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ABSTRACT Precise assessment of calcification lesions in the Aortic Root (AR) is relevant for the success
of the Transcatheter Aortic Valve Implantation (TAVI) procedure. To this end, the radiologists analyze the
Cardiac Computed Tomography (CCT) scans of patients, and detect the position and extent of the calcium
deposits. In this contribution, we develop a computationally efficient High-Performance Computing (HPC)
system to detect, segment, and quantify volumes of calcium in contrast-enhanced CCTs, embedding in a
three-step pipeline two 3D Convolutional Neural Networks (CNN) and a threshold adaptive filter. The first
step crops the images to a bounding-box around the AR keeping the original resolution, the second builds the
segmentation, and the third detects and measures the volume of the calcium lesions. Our system is trained
on high-resolution contrast-CCTs routinely planned for the TAVI manually annotated by expert radiologists,
and evaluated on a test-set of patients with different levels of calcifications. The accuracy achieved in
segmenting the AR is approximately 92% for the test-set, while the average difference of calcium lesion
volumes with respect to the radiologists measurements is about 0.49 mm3. Running on a 4X NVIDIA-
V100 and an 8X NVIDIA-A100 GPU systems, we achieve a remarkable inference throughput of 17 and 70
CCT/sec respectively, and a linear scaling of computing performance. Our contribution provides an HPC
system suitable for hospital premises installation and is able to aid radiologists in assessing the calcification
level of patients undergoing the TAVI, making this process automated, fast and more reliable.

INDEX TERMS Aortic root segmentation, calcifications assessment, contrast-enhanced CCT scans, GPU
performance analysis.

I. INTRODUCTION
The Aortic Stenosis (AS) is the most frequent valvulopathy
treated in the western world, especially in the elderly

The associate editor coordinating the review of this manuscript and

approving it for publication was Ravibabu Mulaveesala .

population, with a prevalence of 2-9% in patients older than
65 [1]. Traditional treatment of severe AS is the Aortic
Valve Replacement (AVR) by open-heart surgery, accounting
for 60-70% of valve surgeries performed in the elderly [2].
However, at least 30% of patients are not advised for AVR due
to high surgical risks related to advanced age or the presence
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of various comorbidities [3], making the Transcatheter Aortic
Valve Implantation (TAVI) more appropriate for them as it is
less invasive [4]. The TAVImust be carefully planned to avoid
issues such as the paravalvular regurgitation associated with
high mortality probability [5], [6], occurring when the bio-
prosthesis does not adhere properly to the aortic annulus due
tomultiple factors [7] among them the presence, position, and
extension of calcification lesions within the aortic root.

A reliable method to assess the calcification level of the
aortic root is the analysis of contrast-enhanced CCTs [8], [9].
To do this, delimitation of the aortic root and calcification
lesions is routinely performed manually by expert radiolo-
gists on post-contrast CCT scans, resulting in a slow and time-
consuming process prone to operator-dependent errors.

Making this process automatic is not trivial, and several
issues have to be faced. In fact, since calcium is also contained
in other internal organs, especially in bones, automatic
analysis of CCT scans requires conceptually two steps,
namely identification of the aortic root, and then of the
calcium lesions within it. Moreover, in patients undergoing
the TAVI the aortic root might be severely calcified, making
it difficult to discover the bounds. For this reason, contrast-
enhanced CCTs are usually performed to highlight the shapes
of the tissues and other organ structures. However, using a
contrast medium hampers the identification of the calcium
lesions, since the luminance of voxels with the contrast is
similar to that with low and medium levels of calcium.
Finally, while for non-contrast CCTs standard methods have
been already developed, like the Agatston score commonly
used to evaluate the coronary artery calcifications [10],
for contrast-enhanced no standard method has been yet
implemented [7].

In this work, our aim is to develop a pipeline to automate
and boost the segmentation of the aortic root, and make an
assessment of calcium lesions within it. Automatic aortic
root segmentation has several applications, among them the
evaluation of aortic valve degeneration, and automatic aortic
root geometrical measurements such as aortic valve or sino-
tubular junction dimensions. Here we focus on the quan-
tification of the calcium, post-processing the segmentations
using an adaptive filter. We do not aim to define any standard
model for calcium assessment in contrast-enhanced CCT
scans, which is out of the scope of our work, but we show
how measures done by expert radiologists can be replicated
by an automatic system.

