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ABSTRACT
Finite-sumproblems appear as the sample average approximation of
a stochastic optimization problem and often arise in machine learn-
ing applications with large scale data sets. A very popular approach
to face finite-sum problems is the stochastic gradient method. It is
well known that a proper strategy to select the hyperparameters
of this method (i.e. the set of a-priori selected parameters) and, in
particular, the learning rate, is needed to guarantee convergence
properties and good practical performance. In this paper, we anal-
yse standard and line search based updating rules to fix the learning
rate sequence, also in relation to the size of the mini batch chosen
to compute the current stochastic gradient. An extensive numerical
experimentation is carried out in order to evaluate the effectiveness
of the discussed strategies for convex and non-convex finite-sum
test problems, highlighting that the line search basedmethods avoid
expensive initial setting of the hyperparameters. The line search
based approaches have also been applied to train a Convolutional
Neural Network, providing very promising results.
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1. Introduction

In this paper, we consider the following optimization problem

min
x∈Rd

F(x) ≡ 1
N

N∑
i=1

fi(x), (1)

where each fi : Rd → R is differentiable with L-Lipschitz continuous gradient. We are
especially interested in the case where the number of components N is very large, and,
hence, the adoption of stochastic gradient methods is convenient since they exploit either
a single gradient ∇fi or a very limited number of them at each iteration, rather than the
entire gradient ∇F. The study of the minimization problem (1) is relevant since it often
arises in machine learning applications where it is known as empirical risk minimization.
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In this framework, N represents the number of samples and fi is the single cost function
corresponding to the ith sample.

A classical stochastic approach to solve (1) is the mini batch stochastic gradient (SG)
method [1,2], which, given x(0) ∈ R

d, is defined as

x(k+1) = x(k) − αkg
(k)
Nk

, (2)

with g(k)
Nk

= 1
Nk

∑
i∈Nk

∇fi(x(k)). HereNk is a randomly chosen subset of {1, . . . ,N}whose
cardinality is denoted by Nk and αk is a positive learning rate. The mini batch size Nk can
be either a priori fixed or allowed to vary during the iterations.

It is well known in the literature that both the convergence properties and the practical
performance of the algorithm (2) are strongly influenced by the learning rate selection rule.
In this paper, we discuss some techniques to choose the sequence of the learning rate {αk}
in combination with proper strategies to fix the mini batch size along the iterative pro-
cess. We compare standard learning rate selection rules to line search based approaches
which exploit a convenient increase of the mini batch size aimed at imposing some useful
properties on the stochastic directions. An extensive numerical experimentation enables to
evaluate the effectiveness of the considered strategies for convex and non-convex test prob-
lems. The behaviour of the discussed approaches is also evaluated on the problem arising in
training a Convolutional Neural Network (CNN) for multi-classification, highlighting the
stability properties of the line search strategies with respect to the hyperparameter setting.

2. Learning rate selection rules for stochastic gradient method

In this section, we discuss several possibilities to choose the learning rate in the SG
scheme (2) for both the fixed and the variable mini batch size cases.

2.1. Fixedmini batch size

For a deep survey on the convergence results of the SG scheme (2)with fixedmini batch size
Nk = N, the reader is referred to [2]. However, it is worth to recall that, under the assump-
tion that the gradient of the objective function is Lipschitz continuous with parameter L
and some additional conditions on the first and second moments of the stochastic gradi-
ent, when the positive learning rate satisfiesαk = α ≤ αmax, for a constant αmax depending
on L, the expected optimality gap for strongly convex objective functions, or the expected
sum of gradients for general objective functions, asymptotically converges to values pro-
portional to α. Roughly speaking, if the learning rate is sufficiently small, the method
generates iterates in the neighbourhood of the optimum or the stationary point. Never-
theless, the constants related to the above mentioned assumptions, such as the Lipschitz
parameter L, are either unknown or not easy to approximate. For this reason, these results
do not give an idea of how to select the learning rate. Moreover a too small value of this
hyperparameter can give rise to a very slow learning process. As a consequence, the learn-
ing rate is often manually tuned in the practice by means of an expensive trial and error
procedure. Furthermore, we recall that, under the selection of a suitable diminishing learn-
ing rate αk = O(1/k) and a fixed mini batch size, the expected value of the optimality gap
generated by the SG method (2) for strongly convex objective functions, or the expected
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sum of gradients for general objective functions, converges to 0 at a sublinear rateO(1/k)
[2]. Unfortunately, to select a diminishing sequence {αk} is not efficient as well and the
starting value of the learning rate α0 has to satisfy suitable assumptions.

