as can be seen by insert-
ing the new solutions for δγ , δν and δσ in Eq. (3). This new mode gives a
vanishing contribution to the gauge-invariant curvature perturbation in the
comoving gauge R [27] and therefore can be accounted as an isocurvature.
To complete the characterization of this new isocurvature mode as done for
Einstein gravity [28], we note that the Newtonian potentials, as defined in

[26], are given at leading order by Ψ = − (Rν+5)
(4Rν+15)

and Φ = 2(Rν+5)
(4Rν+15)

.

4. Impact on CMB anisotropies

In order to derive the predictions for the CMB anisotropy angular power
spectra we have used an extension to the publicly available Einstein-Boltzmann
code CLASS 1 [29, 30], called CLASSig [25]. CLASSig has been developed
to derive the predictions for cosmological observables in induced gravity,
and more in general scalar-tensor theories, solving for the perturbations but
also for the background in order to derive the initial scalar field parameters
which provide the cosmology in agreement with the measurements of the
gravitational constant in laboratory Cavendish-type experiments. CLASSig
has been modified to include the initial conditions for the new isocurvature
mode presented. In Fig. 2 we show the comparison of the new mode with
the adiabatic and standard isocurvature modes in the ΛCDM model within
Einstein gravity. Fig. 2 also shows the weak dependence of the new isocur-
vature mode on γ at least for the small values consistent with the current

1www.class-code.net
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cosmological 95%CL upper bound γ . 0.75× 10−3 [21] and for Solar System
constraints γ . 0.6× 10−5 [31] .

The impact of a mixture of curvature and the new isocurvature initial
conditions admitting a non-vanishing correlation θ on CMB anisotropies de-
fined as [32] C` = CADI

` + f 2
ISOC

ISO
` + 2fISO cos θ CCORR

` is displayed in Fig. 3
(fISO being the relative fraction of isocurvature). Overall, the effect of this
new isocurvature mode seems larger and on a wider range of multipoles than
the quintessence isocurvature mode in Einstein gravity studied in [9].

5. Comparison with data

. We now present the constraints on the new isocurvature amplitude
with Planck data. Since the effect of isocurvature perturbations on the CMB
anisotropy power spectra does not depend significantly on γ for γ . 10−3

(see Fig. 2), we fix γ = 5 × 10−4 to contain the computational cost of
our investigation. Such a value is either compatible with current cosmologi-
cal observations [25, 21] and conservatively close to the values tested in the
comparison of Einstein-Boltzmann codes dedicated to JBD theories reported
in [33]. We consider separately the three cases of correlation between adia-
batic and isocurvature perturbation cos θ = −1, 0, 1 as in [34]. As data we
consider Planck 2015 high-` temperature likelihood at ` ≥ 30 in combination
with the joint temperature-polarization likelihood for 2 ≤ ` < 30 and the
Planck lensing likelihood [35, 36]. To speed up the likelihood evaluation we
use the foreground marginalized PlikLite likelihood at high ` which has been
shown in [35] to be in good agreement with minimal extensions of the ΛCDM
model within Einstein gravity. We have also explicitly checked that we can
reproduce with PlikLite the constraints obtained with the full Planck high-`
temperature likelihood in [21].

The modified CLASSig which includes the general initial conditions has
been connected to the publicly available code Monte Python2 [37, 38]
to compute the Bayesian probability distribution of cosmological parame-
ters. We vary the baryon density ωb = Ωbh

2, the cold dark matter den-
sity ωc = Ωch

2 (with h being H0/100km s−1Mpc−1), the reionisation optical
depth τopt, the Hubble parameter H0 at present time, ln(1010AS), nS and the
isocurvature fraction fISO with a flat prior [0,0.8]. We sample the posterior

2https://github.com/brinckmann/montepython public
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Figure 2: CMB anisotropy angular power spectra in temperature, solid lines, and E-mode
polarization, dashed lines. The black curve is the adiabatic case, thin curves represent
the three standard ΛCDM isocurvature modes and the thick curve represent the new
isocurvature mode. In order to compare the spectrum shapes we have assumed equal
amplitude between isocurvatures and adiabatic mode, i.e. fISO = 1. Note that blue and
red lines are superimposed.
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Figure 3: CMB anisotropy angular power spectra in temperature, solid lines, and E-
mode polarization, dashed lines, for the three different possibility of correlation between
isocurvature and adiabatic modes with fISO = 0.5 and nISO = nADI.
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using the Metropolis-Hastings algorithm [39] and imposing a Gelman-Rubin
convergence criterion [40] of R− 1 < 0.02.