In detail, our contribution is threefold: i) we design and
implement a pipeline to make the segmentation of the aortic
root in contrast-enhanced CCT scans, using two 3D U-Net
CNNs running on HPC multi GPU systems; ii) we evaluate
the performance of the CNNs in terms of segmentation
accuracy, computing throughput, and scalability; iii) we
validate the accuracy of the segmentations making automatic
assessment of the aortic-root calcification level using a
post-processing threshold adaptive filter, and comparing the
results with that done by expert radiologists on a set of
patients undergoing the TAVI. We underline that the success

of the latter point strongly depends on the precision of the
aortic root segmentation. Moreover, we show how small-
sized multi GPU-based HPC systems suitable to be hosted
on hospital premises can be used to routinely support the
work of radiologists in assessing the aortic root calcification
level quickly and reliably. Besides this, the results achieved in
this work in terms of throughput candidates our approach to
be devised in retrospective studies characterized by a large
amount of CCT images, and also in application scenarios
where frequent scheduled CNN model retraining is foreseen
to include new clinical cases and evidences.

The remainder of the paper is organized as follows: in
the section II we make an overview of the related works
and provide motivations for our work; in the section III we
describe our dataset and how the image slices of CCTs have
been manually annotated; in the section IV we give details
about the methodologies used to make the segmentations
through CNNs, and we describe the development of the
adaptive threshold filter to post-process them to identify the
calcium lesions; in the section V we present the results both
in terms of accuracy and computational performance, and
finally in section VI we draw our conclusions.

II. RELATED WORKS AND MOTIVATION
In the last decade, Deep Learning (DL) methods applied
to diverse imaging techniques such as ultrasounds [11],
Magnetic Resonance Imaging (MRI) [12], and CT [13],
became the most widely used approach for cardiac image
segmentation. In particular, the latter imaging technique is
preferred since it generally leads to better segmentation
accuracy ascribed to a higher image quality [14]. A revision
of the literature [13] exposed four main branches where
DL methods like Fully Connected Networks (FCN), CNNs,
and more articulated models are devised for CCT imaging:
i) cardiac substructure segmentation [15], [16], [17]; ii)
coronary artery segmentation [18], [19]; iii) aortic root
segmentation [20], [21], [22]; iv) calcium and plaque segmen-
tation in coronaries and aortic valve [23], [24], [25]. Despite
the confidence in the potentialities achievable in medical
imaging by adopting DL-assisted segmentation procedures,
there are still several challenges to address to improve the
accuracy (even with image pre- and post-processing) and
performance (i.e., images processed per second).

A. SEGMENTING THE AORTIC ROOT
The first goal of our work is to use DL to provide
segmentation of the aortic root structure, which falls in the
scope of i) and eventually iv). Previous attempts on the
same anatomical region of the heart relied on a two-step
segmentation pipeline of neural networks [26], [27]. The
first step consists of the extraction of the ROI to identify
the heart and then feeding the second pipeline stage with
images classified with a CNN [27]. Refined models use a
localization network (Spatial Configuration Net) producing
a coarse detection of the aortic landmarks and then applying
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FIGURE 1. From left to right, Axial, Coronal, and Sagittal views of the
segmentation of the aortic root. The images shown in (a) are extracted
without applying the pre-processing filter for removing artifacts (see
text), and evidence an incorrect anatomical structure segmentation since
the areas of the aortic root under the white spots are not included in the
segmentation; images in (b) show the correct segmentation achieved by
applying the pre-processing filter.

a 3D CNN like UNet for segmentation [26]. A similar
approach, although applied to ultrasound images, has been
proposed in [28].

Most of the studies performed in the literature deal with
non-contrast CCT images and consider patients affected by
a low, yet null, level of calcification of the aortic valve.
The works in [20] and [29] consider contrast-enhanced 2D
and 3D CCT images on patients eventually undergoing the
TAVI procedure (with a moderate/high level of calcification
of the aortic valve), that is the scenario we are targeting in
this work. Concerning the use of specific CNN models for,
in [27] the authors have presented a CNN-based approach for
detecting the aortic root in contrast-enhanced CTs, measured
the aortic annulus diameter, and select the valvular prosthesis
before TAVI. Meanwhile, in [20] authors have exposed an
accurate and fast method to choose the TAVI device size
by measuring the aortic annulus perimeter and area from
manually segmented annulus planes using twoU-Net models.

