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Abstract: In the recent decade, numerous new psychoactive substances (NPSs) have been added
to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse
(i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the
pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs
is ongoing and necessary in order to provide an appropriate contribution to public health. In fact,
multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature.
Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles
of these compounds, revealing that they can cause adverse effects involving various organ systems
(i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks.
In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring.
Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental
variables may impact NPS responses, epigenetics may aid in understanding the processes behind
the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may
provide a new field of combined study on genetic differences and epigenetic changes in drug reactions
that might be predictive in forensic implications.

Keywords: new psychoactive substances; pharmacoepigenomics; forensic science

1. Introduction

In the last decade there has been a significant change in the worldwide illicit drugs
market. New psychoactive substances (NPSs) have emerged as “legal alternatives” to the
well-known addictive and abusive drugs (cannabis, cocaine, heroin and amphetamines) [1].
Otherwise known as “designer drugs”, these novel substances are synthesized in order
to maintain and/or increase the pharmacological effect of the classic drugs of abuse but
remaining outside the legal controls [2]. Therefore, NPSs represent a public health and
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regulatory challenge [3]. The number of NPSs monitored and seized by international
organizations, such as the European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA) and United Nations on Drugs and Crime (UNODC), demonstrate that the
NPS market is heterogeneous, rapid and dynamic [2,4]. The NPSs include a wide range of
different compounds which can be classified in different categories in order to distinguish
their pharmacological effects: stimulant (amphetamines, cathinones, benzofuran, indole
and pyrovalerone derivatives), sedatives (synthetic opioids, designed benzodiazepines and
Gamma-Hydroxybutyrate), dissociatives (phencyclidine, ketamine, diphenidine and their
derivatives), synthetic cannabinoids, and psychedelics (phenethylamines, tryptamines,
lysergamides) [2–7]. Among these, synthetic cannabinoids and cathinones are most often
detected, and are the classes mainly used by young adults (15–35 years old) [8]. In particular,
data collected in the European School Survey Project on Alcohol and Other Drugs (ESPAD)
reported that students have used synthetic cannabinoids at least once in their lifetime,
and it was highlighted that a higher percentage point of males than females used both
synthetic cannabinoids and cathinones [9]. Moreover, Bachman and colleagues, analyzing
the widespread use of synthetic cannabinoids and cathinones among adolescents in the
USA, revealed that there is variability at the interindividual level, but especially between
the sexes; in fact, boys are more at risk of using these NPSs than girls [10].

Relying on case reports, NPSs are often involved in polydrug use cases and can induce
many and various acute adverse effects [11,12]. Symptoms such as tachycardia, restlessness,
agitation, bruxism, seizures, hallucinations, psychosis, unconsciousness, respiratory fail-
ures, nausea, vomiting and death have been related to the use of synthetic cathinones [13,14]
and cannabinoids [15,16]. In particular, synthetic cathinones have been associated with
long-lasting renal failure [17], fetal death [18] and overdose cases typified by symptoms
such as stroke, cerebral edema, myocardial infarction and subsequent death [19,20] On the
other hand, dysregulation of the endocannabinoid system (ECS) seems to be involved in
cardiovascular function [21]. In fact, smoking marijuana has been related to myocardial is-
chemia, coronary thrombosis and vasospasm [22], and synthetic cannabinoids have shown
tachycardia and hypertension effects [23]. Further studies also suggest the proatherogenic
role of CB1 receptor [24]. Such evidence may be therefore considered as indicating that
these synthetic drugs increase the risk of cardiovascular and cerebrovascular events [25,26],
confirmed by the fact that cases of acute ischemic stroke have been reported in young
adults after use of synthetic cannabinoids [25]. Biopsy findings have moreover confirmed
cases of acute tubular necrosis or acute interstitial nephritis in young patients [27].

In vitro and in vivo studies concerning NPSs were widely present in the literature [28–38].
In particular, Lenzi and colleagues have demonstrated the mutagenic capability of synthetic
cathinone and cannabinoids [39,40], underlying their potential toxicity. However, in vitro
tests cannot easily predict pharmacokinetics or penetration into the human brain [41,42].
Therefore, animal models have played a key role in preclinical research explaining the
neurobiological, psychopathological, behavioral and etiological aspects, and studying drug
dependence and acute/chronic abuse [43]. In fact, many in vivo studies show acute effects
imputable to NPS-related intoxication [44–48].

Moreover, knowledge of long-term NPS effects is lacking [9,49] and illicit drug re-
sponses are complex traits because they may be determined by both genetic and envi-
ronmental factors. Variations in the expression of drug-response-related proteins (such
as drug-metabolizing enzymes (DMEs), drug transporters and therapeutic mechanisms,
including drug targets and downstream signal molecules) are other important sources of
interindividual variability in drug response [50–53].