An attempt to overcome this difficulty has been made in [3,4] where the Barzilai-
Borwein (BB) rule, very often exploited to select the learning rate for the deterministic
gradient methods, has been adapted to the stochastic setting. However, unlike in the
deterministic framework, the generalized BB update requires either proper smoothing
technique [4] to diminish the current learning rate αk while running the algorithm or a
thresholding procedure on it, based on user dependent bounds [αmin/k,αmax/k] [3] to
avoid instability and ensure the convergence.

2.2. Variablemini batch size

For twice differentiable objective function such that μI � ∇2F � LI, μ > 0, a way to
obtain the linear convergence for the SG method (2) consists in increasing the size of the
current mini batch Nk at a geometric rate [5], provided that the learning rate is fixed as
a positive value bounded from above by 1

L . This approach has two drawbacks: the size of
the mini batch increases too rapidly and the constant L is typically not known, as already
said before. In order to overcome these drawbacks we report in the following two strategies
developed very recently [6,7].

In [6] the authors suggest to increase the mini batch size in (2) on the basis of two
conditions imposed on the stochastic directions. These conditions, called inner product
test and orthogonality test, guarantee that the search directions computed on a mini batch
of suitable size are descent directions with high probability:

E

[(
gTNk

(k)∇F(x(k)) −
∥∥∥∇F(x(k))

∥∥∥2)2
]

≤ θ2
∥∥∥∇F(x(k))

∥∥∥4 , (3)

E

⎡
⎢⎣

∥∥∥∥∥∥g(k)
Nk

−
g(k)
Nk

T∇F(x(k))∥∥∇F(x(k))
∥∥2 ∇F(x(k))

∥∥∥∥∥∥
2⎤⎥⎦ ≤ ν2

∥∥∥∇F(x(k))
∥∥∥2 , (4)

where θ and ν are prefixed positive values. For twice differentiable objective functions such
thatμI � ∇2F � LI, if the inner product test and the orthogonality test are fulfilled and the
learning rate is fixed at each iteration and bounded from above by a constant depending on
L, θ and ν, then the SG scheme (2) is linearly convergent. Under the same assumptions on
the mini batch size and the learning rate, weaker theoretical convergence properties hold
formore general objective functions. Since these results strongly depend on the knowledge
of the Lipschitz parameter L, a line search procedure has been devised for its numerical
estimation. The resulting algorithm is called the Adaptive Sampling Method (ASM).

In the deterministic setting [8–11], the BB rule has been proved to give a local estimate
of the inverse of the Lipschitz constant of ∇F. Motivated by this observation, we decide
to also consider a modified version of ASM, called ASM-BB1, where the learning rate is
no more fixed by means of the line search procedure but through the BB rule developed
for the stochastic setting in [4]. The value for αk is kept fixed until the size of the mini
batch changes in according to the conditions (3) and (4). When the size of the mini batch
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is increased by the inner product test and the orthogonality test, a new BB learning rate is
computed. This version of ASM is denoted by ASM-BB1 in the following. In [12] a similar
approach to that of ASM-BB1 is adopted. The authors developed two SG methods of the
form (2) where the increase of the mini batch size is controlled by means of (3) and (4)
and the learning rate is computed through two different generalized BB rules based on the
so called Ritz-like and harmonic Ritz-like values, respectively. Hereafter, these approaches
will be denoted by ASM-A-R and ASM-AA-R, respectively.

An idea similar to that onwhichASM is based, has been followed in [7].Here the authors
developed a proximal stochastic gradient algorithm to face a regularized version of prob-
lem (1); however, if the function to minimize is defined as in (1), such algorithm belongs
to the class of mini batch SGmethods (2) with variable mini batch size. In more detail, the
mini batchNk is selected such that the variance of the stochastic gradients is dynamically
reduced along the iterative process, namely,

Ek[‖g(k)
Nk

− ∇F(x(k))‖2] ≤ εk, εk ≥ 0, ∀ k and
∑
k

εk < ∞ a.s., (5)

whereEk[·] denotes the conditional expected value with respect to the σ -algebra generated
by the information collected before iteration k, i.e. assuming x(0), . . . , x(k) given. Hereafter
we provide two convergence results for the scheme (2) combined with condition (5): the
first one is more general since it allows the objective function to be non-convex. This con-
vergence analysis is different to the one developed in [7] and it is especially tailored for
the SGmethod (2) applied to the class of optimization problems (1). Before presenting the
main results, we need to recall a classical result from stochastic analysis.

Lemma 2.1 ([13, Lemma 11]): Let νk, uk, αk, βk be nonnegative random variables and let

Ek[νk+1] ≤ (1 + αk)νk − uk + βk a.s.
∞∑
k=0

αk < ∞ a.s.,
∞∑
k=0

βk < ∞ a.s.,

where Ek[νk+1] denotes the conditional expectation for the given ν0, . . . , νk, u0, . . . , uk,
α0, . . . ,αk, β0, . . . ,βk. Then

νk −→ ν a.s,
∞∑
k=0

uk < ∞ a.s,

where ν ≥ 0 is some random variable.

