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Abstract: One of the impacts of climate changes nowadays is the increase in the frequency of high-

intensity rainfall events alternating with extreme dry periods, which affect the components of the 

hydrologic cycle, such as runoff, infiltration, and aquifer recharge. Several experimental investiga-

tions and theoretical studies have demonstrated that infiltration flow in fractured media can de-

velop along preferential pathways. However, the prediction of infiltration phenomena in fractured 

media still remains an open issue. This, together with erratic rainfall patterns due to climate changes, 

affects the prediction of aquifer recharge and contaminant transport in fractured aquifers. The pre-

sent work contributes to reducing this research gap by means of experimental investigation and 

forecast analysis, with a focus on the geometrical properties of single fractures and their influence 

on flow patterns. Several fracture surfaces based on different fractal dimensions, standard devia-

tions, and mismatch lengths were designed using the SynFrac model and were generated by 3D 

printing technology. The results revealed that the fracture’s fractal dimension has a significant im-

pact on the number of flow paths, while the fracture inclination only increases the number of inter-

mediate preferential channels, and, hence, modifies the flow rate distribution over the fracture out-

let. Additionally, the change in the inclination angle of the dry fracture from 55 to 65 degrees re-

sulted in an 8% reduction in the mean width of first flow path. A sensitivity analysis using an M5 

tree indicates that there is a linear relationship between flow rate and the exponential form of the 

fractal dimension. The location of flow channels is a function of fracture fractal dimension, and the 

influence of mismatch length on their location is negligible. Finally, an accurate prediction algo-

rithm with a Nash value of 0.81 was developed using Wavelet transform in order to estimate the 

time series of periodic flow rates over the fracture outlet. 
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1. Introduction 

Climate change has a strong impact on renewable groundwater resources; altered 

rainfall patterns due to climate change can reduce the ability to predict infiltration phe-

nomena in soil and rock formations, giving rise to an erratic estimation of aquifer recharge 

and contaminant transport [1]. This can have serious implications on groundwater sup-

plies, food production, and storm water runoff, as well as biodiversity and ecosystems. 

Hirmas et al. [2] showed that macropores in which water infiltrates mainly by the 

influence of gravity play an important role in the total water infiltration, affecting regional 

and global water cycle. 

According to Salve et al. [3] in semi-arid climate regimes, where a soil mantle covers 

the underlying rock, precipitation saturates the overlying soil before infiltration into the 

bed rock commences. This can take several weeks to months. Moreover, recent observa-

tions and predictions of extreme rainfall events associated with climate changes suggest 
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the inevitability of prolonged flooding and, subsequently, infiltration events that can con-

tinue for months. 

In fractured rocks, a variety of processes may affect infiltration and, thus, aquifer 

recharge, including gravity, capillarity, surface tension, viscosity, entrapped air, and bio-

logical activity [4]. Thus, the prediction of the flow rate and the pathways in rough frac-

tures with different geometries is of great importance [5,6]. 

The simplest model of flow through a rock fracture is the parallel plate model [7,8]. 

This theory depicts the system as two parallel surfaces separated by a constant aperture; 

hence, the flow between the two surfaces is laminar [9]. Nevertheless, fluid flow in a real 

rock fracture bounded by two irregular surfaces is complex even under a laminar flow 

regime. The major factor causing deviation of predicted fracture flow behavior from the 

ideal parallel plate theory is the nature of non-parallel and non-smooth geometry of frac-

ture surfaces [10]. Snow [7] found that neglecting the impact of roughness in parallel plate 

theory caused a significant overestimation of flow quantity through self-affine fractures. 

Although a real fracture surface has a complex aperture and roughness, extensive 

studies have attempted to simulate the fracture geometry by means of statistical distribu-

tions and effective parameters. Generally, these studies used cubic law theory [11] based 

on the Reynolds equation to simulate single phase flow between two parallel plates. 

Kishida et al. [12] suggested that the applicability of the Reynolds equation is limited 

to low Re conditions and smooth fracture walls, so that the flow rate and local velocity 

components perpendicular to the nominal fracture plane are sufficiently low. In order to 

solve this problem, some researchers [13–15] have investigated the role of the aperture 

length and its spatial variation on the distribution of flow rates along the fracture. They 

reported that the characterization of fracture geometry, such as mismatch length and frac-

tal dimension, led to the change in flow rates within the fracture, which can be visualized 

using a transparent fracture. Moreover, many numerical studies investigated the influ-

ence of tortuosity and roughness of rough-walled fractures on preferential flow pathways. 

Javadi et al. [16] evaluated the effect of roughness on the distribution of the Reynolds 

number over the fracture. Liu et al. [14] highlighted the main importance of fractal dimen-

sions on equivalent permeability of a fracture, where neglecting it results in a 17.64–

19.51% error in the predicted flow rates. Zou et al. [17] simulated velocity vectors in a rock 

fracture using COMSOL software, and showed that the equivalent permeability of rough-

walled fractures for small values of Reynolds numbers depends on the local distribution 

of apertures. Their results state the significant impact of fractal dimensions on transmis-

sivity as reported by Crandall et al. [13]. Zhang et al. [18] predicted a linear regression 

model between the permeability of rough walled fractures and fluid velocity, considering 

a high constant head between fracture inlet and outlet. They found that the heterogeneous 

behavior of preferential channels under normal distribution of the aperture is a function 

of aperture heterogeneity. Due to the complexity in experimental tests setup and imple-

mentation, general numerical methods were used to analyze the impact of fracture geom-

etry on fluid flow [19,20]. They indicated the significant influence of fracture roughness 

on fracture permeability. 