Given this evidence, it may be necessary to understand a possible correlation between
the use of NPSs and epigenetic changes. Indeed, data show that epigenetic modifications are
linked to changes in development and behavior, but also to genetic disorders and various
diseases [54,55]. It is well known that widespread epigenetic changes occur across the
entire genome [56]. This potentially reversible “epigenetic” modulation of gene expression
occurs through the chemical modification of DNA and histone protein tails [53], or the
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specific production of regulatory non-coding RNA (ncRNA) [57]. In this regard, it has been
observed in patients with myocardial infarction that there are 200 differentially methylated
cytosine–phosphate–guanine (CpG) sites in the gene locus involved in cardiac function [58].
In addition, a 100-fold increase was found in the level of circulating miRNAs in the plasma
of patients suffering from cardiac events [59–61]. Studies concerning cancer prevention and
innovative treatments for cancers have led to the label “pharmacoepigenomics” in reference
to the emerging field of combined study on genetic variations and epigenetic modifications
in drug responses [62,63]. This development may expand the scope of pharmacogenomics
and better define the role of each factor involved in variable drug responses.

This narrative review aims to find potential predictive markers of organ damage,
considering existing knowledge of NPS toxicology and possibly related epigenetic changes,
with a focus on synthetic cathinones and cannabinoids. Our previous study suggested
that in vivo synthetic stimulants, such as 4,4′-Dimethylaminorex (4,4′-DMAR), involves
physiological, neurobehavioral and neurotoxicological effects, as confirmed by immuno-
histochemical analysis [64]. In particular, we investigated the effect of 4,4′-DMAR on the
expression of specific cerebral cortex markers (oxidative/nitrosative stress, apoptosis and
heat shock proteins) commonly known to be indicative of brain damage [65,66]. Therefore,
considering that nerve cells require a large number of mitochondria to ensure their normal
functioning, and that overproduction of ROS following the administration of stimulants
may lead to oxidative damage in the mitochondria and consequently neurotoxicity [67], this
could be an excellent starting point to research possible epigenetic markers of NPS-induced
physiopathological damage.

Search Strategy

A systematic search was conducted using Pubmed, considering relevant data from
the earliest available date up until January 2022. The following combined search terms
were considered: “NPS”, “epigenetics modifications”, “DNA-methylation”, “histone modi-
fication”, “non-coding RNA”, “heart damage” and “brain damage”. All duplicates were
then removed. Any title that was coherent with this narrative review main topic was in-
cluded in a subsequent screening based on eligibility of abstract and full text. Studies were
considered appropriate if they included the following: (1) animal model (mouse and/or
rat); (2) synthetic cannabinoids and cathinones or analogous and traditional drugs of abuse;
(3) connection between exposure to the substance and subsequent epigenetic changes.
A total of 218 articles were included in the bibliography section (N in vivo, N in vitro).
A manual search of the reference list of selected articles was also conducted.

2. Epigenetic Changes

In the last two decades, epigenetics was initially defined as “the study of mitotically
and/or meiotically heritable changes in gene function that cannot be explained by changes
in the DNA sequence” [68,69]. Currently, it is defined as “the study of any phenotypic
diversity that is not related to genotypic differences that can be transmitted through cell
divisions but are not directly traceable to the DNA sequence” [70,71].

Stretched out linearly, the negatively charged DNA hosted in the nucleus of a mam-
malian cell is calculated to be approximately 2 m long [72]. In order to compress all this
genetic material into ~10 µm diameter of nucleus, the DNA must wrap tightly around
positively charged histone proteins to form the nucleosome, the founding unit of the
DNA packaging material called chromatin [73]. Chromatin structure ensures access to
genetic information even in the presence of a highly protective environment, which under
physiological conditions makes DNA essentially inaccessible. Nevertheless, evolution has
developed enzymatic systems that make it possible to modulate chromatin, and conse-
quently nucleosomes, to ensure “regulated” access to DNA by competent systems [74].

Tightly packed DNA is considered heterochromatin, while loosely packed DNA
is considered euchromatin [75]. As opposed to euchromatin, which is freely accessible
to the transcriptional machinery and actively transcribed, heterochromatin is generally
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transcriptionally inactive, although a recent study investigated its potential activity [76].
Changes in the components that make up chromatin (Table 1) itself make it more or less
accessible to transcription, constituting epigenetic inheritance (Figure 1) [77].

Table 1. Summary of all epigenetic changes.

Epigenetic Mechanisms Epigenetic Modification Effects on Gene Expression

Histone modification

Addition of an acetyl group (Ac) to the amine group of the lysine
residues of histones H2B, H3 and H4; addition of one or more

methyl groups (Me) on lysine or arginine residues preferentially
found on histone tails.

Activation or repression of
gene transcription.