However, using standard DL models on our image dataset
and in general with contrast-enhanced CCT would lead
in some cases to the situation shown in Fig.1a. Large
calcified areas are not correctly picked up in the aortic root
segmentation, thus leading to an incorrect evaluation of the
anatomical structure and neglecting a large part of the calcium
for quantification. We address this challenge by applying a
filter pre-processing technique for artifact removal that will
prove beneficial in the subsequent segmentation steps and in
the overall quantification of the calcium on the aortic valve
(see Fig.1b).

B. QUANTIFYING THE CALCIUM ON THE AORTIC VALVE
The exact quantification of the calcium volume on the
aortic valve is non-trivial when contrast-enhanced CCTs are
considered. Indeed, there is a significant inherent inter- and
intra-patient opacity (luminescence) variability of the dye [7]
that hamper the development of fully-automated DLmethods
that exploit a constant luminescence threshold for calcium

extraction. This source of variation is ascribed to many
factors such as the infusion rate of the contrast, the time
elapsed between the injection and the start of the CCT exam,
and the patient body habitus [7]. They cannot be ignored
even following the guidelines on contrast usage for CCT
exams [30]. Different approaches to quantify the calcium on
the aortic valve have been proposed in literature, either using
fixed or relative threshold values concerning the contrast
medium luminescence (i.e., blood pool attenuation).

In [7], authors have measured the calcium volume score in
CT angiography (CTA) to find the most accurate threshold
to predict paravalvular regurgitation (PVR) after TAVI. They
use two fixed thresholds (i.e., 650 and 850 HU) and four
related to the luminal attenuation (LA) in the aortic annulus
(LAx1.25, LAx1.5, LA+50, LA+100) for calcium detection,
showing that with LA threshold cutoffs it is possible to
achieve a discrimination accuracy (measured with the Area
Under Curve method) between mild and severe PVR of 0.81.

In [31], authors have considered the contrast enhancement
within the left ventricular outflow tract (LVOT), with a cut-
off of 300 HU. The aortic calcium volume is measured with
three fixed thresholds (450, 850, and probe+100 HU) and
the results show that the best value (accuracy up to 70%)
depends on the contrast in the LVOT. The developed method
is not based on automated segmentation performed by DL
methods, but rather applied to manual segmentations of the
aortic valve. The authors point out that a standard reference
for calcium assessment on contrast-enhanced CT series is
currently lacking.

In [32], the authors applied commercial software to manu-
ally select the calcium elements in the CCT scan and obtain
remarkable accuracy in scoring the aortic valve calcification.
This work exposes a strong linear relationship between the
blood pool attenuation and the threshold chosen in calcium
volume quantification. Once again, this methodology is not
included in a fully automated pipeline that performs this
operation using an end-to-end approach with DL-assisted
segmentation.

Current commercial solutions always require manual input
in the segmentation and in the threshold choice, which
introduces inter-operator variability [33]. Our work goes
in the direction of providing an objective, fully repeatable,
yet systematic framework with DL methods that is com-
plemented with an adaptive filtering methodology to ease
the calcium volume quantification when large luminescence
variations between patients and within a single patient come
into play.

C. UNCOMPROMISING ACCURACY WITH PERFORMANCE
The image processing time required by DL-assisted seg-
mentation methods is usually an unexplored parameter in
clinical studies. The accuracy of the segmentation appears to
be the parameter of utmost importance in the development
of fully automated methods and in some cases this is
traded with the overall system performance. Despite some
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FIGURE 2. Steps to build segmentation of calcium lesions: (a) the 3D
Threshold tool of MITK allows to highlight of all pixels with a luminance
value equal to or greater than a threshold; (b) setting the appropriate
threshold value, the operator highlights the calcium lesions within the
aortic root; (c) application of the MITK Segmentation tool to create and
export the ground-truth mask.

works addressing the achieved segmentation time and the
required neural networks training time [27], [33], [34],
[35], [36], [37], [38], none of them, to the best of our
knowledge, neither investigate the scaling of such methods
nor studied the role of the precision used in neural networks
data representation in the context of HPC. Optimizing the
segmentation performance becomes twofold relevant: i) can
enable large volume studies considering many images from
different sources; ii) provides fast re-training of the neural
networks to improve the segmentation accuracy and calcium
quantification even daily.

