Supporting Information

TiO₂-Mediated Visible-Light-Driven Hydrogen Evolution by Ligand-Capped Ru Nanoparticles

Nuria Romero,^a Renan Barrach Guerra,^b Laia Gil,^a Samuel Drouet,^c Ivan Salmeron-Sànchez,^a Ona Illa,^a Karine Philippot,^c Mirco Natali,^{d*} Jordi García-Antón,^{a*} Xavier Sala,^{a*}

^[a] Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain. ^[b] UNICAMP - Instituto de Química, I-102, Postal box 6154 CEP 13083-970 Cidade Universitária - Campinas, SP, Brasil.

^[c] LCC-CNRS, Université de Toulouse, CNRS, UPS, 205, route de Narbonne, F-31077 Toulouse, France.
 ^[d] Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy.

Figure S1. (a) TEM image of RuPP(2%)-TiO₂, (b) TEM image of RuPP(10%)-TiO₂.

Figure S2. EDX analysis of Ru@RuO₂PP-TiO₂

Figure S3. HRTEM of **Ru@RuO₂PP-TiO₂** at atomic resolution and Fast Fourier Transformation of the electron diffraction pattern.

Figure S4. XPS analysis of Ru@RuO₂PP-TiO₂.

Figure S5. Schematic representation of the photocatalytic setup and picture.

Figure S6. TEM and EDX analysis of Ru@RuO₂PP-ZrO₂.

Figure S7. Evolution of the unbound [RuP] along the 0.05-0.2 mM range studied.

Figure S8. Evolution of the bound RuP along the 0.05-0.2 mM range studied.

Figure S9. (a) TEM Image of Ru@RuO₂PP-TiO₂-RuP. (b) Color change from Ru@RuO₂PP-TiO₂ (left) to Ru@RuO₂PP-TiO₂-RuP (right).

Figure S10. Top: TEM of **Ru@RuO₂PP-TiO₂** + RuP at the end of photocatalytic hydrogen evolution containing free and supported **Ru@RuO₂PP** NPs. Bottom: EDX outside the TiO₂ particles.

Figure S11. Time-resolved luminescence decays with related biexponential fitting measured at 620 nm by laser flash photolysis (excitation at 532 nm) of thin films in N₂-purged aqueous solutions: (A) RuP on ZrO_2 in 0.1 M Na₂SO₄ at pH 7, (B) RuP and Ru@RuO₂PP on ZrO_2 in 0.1 M Na₂SO₄ at pH 7, and (C) RuP on ZrO_2 in 0.2 M TEOA at pH 7 (blue trace).

Figure S12. Transient absorption kinetics at 450 nm with related fitting measured by laser flash photolysis (excitation at 532 nm) of RuP on TiO_2 thin films in N₂-purged aqueous solutions containing (A) 0.1 M Na₂SO₄ at pH 7 and (B) 0.2 M TEOA at pH 7.

Figure S13. Example of calibration of the Clark electrode signal performed after one experiment by addition of 50, 100, 150, 200, 250, 300, 350 and 400 μ l of H₂. Volume to mols conversion is performed following the general gas law equation PV = nRT.

Table S1. Photocatalytic HER data of **Ru@RuO₂PP-TiO₂-RuP** and related TiO₂-supported photocatalysts. Values in bold are explicitly cited in the corresponding articles. Others are estimated from HE plots and other reported data.