Extensive experimental studies have also attempted to visualize the flow seepage 

process in rough-walled fractures using a transparent replica. Su et al. [21] conducted the 

first experimental study of fracture inclinations on preferential flow pathways in trans-

parent plates of natural granite. They highlighted the great influence of fracture angles 

and fracture geometries on capillary region and preferential flow path locations, respec-

tively. Watanabe et al. [22] performed a numerical model and experimental test of fracture 

permeability and preferential flow under different confining pressures on granite sam-

ples. Their results illustrate the occupancy of preferential flow pathways for different 

value of fracture pressures. Noiriel et al. [9] numerically estimated a relationship between 

fracture dimensions and preferential flow channels during dissolution where fracture ge-

ometry varies through time. Several studies also experimentally visualized the influence 
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of the aperture network on seepage flow in natural fractures [23–26]. Their results gener-

ally indicated that flow transport in an unaltered granite surface is mostly impacted by 

the aperture distribution. 

Some recent studies implemented reconstructions of fracture surfaces with different 

fractal dimensions via 3D printing. Philips et al. [27] examined the effect of roughness on 

fluid flow properties by 3D printing seven self-affine fractures, each with controlled 

roughness distributions akin to natural fractures. They found that fracture contact area is 

a better permeability predictor than roughness when the mechanical aperture is below 

~20 μm. 

Suzuki et al. [28] realized a complex fracture network by using a 3D printer. They 

obtained a tracer response curve from the flow experiment and applied a computational 

fluid dynamics (CFD) simulation based on the Navier–Stokes equations to model it, which 

showed consistency with the experimental result. In 2022 [29] they conducted thermal 

flow experiments using a 3D printed fracture network with known structural and physical 

properties. They estimated the flow channel surface area with an approximate Bayesian 

uncertainty quantification method. The estimated uncertainty bounds were in good agree-

ment with the design of the 3D printed sample. 

Yang et al. [30] designed and constructed physical models of fracture-vug media 

through 3D printing technology. By combining the LED (light-emitting diode) backlight 

visualization method (BVM) and the particle image velocimetry (PIV) technique, they car-

ried out experiments of multiphase flow (i.e., oil–water and gas–oil) through the printed 

fracture-vug medium. 

Yin et al. [31] experimentally investigated non-linear fluid flow through rough frac-

tures. They employed 3D printing techniques and fractal theory to produce fractured 

specimens with desirable roughness. They found that the hydraulic aperture decreases 

with the fractal dimension and standard deviation, and that the surface roughness im-

poses an important impact on the nonlinear characteristics of fluid flow through fractures. 

Review of the previous literature reveals that most studies attempted to (1) evaluate pref-

erential flow path distribution on a replica of a natural rock fracture with specified aper-

ture geometry or (2) used 3D printing techniques to conduct flow or thermal experiments. 

Though the 3D printing method has already been applied recently to prepare rock-

like material-based specimens with different geometries, few studies up to now have fo-

cused on experiments to investigate and forecast infiltration phenomena in synthetic frac-

tures, both in wet and dry conditions. 

In this study, several fractures with different fractal dimensions, standard deviations, 

and mismatch lengths have been designed and printed using 3D printing technology. The 

influence of these parameters, together with fracture inclination on infiltration in both wet 

and dry fractures, has been investigated, specifically the outlet flow rates and preferential 

flow paths. Finally, the temporal variation in flow rate in five outlets from the beginning 

until the end of the experiment, as well as the total fracture flow rate, were predicted. The 

inflow from the tank and outflow in the outlets for every minute of the experiment are 

used as training data for this machine learning predictive model. 

2. Materials and Methods 

2.1. Parameters Affecting Fracture Flow 

Natural fractures are extremely complicated systems, and there are many factors 

which must be correctly assessed upon parameter value selection. According to Brown 

[32], a simple mathematical model of rough-walled fractures requires the specification of 

only three main parameters: the fractal dimension, the roughness at a reference length 

scale, and a length scale describing the degree of mismatch between two fracture surfaces. 

The mismatch length is a measure of rock fracture surface correlation. Correlation 

wavelengths describe the level of interaction/correlation between two fracture surfaces. A 

small wavelength indicates zero correlation; an increase in wavelength, therefore, relates 
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to increases in correlation until a maximum degree of correlation is reached [33]. This cor-

relation is often referred to as matching, which does not indicate a perfect fit between two 

fractures, as this is not indicative of a real situation. Brown [32] recognized this and re-

named matching to a “mismatch length,” above which the fractures were “matched” and 

below which the fractures behaved independently of each other. 

Numerous researchers have reported on the fact that fracture surfaces are self-similar 

and can be analyzed by fractal geometry [34]. Since Mandelbrot’s study [35], fractal ge-

ometry has been extensively applied to characterize the roughness of fracture surfaces 

and to correlate it with mechanical properties. 