In Table 1, we report the characteristics of the studies that
consider segmentation of the aorta for various applications
using either 2D or 3D DL approaches based on CNN. We do
not include in this comparison the possible pre- and post-
processing times of the images, since it can be neglected to the
overall inference time. Training time is nowadays in the range
of several hours and even days for large datasets, whereas the
inference time usually stays within one minute.

Our work investigates the impact on the training and
inference segmentation performance of different small-sized
HPC systems based on two generations of NVIDIA GPUs,
namely the V100 and the most recent A100. We analyze
the scaling in terms of GPUs adopted in the process and
show how to achieve high accuracy and performance using
different numerical precision in the DL data representation.

III. DATASET FEATURES AND IMAGING PROTOCOL
Our dataset comprises 27392 image slices corresponding
to a total of 107 annotated gated contrast-enhanced CCTs
acquired with a 256-slice scanner (Revolution CT, General
Electric, Chicago, IL, USA), with prospective gating, setting
the slice thickness at 0.625 mm, 120 kV, automatic mA,
rotation time of 0.28 seconds, DFOV at 25 cm, and detector
coverage at 160 mm. All patients have been subjected to
administration of contrast material (Omnipaque 350 mg/mL,
GE Healthcare, Chicago, IL, USA) at a rate of 5 mL/s
followed by a saline chaser. The image acquisition was
triggered after a threshold of 80HUwas reached in a region of
interest placed in the left ventricle (bolus-tracking technique).
Each CCT scan has 256 slices of 512 × 512 pixels, with
a spacing of 0.488 × 0.488 × 0.625 mm3, and the level
of calcium regions ranges from 0 to 716 mm3, located

FIGURE 3. Processing steps to segment aortic root and calcifications:
(a) The CCT image is scaled by a factor 2 along the coronal and sagittal
axes and the ROI around the aortic root is extracted (yellow bounding
box) by the U-Net1. (b) The aortic root is segmented with the U-Net2
within the ROI built by the U-Net1 on the image at full resolution. (c) The
adaptive filter is applied on the aortic root mask to detect calcification
areas (green regions). (d) The flowchart of our pipeline, where the green
boxes identify the CCTs processing steps and the blue ones the U-Nets
and filter phases.

at different places within the aortic root, including the
valve cuspids, the annulus, the sinotubular junction, and the
coronaries junctions.

CCT analysis was performed by two radiologists in con-
sensus with respectively 2 and 7 years of experience in car-
diovascular imaging, using the Medical Imaging Interaction
Toolkit (MITK), free open-source software for processing
medical images [39]. Following the same approach used
in [40], they first worked separately and, afterward, they
reviewed the segmentations together. In case of disagreement,
the consensus between the two is used as ground truth. The
aortic root segmentation was built by making 3-4 contour
planes along the axial, sagittal, and coronal anatomical axes,
from the sinotubular junction to the aortic annulus. Then, a
3D interpolation has been applied to reconstruct the entire
volume. To segment the calcification regions, the slices were
inspected one by one, setting an appropriate threshold value
to select the calcification voxels, as described in Fig. 2. Due
to the differences in voxel luminance, the reference threshold
is specific for each image [7]; for example, in our dataset, the
mean reference threshold is 667±127 HU. Once the calcium
regions have been segmented, the corresponding volume has
been measured using the Statistics tool of MITK.

IV. PIPELINE DESIGN FOR CALCIUM QUANTIFICATION
Wepropose a three-step pipeline as shown in Fig. 3. It is based
on two CNN models to segment the aortic root, named U-
Net1 and U-Net2, and on an adaptive threshold filter to detect
the calcium regions. The entire process is complemented with
image pre-processing, down-scaling, and cropping steps to
increase the segmentation accuracy. The U-Net1 extracts the
region of interest (ROI) around the aortic root (Fig.3a) in low
resolution obtained by scaling original images by a factor
2 along the coronal and sagittal axes, in order to fit images
into the memory available on the GPUs used for running our
models. This step gives, as a result, a bounding-box mask
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TABLE 1. Summary of the accuracy and performance characteristics in state-of-the-art applications for aorta segmentation.

that is used to crop the original image to a volume of 224 ×

256 × 256 voxels. Such a choice keeps the context around
the aortic root as large as possible to help the second CNN
detect it while fitting both the size of GPU memory and
the requirements of the next CNN architecture. The U-Net2
(Fig.3-b) takes as input the cropped images at full resolution
and returns a volumemask corresponding to the segmentation
of the aortic root. The last step (Fig.3c) finds the calcification
lesions within the region of the image corresponding to the
aortic root segmented by the U-Net2. The whole flowchart
is depicted in Fig. 3d, where the green boxes represent the
preprocessing steps performed at the input of U-Ne1 and
U-Net2 and blue boxes the two U-Nets and the adaptive
threshold filter.