Entry	Material	µmol M	SED	Cell (solution vol.)	Irradiation PS		µmol H2 (max.time reported)	TOF ^{3h} (h ⁻¹)	HE _{MAX} rate (µmol _{H2} h ⁻¹ g _{cat} ⁻¹)	Ref.
1	Ru@RuO ₂ PP- TiO ₂ (P25)- RuP	0.63	TEOA 0.2M pH 7	glass, 25°C (4 ml)	$\begin{array}{c c} 1 \text{ sun, Xe, } \lambda > & \begin{array}{c} RuP \\ 0.0076m \\ M \end{array}$		281 (122h)	16	3150	This work
2	Ru ⁰ RuO ₂ (8%)/TiO ₂ NB-400	7.92	EDTANa ₂ 0.01g/mL	quartz pyrex (10 ml)	300 W Xe, UV- vis	TiO ₂	900 (5h)	374	25	1
3	PtNPs/TiO ₂	0.77	10 % v/v TEOA pH 7	pyrex (20 ml)	1 sun, UV-vis	Zn phth. 12.5 μM, TiO ₂	2260 (5h)	587. 84	-	2
4	Pt NPs/TiO ₂	-	30% v/v TEOA	glass, (10 ml)	150W Xe, UV- vis	TiO ₂	40 (6h)	-	1000	3
5	Nafion-Pt NPs/TiO ₂ anatase	0.26	10 % v/v TEOA pH 7	pyrex, (20ml)	400 W Xe, λ>400nm	MK2 10 ⁻⁴ mol	566.9 (6h)	442. 18	9440	4
6	EosinY-Pt NPs/TiO ₂	-	10% v/v TEOA	(3ml)	200 W Xe, λ>420nm	Eosin Y 102 (20h)		-	2500	5
7	MK2-Pt NPs/TiO ₂	-	TEOA 0.33M, pH 9	Pyrex glass (<135 ml)	Solar, λ>420 nm,	MK2 10 ⁻⁴ mol	MK2 10 ⁻⁴ mol 18590 (8h)		1828	6
8	UP3-Pt NPs/TiO ₂ anatase	0.51	TEOA 10%, pH 7	pyrex glass (20 ml)	300 W Xe, λ>420 nm	UP3 1.5 µmol	4098 (60h)	266. 61	10480	7
9	GS12-Pt NPs/TiO ₂ anatase	0.51	TEOA 10%, pH 7	pyrex glass (20 ml)	2 sun, 400 W Hg	GS12 0.25 μmol/g, TiO ₂	2820 (24h)	344. 64	10500	8
10	LG5-Pt NPs/ HP-TiO ₂	0.513	TEOA 2ml pH 7	pyrex (20 ml)	2 sun, 450 W Xe	LG5 5 µmol/g, TiO ₂	357 (50h)	21.4 6	4196	9
11	Pt NPs/TiO ₂	0.19	EDTA 10mM pH 3	(25 ml)	450W Xe, 10 ⁻³ E/(L min), 420 nm<λ< 500 nm	RuP 10 µM	130 (3h)	225. 43	-	10,1 1
12	PtNPs/TiO ₂	0.08	EDTA 10mM, PO4 ³⁻ 500μM, pH 4	glass, (30 ml)	300 W Xe, λ>420 nm	[Ru(bpy) 3] ²⁺ 30μM	20 (4h)	65.0 3	333	12
13	RuCP ² -phen- Zr-RuP ⁶ @Pt- TiO ₂ anatase	0.12	L-ascorbic acid 20 ml, pH 4	quartz, 20°C (5ml)	blue LED lamp, λ= 470 nm	RuCP ₂ - phen-Zr- RuP ₆ 100 µM, TiO ₂	100 (3h)	143. 00	-	13
14	4(bpy)P-Pt NPs/TiO ₂	0.51	L-ascorbic acid 0.5 M, pH 4	vial 15°C (5ml)	LED 130mW, 530 nm	4(bpy)P 0.125 mol	4903 (288h)	-	2541	14
15	Dy1- PtNPs/TiO ₃	0.51	L-ascorbic acid 0.5 M, pH 4	vial 15°C (5ml)	700 LEDs 130mW 410- 800 nm	Dy1 0.125 mol	482 (60h)	-	614	15
16	PtRDMI3- PtNPs/TiO ₂	0.51	L-ascorbic acid 0.5 M, pH 4	vial 15°C (5ml)	700 LEDs 130mW 400- 800 nm	PtRDMI3 0.125 mol	4900(80h)	-	6000	16
17	YD2-o-C8-Pt NPs/TiO ₂	0.51	L-ascorbic acid 0.5 M, pH 4	vial 19°C (5ml)	700 LEDs 80mW 420-800 nm	YD2-o- C8 0.125 mol	798 (120h)	-	1360	17
18	СоР	0.08	TEOA 0.1M pH 7	25°C (4.5 ml)	$\frac{100 \text{ mW/cm}^2}{\lambda > 420 \text{nm}}$	RuP 0.1 µmol	(10h)	-	600	18
19	NiP complex /RuP /TiO ₂ P25	0.02	Ascorbic acid	25°C, (2.25 ml)	$\frac{100 \text{ mW/cm}^2}{\lambda > 420 \text{nm}}$	RuP 0.05 µmol	1.7 (2h)	-	0.41	11,1 9
20	NiP complex /RuP	4.50	Ascorbic acid	25°C, (2.25 ml)	100 mW/cm ² , λ>420nm	RuP 0.05 µmol	14.5 (2h)	-	-	11,1 9