The surface roughness plays an important role and can lead to a significant departure 

from the parallel plate model. However, the measurement of the roughness of the fracture 

surface should include a description of both the topography of the individual surfaces and 

their degree of mismatch. The fractal dimension describes the scale dependence of fracture 

roughness. 

Surface roughness can be defined as geometrical irregularities on a smooth reference 

surface. The classic definition of roughness, R, is given by the ratio of the real surface area, 

AR, to the projected area, A0 (smooth reference surface), which can be expressed as: 

𝑅 =
𝐴𝑅

𝐴0

 (1) 

Fractal geometry can be applied to describe roughness because the real area of frac-

ture surfaces has fractal characteristics, such as the fractal dimension, Df and the fractional 

part of the fractal dimension, D*. The following theoretical relationship between R and D* 

has been proposed by Mandelbrot [35]: 

𝑅 = 𝜂−𝐷∗  (1) 

where η is a non-dimensional parameter that equals less than one and is related to the size 

of the ruler used to measure the length (or area). The fractional part of the fractal dimen-

sion, D*, is defined as the fractal dimension, Df, minus the value two of the Euclidian di-

mension of a smooth surface [36]. Fractal dimension as the representative of the geometric 

variation of fractures can also be expressed as: 

𝜎2 (𝑠) =  𝜎2(𝑠0) 𝑠2(3−𝐷𝑓) (3) 

where 𝜎2  is the variance of fracture increments, 𝑠 is the distance from the base point 𝑠0, 

and 𝐷𝑓  represents the surface fractal dimension. The standard deviation is the mean-

square value of the fracture surface deflections from the mean plane, and 𝐷𝑓  is a measure 

of roughness deviation with respect to the parallel plate model. 

The fractal dimension for each fracture surface is a value between two and three, 

which predetermines the roughness of the fracture surface. Several studies have also at-

tempted to correlate mechanical properties with the fractal dimension, among which was 

that of Charkaluk et al. [34], who presented experimental data showing positive, negative, 

and no correlation between fracture roughness and fractal dimension. Nagahama [37] de-

duced theoretically that a positive or negative correlation is possible, depending on some 

microstructural parameters. 

Therefore, roughness, fractal dimension, and mismatch of fracture surfaces (walls) 

are key hydromechanical rock properties that influence (or control) the ways in which 

fluids permeate the structure. 

According to experimental evidence, water infiltrates within the inclined single frac-

ture, generating a flow channel network. The shape and evolution of the channel network 

are governed by the interplay between capillary, viscous, and gravitational forces, respec-

tively. Thus, the distribution of flow paths across the fracture is function of the relative 
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magnitude of these forces, which can be characterized by the Bond number and the Ca-

pillary number [21]. The Bond number (Bo) is the ratio of the gravity force to the capillary 

force: 

Bo =
∆𝜌 ∙ 𝑒2 ∙ 𝑔 ∙ 𝑠𝑖𝑛𝛽

𝜎 ∙ 𝑐𝑜𝑠𝛾
, (4) 

where  (ML−3) is the density difference between the infiltrated water and air, e (L) is the 

fracture aperture, g (LT−2) is the gravity acceleration, β is the fracture inclination, σ (MT−2) 

is the water surface tension, and γ is the contact angle. 

The Capillary number (Ca) is the ratio between the viscosity force and the capillary 

force: 

Ca =
𝜇 ∙ 𝑢

𝜎 ∙ 𝑐𝑜𝑠𝛾
, (5) 

where µ (ML−2T) is the fluid viscosity and u (LT−1) is the fluid velocity. 

As Bo and Ca increase, gravitational and viscous forces may become comparable 

with the capillary forces. Preferential flow paths and, thus, the relative permeability may 

vary. 

The equivalent permeability k (L2) of the preferential pathways along the single frac-

ture can be related to the fractal dimension Df [38] and the mismatch length λ [39]. Eker 

and Akin [38] indicate that the relation between 𝐷𝑇, 𝜆, and 𝐾 can be described as: 

𝑘 =  𝑒𝑎𝐷𝑓
−𝑏

, (6) 

where a and b are constant values. 

Zambrano et al. [39] found that the permeability is proportional to the minimum mis-

match length following a power–law relationship (depending on the fractal dimension). 

𝑘 = 𝑎′𝜆𝑏′
, (7) 

where 𝑎′, 𝑏′ are constant values. In other words, higher values of fractal dimension imply 

a higher permeability for similar mismatch values. 

Therefore, the effective permeability of a fracture is function of 𝑒𝐷𝑓   and 𝜆, which 

can be determined using a pick-wise linear regression corresponding to different ranges 

of fracture inclinations (𝛽), as written below: 

𝑘 = 𝑓(𝑒𝐷𝑓 , 𝜆, sin𝛽). (8) 

2.2. Synthetic Fracture Designing 

SynFrac software enables the numerical synthesis of fracture surfaces and apertures 

within prescribed parameters [40]. Synthetic fractures with the same basic geometry but 

with different physical topographies were generated using SynFrac software. The follow-

ing parameters of rock fractures were varied to create synthetic fractures: (1) mismatch 

length (λ), (2) standard deviation of surface heights (σ), (3) fractal dimension of fracture 

surface (Df), as detailed in Table 1. 