Theorem 2.2: Let {x(k)} be the sequence generated by (2) with 0 < αk = α < 2
L . If g

(k)
Nk

is
an unbiased estimate of ∇F(x(k)) and condition (5) holds, then ‖∇F(x(k))‖ → 0 a.s.
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Proof: In view of (2) and the L-Lipschitz continuity of ∇F, we have that

F(x(k+1)) ≤ F(x(k)) + ∇F(x(k))T(x(k+1) − x(k)) + L
2
‖x(k+1) − x(k)‖2

= F(x(k)) − α∇F(x(k))Tg(k)
Nk

+ Lα2

2
‖g(k)

Nk
‖2

= F(x(k)) − α∇F(x(k))Tg(k)
Nk

+ Lα2

2
‖g(k)

Nk
± ∇F(x(k))‖2

= F(x(k)) − α∇F(x(k))Tg(k)
Nk

+ Lα2

2
‖g(k)

Nk
− ∇F(x(k))‖2+

+ Lα2

2
‖∇F(x(k))‖2 + Lα2

(
g(k)
Nk

− ∇F(x(k))
)T ∇F(x(k)). (6)

By taking the conditional expectation on both sides of inequality (6) and recalling that
Ek[g

(k)
Nk

] = ∇F(x(k)) and, hence, Ek[g
(k)
Nk

− ∇F(x(k))] = 0, we obtain that

Ek[F(x(k+1))] ≤ F(x(k)) − α‖∇F(x(k))‖2 + Lα2

2
‖∇F(x(k))‖2

+ Lα2

2
Ek[‖g(k)

Nk
− ∇F(x(k))‖2]

+ Lα2
Ek

[(
g(k)
Nk

− ∇F(x(k))
)T ∇F(x(k))

]

= F(x(k)) −
(

α − Lα2

2

)
‖∇F(x(k))‖2 + Lα2

2
Ek[‖g(k)

Nk
− ∇F(x(k))‖2].

Since α < 2
L and condition (5) holds, Lemma 2.1 can be invoked. Therefore∑

k

‖∇F(x(k))‖2 < +∞ a.s.

and the theorem is proved. �

The above theorem enables us to affirm that if {x(k)} has a limit point, then this point is
a stationary point for F a.s.

Theorem 2.3: Let {x(k)} be the sequence generated by (2) with 0 < αk = α < 1
L . If g

(k)
Nk

is
an unbiased estimate of ∇F(x(k)), condition (5) holds true, the function F is convex and the
solution set X∗ of problem (1) is not empty, then {x(k)} converges to a solution of (1) a.s.

Proof: Let x∗ ∈ X∗. We observe that

‖x(k+1) − x∗‖2 = ‖x(k+1) ± x(k) − x∗‖2

= ‖x(k+1) − x(k)‖2 + ‖x(k) − x∗‖2 + 2(x(k+1) − x(k))T(x(k) − x∗)

= ‖x(k) − x∗‖2 − 2αg(k)
Nk

T
(x(k) − x∗) + α2‖g(k)

Nk
‖2

= ‖x(k) − x∗‖2 − 2αg(k)
Nk

T
(x(k) − x∗) + α2‖g(k)

Nk
± ∇F(x(k))‖2 (7)



6 G. FRANCHINI ET AL.

where the third equality follows from the definition of x(k+1) in (2). By taking the
conditional expectation on both sides of inequality (7), we can write that

Ek[‖x(k+1) − x∗‖2] = ‖x(k) − x∗‖2 − 2α∇F(x(k))
T
(x(k) − x∗) + α2‖∇F(x(k))‖2

+ α2
Ek[‖g(k)

Nk
− ∇F(x(k))‖2]

≤ ‖x(k) − x∗‖2 − 2α(F(x(k)) − F(x∗)) + α2‖∇F(x(k))‖2

+ α2
Ek[‖g(k)

Nk
− ∇F(x(k))‖2]

≤ ‖x(k) − x∗‖2 − 2α(1 − αL)(F(x(k)) − F(x∗))+
+ α2

Ek[‖g(k)
Nk

− ∇F(x(k))‖2]
where the first inequality follows from the convexity of F and the second inequality follows
from the fact that the L-Lipschitz continuity of ∇F implies that ‖∇F(x)‖2 ≤ 2L(F(x) −
F(x∗)). From the hypotheses onαk and the conditional expected value of the variance of the
stochastic gradient, Lemma 2.1 can be applied and we can state that the sequence {‖x(k) −
x∗‖}k∈N converges a.s.