We find no evidence at a statistical significant level for this new isocurva-
ture mode. The 95% CL bounds from the MCMC exploration are fISO < 0.07
for the fully anti-correlated case cos θ = −1, fISO < 0.12 for the fully cor-
related case cos θ = 1 and fISO < 0.31 for the uncorrelated case θ = π/2.
These allowed abundances are slightly larger than those of the known isocur-
vature modes in Einstein gravity 3, although scale similarly with the degree
of correlation [34].

6. Isocurvature perturbations in the effective Newton’s constant
from inflation.

We now show that the amplitude of the new isocurvature mode in δσ
compatible with current data could be easily obtained in minimal inflationary
models within scalar-tensor gravity. We consider a two-field dynamics in
which the scalar field σ ≡ Φ2 responsible for the late-time acceleration was
present during the inflationary stage driven by the inflaton φ ≡ Φ1:

S =

∫
d4x
√−g

[γσ2R

2
− gµν

2
∂µΦi∂νΦi − V (φ, σ)

]
, (10)

where the indices i = 1, 2 are meant to be summed and V (φ, σ) = Vinfl(φ) +
V (σ).

Since V (σ0)/(3γσ2
0H

2
0 ) ∼ 0.7, σ is effectively massless during inflation.

We assume that after inflation φ decays in ordinary matter and dark matter,
which are coupled to σ only gravitationally through the term γRσ2. Once
the Universe is thermalized, the evolution during the radiation and matter
dominated era matches with what previously described for the background
and perturbations: indeed, isocurvature perturbations in σ are nearly decou-
pled from curvature perturbations during the radiation dominated period in
which σ is frozen.

The two field dynamics in Eq. (10) and the corresponding generation
of curvature and isocurvature fluctuations have been previously studied [41,
42, 43, 44, 45] either in the original Jordan frame or in the mathematically

3Note that the relation β =
f2
ISO

1+f2
ISO

between the isocurvature fraction β in [34] and fISO

holds.
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equivalent Einstein frame. Since in general curvature and isocurvature per-
turbations are not invariant under conformal transformations [46], we work
within the original frame in Eq. (1) consistently with the late time cosmology
previously described. Under the assumption that σ is subdominant during
inflation, we find to lowest order in γ and in the slow-roll parameters the
isocurvature fraction on scale much larger than the Hubble radius [47]:

PS(k∗)

PR(k∗)
' sin2 ∆ e(ns−niso)(N−N∗), (11)

where ns (niso) is the tilt of curvature (isocurvature) perturbations, N∗ is the
number of e-folds to the end of inflation of the pivot scale k∗ and sin2 ∆ is
the isocurvature relative contribution at Hubble crossing. By considering the
scalar tilt consistent with Planck data we use (nS = 0.968± 0.06 at 68% CL
[34]) and [40, 70] as a range for N∗, we find that the isocurvature fraction at
the end of inflation in Eq. (11) can be of the same order of magnitude of the
Planck upper bound we obtain.

7. Conclusions

On concluding, we have presented a new growing independent solution
in scalar-tensor gravity corresponding to an isocurvature mode between the
scalar field which determines the evolution of the effective Newton’s constant
and the relativistic degrees of freedom. We have constrained with Planck data
this new isocurvature mode when the scalar field is also responsible for the
recent acceleration of the Universe and we have shown how this mode can be
generated during inflation. It will be interesting to see how the most recent
CMB polarization data can further constrain this phenomenological aspect
of scalar tensor theories. Work in this direction is in progress.
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[25] C. Umiltà, M. Ballardini, F. Finelli and D. Paoletti, JCAP
1508 (2015) 017 doi:10.1088/1475-7516/2015/08/017 [arXiv:1507.00718
[astro-ph.CO]].

[26] C. P. Ma and E. Bertschinger, Astrophys. J. 455 (1995) 7
doi:10.1086/176550 [astro-ph/9506072].