128 × 128  data sets for generating self-affine rough fractures with 200 mm ×

 200 mm physical size were realized. Four fractures using different mismatch lengths and 

fractal dimensions and the same standard deviations were generated. The statistical in-

dexes of printed fractures are presented in Table 1. 
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Table 1. Fracture parameters generated by SynFrac. 

Fracture 

Name 

Physical Size 

(mm2) 

Fractal 

Dimension Df 

Mismatch Length 

(mm) 

Standard Deviation 

(mm) 

Mean Aperture 

(mm) 

Fracture-1  200 × 200 2.2 30 2 2.04 

Fracture-2   2.4 30 2 3.07 

Fracture-3   2.3 10 2 0.94 

Fracture-4  2.2 10 3 0.70 

Figure 1 illustrates the geometry and aperture distributions of different synthetic 

fractures generated by Synfrac. For all fractures, the dimensions of the top and bottom 

increments are different, and there is no zero-aperture area. Moreover, the aperture dis-

tribution follows a Gaussian function, and the mean value of the aperture length along 

the cross section remains constant. 

  

(a) (b) 

  

(c) (d) 

Figure 1. Aperture distribution of: (a) Fracture-1; (b) Fracture-2; (c) Fracture-3; (d) Fracture-4. 
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For each synthetic fracture generated, the fractured planes were built with a physical 

size of 200 mm ×  200 mm. A 3D printer has been used to construct these profiles on two 

plastic sheets in order to represent the two fracture planes (Figure 2). The thickness of 

printed fractures was 0.05 mm larger than the largest aperture, which reduced computa-

tional cost. The 3D printed fracture planes were then placed into formwork molds, 

whereby transparent epoxy resin was poured in order to create a transparent epoxy resin 

block with a single fracture. Upon setting of the resin, the two fracture surfaces were po-

sitioned together and sealed, watertight, down both sides. 

  

(a) (b) 

Figure 2. Realization of the synthetic fracture (a) 3D printed fracture mold; (b) synthetic fracture 

bottom surface. The length of the pen in figure is 165 mm. 

2.3. Experimental Setup 

The flow experiment consists of letting water flow through each single fracture by 

means of a hydraulic system, which is composed of an upstream and a downstream tank. 

The upstream tank supplying water is a Mariotte-type water tank, which gives a flow rate 

at a pressure depending on the difference in height (h) between the inlet and the outlet of 

the syphon, and will allow the head to remain constant as the water level in the bottle 

drops. Moreover, it allows the inlet pressure to be varied by adjusting the height (h) of the 

Mariotte bottle. The 20-litre Mariotte-type water tank contains dyed water, which traces 

the flow paths through the fracture. For the visualization of preferential flow paths 

through fractures, a normal digital camera was used to record videos of the experiments. 

The fracture inclinations (β) in the experimental set up were set as 45°, 55°, and 65° 

(Figure 3). The flow experiment was performed in both wet and dry fracture conditions. 

The downstream tank is divided into five different sections by means of graduated 

rulers, in order to measure the hydraulic head variation. The flow volume in the five out-

lets was measured using one-minute time steps. The experiment was maintained until one 

of the outlet sections was filled with water. The upper part of the synthetic fracture was 

overlaid by a layer of natural soil mixed with gravel of 0.1 m thickness. Water flowed 

through this upper layer by means of five drippers, and then from the soil layer distrib-

uted to the fracture. In order to trace water movement in the dry condition, two molded 

resin blocks were dried about 50 min before the experiment. Then, the experiment was 

performed in wet conditions, in which the resin surface was washed in water. First, the 
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surfaces angles were set at 45° for about 60 min, then the surfaces were dried and the 

experiment was repeated at 55° and 65°. 

 

Figure 3. Experimental setup. 

In order to trace the temporal location of dyed water, about sixty photos were taken 

by a digital camera for each inclined fracture, in both dry and wet initial conditions. An 

image processing technique was performed using the edge function with a “canny” filter 

built-in MATLAB to extract the region of dyed water from the recorded images. 

2.4. Flow Rate Prediction 

The relation between many independent inputs and outputs can be described using 

a machine learning algorithm. Among the different data mining algorithms, the tree algo-

rithms are novel techniques which have been used to predict nonlinear processes [41]. The 

tree model partitions a complex problem into many sub-spaces and assigns regression 

relationships to them. In the tree model, nodes and leaves denote a selection and a deci-

sion, respectively. Among the tree algorithms, the M5 tree has been an efficient technique 

for the estimation of experimental results [42]. The M5 tree generates many linear rela-

tionships for different ranges of input data by dividing the input space into many sub-

spaces. 

The aim of the M5 tree is minimizing the cumulative error from the top to the leaf of 

the tree. The dividing process is terminated if the value of SDR varies slightly [41]: 

𝑆𝐷𝑅 = 𝑠𝑑 (𝑃) − ∑
𝑃𝑖

𝑃
× 𝑠𝑑(𝑃𝑖), (9) 

where 𝑃 is a set of instances of node 𝑖, 𝑃𝑖 is the new instance after dividing the node, 

and 𝑠𝑑 is the standard deviation. 

After constructing the tree, a linear relationship is fitted to each leaf. In order to avoid 

the overfitting of the tree for unseen data, the tree is pruned from bottom to root [43]. In 

this study, the M5 tree in WEKA [44] software is trained with experimental data to analyze 

the sensitivity of the flow rate along the fracture outlet to the fracture parameters. The 

input parameters are time, fracture inclination, fractal dimension, and mismatch length of 

aperture distribution. The sensitivity of different inputs to the flow rate is determined 

using the aforementioned analytical model. 