Next we prove the almost sure convergence of the sequence {x(k)} by following a strategy
similar to the one employed in [14, Theorem 2.1]. Let {x∗

i }i be a countable subset of the rel-
ative interior ri(X∗) that is dense in X∗. From the almost sure convergence of ‖x(k) − x∗‖,
x∗ ∈ X∗, we have that for each i, the probability Prob({‖x(k) − x∗

i ‖} is not convergent) = 0.
Therefore, we observe that

Prob(∀ i ∃bi s.t. lim
k→+∞

‖x(k) − x∗
i ‖ = bi) = 1 − Prob({‖x(k) − x∗

i ‖} is not convergent)

≥ 1 −
∑
i
Prob({‖x(k) − x∗

i ‖} is not convergent) = 1,

where the inequality follows from the union bound, i.e. for each i, {‖x(k) − x∗
i ‖} is a con-

vergent sequence a.s. For a contradiction, suppose that there are convergent subsequences
{ukj}kj and {vkj}kj of {x(k)} which converge to their limiting points u∗ and v∗ respec-
tively, with ‖u∗ − v∗‖ = r > 0. By Theorem 2.2, u∗ and v∗ are stationary; in particular,
since F is convex, they are minimum points, i.e. u∗, v∗ ∈ X∗. Since {x∗

i }i is dense in X∗,
we may assume that for all ε > 0, we have x∗

i1 and x∗
i2 are such that ‖x∗

i1 − u∗‖ < ε and
‖x∗

i2 − v∗‖ < ε. Therefore, for all kj sufficiently large,

‖ukj − x∗
i1‖ ≤ ‖ukj − u∗‖ + ‖u∗ − x∗

i1‖ < ‖ukj − u∗‖ + ε.

On the other hand, for sufficiently large j, we have

‖vkj − x∗
i1‖ ≥ ‖v∗ − u∗‖ − ‖u∗ − x∗

i1‖ − ‖vkj − v∗‖ > r − ε − ‖vkj − v∗‖ > r − 2ε.

This contradicts with the fact that x(k) − x∗
i1 is convergent. Therefore, we must have u∗ =

v∗, hence there exists x̄ ∈ X∗ such that x(k) −→ x̄. �

The previous theorems show that the convergence of the sequence generated by
algorithm (2) can be obtained provided that condition (5) holds and the learning rate αk is
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bounded by a constant depending on the Lipschitz constant of the gradient of the objective
function. Since both these requirements seem difficult to be preserved in practice, we now
detail how to select the stochastic gradients and the learning rate along the iterations in
order to realize them. The resulting method is a Line search based Stochastic first order
Algorithm (LISA) and it is stated in Algorithm 1. Some explanations are needed.

Algorithm 1 - LISA

Given x(0) ∈ R
d, 0 < N0 < N, β ∈ (0, 1), 0 < αmin < αmax and a nonnegative sequence

{εk}k∈N ,
∑+∞

k=0 εk < ∞.

For k = 0, 1, 2, . . .

Step 1. Choose a sampleNk of size Nk and compute gNk(x
(k)).

If

V(k) = 1
Nk(Nk − 1)

∑
i∈Nk

‖∇fi(x(k)) − gNk(x
(k))‖2 ≤ εk or Nk ≥ N

Then go to Step 2.

Else set Nk = min

{
N, max

{
NkV(k)

εk
,Nk + 1

}}
and go to Step 1.

Step 2. Compute FNk(x
(k)) =

∑
i∈Nk

fi(x(k)) and set αk ∈ [αmin,αmax].

Step 3. Set x̄(k) = x(k) − αkgNk(x
(k)).

If

FNk(x̄
(k)) ≤ FNk(x

(k)) − αk

2
‖g(k)

Nk
‖2 (8)

Then go to Step 4.

Else set αk = βαk and go to Step 3.

Step 4. Set x(k+1) = x̄(k).

End For

The variance of the search directions is controlled through a dynamic increase of
the size of the mini batch as described in Step 1. In more detail, under the assump-
tion that Ek[∇fi(x(k))] = ∇F(x(k)), ∀ i, there exists a constant value C ≥ 0 such that
Ek(‖∇fi(x(k)) − ∇F(x(k))‖2) ≤ C, ∀ i. Hence, for an arbitrary i ∈ Nk, we have that
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[15, p. 183]

Ek[‖gNk(x
(k)) − ∇F(x(k))‖2] ≤ Ek[‖∇fi(x(k)) − ∇F(x(k))‖2]

Nk
≤ C

Nk
.