A. AORTIC ROOT SEGMENTATION
U-Net1 and U-Net2 are CNNs based on the U-Net model,
widely used in several studies for processing biomedical
images [20], [41]. This neural network has been developed
for image segmentation [42], with a U-shape architecture
consisting of a contractive branch aiming to capture the image
context, and an expansive branch to make precise localization
of the segmentations. In particular, we have modified and
adapted the 3DU-NetMedical CNN available at the NVIDIA
DeepLearningExamples GitHub repository to our specific
case [43]. This is an implementation of the model developed
by [44] with improvements from [45], originally designed for
the BRATS 2019 challenge to segment brain tumors.

The 3D U-Net architecture used in our work is configured
with 5 down-sampling and 5 up-sampling steps as shown
in Fig. 4. The steps in the down-sampling path consist
of two convolutional blocks, each made of a convolution,
a normalization, and an activation layer. The first block
performs a stride down-sampling reducing all the spatial
dimensions by a factor of two, while the latter consolidates
the features learned at that depth level. In the up-sampling
path, each step is made by a transposed convolution and two
convolutional blocks. The first layer up-samples by a factor
of two the spatial dimensions of the previous step, while the
last two blocks keep as input the concatenation of the outputs
of the transposed convolution and the skip connection. Skip
connections are the outputs of the down-sampling blocks
at the same depth level as the up-sampling block. They
are particularly useful in image segmentation since they
help to faithfully reconstruct the images using fine-grained
details learned in the encoder part of the network. Lastly,

FIGURE 4. Architecture of the 3D-UNet Medical CNN. It consists of 5-step
contracting and expansive paths.

the final output produced by the output block is processed
by a softmax operation that is used for voxel classification.
The model is implemented using TensorFlow [46] to
leverage GPU acceleration and Horovod [47] for distributed
learning on multi-GPU systems. Horovod is an open-source
framework that provides tools to train deep learning models
efficiently across multiple GPUs. By default, the model
runs using 32-bit floating-point numerical precision, while
mixed precision (AMP) computation, combining 16- and
32-bit operations, can be enabled to boost processing time
both during the training and inference steps. Moreover,
Accelerated Linear Algebra [48] (XLA) can be enabled to
further boost the computation of mathematical operations.
By default, the layers of the network coded using TensorFlow
are processed independently. In contrast, using the XLA
DL graph compiler, parts of the network are clustered into
sub-graphs that can be optimized and compiled, providing
performance benefits at the cost of some compilation
overhead.

U-Net1 and U-Net2 are both trained to minimize the loss
function L = (1 − Dice) + CE and validated by measuring
the Dice score on the inferences of the test set. The CE
is the Cross Entropy computed as −

∑n
i=1 ti log(pi), where

ti is the truth label and pi is the probability value for the
i − th class output by the CNN for each voxel of the image;
it gives a measure of the difference between the predicted
probability distribution and the true distribution of the data.
The Dice score is another commonly used metric in semantic
segmentation returning a value between 0 and 1, being 1when
the segmentations match the ground truths.

At the input of both CNNs, the voxel intensities are clipped
to 85% of the maximum luminance value to reduce the range
and Z-score normalized, and stored as floating point numbers
in the [0 . . . 1] range, whereas labels are one-hot encoded
for their later use in Dice or pixel-wise cross-entropy loss
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TABLE 2. Accuracy of the filters in replicating the threshold reference
value used by the radiologists to segment the calcium areas within the
aortic root.

computation. Moreover, at the inputs of the U-Net2 a custom
filter is applied to lower the luminance of the voxels in the
ROI detected by U-Net1 and remove artifacts due to severe
calcifications that may prevent the network from finding the
bounds of the aortic root.

To increase the robustness of the network to different
kinds of images, data augmentation techniques have been
applied. In our case, at each training epoch, three different
augmentations are randomly applied with a probability of
0.5 to the input images, namely random crop size, random
brightness shifting, and horizontal flip. In this way, at each
epoch the input samples are different from the previous
epoch, helping in preventing over-fitting, and artificially
increasing the number of samples processed by the CNNs.