Wavelet analyses have been used to forecast the time series of different natural pro-

cesses. The Wavelet uses a series of periodic functions to split time series into many scales, 

as written: 



Water 2022, 14, 3199 9 of 21 
 

 

𝜑𝑥,𝑦(𝑡) = 𝑥−0.5 𝜑 (
𝑡−𝑦

𝑥
), (10) 

where, 𝜑𝑥,𝑦(𝑡)  is a Wavelet function, 𝑡 is time, and 𝑥 and 𝑦 are the scale parameter 

and position, respectively. 

The coefficients of the input 𝑎(𝑡) determined by using the 𝜑𝑥,𝑦 can be expressed as 

[44]: 

𝐾𝑥,𝑦 =  ∫ 𝑎(𝑡)𝑥−0.5 𝜑 (
𝑡−𝑦

𝑥
) 𝑑𝑡, (11) 

where, 𝐾𝑥,𝑦 is a continuous function. The temporal variation of flow rate over the fracture 

outlet is non-continuous, and hence, a discrete function was defined as [45,46]: 

𝜑(𝑡) = (
1

𝜋4) cos(𝑛𝑡) exp(
−𝑡2

2
), (12) 

where 𝑛 is a constant value. 

In this study, a Wavelet transform model was developed in MATLAB to predict the 

flow rate time series along the fracture outlet. The Laplacian operator for predicting the 

flow rate in the fracture is selected as a capable function [46]: 

𝜑(𝑥) = (‖𝑥‖2 − 𝑐)𝑒
−‖𝑥‖2

2 , (13) 

where ‖𝑥‖2 = 𝑥𝑇𝑥, and 𝑐 is a constant value determined by trial and error. 

The performance of the developed Wavelet algorithm is judged using the Nash–Sut-

cliffe index, as expressed [47]: 

𝑅2 =  
𝑀0−𝑀

𝑀
 × 100  , 

𝑀0 =  ∑ (𝑄𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑄̅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2
𝑖 , 

𝑀 =  ∑ (𝑄𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑄̂𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2
𝑖 , 

𝑋̅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
(∑ 𝑄𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑛
𝑖=1 )

𝑛
, 

(14) 

where 𝑄𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 represents the observed value of flow rate using experiment results, 

𝑄̅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is the average value of flow rate predicted by the Wavelet algorithm, 𝑄̂𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑   

is the predicted value of the Wavelet algorithm, and 𝑛 is the sample number. Addition-

ally, in order to measure the error between observed and predicted values, the root mean 

squared error (RMSE) is utilized: 

𝑅𝑀𝑆𝐸 =  [
1

𝑛
∑ (𝑄𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1 ]

1

2, (15) 

3. Results and Discussion 

3.1. Flow Rate along the Fracture Outlets 

In order to evaluate how fracture geometry and inclination affect flow distribution, 

the total flow volumes in each of the five sections of the downstream outlet tank were 

measured. The volume of discharged water from Fracture-1 for different inclinations is 

illustrated in Figure 4. 

As shown in Figure 4a, the second section (Q2) has the maximum discharge rate. The 

first section (Q1) is empty. A similar trend is observed for inclinations 55° and 65° (see 

Figure 4b,c). 

Although the influence of fracture inclination on Q1 and Q2 is negligible, the values 

of Q5 and Q3 become closer with increasing inclination angles. Additionally, Q4 does not 

show a clear trend regarding inclination. This variation in flow rates can be attributed to 

the diversity of preferential flow paths corresponding to large gravity forces for high in-

clination angles. However, there is no direct relationship between the inclination angles 

and the total time to fill section Q5. This can be attributed to the change in discharge rates 
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of all five sections. Many preferential flow paths were created and subsequently disap-

peared during the experiment; hence, the discharge rate in the outlets is not uniform and 

has a nonlinear trend with time. 

  

(a) (b) 

 

(c) 

Figure 4. Outlet volume (mL) vs. time (min) at different test sections for Fracture-1, with an inclina-

tion of (a) 45°; (b) 55°; (c) 65°. 

The effect of fractal dimension on the outlet volume can be analyzed by comparing 

Fracture-1 (Figure 4a) and Fracture-2 (Figure 5a) with the same inclination angle (β = 45°) 

and mismatch length (λ = 30 mm). The increase in fractal dimension from 2.2 to 2.4 affects 

the outlet flow rate distribution. This is highlighted in Figure 5a, where section Q5 pre-

sents the maximum flow rate, while in this case section Q3 remains empty. A comparison 

between Figures 4a and 5a indicates that the increase in fractal dimension results in a 77% 

increase in mean flow rates of Q5. 
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(a) (b) 

Figure 5. Outlet volume (mL) vs. time (min) at different test sections for (a) Fracture-2 with a fracture 

inclination of 45°; (b) Fracture-4 with a fracture inclination of 45°. 

The distribution of flow rates over the outlet sections is more sensitive to the change 

in fractal dimension than the fracture inclination angle. This can be justified by the fact 

that the fractal dimension, as a representative parameter of fracture aperture geometric 

distribution, changed preferential flow paths significantly, whereas the variation of incli-

nation angle changed the values of the discharge rates. 