This bound, when combined with a suitable rate of increase in Nk, enables to guarantee
condition (5). Indeed, it is sufficient that

Ek[‖∇fi(x(k)) − ∇F(x(k))‖2]
Nk

≤ εk

with Nk = C
εk
. Following a standard strategy [2,5,6], the first term of the above condi-

tion can be approximated by the sample variance which, at the kth iteration, is defined as
1

Nk−1
∑

i∈Nk
‖∇fi(x(k)) − gNk(x

(k))‖2. Hence, as a practical counterpart of condition (5),
at each iteration we force that

V(k) ≡ 1
Nk(Nk − 1)

∑
i∈Nk

‖∇fi(x(k)) − gNk(x
(k))‖2 ≤ εk, (9)

where {εk}k∈N is any nonnegative sequence such that
∑∞

k=0 εk < ∞. In view of inequal-
ity (9), the variance can bemonitored by a proper increase of the sample sizeNk: whenever
condition (9) is not satisfied, the sample size Nk is increased. As for the selection of the
learning rate, since the Lipschitz constant of ∇F is often not known, a line search proce-
dure on the sampled objective function is adopted in order to estimate it. Indeed, given
FNk(z) = 1

Nk

∑
i∈Nk

fi(z) and by assuming that all the fi have Lipschitz-continuous gradi-
ents with Lipschitz constant L, the gradient estimate gNk(x) is Lipschitz continuous with
the same Lipschitz parameter and it holds that

FNk(y) ≤ FNk(x) + gNk(x)
T(y − x) + L

2
‖y − x‖2, ∀ x, y ∈ R

d. (10)

In view of (10) and denoted by x̄(k) = x(k) − αkgNk(x
(k)), we require that αk satisfies the

following inequality

FNk(x̄
(k)) ≤ FNk(x

(k)) + gNk(x
(k))T(x̄(k) − x(k)) + 1

2αk
‖x̄(k) − x(k)‖2,

which can be rewritten as in (8). If the value of αk does not guarantee the validity of (8),
then it is reduced by a factor β < 1. The line search strategy (8) is well defined: indeed as
soon as αk ≤ 1

L , condition (8) is automatically satisfied. Finally, we point out that the ASM
method and the LISA one shares the same line search requirement on the learning rate.

3. Numerical experiments

In this section, we present two different kinds of numerical experiments. In the first one, we
consider a binary classification problem, using both convex and non-convex loss functions
with several literature datasets. In the second one, we train an artificial neural network
tailored for a multiple classification problem.
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Table 1. Features of each data set.

Data set d #train set (N) #test set

MNIST 784 60,000 10,000
w8a 300 44,774 4975
CHINA0 132 16,033 1604
IJCNN 22 49,990 91,701

3.1. Binary classification

This section is devoted to a comparison of the previously discussed strategies for solving
binary classification problems. In particular, we consider the following algorithms:

• the standard SG method with a fixed size for the mini batch and the learning rate
initialized by an optimal hand-tuned value and then properly decreased during the
iterations;

• the SG method with a fixed size for the mini batch and the learning rate selected by
means of the BB updating rule as defined in [3]; hereafter this approach has been
denoted by BB1;

• the ASMmethod developed in [6];
• the ASM-BB1 method discussed above;
• the LISA method described in Algorithm 1.

To evaluate the effectiveness of the methods under analysis in solving problem (1),
we build a binary classifier in the case of four data sets. Table 1 shows the details
of these data sets and the cardinality of the train and the test sets. The datasets
W8A, IJCNN1 are downloadable from https://www.csie.ntu.edu.tw/cjlin/libsvmtools/,
whereas MNIST is available at https://yann.lecun.com/exdb/mnist/ and CHINA0 at
https://www.causality.inf.ethz.ch/home.php.

To consider different instances of the problem (1), two convex loss functions and two
non-convex loss functions are used as objective function F(x); in particular, by denoting
with ai ∈ R

d the feature vector and with bi ∈ {1,−1} the class label of the ith sample, F(x)
assumes one of the following forms:

• logistic regression (LR) loss:

F(x) = 1
N

N∑
i=1

ln
[
1 + e−biaTi x

]
;

• smooth hinge (SH) loss:

F(x) = 1
N

N∑
i=1

⎧⎪⎨
⎪⎩

1
2 − biaTi x, if biaTi x ≤ 0;
1
2 (1 − biaTi x)

2, if 0 < biaTi x < 1
0, if biaTi x ≥ 1;

;

https://www.csie.ntu.edu.tw/cjlin/libsvmtools/
https://yann.lecun.com/exdb/mnist/
https://www.causality.inf.ethz.ch/home.php.
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Table 2. Best tuned values of αopt for the consid-
ered test problems.

MNIST w8a CHINA0 IJCNN

LR 1e-3 1e-1 1e-2 1e-2
SH 1e-3 5e-2 1e-2 1e-2
NN 1e-2 1e-1 1e-1 1e-1
LD 1e-2 1 1e-1 1

Table 3. Values of αmin and αmax for the BB1 method; in the thresholding procedure, these values are
divided by the counter of the current epoch.