DNA methylation Addition of a methyl (Me) group that occurs preferentially in C-
and G-rich genomic region CpG islands. Gene repression.

Non-coding RNA Different RNAs—not translated into proteins—that influence gene
expression at the transcriptional and translational level.

Regulation of gene expression
(miRNAs binds mRNAs in the
3’UTR region, which promotes
their degradation or prevents
their translation in protein).
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Figure 1. Schematic illustration of the epigenetic changes that are of toxicological relevance for finding
useful markers in a context of predicting cardiac and brain damage. Exposure to an NPS induces
changes in the epigenetic landscape that could provide the basis for a panel of pharmacoepigenetic
markers to predict toxicological damage to vital organs. The study of gene expression variations in a
pharmacoepigenomic context is indicative of the variability between individuals in their responses to
drugs or drugs of abuse.

2.1. Histones Modification

Post-translational modifications on the residues of the histone tails of nucleosomes
allow the relaxing of chromatin and its condensation, which enables regulation of gene
expression, DNA replication, recombination and repair processes [62]. The first identified
histone modifications were acetylation and methylation, followed by ubiquitination and
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phosphorylation [78]. All histone modifications (which are directed by enzymatic reactions)
exert their action by means of two mechanisms: through a local or remote alteration of the
whole chromatin structure, and through a positive or negative modification of the binding to
effector molecules [79]. The functional consequences of histone modifications occur through
“reader” proteins that bind to specific modified residues and make transcriptional changes.
The enzymes (acetyltransferases (HAT) catalyse acetylation and deacetylases (HDAC)
deacetylation, while methyltransferases (HMT) catalyze methylation and demethylases
(HDM) demethylation])involved in these various covalent histone modifications can be
labeled as “writers” and “erasers” [79]. Among this, the best-known epigenetic mechanism
of histone alteration in the brain is the post-translational covalent modification of the
N-terminal tails of histones in different amino acid residues [80].

The methods used to study histone modifications are mainly based on systems using
monoclonal and polyclonal antibodies for target recognition, such as chromatin immuno-
precipitation [81] and proteomic methods, have only recently been developed [74].

2.2. DNA Methylation

DNA methylation is a process that induces gene silencing and heterochromatin for-
mation [82]. It is involved in the regulation of gene expression, genomic imprinting,
X-chromosome inactivation and silencing of centromeric regions [83,84].

The most common DNA modification is the covalent transfer of the methyl group
(-CH3) to cytosine located within the CpG island, long over 500 base pairs (bp) [85,86].
This produces 5-methylCytosine (5-mC) in the gene promoter region [87,88]. The level of
methylation of the CpG islands of the regulatory region of a gene is associated with the
transcription levels of that gene [89]. Hypomethylation typically enhances gene expres-
sion [90], while hypermethylation is associated with gene silencing (as opposed to histone
methylation) [91]. There is of course also genetic variability between individuals in the
density of CpG sites, which influences potential methylation levels and thus affects the
regulatory activities of reference genes [91].

Compared with readily reversible histone tail modifications, DNA methylation is
considered a more stable epigenetic change, altering the chromatin structure from an
opened—transcriptionally active—to closed—transcriptionally inactive—state [92].

Historically, methods for studying DNA methylation can be specific or non-specific. In
particular, specific methods provided a global assessment of methylation levels in cells. On
the other hand, non-specific methods make a qualitative assessment of changes occurring
in a given DNA segment in different cells after treatment with bioactive molecules [93].
Such detection methods are based on three principles: DNA digestion with restriction
enzymes, use of anti-methylcytosine antibodies or methyl-binding domain proteins to
enrich methylated genomic DNA fragments and DNA conversion by bisulfite treatment
and sequencing [94].

In recent years, DNA methylation analysis has been increasingly available for their
potential use in biomedical research, and has been performed through genome-wide and
high-throughput methods [84]. These advances have significantly accelerated epigenomic
research and opened up new perspectives, in particular through the development and
application of massively parallel sequencing technologies [95].

2.3. Non-Coding RNA

Non-coding RNAs (ncRNAs) have been defined as RNAs having information and
functions but not having the ability to encode proteins [96], and they have been shown to
play important roles in the regulation of cellular functions [97]. NcRNAs are epigenetic
markers for prognosis, diagnosis and treatment detectable in both tissues and biological
fluids that can influence gene expression [98]. Generally, ncRNAs can be divided into
housekeeping or regulatory types [99]. Among the housekeeping transfer RNA (tRNA),
rRNA and small nuclear RNA (snRNA) have been identified. Regulatory ncRNAs in-
clude various RNA types distinguishable in long non-coding RNA (lncRNA) and small



Biomedicines 2022, 10, 1398 6 of 22

non-coding RNA (sncRNAs) [100]. LncRNAs have been placed into six different cate-
gories relative to their proximity to the protein-coding genes, and categorized as sense
or antisense [99]. Moreover, an increasing number of lncRNAs have been shown to have
crucial roles in several biological processes, such as X-chromosome inactivation and im-
printing [101–103], maintenance of nuclear architecture [104], epigenetic control of gene
expression and promoter-specific gene regulation [105]. On the other hand, sncRNAs
include microRNA (miRNA), P-element-induced Wimpy testis (PIWI)-interacting RNAs
(piRNAs) and short interfering RNA (siRNA) [106]. Furthermore, circular RNA (circRNA)
has been labeled as a special class of non-coding RNA [107].