[27] D. H. Lyth, Phys. Rev. D 31 (1985) 1792.
doi:10.1103/PhysRevD.31.1792

14

http://arxiv.org/abs/astro-ph/0005543
http://arxiv.org/abs/0710.2741
http://arxiv.org/abs/1601.03387
http://arxiv.org/abs/0906.1902
http://arxiv.org/abs/1507.00718
http://arxiv.org/abs/astro-ph/9506072


[28] M. Bucher, K. and N. Turok, Phys. Rev. D 62 (2000) 083508
doi:10.1103/PhysRevD.62.083508 [astro-ph/9904231].

[29] J. Lesgourgues, arXiv:1104.2932 [astro-ph.IM].

[30] D. Blas, J. Lesgourgues and T. Tram, JCAP 1107 (2011) 034.

[31] B. Bertotti, L. Iess and P. Tortora, Nature 425, 374 (2003).
doi:10.1038/nature01997

[32] L. Amendola, C. Gordon, D. Wands and M. Sasaki, Phys. Rev. Lett. 88
(2002) 211302 doi:10.1103/PhysRevLett.88.211302 [astro-ph/0107089].

[33] E. Bellini et al., Phys. Rev. D 97 (2018) no.2, 023520
doi:10.1103/PhysRevD.97.023520 [arXiv:1709.09135 [astro-ph.CO]].

[34] Planck Collaboration, Astron. Astrophys. 594 (2016) A20
doi:10.1051/0004-6361/201525898 [arXiv:1502.02114 [astro-ph.CO]].

[35] Planck Collaboration, Astron. Astrophys. 594 (2016) A11
doi:10.1051/0004-6361/201526926 [arXiv:1507.02704 [astro-ph.CO]].

[36] Planck Collaboration, Astron. Astrophys. 594 (2016) A15
doi:10.1051/0004-6361/201525941 [arXiv:1502.01591 [astro-ph.CO]].

[37] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, JCAP 1302
(2013) 001.

[38] T. Brinckmann and J. Lesgourgues, arXiv:1804.07261 [astro-ph.CO].

[39] W. K. Hastings, Biometrika 57 (1970) 97. doi:10.1093/biomet/57.1.97

[40] A. Gelman and D. B. Rubin, Statist. Sci. 7 (1992) 457.
doi:10.1214/ss/1177011136

[41] A. A. Starobinsky and J. Yokoyama, Proc. Fourth Workshop on General
Relativity and Gravitation eds. K. Nakao et al (Kyoto University, 1995)
381. [gr-qc/9502002].

[42] J. Garcia-Bellido and D. Wands, Phys. Rev. D 52 (1995) 6739 l
doi:10.1103/PhysRevD.52.6739 [gr-qc/9506050].

15

http://arxiv.org/abs/astro-ph/9904231
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/astro-ph/0107089
http://arxiv.org/abs/1709.09135
http://arxiv.org/abs/1502.02114
http://arxiv.org/abs/1507.02704
http://arxiv.org/abs/1502.01591
http://arxiv.org/abs/1804.07261
http://arxiv.org/abs/gr-qc/9502002
http://arxiv.org/abs/gr-qc/9506050


[43] A. A. Starobinsky, S. Tsujikawa and J. Yokoyama, Nucl. Phys. B 610
(2001) 383 doi:10.1016/S0550-3213(01)00322-4 [astro-ph/0107555].

[44] F. Di Marco, F. Finelli and R. Brandenberger, Phys. Rev. D 67 (2003)
063512 doi:10.1103/PhysRevD.67.063512 [astro-ph/0211276].

[45] F. Di Marco and F. Finelli, Phys. Rev. D 71 (2005) 123502
doi:10.1103/PhysRevD.71.123502 [astro-ph/0505198].

[46] J. White, M. Minamitsuji and M. Sasaki, JCAP 1207 (2012) 039
doi:10.1088/1475-7516/2012/07/039 [arXiv:1205.0656 [astro-ph.CO]].

[47] M. Braglia et al., in preparation (2019).

16

http://arxiv.org/abs/astro-ph/0107555
http://arxiv.org/abs/astro-ph/0211276
http://arxiv.org/abs/astro-ph/0505198
http://arxiv.org/abs/1205.0656

	1 Introduction
	2 The model
	3 The initial conditions
	4 Impact on CMB anisotropies
	5 Comparison with data
	6 Isocurvature perturbations in the effective Newton's constant from inflation.
	7 Conclusions
	8 Acknowledgements.