MNIST w8a CHINA0 IJCNN

αmin αmax αmin αmax αmin αmax αmin αmax

LR 1e-6 1e-3 1e-6 1e-3 1e-6 1e-3 1e-6 1e-3
SH 1e-6 1e-3 1e-6 1e4 1e-6 1e-3 1e-6 1e4
NN 1e-8 1e-6 1e-8 1e-6 1e-8 1e-6 1e-8 1e-6
LD 1e-8 1e-6 1e-8 1e-6 1e-8 1e-6 1e-6 1e4

Table 4. Values of αmin and αmax for the ASM-BB1 method.

MNIST w8a CHINA0 IJCNN

αmin αmax αmin αmax αmin αmax αmin αmax

LR 1e-6 1e-3 1e-5 1 1e-5 1 1e-5 1
SH 1e-5 1e-2 1e-5 1 1e-5 1 1e-5 1
NN 1e-5 1e-1 1e-5 1 1e-5 1e-1 1e-5 1
LD 1e-5 1 1e-5 1 1e-5 1e-1 1e-5 1

• nonconvex loss in 2-layer neural networks (NN):

F(x) = 1
N

N∑
i=1

(
1 − 1

1 + e−biaTi x

)2
;

• logistic difference (LD) loss:

F(x) = 1
N

N∑
i=1

(
ln(1 + e−biaTi x) − ln(1 + e−biaTi x−1)

)
.

3.1.1. Hyperparameters setting
In the SG method, the mini batch has a fixed size equal to N = 50; the learning rate is
selected with the rule αj = 100α0

100+j , where α0 is the initial learning rate and j is the counter
of the epochs. In particular, the initial learning rate is defined by α0 = αopt · N, where αopt
is the optimal tuned value computed through a trial and error process by usingN = 1. The
values of αopt for the considered test problems are shown in Table 2.

In BB1method, the mini batch size is fixed asN = 50 and the first learning rate is set as
α0 = 1. Furthermore, the values of αmin and αmax are listed in Table 3. Similarly, the initial
mini batch size and the initial learning rate of ASM-BB1 method are N0 = 50 and α0 = 1,
whereas Table 4 shows the values of αmin and αmax for ASM-BB1.
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Table 5. Results for the LR and SH loss functions.

Logistic regression Smooth hinge

Method MNIST w8a CHINA0 IJCNN MNIST w8a CHINA0 IJCNN

SG |F(x̄) − F∗| 0.0067 0.0010 0.0081 0.0002 0.0045 0.0010 0.0030 0.0003
±STD ±0.0007 ±0.0008 ±0.0002 ±5.79e−5 ±0.0041 ±0.0007 ±0.0018 ±0.0001
A(x̄) 0.8985 0.9061 0.9206 0.9197 0.8994 0.9068 0.9213 0.9226
±STD ±0.0009 ±0.0011 ±0.0019 ±0.0004 ±0.0021 ±0.0014 ±0.0017 ±0.0006

ASM-BB1 |F(x̄) − F∗| 0.0538 0.0228 0.0277 0.0007 0.0221 0.0057 0.0104 0.0002
±STD ±0.0125 ±0.0006 ±0.0004 ±0.0002 ±0.0140 ±0.0004 ±0.0001 ±0.0002
A(x̄) 0.8912 0.9007 0.9164 0.9183 0.8977 0.9056 0.9148 0.9206
±STD ±0.0039 ±0.0005 ±0.0009 ±0.0004 ±0.0017 ±0.0003 ±0.0009 ±0.0007

BB1 |F(x̄) − F∗| 0.0025 0.0191 0.0132 0.0025 0.0028 0.0088 0.0033 7.51e−5

±STD ±0.0008 ±6.92e−5 ±0.0002 ±4.32e−5 ±0.0019 ±0.0176 ±0.0001 ±4.63e−5

A(x̄) 0.8987 0.9103 0.9190 0.9166 0.8998 0.9067 0.9207 0.9213
±STD ±0.0030 ±0.0012 ±0.0012 ±0.0009 ±0.0009 ±0.0002 ±0.0008 ±0.0001

ASM |F(x̄) − F∗| 0.0332 0.0061 0.0262 0.0003 0.0686 0.0133 0.0588 0.0027
±STD ±0.0010 ±0.0007 ±0.0007 ±7.14e−5 ±0.0041 ±0.0009 ±0.0153 ±0.0009
A(x̄) 0.8861 0.9057 0.9163 0.9192 0.8496 0.9012 0.8967 0.9170
±STD ±0.0010 ±0.0010 ±0.0011 ±0.0005 ±0.0026 ±0.0006 ±0.0199 ±0.0006