The effect of mismatch length on the outlet volume can be analyzed by comparing 

Fracture-1 (Figure 4a) and Fracture-4 (Figure 5b) with the same inclination angle (45°) and 

fractal dimension (𝐷𝑇 = 2.2) and different mismatch length values. According to Figures 

4a and 5b, section Q2 presents the maximum flow rates for each of two different mismatch 

lengths. In addition, the mean value of Q2 decreased by about 12%. A similar trend could 

be observed for all outlet sections except Q4. This was confirmed by the fact that a reduc-

tion in mismatch length led to the decrease in mean aperture and corresponding fracture 

equivalent permeability, whereas the preferential channel locations remain constant. 

The results of the flow rate distribution through the five sections confirm the findings 

of Li et al. [15], who carried out investigations of flow paths in concrete self-affine frac-

tures. 

Figure 6 shows a comparison of the maximum discharge rates (Q2 and Q3) between 

two samples of Fracture-1. Though there is a high correlation (R > 0.9) between the two 

samples, the expected error is high (RMSE = 38.65), especially at high discharge rates. It is 

clear from Figure 6 that the epoxy resin samples tend to underestimate maximum dis-

charge rates. The viscosity of epoxy resin is lower than the viscosity of concrete, and hence, 

the surface is more consistent with plastic mold geometry. 

Additionally, according to the difference in properties of resin and concrete, the sur-

face tension and corresponding capillary forces are different. 

3.2. Preferential Flow Paths in Dry Fractures 

In this section, the flow movement of four inclined single fractures was traced and 

analyzed. 

The image of the first finger in the unsaturated Fracture-1 for 𝛽 = 45° is shown in 

Figure 7. As seen in the figure, water first starts to distribute near the inlets, and then (after 

4 s), a capillary zone forms and the first flow path is created. The first channel in Figure 7 

includes five capillary zones and several small intermediate channels. The travel time and 
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travel distance of the first finger to reach the outlet of the fracture are 6 s and 180 mm, 

respectively. Thus, the mean velocity of finger in the unsaturated Fracture-1 is about 30 

mm/s. 

 

Figure 6. Comparison between the discharge rates along the outlet sections Q2 and Q3, obtained 

from experiments conducted on concrete and resin fracture surfaces. 

A comparison between the flow path in the dry fracture and the aperture distribution 

indicates that the first capillary zones are distributed around the area with apertures less 

than 1.8 mm. In these areas, capillary forces are enough to overcome the gravitational 

force, whereas the thin flow channels are observed near the largest apertures. Thus, the 

width of these capillary zones is influenced by the ratio of gravity force to capillary force, 

which is a function of fracture inclination. The Bond number (Bo) corresponding to the 

ratio of gravity force to capillary force, considering the epoxy resin surface tension (0.066 
𝑁

𝑚
), contact angle (63°), viscosity of dyed water (1.01 × 10−3 𝑘𝑔

𝑚𝑠
), and fracture inclination 

angle (β = 45°) is approximately 0.7488. 

In order to reach the steady condition in flow paths, an experiment was performed 

for 1 h with a constant head; the results show that the variation of thin preferential chan-

nels remains generally unsteady. Many thin preferential paths were created during the 

first 10 min of the experiment, and then disappeared in the next 10 min. This creation of 

preferential channels during the first hour of the experiment is periodic, and has an effect 

on the volume of the five outlets (Figure 4). 

The image of the first flow path for different fracture angles when the water flow has 

reached the outlet is illustrated in Figure 8. A pixel-by-pixel comparison is performed in 

order to evaluate the impact of fracture inclination on the shape and travel time of the first 

flow path. 

As highlighted in Figure 8, the variation in inclination angle from 55° to 65° results 

in an 8% reduction in the mean width of the first flow path, whereas the number of thin 

preferential channels increases. As shown in Figure 8, the total area of capillary zone is 

reduced by about 7.5%, while the reduction in width of the thin channels is insignificant. 

The reduction in the capillary area corresponds to a 28% increase in the ratio of grav-

ity to capillary force. Moreover, the flow path is divided into two small channels near the 

outlet. This variation in flow path confirms the change in outlet’s volume by an increasing 

inclination angle, as demonstrated in Figure 3a–c. Therefore, the flow rate of outlet-2 is 

split between outlet-2 and outlet-3. 
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Figure 7. Flow movement through Fracture-1 for an inclination angle of 45°, under dry initial con-

ditions. 
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(a) (b) 

Figure 8. Shape of the first flow path in Fracture-1 under dry initial condition at varying the incli-

nation angle; (a) β = 55°; (b) β = 65°. 

3.3. Effect of Fractal Dimension and Mismatch Length on Preferential Flow Path 

In this section, preferential flow pathways in the fractures with different fractal di-

mensions, different mismatch lengths, and a constant inclination angle (β = 45°) under wet 

initial conditions are investigated, and the temporal variation of the flow paths is meas-

ured. 