B. DETECTION OF THE CALCIFICATION REGIONS
To segment and quantify calcifications, we have opted to
filter the voxels within the aortic root with the luminance
above a specific threshold. We developed different filters
based on both fixed and variable thresholds computed with
different algorithms, and tested them on a sample dataset of
7680 image slices of 30 CCTs randomly selected patients
with different levels of calcifications. In Table 2, we assess
for each filter the accuracy in replicating the reference
threshold value (R.Thr.) set by the radiologists to segment the
calcification regions. In detail, we report: i) the coefficient
of determination R2 to measure the goodness of the fit; this
is a statistical indicator measuring how well the reference
thresholds are replicated by the filter, based on the proportion
of the total variation of the reference values explained by
the model underlying the filter algorithm. The R2 range is
[−∞, 1], being 1 when the model perfectly fits the reference
data; ii) the values of mean, standard deviation, and range of
the absolute error of the thresholds predicted by the filter with
respect to the R.Thr.

The filters F1, F2, and F3 use a fixed threshold set respec-
tively to 600, 700, and 800 HU. In this case, the accuracy is
low since theR2 value is below zero, meaning that they are not
able to replicate the reference thresholds. Additionally, the
mean errors (94.90, 107.97, and 162.83 respectively) and the
corresponding standard deviations (96.81, 66.25 and 86.41)
are large.

To design a filter with a variable threshold, we measured
the luminance Lm on a sample cube located within the aortic
root of each patient. To this end, we first located the geometric
center (GC) point of the aortic volume (see Fig.5a), and
then constructed around it a cube of 20 voxels along each
spatial dimension corresponding to approximately a volume

FIGURE 5. (a) Position of the geometric center (red point). (b) Position of
the cube to sample the value of Lm at the sino-tubular junction.
(c) Example where the value of Lm = 597 sampled within the cube is not
high enough to avoid selection of voxels in the middle of the aortic root
where calcifications are not possible (yellow regions); the luminance of
calcification areas (green regions) is ≥ 704 HU.

of 10 mm3. The cube was then moved above the GC, near the
sinotubular junction, to avoid contact with the valve leaves
where calcification deposits may occur (see Fig.5b). In this
way, the luminance of the voxels within the cube is that of
blood and contrast medium. Furthermore, since the values of
Lm and R.Thr. are strongly correlated (the Pearson correlation
index measured with the Bivariate Correlation function is
r = 0.96 with a P-value < 0.0001), we can expect improved
results when using filters with variable thresholds computed
as a function of Lm.
The threshold for filter F4 is set to the value of Lm,

while the thresholds for filters F5 and F6 are respectively
Lm × 1.25 and Lm × 1.50, as described in [7]. However,
also in this case, none of these filters are able to accurately
replicate the reference thresholds, since theR2 values are very
low (0.52, 0,52, and −2.57, respectively), and the mean and
standard deviation of the absolute errors are large. This is
mainly due to the contrast medium that does not distribute
uniformly within the aortic root, making some spots brighter
than the maximum luminosity sampled within the cube. For
example, as shown in Fig.5c, the value of Lm alone (597 HU
in this case) is not high enough to avoid the selection of voxels
in the middle of the aortic root (yellow spots with luminance
greater than 597 HU), where we do not expect to have any
calcification, and increasing the value by a fixed factor might
bring to underestimate the calcium voxel count.

To further improve the accuracy, we have developed the
filter F7 based on adaptive thresholds computed as Lm +

k(1000 − Lm). This formula is an implicit form of a linear
regression where voxels within the region of the aortic root
with a density above the upper bound of 1000 HU are
assumed to be calcium. To this extent, the Lm needs to be
increased by a corrective value that is lower as Lm approaches
the upper limit of 1000 HU, otherwise, some areas of calcium
are not identified. This allows the exclusion of the spots of
contrast voxels within the aortic root. Applying this filter
to our sample dataset, we have found that a value of k =

0.2 is enough to exclude the selection of spurious voxels.
As reported in Table 2, the indicator values for the filter
F7 are significantly better compared to the others, being the
R2 = 0.89 and the mean absolute error of 29.58 HU with a
standard deviation of 25.81, making it the most accurate in
predicting the reference thresholds.
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FIGURE 6. Bland-Altman difference plots for calcium thresholds in HU
(a) , and calcium volume in mm3 (b). Limits of agreement are ±1.96 times
the standard deviation.