LISA |F(x̄) − F∗| 0.0055 0.0007 0.0060 0.0004 0.0034 0.0002 0.0026 0.0010
±STD ±0.0018 ±0.0004 ±0.0073 ±0.0001 ±0.0013 ±0.0002 ±0.0025 ±0.0006
A(x̄) 0.8978 0.9061 0.9218 0.9204 0.8999 0.9071 0.9221 0.9217
±STD ±0.0014 ±0.0009 ±0.0036 ±0.0006 ±0.0012 ±0.0009 ±0.0015 ±0.0015

In the ASMmethod, the initial mini batch size is set asN0 = 3 whereas the initial learn-
ing rate is α0 = 10; using the same notation of [6], the setting of the other hyperparameters
is θ = 0.7, ν = 5.84, r = 10, γ = 0.38, η = 2 and ζk = ζ = 2. For the loss SH, θ is fixed
as 0.9 for the data sets IJCNN and CHINA0.

In the LISA method, we set N0 = 3, α0 = 10, β = 1
2 and the attempt value of αk to

start the line search procedure (8) has been chosen as min(α0,αk−1
1
β
), for the following

iterations. In addition, the rule εk = 100 · 0.999k guarantees the consistency with respect
to the theoretical formulation.

It is worth to emphasize that both the ASM and the LISA algorithms are free from the
expensive tuning of either an optimal value for the learning rate or proper bounds on it,
unlike the SG, the BB1 and the ASM-BB1 approaches.

3.1.2. Results
The numerical experiments are carried out in Matlab� on a 1.8 GHz Intel Core i7 proces-
sor. All the runs are carried out by varying random number generator and performing 10
trials keeping fixed the aforementioned hyperparameters. In order to estimate the optimal-
ity gap, namely |F(x) − F∗|, for any test problem an approximate value F∗ of the minimum
is computed by a huge number of iterations of one of the considered methods.

For any numerical test, the following results are reported:

• average and STandard Deviation (STD) of the optimality gap |F(x) − F∗| evaluated on
the train set, where x is the iterate at the end of the 30th epoch;

• average and STD of the accuracy A(x) evaluated on the test set, at the end of the 30th
epoch.
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Table 6. Results for the NN and LD loss functions.

Nonconvex loss Logistic difference

Method MNIST w8a CHINA0 IJCNN MNIST w8a CHINA0 IJCNN

SG |F(x̄) − F∗| 0.0015 0.0015 0.0015 0.0001 0.0022 0.0002 0.0020 0.0265
±STD ±0.0015 ±5.66e−5 ±0.0012 ±4.54e−5 ±0.0003 ±0.0001 ±0.0003 ±0.0075
A(x̄) 0.9023 0.9048 0.9220 0.9360 0.9014 0.9067 0.9205 0.9087
±STD ±0.0011 ±0.0005 ±0.0020 ±0.0010 ±0.0007 ±0.0005 ±0.0013 ±0.0118

ASM-BB1 |F(x̄) − F∗| 0.0058 0.0097 0.0298 0.0024 0.0060 0.0145 0.0691 0.0306
±STD ±0.0008 ±0.0001 ±0.0005 ±0.0002 ±0.0010 ±0.0002 ±0.0012 ±1.57e−5

A(x̄) 0.8994 0.8994 0.9107 0.9221 0.8993 0.8992 0.8913 0.9050
±STD ±0.0007 ±0.0002 ±0.0017 ±0.0004 ±0.0006 ±0.0004 ±0.0006 ±0.0000

BB1 |F(x̄) − F∗| 0.0018 0.0097 0.0071 0.0062 0.0067 0.0161 0.0234 0.0230
±STD ±3.80e−5 ±2.92e−5 ±4.69e−5 ±4.31e−5 ±9.36e−5 ±5.35e−5 ±7.89e−5 ±0.0105
A(x̄) 0.9027 0.8993 0.9161 0.9166 0.8987 0.8989 0.9167 0.9121
±STD ±0.0007 ±0.0003 ±0.0010 ±7.83e−5 ±0.0006 ±0.0004 ±0.0007 ±0.0148

ASM |F(x̄) − F∗| 0.0136 0.0008 0.0096 0.0006 0.0200 0.0011 0.0164 ∗
±STD ±0.0004 ±0.0002 ±0.0004 ±8.19e−5 ±0.0004 ±0.0004 ±0.0005 ∗
A(x̄) 0.8406 0.9058 0.9159 0.9303 0.8926 0.9064 0.9151 ∗
±STD ±0.0011 ±0.0005 ±0.0011 ±0.0011 ±0.0009 ±0.0004 ±0.0015 ∗

LISA |F(x̄) − F∗| 0.0038 0.0024 0.0016 6.07e−5 0.0006 0.0053 0.0006 0.0302
±STD ±0.0015 ±0.0003 ±0.0005 ±2.39e−5 ±0.0007 ±0.0002 ±0.0005 ±8.84e−7

A(x̄) 0.9005 0.9049 0.9246 0.9398 0.9003 0.9027 0.9211 0.9050
±STD ±0.0030 ±0.0008 ±0.0016 ±0.0004 ±0.0014 ±0.0005 ±0.0015 ±0.0000
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Figure 1. CHINA0data setwith LR loss: optimality gap (top left panel), increase ofmini batch size in ASM
and ASM-BB1 (top right panel) and increase of mini batch size in LISA (bottom panel).