The analysis techniques for these sequences are similar to those conventionally used
to study other RNAs. They are techniques based on quantitative PCR, sequencing and
bioinformatic analysis [108].

3. Addiction and Epigenetic Mechanisms Related to Drugs of Abuse

Addiction is described as compulsive use, seeking and craving of drugs, and seems to
be related to pathological neurobiological changes in neural processes that normally serve
reward-related learning [109].

Furthermore, early life experiences and environmental factors together with genetic
susceptibility result in addiction development [110]. Drug abuse is characterized by two
different stages [111]. In the initial period, after an occasional intake of drugs, the dopamin-
ergic system in NAc triggers pleasurable feelings that results in the uncontrolled pursuit
and use of such substances [112]. In the second stage, different clinical processes occur,
which are related to more complex and long-lasting mechanisms implicating alterations
in other signal neurotransmitters [113] (e.g., outcomes on glutamate receptors after expo-
sure to methamphetamine; Table 2 [114]). Recent studies suggest that different drugs of
abuse induce epigenetic changes [115–117] in gene expression and post-transcriptional
regulation (see Table 2 [118–121]). Indeed, the role of microRNAs in drug addiction and
neuroplasticity [115–117] due to their ability to regulate gene expression has been widely
demonstrated [122,123]. This suggests that different epigenetic changes are potentially
related to drug addiction [124–126].

Over the years, attempts have been made to define the mechanisms by which expo-
sure to a drug of abuse alters mRNA levels through chromatin regulation mechanisms
or by activating/inactivating additional genes for altered expression after a period of
abstinence [127].

However, previous studies have pointed out that traditional drugs of abuse, such
as cannabis (Table 2 [128]) and cocaine (Table 3 [129]), may influence gene expression
by inducing epigenetic changes. Indeed, the role of the endocannabinoid system (ES) in
reward-related learning and addiction was already investigated [130,131]. Specifically, it
has been shown that the use of cannabis may interfere with endocannabinoid signalling and
affect the neural pathways that regulate reward-related learning and cognition [131], thus
strengthening the hypothesis that synthetic cannabinoid may affect the same neural path-
ways. Therefore, the ES is possibly sensitive to environmental epigenetic cues. In fact, there
is evidence of genetically related variations in reactivity to stress and negative emotional
states, and drug craving as a result of an altered endocannabinoid system feature [132]. In
particular, the endocannabinoid system undergoes dynamic changes during adolescence,
which is when anxiety disorders often emerge [132]. This could possibly explain data
showing that cannabis use among adolescents has been associated with an increased risk
of subsequent cocaine intake [133], and abuse of synthetic cannabinoids has been associ-
ated with multiple drug use, including stimulants [134], and induces a behavioral change
in exposed animals (see Table 3, [135]). To confirm this, a recent study has shown that
cannabinoid exposure in adolescent can change the behavioral and epigenetic response to
cocaine in rodents [136,137]. In addition, attention was paid to the proenkephalin opioid
neuropeptide (Penk) gene in NAc that directly regulates heroin addiction. Adolescent



Biomedicines 2022, 10, 1398 7 of 22

rats exposed to THC overexpressed Penk and reported reduced methylation of histone H3
lysine 9 in NAc (Table 3, [138]).

Furthermore, studies on exposure to psychostimulants, such as cocaine, have revealed
the occurrence of epigenetic changes previously attributed to psychiatric disorders (drug
addiction, depression or Rett syndrome) since the 2000s [61,62,139]; (Table 2, [140,141]). In
particular, chronic cocaine exposure has been shown to recruit histone acetyltransferases
and regulate histone acetylation/deacetylation in NAc [142]; (Table 2, [114–143]). The
same study has shown that the main effect of chronic cocaine exposure is gene activation,
with more genes showing H3 or H4 hyperacetylation than hypoacetylation (Table 2, [143]).
Moreover, changes at the epigenetic level occur in mice repeatedly administered with 3,4-
methylenedioxymethamphetamine (MDMA), and this could be related to the cardiotoxicity
induced by such drugs of abuse [144]. The knowledge obtained in the context of abuse
(e.g., use of methionine as a therapeutic target for cocaine addiction (Table 2, [145,146])
and pathological information could be used to investigate markers that define therapeutic
targets or intoxication antidotes to avoid permanent damage to the organism.
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Table 2. Summary of information obtained from the available literature about the main epigenetic changes observed in rodents after intake of traditional stimulants.
We report: the substances, the effects found after epigenetic modification, information on the animal model used (by specifying genotype, gender and age), and
which detection method is the most appropriate to identify the previously highlighted epigenetic modification.