Table S2. Photocatalytic HER data of nanoparticulated Ru- or Pt-based non-supported photocatalysts. Values in bold are explicitly cited in the corresponding articles. Others are estimated from HE plots and other reported data.

Entry	Material	µmol M	SED	Cell (volume of solution)	Irradiation	PS	µmol H ₂ (maximum time reported)	HE _{MAX} rate (μmol _{H2} h ⁻¹ g _{cat} ⁻¹)	Ref.
1	Ru@RuO ₂ PP	0.01	TEOA 0.2M pH 7	glass, 25°C (4 ml)	1 sun, Xe, $\lambda > 400 \text{ nm}$	RuP 0.1 mM	0	0	This work
2	Ru PVP NPs	2.47	phthalate buffer pH 4.5 + MeCN 1:1, NADH 1 mM	quartz, (2 ml)	Xe, λ>340nm,	QuPh ⁺ -NA 0.88 mM	2 (4 min)	1160	20
3	Pt PVP NPs	1.28	phthalate buffer pH 4.5 + MeCN 1:1, NADH 1 mM	quartz, (2 ml)	Xe, λ>340 nm,	QuPh ⁺ -NA 0.22 mM	2 (4 min)	1200	20
4	Pt NPs	1.69	ТЕОА 0.2М, pH 7	pyrex (10ml)	200 W halogen, λ>400 nm	[Ru(bpy) ₃] ²⁺ 91 mM + [Rh(bpy) ₃] ³⁺ 1.95 mM	-	350000	21

Estimation of the apparent quantum yield (AQY)

The AQY (%) was estimated under optimized conditions from the ratio between the rate of hydrogen production ($R_{H_2} = 3.5 \cdot 10^{-9}$ mol·s⁻¹, corresponding to the value of 12.6 µmol·h⁻¹ experimentally determined, see main text) and the absorbed photon flux (Φ_{ABS} = 2.67·10⁻⁷ einstein·s⁻¹), according to eq S1.

$$AQY(\%) = \frac{R_{H_2}}{\Phi_{ABS}}$$
(S1)

The absorbed photon flux (Φ_{ABS}) has been estimated according to eq. S2,

$$\Phi_{ABS} = A \cdot \int P_{AM1.5G} \cdot \left(1 - 10^{-\varepsilon} \lambda^{l[RuP]}\right) d\lambda$$
(S2)

where *A* is the irradiated surface area (0.00053 m²), $P_{AM1.5G}$ is the spectral irradiance of the Sun at the Earth's surface (einstein·s⁻¹·m⁻²·nm⁻¹), ε_{λ} (M⁻¹·cm⁻¹) is the absorption spectrum of the RuP chromophore in water in the irradiated wavelength range considering that a cut-off filter with $\lambda > 400$ nm has been used, l is the optical pathlength (0.9496 cm, estimated as the average value considering the cylindrical geometry of the reactor and the diameter of 1.5 cm), [RuP] = 7.6·10⁻⁵ M is the concentration of the chromophore attached onto TiO_2 in the photocatalytic experiment under optimized conditions (see main text).

Pictorial representation of the incident photon flux ($P_{AM1.5G}$) and absorbed photon flux per surface area (Φ_{ABS} /A) used for the calculation of the AQY is reported in Figure S14.