V. EXPERIMENTAL RESULTS
In this section, we discuss and assess the results achieved
in terms of precision in segmenting the aortic root, quan-
tification of the volume of calcium lesions, and computing
performance.

A. AORTIC ROOT AND CALCIFICATIONS SEGMENTATION
Both U-Net1 and U-Net2 have been trained for 1250 epochs
with a learning rate of 10−4 using the Adam optimizer.
Using 18944 image slices of 74 CCTs for the train set and
8448 image slices of 33 CCTs for the test set, we have
achieved for both CNNs a Dice score of ≈0.90. To validate
the results and to verify that no bias is present in the dataset,
we also performed a K -fold cross-validation with K = 5,
splitting the dataset into K random splits and training each
model K times, where for each round four splits are used in
turn for training and the last for testing.

Applying the filter F7 to the test set, the coefficient of
determination R2 between R.Thr. and the filter calculated
threshold is 0.94, with a mean absolute error of 26.15±21.81
HU and a range of 99 HU; regarding the volume, we get R2 =

0.97, with a mean absolute error of 13.65 ± 25.35 mm3 and
a range of 95.46 mm3. In Fig. 6 we show two Bland-
Altman plots; Fig. 6a refers to the agreement of the thresholds
measured in HU for which the mean difference is 7.55 and the
95% confidence interval is [−58.55, 73.64], while Fig. 6b to
the calcium volume measured in mm3, where the mean error
is−0.49 and the 95% confidence interval is [−57.79, 56.81].
In both cases, the agreement of the values predicted by F7
with the radiologists measures is accurate within the 95% of
the confidence interval.

B. COMPUTING PERFORMANCE
We have run our application on two small-sized HPC
systems, suitable to be installed in small data centers like
those available today in several hospitals. The first system
hosts 2X Intel Gold 6242 CPUs operating at 2.8 GHz,
equipped with 394 GB of RAM and 4 NVIDIA V100-
SXM2-32GB GPU accelerators. The latter is an NVIDIA
DGX A100 based on dual AMD Rome 7742 128-core
CPUs running at 2.25 GHz and 320Â GB of memory,
with 8 A100 GPUs. This is hosted in a standard 19 inch
blade chassis of approximately 482 mm wide, 44 mm tall
and 894 mm depth. The A100 architecture has introduced
a novel math mode dedicated to AI training, namely the
TensorFloat-32 (TF32). In this case, the numerical range is

FIGURE 7. Train latency per CCT for the different models as a function of
the number of GPUs.

the same as FP32while the precision is that of FP16, resulting
in a significant reduction in computation, memory, and
memory bandwidth requirements without harmful impacts
on prediction accuracy. This translates to an increase of
operation throughput of up to 10× or more compared to
prior V100 generation of GPUs, and up to 5× higher
performance for DL workloads [49]. By default, when
running on A100 GPUs, the TF32 numerical precision is used
unless AMPor FP32 is explicitly selected. TheDGX is hosted
in a 19 inch box of approximately 482 mm width, 264 mm
tall, and 897 mm depth.

In the following, we report the computing performance for
the U-Net2 only without a lack of generality, since similar
results have been measured also for the U-Net1.

In Fig. 7 we report for both systems the training latency per
processed CCT (256 slice images) in units of milliseconds,
achieved using up to four and eight GPUs respectively.
We run the models using floating-point numerical precision,
FP32 on the V100 and TF32 for the A100 system, and mixed
precision (AMP) with and without XLA enabled. For the
V100 system, using the FP32-based model (see Fig.7a) we
measure approximately 550 ms per CCT on one GPU. The
time decreases using multiple GPUs, reaching nearly 150 ms
per CCT with 4 GPUs, corresponding to an improvement of
about 70%. Enabling XLA further improves the processing
time by an additional 20% regardless of the number of GPUs
(see Fig.7b). By using the AMP precision, see Fig. 7c, the
time decreases of ≈40% compared to the FP32, and ≈30%
compared to FP32 with XLA, with an average execution-time
of 306 ms using 1 GPU and 87 ms with 4 GPUs. Lastly,
by combining AMP and XLA (see Fig. 7d), the processing
time further decreases by ≈30% reaching ≈60 ms per CCT
using 4 GPUs, and running 9× faster than the baseline (FP32-
based model on 1 GPU). For the A100 system we have a
similar behavior, achieving a lower training time. Using AMP
with XLA enabled, we measure on average ≈55 ms per CCT
on 1 GPU, while using 8 GPUs the training time decreases by
85% reaching approximately 8.65 ms per image.