Substance Target
Epigenetic

Modification Effect
Animal Information

Tissue/Cell Type DNA
Methylation Method References

Genotype Gender Age

Methamphetamine
GluA1

Hypoacetylation H4 Downregulation Sprague–
Dawley rats Male Adult Striatum Immunoblot/ChIP/Antibody [114]

GluA2

Cocaine fosB Increased CBP
acetylation H4 Upregulation

C57BL/6J Crossed C57BL6J
mutant males with
BALBc females to

generate the
F1 hybrids

Adult Striatum ChIP/qPCR/Immunoblotting [118]

BALBc mice

Cocaine
BDNF Increased

Upregulation
Sprague–Dawley rats

Male
Adult 10–14
weeks old

Striatum ChIP/qPCR/RT-PCR/
immunohistochemistry

[119]
Cdk5 Acetylation H4 Bl6/C57 mice

Methamphetamine
5 of IEGs Increased DNA

methylation
Downregulation CD-1 mice Male Adult

PFC RT2 Profiler
PCR/qPCR/Pyrosequencing

[120]
Grm1 Hippocampus

Methamphetamine FosB

Increased
acetylation H4

Upregulation C57BL/6 mice Male Adult Striatum ChIP/Western Blot [121]
Increase CREB

phosphorylation

Cocaine N/A
DNMT3A

Downregulation
C57BL/6J mice

and Long
Evans rats

Male Adult NAc
ChIP promoter

analysis/Global DNA
methylation analysis

[126]Increased DNA
methylation

Cocaine 55 genes
TET1 Downregulation

Alternative
splicing

C57BL/6J mice Male Adult 8–10
weeks old

NAc

qPCR/western blotting/
immunohistochemistry/

stereotaxic viral manipulations/
ChIP-seq/RNA-seq

[129]Increased DNA
methylation

Cocaine PP1c

Increased DNA
methylation

DNMT3A and
DNMT3B

Downregulation
and Upregulation

of FosB
Mice C57BL/6 Male Adult NAc qPCR/ChIP/MeDIP/

western Blotting [140]
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Table 2. Cont.

Substance Target
Epigenetic

Modification Effect
Animal Information

Tissue/Cell Type DNA
Methylation Method References

Genotype Gender Age

Cocaine Cdkl5
Increased DNA

methylation
(MeCP2)

Downregulation Wistar rats Male Adult 8–9
weeks old NAc

RT-PCR—qPCR/Bisulfite
sequencing/Chromatin

immunoprecipita-
tion/Immunohistochemistry

[141]

Cocaine cFos, FosB,
BDNF e Cdk5

Increased
Acetylation
H3 and H4

Upregulation Sprague–
Dawley rats Male Adult Striatum ChIP [119]

Cocaine
∆Φoσ Increased

Acetylation
H3 and H4

Upregulation:
sirt1 sirt2

C57BL/6 mice Male 10–12 weeks NAc ChIP/Array [143]
CREB

Cocaine 172 genes
Decrease Histone

Deacetylation
HDAC5

Upregulation Mice C57BL/6 N/A Not adult NAc

Western Blot-
ting/Immunohistochemistry/

ChIP/qPCR/RT-
PCR/Microarrays

[142]

Cocaine N/A
DNMT3B

Upregulation C57/BL6 mice Male Adult PFC
Global DNA methylation

analysis, qPCR,
Western blotting

[145]Decrease DNA
methylation

Cocaine 57 genes
DNMT3A

Increased DNA
methylation

Up-/downregulation C57BL/6 mice Male Adult aged
5–6 months NAc MicroArray

Illumina/qPCR/MeDIP [146]

Cocaine PKCε
Increased DNA

methylation Downregulation Sprague–
Dawley rats Pregnant Fetal (21 days) Heart

Quantitative
Methylation-Specific

PCR/ChIP
[147]
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Table 3. Summarize of information obtained from the available literature about the main epigenetic changes observed in rodents after intake of traditional and new
synthetic cannabinoids. We reported: the substances, the effects found after epigenetic modification, information on the animal model used (by specifying genotype,
gender and age), and which detection method is the most appropriate to identify the previously highlighted epigenetic modification.