In Fracture-1, about 20 s after the occurrence of the first flow path, two new flow 

paths occur at the left and right sides (Figure 9a). For Fracture-2, there are many separated 

preferential flow paths trapped in the wide aperture region (Figure 9b). In Fracture-3, a 

capillary zone is formed in the presence of small aperture areas at the top and middle 

parts of the fracture. Successively, about 5 s after the formation of the first flow path, three 

additional flow paths start to form (Figure 9c). In Fracture-4, the distribution of flow paths 

is relatively heterogeneous and the flow paths are divided into many thin channels (Fig-

ure 9d). 

As is shown, the flow path distribution for large values of fractal dimension is ho-

mogenous; nevertheless, the width of the flow paths and preferential islands can be re-

lated to aperture dimension. Figure 10 shows the flow path along Fracture-4 for different 

cross sections highlighted in Figure 9d. The maximum and minimum width of the flow 

path occur near the smallest and largest apertures, respectively. Nevertheless, the maxi-

mum value of the flow rate is observed in the portion of the flow path close to the largest 

apertures (red arrow). 
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(a) (b) 

  

(c) (d) 

Figure 9. Preferential flow paths in the fractures with different fractal dimensions and mismatch 

lengths for inclination angle of  = 45°, 10 min after the start of the infiltration processes in the frac-

ture: (a) Fracture-1; (b) Fracture-2; (c) Fracture-3; (d) Fracture-4. 

  

(a) (b) 
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(c) (d) 

Figure 10. Flow paths along the aperture over cross sections: (a) A–A; (b) B–B; (c) C–C; (d) D–D. Red 

arrows indicate the flow paths with the maximum flow rate. 

Corresponding to large apertures, flow separation occurs; hence, the width of the 

flow path is small. The thin preferential channels show generally unsteady characteristics. 

Table 2 indicates the number of flow paths and intermediate channels about 3 min after 

the first flow entered the fracture. Although the mean aperture values in Fracture-2 and 

Fracture-3 are approximately equal, the number of flow paths is significantly influenced 

by the change in fractal dimension; moreover, fracture inclination has a negligible effect 

on the number of original flow paths, while the inclination effect on intermediate channels 

is significant. 

A comparison of flow paths at different times (see Table 3) indicates that the number 

of intermediate channels increased through time, and that the flow rate distribution 

changed through five outlets. The variation in flow rate is observed in Figure 4, where the 

slope of the straight lines related to the volume of discharged water varies with the incli-

nations. 

Table 2. The mean number of flow paths and intermediate channels for different fractures and in-

clinations. 

Fracture Flow and Intermediate Flow α = 45° α = 55° α = 65° 

1 flow path 1 1 1 

1 Intermediate channel 3 3 4 

2 flow path 1 2 2 

2 Intermediate channel 2 2 3 

3 flow path 2 2 2 

3 Intermediate channel 3 3 4 

4 flow path 3 4 4 

4 Intermediate channel 4 3 6 

The temporal variation of the intermediate channels (increase or decrease) between 

10 and 60 min for different fractures and inclinations is presented in Table 4. It clearly 

illustrates that, by increasing the fracture inclination and fractal dimension, the number 

of intermediate flow paths increases and the effect of fractal dimension (see Figure 5) is 

less than that of inclination (Table 4). Thus, the temporal variation of the flow rate over 

the fracture outlet is nonlinear, and, hence, predicted by a nonlinear regression algorithm. 
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Table 3. The number of intermediate flows of different inclinations through time. 

t 
F-1 

α = 45° 

F-1 

α = 55° 

F-1 

α = 65° 

F-2 

α = 45° 

F-2 

α = 55° 

F-2 

α = 65° 

F-3 

α = 45° 

F-3 

α = 55° 

F-3 

α = 65° 

F-4 

α = 45° 

F-4 

α = 55° 

F-4 

α = 65° 

10 3 3 4 2 2 3 3 3 4 4 4 5 

20 3 4 4 3 4 4 4 5 5 4 5 5 

30 3 4 5 4 5 5 5 5 6 5 5 5 

40 4 5 6 5 6 6 5 6 6 6 6 6 

50 6 6 7 - - - - - - 5 6 6 

60 6 6 6 - - - - - - - - - 

3.4. Prediction of Total Flow Rate 

The input samples which were used for training the M5 tree are fractal dimension, 

standard deviation, and mismatch length of the fracture with different inclinations. These 

parameters are used to predict the temporal variation of flow rate in five outlets as outputs 

of the M5 tree. In order to remove the scale impact, non-dimensional forms of these inputs 

were considered for the construction of the M5 tree (see Table 5). As demonstrated in 

Equation (8), permeability of the preferential channels as well as their location are func-

tions of 𝑒𝐷𝑓 and  sin𝛽, respectively. The M5 tree was generated using 75% of the experi-

mental dataset, and was validated by 25% of samples. Due to the small number of training 

samples, the hold out technique was used to split the testing and training database [48]. 

The range of parameters used for training the M5 tree is presented in Table 4. Several 

types of parameters are tested, and the matched formula with experiment results is se-

lected. 

Table 4. The range of variation of the parameters used for training of the M5 tree. 

Parameters Minimum Value Maximum Value 

𝑒𝐷𝑓 8.96 10.94 

𝜆 10 30 

sin𝛽 0.707 0.906 

The generated linear relations for the pruned tree by two nodes and three leaves (see 

Table 5) indicate that by increasing the fractal dimension, the total flow volume increases. 