Fig.8 shows the throughput and the scalability achieved
during the training process. As we see, the AMP model
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FIGURE 8. Average train throughput (a) and corresponding scaling (b)
achieved with different precisions and optimizations as a function of the
number of GPUs.

with XLA enabled performs significantly better than the
others, reaching a remarkable throughput of ≈17 CCT/sec
and ≈120 CCT/sec on the V100 and the A100 system,
respectively. The scaling achieved is close to the ideal curve
on both systems. In particular, on the V100 system, the
FP32-based model scales better with and without the XLA
enabled, while the AMP models perform somewhat worse
due to the additional operations that each GPU needs to
convert the computational graph to mixed precision. Addi-
tionally, the overheads for handling multi-GPU computation
dominate the CCT processing time with a negative impact on
the scaling. Similar behavior is observed for the A100 system,
achieving a peak throughput of ≈120 CCT per second using
all 8 GPUs.

In Fig.9 we report the inference throughput running on
one V100 and one A100 GPU. As we see, on both systems,
moving from TF32/FP32 to AMP the throughput slightly
increases, giving the best performance using the AMP
model with XLA enabled. Since, the inference can be easily
parallelized running multiple instances of the trained model
on different GPUs with different input images, running on all
available GPUs on each system, we achieve ≈17 CCT per
second on the V100 system, and ≈70 CCT per second on the
A100 system.

To assess the impact of the use of AMP and XLA
optimizations on the accuracy of the segmentation, we have
run the K -fold cross-validation using different numerical
precision, with and without XLA enabled. On the V100
system, using the FP32 the Dice score achieved is 0.915 ±

0.04 without XLA and 0.92± 0.02 with XLA enabled, while
using the AMP we get 0.915 ± 0.04 and 0.926 ± 0.02. This
shows that moving from FP32 to an AMP-based model with
and without XLA enabled we have no loss in terms of Dice

FIGURE 9. Throughput achieved for inference on one GPU with different
precisions and optimizations enabled.

FIGURE 10. Quality of Service plots obtained running 10000 image
inferences on the V100 (a) and A100 (b) systems.

score, but in terms of computing time, we run approximately
3× faster with XLA, and 2.5×without compared to the FP32
model. Similar behavior is measured on the A100 system.

Finally, in Fig.10 we report the quality of service (QoS)
plots running 10000 inferences. On both systems we see
that the time of inference is quite stable up to 99.99% of
the inference latency distribution, exposing that the GPU
inference time is largely predictable and the impact of
potential distribution outliers is negligible.

VI. CONCLUSION
We have developed an HPC computing pipeline to automate
the segmentation of the aortic root in contrast-enhancedCCTs
using CNNs and GPU accelerators to quantify calcification
volumes within it. The CNNs used achieve a Dice score
of ≈0.90, whereas the post-processing adaptive filter we
have developed agrees with the radiologists measurements
of calcification volumes with a R2 = 0.97, and a
mean error of ≈0.49 mm3. We have run our pipeline
on two small footprint multi-GPU HPC systems, and in
terms of computing performance the scaling as function
of GPUs is quite ideal, achieving an aggregate throughput
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of approximately 17 CCT/sec on the V100, and approxi-
mately 120 CCT/sec on the DGXA100 system. These results
show that it is suitable to be hosted in hospital data centers to
support radiologists in assessing the aortic root calcification
level in routine clinical activities to plan the TAVI.

In addition, having a computational fast, and accurate
system for processing CCT images can be beneficial for
many reasons. For example, to make retrospective studies and
find correlations between the calcification level of the aortic
root and with success of the TAVI procedure, it is necessary
to process hundreds or thousands of CCT scans. Also,
it might open the possibility of making (pseudo) real-time
assessments of the calcium burden volume by integrating the
prediction system in the CT scanner. Fast training is also
beneficial, for example, to re-train the models quickly on
larger datasets including new cases in the train-set each time
significant mispredictions are found. Finally, and this is a
more general comment, reducing the time to solution is also
beneficial in terms of energy to solution.

For future developments, we plan to validate our system on
a larger dataset that includes CCTs from different scanners
and use it to make retrospective studies to find correlations
between aortic root calcification and TAVI procedure failures,
as well as patients post-procedural prognosis.
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