Substance Target Epigenetic
Modification Effect

Animal Information
Tissue/Cell Type DNA

Methylation Method References
Genotype Gender Age

∆9–THC Appbp2 CD27 LncRNA

Downregulation of
miR-17/92 cluster and
miR-374b/421 cluster

Up-regulation
of miR-146

C57BL/6J mice Female 6–7 weeks old Lymph node
cells CD4+ RNA-seq [128]

WIN55212.2 Rgs7 Hypermethylation Downregulation C57Bl6/J mice Male Adolescent aged
4 weeks

Hippocampal
CA regions qPCR/RT–PCR [135]

∆9–THC Penk Decrease H3K9
Methylation Upregulation Long Evans rats Male Adolescents

21-day-old NAc ChIP [138]

∆9–THC N/A

H3K9me2
H3K9me3
H3K9ac

H3K14ac

Both Sprague–
Dawley rats Female

Adolescent
(35–45 postnatal
day) and adult

(75–85 postnatal day)

Hippo NAc Amy Western Blot [148]

∆9–THC 177 genes DNA Methylation Both Sprague–
Dawley rats Male Nine-week-old,

sexually mature Semen Bisulfite Sequenc-
ing/Pyrosequencing [149]

JWH133 CB2

Upregulation of
H3K4me3

Downregulating
H3K9me2

Upregulation Prdm9
c-Kit Stra8 Swiss CD-1 mice Male Seven-day-old SPG cells

(Spermatogonia)
qPCR/RT–

PCR/ChIP/Western Blot [150]

∆9–THC Drd2 Increased 2meH3K9
Decrease 3meH3K4 Long Evans rat Male and

female Adult NAc
In Situ Hybridization
Histochemistr/ChIP/

[151]
and mRNA level

∆9–THC
1027

DNA Methylation Alterated Long Evan rats Male and
female Adolescent NAc

Enhanced Reduced
Representation Bisulfite

Sequencing
[152]

genes

∆9–THC
Genes

associated
with plasticity

Increase Suv39H1
and H3K9me3 Downregulation Sprague-

Dawley rats Female Adolescent
and adult PFC RT2 Profile PCR

Array/ChIP [153]

HU-210
Dlk1-Dio3-
imprinted

domain

Differential
miRNA expression Both Wistar rats Female

Male
Pregnant
Offspring

Left and right
hemispheres of
the entorhinal

cortex (EC)

qPCR/RT–PCR [154]
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4. Overview of Epigenetic Factors and Their Clinical-Toxicological Use

Recent studies have shown that ageing is a complex multifactorial mechanism shared
by all living organisms and is expressed by the gradual decline of physiological func-
tions [155] and influenced by various genetic, lifestyle and environmental factors [156].
Therefore, it is important to differentiate chronological age from biological age [157]. In-
dividuals of similar chronological age may show very different susceptibilities to age-
related diseases and death, which presumably reflects differences in biological ageing
processes [155]. In particular, DNA methylation patterns change in the process of aging
and contribute to age-related disease development [158]. Diverse epigenetic changes occur
during the lifetimes of mammals [159]. In particular, studies have shown a correlation
between age and DNA methylation at the level of single CpG sites [160,161]. On this basis,
predictive models have been built in order to quantify age-related phenotypes or outcomes,
such as diseases (cardiovascular and neurodegenerative conditions) or mortality [161,162];
such models are labelled as “epigenetic clocks”. Epigenetic age deceleration has been
associated with longevity [163], strengthening the above-mentioned assumption. Taken
together, these notions suggest that chronic use of certain drugs could lead to neurotoxicity
effects proportionate to increasing subject age—being amplified in adult and elderly ani-
mals compared to young ones [164–166]. In this context, differences have been observed
in terms of epigenetic modifications that interact differentially in adult and adolescent
subjects under the same conditions of exposure to substances of abuse (Table 3, [148]).

Furthermore, a possible gender-related difference among such epigenetic changes has
been studied. Specifically, a recent study has shown sex-specific variations in the DNA
methylation patterns of two distinct genes (FIGN and PRR4) [167]. These sex disparities
have been previously confirmed by studies on the mouse hippocampus and the human
frontal cortex [168]. According to Global Health Observatory (GHO) data, nowadays global
life expectancy at birth is 76 years for females and 71 years for males [169]. In agreement
with this evidence, data have shown that male’ mortality rates due to cardiovascular, cancer
and Parkinson’s disease are higher than those of females at a given age. On the other hand,
females show an increased risk of Alzheimer’s and autoimmune diseases [167].