Figure S14. Spectral irradiance of the Sun at the Earth's surface ($P_{AM1.5G}$, blue line) and absorbed photon flux per surface area (Φ_{ABS} /A, orange line) under the optimized experimental conditions for hydrogen evolution with the **Ru@RuO_PP-TiO_-RuP** hybrid.

References

- 1 Q. Gu, Z. Gao, S. Yu and C. Xue, *Adv. Mater. Interfaces*, 2016, **3**, 1500631.
- 2 A. Tiwari, N. V. Krishna, L. Giribabu and U. Pal, J. Phys. Chem. C, 2018, 122, 495–502.
- 3 I. Mondal, S. Gonuguntla and U. Pal, J. Phys. Chem. C, 2019, **123**, 26073–26081.
- 4 A. Kumari, I. Mondal and U. Pal, *New J. Chem.*, 2015, **39**, 713–720.
- 5 J. H. Park, K. C. Ko, N. Park, H.-W. Shin, E. Kim, N. Kang, J. Hong Ko, S. M. Lee, H. J. Kim, T. K. Ahn, J. Y. Lee and S. U. Son, *J. Mater. Chem. A*, 2014, **2**, 7656.
- 6 E. Aslan, M. Karaman, G. Yanalak, H. Bilgili, M. Can, F. Ozel and I. H. Patir, J. *Photochem. Photobiol. A Chem.*, 2020, **390**, 112301.
- 7 A. Tiwari, I. Mondal and U. Pal, *RSC Adv.*, 2015, **5**, 31415–31421.
- 8 T. Swetha, I. Mondal, K. Bhanuprakash, U. Pal and S. P. Singh, ACS Appl. Mater. Interfaces, 2015, 7, 19635–19642.
- 9 S. Gonuguntla, A. Tiwari, S. Madanaboina, G. Lingamallu and U. Pal, *Int. J. Hydrogen Energy*, 2020, **45**, 7508–7516.
- 10 E. B. And and W. Choi, J. Phys. Chem. B, 2006, 110, 14792–14799.
- 11 J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant and E. Reisner, *Chem. Soc. Rev.*, 2016, 45, 9–23.
- 12 C. Park, J. J. Park, J. J. Park, I. Heo, W. Kim and J. Kim, *Catal. Today*, 2019, **335**, 236–242.
- 13 N. Yoshimura, A. Kobayashi, M. Yoshida and M. Kato, *Bull. Chem. Soc. Jpn.*, 2019, **92**, 1793–1800.
- 14 B. Zheng, R. P. Sabatini, W. F. Fu, M. S. Eum, W. W. Brennessel, L. Wang, D. W. McCamant and R. Eisenberg, *Proc. Natl. Acad. Sci. U. S. A.*, 2015, **112**, E3987–E3996.
- 15 P. Y. Ho, B. Zheng, D. Mark, W. Y. Wong, D. W. McCamant and R. Eisenberg, *Inorg. Chem.*, 2016, **55**, 8348–8358.
- 16 G. Li, M. F. Mark, H. Lv, D. W. McCamant and R. Eisenberg, J. Am. Chem. Soc., 2018, 140, 2575–2586.
- 17 P. Ho, M. F. Mark, Y. Wang, S. Yiu, W. Yu, C. Ho, D. W. McCamant, R. Eisenberg and S. Huang, *ChemSusChem*, 2018, **11**, 2517–2528.
- 18 F. Lakadamyali, A. Reynal, M. Kato, J. R. Durrant and E. Reisner, *Chem. A Eur. J.*, 2012, 18, 15464–15475.
- 19 M. A. Gross, A. Reynal, J. R. Durrant and E. Reisner, J. Am. Chem. Soc., 2014, 136, 356– 366.
- 20 Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo and S. Fukuzumi, *J. Am. Chem. Soc.*, 2011, **133**, 16136–16145.
- 21 M. Kirch, J.-M. Lehn and J.-P. Sauvage, Helv. Chim. Acta, 1979, 62, 1345–1384.