RMSE index 3.54 mL/min suggests that the relations generated by the tree model are the 

most accurate. The sensitivity analyses of the impact of 𝜆, sin𝛽 and 𝑒𝐷𝑓 on the total flow 

volume of the fracture (𝑉) showed that there is a meaningful relation between 𝑉 and 

𝑒𝐷𝑓 , and that the influence of the other parameters is negligible. 𝑒𝐷𝑓 , as a function of frac-

tal dimension, is the most significant characterization of fracture geometry affecting 𝑉 in 

all three relations. The minimum variation in 𝑉 through time corresponds to 𝑒𝐷𝑓 ≤ 9.43. 

Table 5. The regression relationships proposed by the M5 tree. 

Linear Model Number Logical Condition Linear Relation 

LM1 If  𝑒𝐷𝑓  ≤ 9.43,     then 𝑉 = 14.25 𝑡 + 12.31 

LM2 If 9.43 < 𝑒𝐷𝑓 < 10.42,   then 𝑉 = 14.97 𝑡 + 10.70 
LM3 If 10.42 ≤ 𝑒𝐷𝑓 ,     then 𝑉 = 15.09 𝑡 + 16.66 

3.5. Prediction of Flow Rate Time Series 

In order to find the best performance of the Wavelet model, different Wavelet func-

tions were analyzed, and finally, the Laplacian operator function was selected. The Wave-

let algorithm was trained with the flow rate time series of Fracture-1, Fracture-2, and Frac-

ture-3, and was validated with Fracture-4. The optimal value of neurons was computed 

by trial and error as four neurons. The training data of the flow rate with second-long time 
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steps were decomposed using four layers, including d1, d2, d3, and d4 (see Figure 11). At 

the decomposition step, an unscaled noise structure with a heuristic threshold technique 

was selected. 

 

Figure 11. Details of coefficients of the flow rate time series in the Wavelet algorithm. The d1 d2, d3 

and d4 are the Wavelet coefficients. 

The time series of the predicted flow rate by Wavelet analysis and observed experi-

mental data in the validation step (about 25% of samples) is illustrated in Figure 12. As 

shown in Figure 12, the estimated values of the Wavelet model, with a Nash value of 0.81 

and RMSE = 3.21, are concentrated near the best-fitting line for the observed data (R = 1). 

Although the negative value of the mean error (−3.72) indicates that the predicted values 

are relatively underestimated (see Figure 12), the error between the predicted peak flow 

rate and observed peak value is negligible. This underestimation of the flow rate can be 

attributed to the impact of fractal dimension and mismatch length, which was neglected 

in the training of the Wavelet model. As mentioned above, the Wavelet model was trained 

using the flow rate time series of the three fractures, and was then implemented for the 

prediction of Fracture-4. Thus, the periodic fluctuations of flow rate time series over the 

fracture outlet can be estimated with an optimal Wavelet model. 
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(a) (b) 

Figure 12. Prediction of flow rate time series: (a) comparison between observed and predicted flow 

rate over time; (b) scatter plot of predicted flow rate versus observed flow rate. 

4. Conclusions 

Analyzing infiltration patterns in fractured rock is crucial for the understanding of 

recharge processes in fractured rock aquifers. 

In this study, experiments on preferential flow paths over inclined fractures were 

conducted under different geometric characteristics of synthetic fractures, such as fractal 

dimension, standard deviation, and mismatch length. The results indicated that a varia-

tion in the inclination angle of dry fracture from 55° to 65° resulted in an 8% reduction in 

the mean width of the first flow path. This reduction occurred mostly in the capillary re-

gions, whereas the number of thin preferential channels near the outlet increased. The 

reduction in the capillary area corresponded to a 28% increase in the ratio of gravity to 

capillary force. 

Moreover, there is a direct relationship between the fracture inclination angle and the 

number of preferential channels near the outlet. The assessment of flow pathways in the 

saturated fracture reveals that the number of flow paths and their locations is a function 

of fractal dimension values, while a change in mismatch length only changes the flow rate. 

However, no linear relationship has been found between the number of flow paths and 

the magnitude of fractal dimension. By means of a sensitivity analysis, a linear relation 

has been detected between the flow rate and the exponential form of the fractal dimension. 

In addition, the influence of mismatch length on the flow pathways has been found to be 

negligible. 

The results also demonstrate that the maximum width of the preferential channels 

belongs to the area with the smallest aperture, whereas flow separates near the largest 

aperture. Moreover, the variation in these thin preferential channels near the fracture out-

let is generally unsteady, which results in a nonlinear flow rate in each outlet. Finally, an 

efficient Wavelet algorithm calibrated across experimental data predicted the time series 

of the flow rate with a Nash value of 0.81. 

Laboratory-scale fracture flow experiments fill critical knowledge gaps by providing 

direct observations and measurements of fracture geometry and flow under controlled 

conditions that cannot be obtained in the field. However, the conducted experimental in-

vestigations on infiltration dynamics in a single fracture should be viewed as proof-of-

concept analysis, and they are not to be considered exhaustive. Future research on fracture 

flow can be directed towards prediction uncertainty of flow rates at the fracture outlet, 
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due to different realizations of fracture apertures. For this purpose, it will be necessary to 

link the Wavelet algorithm with a numerical model calibrated with the experimental data. 
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