Furthermore, gender can influence subjective effects and pharmacotoxicological re-
sponses to drugs [170] and can also present differences in the activity of specific enzymes
involved in drug metabolism [171]. In particular, CYP450 family enzymes play a crucial
role [172]. The isoenzymes CYP2D6, CYP3A4, CYP1A1, CYP1A2 and CYP2C19 are in-
volved in the metabolism of most psychiatric drugs and many other drugs commonly
used and prescribed in daily practice (beta-blockers, opioid analgesics, anticonvulsants,
antihistamines, cortisones and the macrolide antibiotics) [172,173]. Studies have also con-
firmed the involvement of the above-mentioned enzymes in the metabolism of synthetic
cannabinoids [174,175] and cathinones [176]. For example, the cytochrome P450 3A4 is
abundantly expressed in the liver, but its activity is higher in women than in men [177]. This
could be due to female-specific issues, such as pregnancy, menopause, oral contraceptive
use and menstruation, suggesting a possible role played by sexual hormone levels [177].
Other features, such as body weight and the amount of adipose tissue, depending on the
subjects themselves, should be considered [171].

Compelling studies have shown that NPSs, such as synthetic cannabinoids and cathi-
none, can induce gender-related effects on animals [170]. In certain respects, the effects of
3,4-Methylenedioxypyrovalerone (MDPV) on cardiovascular parameters are deeper and
long-lasting in males than females [178]. However, Fattore and colleagues have reported
that females are more susceptible to the reward-seeking and anxiety effects respectively
induced by synthetic cannabinoids and cathinones than males [179]. Different studies have
also investigated effects of prenatal exposure to cocaine [147,180–184]. Specifically, it has
been demonstrated that cocaine can induce sex-dependent epigenetic changes during the
gestational period [180] and may increase the heart’s vulnerability to ischemic damage
during adulthood [183]. Moreover, mice prenatal cocaine exposure has been shown to
be related to alteration of the genes involved in Wnt and the cadherin system [184]. This
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suggests that prenatal exposure to cocaine leads to an increased susceptibility of the heart
to ischaemic damage in the adult offspring (F1), due to decreased PKC gene expression.
Thus, programming of PKC gene expression patterns in the heart already occurs in utero
(F0) (Table 2, [147]).

These considerations reflect the danger of synthetic cannabinoids, precisely because
∆9-THC can cross the placental barrier and come into contact with the fetus [185]. This can
cause defective development of the child’s brain and produce neurobehavioral toxicity [186].
In addition, studies on the effects of synthetic cannabinoids such as JWH-018 report neu-
robehavioral alterations and in particular evidence of substance dependence [187].

Epigenetic Inheritance

Multigenerational epigenetic inheritance is defined as the germline-mediated her-
itage of epigenetic information between generations after direct environmental influences,
which results in phenotypic variation in the offspring [188,189]. However, some literature
considers transgenerational epigenetic inheritance in the absence of continued direct envi-
ronmental influences [190]. Specifically, exposure to a variety of environmental factors in
F0 of both genders before gestation may have a direct impact on the germ cells, which will
affect the F1 generation. Therefore, the phenotypes found in F0 and F1 animals are consid-
ered multigenerational. In contrast, only those traits that persist in the F2 generation and
beyond are considered examples of transgenerational inheritance (Figure 2) [190]. This phe-
nomenon has been investigated in detail with regard to X-chromosome inactivation [191]
and exposure to drugs of abuse [27]. Drug exposure during embryonic development simul-
taneously exposes the developing fetus (F1) and germ cells (F2) to the effects of the drug.
Following the same pattern, drug-using parents expose their germ cells and consequently
the F1 generation [192]. Furthermore, it was found that perinatal exposure to CBD induced
changes in DNA methylation levels in F1 generation associated with increased anxiety and
improved memory behavior in a sex-specific manner [193]. These changes have been asso-
ciated with exposure to environmental factors that could also induce epigenetic changes
in sperm or ova (Table 3 [125,191,192]). Previous studies have shown that prenatal THC
exposure can alter cognitive function, emotional reactivity [151] and responses to drugs
of abuse, such as methamphetamine [194] and opiates (Table 3, [193]). Direct exposure
to drugs of abuse in the embryo (F3) and/or in the parents (F2) has been also proven to
cause transgenerationally inherited alterations in DNA methylation (Figure 2) [195]. In
support of this, the NAc epigenome was analyzed in a Long Evans rat model, identifying
1027 differentially methylated regions associated with parental exposure to THC in F1
adults (Table 3, [152]). These studies provide new information on drug-related intergener-
ational epigenetic effects and are a starting point for the study of neurobiological effects
underlying drug abuse vulnerability.

Concerning the use of synthetic cannabinoids, scientific evidence shows that there
is a predisposition to neurodevelopmental disorders (i.e., schizophrenia and autism spec-
trum disorders) in the offspring of women exposed to this class of substance during
pregnancy [196]; (Table 3, [135,153,154]). Moreover, a recent study has connected cannabis
exposure during the perinatal period to epigenetic changes in animal models [197]. Epi-
genetic changes possibly induced by NPS abuse have not yet been investigated. Despite
this, recent study has revealed that THJ-2201 and 5F-PB22 affected neuronal differentiation,
and this could result in neurodevelopmental disorders if synthetic cannabinoids use occurs
before or during pregnancy [198].
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5. New Perspectives in the Forensic Field

From the perspective of forensic medicine, several reports concerning the effects of
NPSs can be found in the literature [32,199]. Indeed, there is no doubt that the availability
and consumption of these substances has become increasingly important in recent decades,
with the number of deaths attributed to NPSs growing year by year [200].

However, detailed data on the number of substances marketed and consumed, and on
the extent and type of organ damage caused by them, are still insufficient [201]. The advent
of NPSs has called into question traditional methods of drug detection, monitoring, surveil-
lance, and control [200]; for instance, in the clinical setting, rapid immunoassay screening
tests typically cannot detect NPSs [202]. Similarly, in the domain of forensic toxicology,
NPSs may be difficult to distinguish from more well-known illicit substances and other
psychotropic chemicals due to a lack of available data on their pharmacology, toxicology,
and health impacts [203]. Indeed, NPS research is typically overlooked in regular screens,
and traditional approaches might not be as effective for detecting NPSs [200]. Clinicians
are thus required to be familiar with the many classes of these compounds, as well as
their effects, in order to apply this information to the specific case and carry out focused
toxicological assessments [204]. Given the numerous challenges associated with NPS de-
tection and characterization, as well as the relative lack of pertinent data in the literature,
it is obvious that identifying as many methods as possible to obtain information on these
specific substances of abuse is becoming increasingly important. Forensic epigenetics is
a relatively new field of research with a wide range of potential applications. In forensic
medicine, DNA methylation is typically chosen over other epigenetic alterations because
of its in vitro stability and great sensitivity in terms of the amount of DNA required [205].
Based on the notion that environmental stimuli can cause individual epigenomic vari-
ations [205,206], forensic investigations apply DNA methylation to the identification of
tissues and cells [207], to the determination of both sex and age of individuals [208,209], and
to the differentiation between monozygotic twins [210]. Furthermore, DNA methylation
can disclose information about a person’s socioeconomic status, diet, physical activity,
alcohol use [211], smoking status and drug use [212], and thus may aid in the discovery of
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specific markers that can provide more detailed information about the characteristics and
effects of NPSs.

Hence, in order to identify various effective methods of prevention and treatment,
future preclinical, clinical and forensic research on synthetic cannabinoids and cathinones
could benefit from the support of epigenetics. Moreover, given the complexity of the NPS
issue, there is no doubt that combining different methods of investigation with integrated
pharmacological and psychological strategies aimed at treating intoxication symptoms
will yield significant benefits. Potential investigation methods for this purpose include
forensic investigation, pre-clinical in vitro research and in vivo models of mice and other
animal species to provide important tools for analyzing human drug metabolism, as well
as clinical-level investigations. In addition, the modification of treatment regimens for
the more well-known drugs of abuse can help address the rising incidence of intoxication
reported following the use of synthetic cathinones and cannabinoids.

6. Conclusions

This review aims to provide an overview of epigenetic modulation and possible hyper-
or hypo-expression of epigenetic markers of tissue damage. In fact, the epigenetic structure
can be studied in animal models throughout the life cycle of an organism, from conception
to adulthood and old age [213]. An ideal model needs to be accessible at all stages of
prenatal and postnatal life, and to have a reasonable time span to enable assessment of all
possible outcomes of an experiment [214]. Thus, animal models allow the investigation
of the probable interplay between epigenetic changes and effects caused by the intake
of synthetic cannabinoids and cathinone, focusing on gender related differences. Given
the great potential toxicological and forensic value of understanding epigenetic changes
induced by exposure to drugs of abuse, the overall strength of the present narrative review
is the suggestion of a translational evaluation of the pharmacotoxicological effects of NPSs
widely reported by preclinical and clinical literature. However, this aspect also represents a
weakness, because of the great variety of environmental and non-environmental factors
that can influence epigenomic changes.
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Abbreviations

NPS Novel Psychoactive Substance
DMEs Drug-metabolizing enzymes
ncRNA Non-coding RNA
CpG Cytosine–phosphate–guanine
miRNA Micro-RNA
ROS Reactive Oxygen Species
HAT Acetyltransferases catalyse acetylation
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HDAC Acetyltransferases catalyse deacetylases
HMT Methyltransferases catalyze methylation
HDM Methyltransferases catalyze demethylation
5-mc 5-methylCytosine
lncRNA Long non-coding RNA
sncRNA Small non-coding RNA
pi-RNA P-element induced Wimpy testis (PIWI)-interacting RNA
sRNA Short interfering RNA
circRNA Circular RNA
NAc Nucleus accumbens
MDMA 3,4-methylenedioxymethamphetamine
∆9-THC ∆9-tetrahydrocannabinol
CBD Cannabidiol
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