In Tables 5 and 6 the results obtained for all the test problems are shown. We can con-
clude that the LISA method is competitive with respect to the other methods in terms of
both optimality gap and accuracy.

For a subset of the considered test problems, in Figures 1–4 we report the behaviour
of the optimality gap with respect to the epochs for all the considered methods (top left
panels); in the top right and bottom panels, the increase of the mini batch size is shown for
ASM, ASM-BB1 methods and for LISA respectively. The mini batch size for ASM, ASM-
BB1, and LISA is always significantly lower than the size of the considered data set. The
red circles represent the learning rate reductions performed by the line search in ASM and
LISA methods.

3.2. A case study: image classification via a convolutional neural network

Ameaningful case study is the training of a multiclassifier on a CNN. The network is com-
posed of an input layer, two sequences of convolutional and max-pooling layers, a fully
connected layer, and an output layer (see Figure 5). In particular, the first convolutional
layer is composed by 64 filters (each of them of size 5 × 5), the second convolutional layer
is composed by 32 filters (each of them of size 5 × 5) and both the max-pooling layers are
2 × 2. At the end of each inner convolutional layer, there is a sigmoid activation function,
whereas the output layer has a softmax function and the loss is given by the cross entropy
function. By this CNN, we build a 10-class classifier for theMNIST data set. To avoid the
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Figure 2. w8a data set with SH loss: optimality gap (top left panel), increase of mini batch size in ASM
and ASM-BB1 (top right panel) and increase of mini batch size in LISA (bottom panel).

overfitting phenomenon, a ridge regularization is added to the loss, with a regularization
parameter equal to δ = 10−4. In addition to the simple SG scheme, we also present a com-
parison with the ASM-A-R andASM-AA-Rmethods recalled in Section 2.2 and developed
in [12]. For the SG method, the size of the mini batch, is set as N = 50; in ASM-A-R and
ASM-AA-R methods, the size of the initial mini batch is N0 = 3.

The numerical experiments described in the following were carried out in Matlab� on
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 8 CPUs.

Since we are working with a CNN, the choices of both the learning rate and the mini
batch size are particularly important and critical. On the one hand, the choice of the mini
batch size is subject to memory constraints. Particularly, taking into account the memory
resources on the architecture, themaximumpossible number of examples for a single sam-
ple of the considered dataset is near 8000. On the other hand, to select a good learning rate
is crucial to obtain a fast learning phase and to avoid divergence phenomena.

On the left panel of Figure 6, we show the accuracy obtained by the SG method on the
test set in the first 5 epochs with different values of the learning rate. It is evident that the
choice of the learning rate is critical. In more detail, a too small learning rate (dashed black
line) leads to a very slow learning phase, while a too large learning rate (dashed magenta
line with solid dot) makes the algorithm divergent; indeed an accuracy of 0.1 in a 10-class
case is total randomness. Especially in neural networks context, this initial process of find-
ing a good learning rate involves a high number of attempts, which are computationally
expensive. On the other hand, the adaptive methods present a good performances in both
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Figure 3. IJCNN data set with NN loss: optimality gap (top lef panel), increase of mini batch size in ASM
and ASM-BB1 (top right panel) and increase of mini batch size in LISA (bottom panel).

Table 7. Possible different configurations for the LISA
method.

Parameter Conf. 1 Conf. 2 Conf. 3 Conf. 4

τ 1.5 1.5 1.5 1.1
β 1/2 1/2 1/3 1/3
C 10 100 100 100

cases, as highligthed on the right panel of Figure 6. This behaviour also occurs in the case
of the LISA method. Indeed, in the following we can show that very stable and accurate
results can be obtained evenwith different settings of the hyperparameters. The initialmini
batch size N0 and the initial learning rate α0 are always set equal to 10 and 1, respectively.
Moreover, we remark that when the condition (8) is not satisfied, the value of αk is reduced
by a factor β < 1; on the contrary, the starting value of the learning rate for the succes-
sive line search is incremented by a factor τ , with 1 < τ < 1/β . The condition τ < 1/β
avoids an unnecessary number of line searches. For the mini batch size increasing, the rule
εk = C · 0.999k guarantees the consistency with respect to the theoretical formulation and,
by means of the C value, the increase rate of the sample is driven. Numerical experiments
were conducted with different combinations of the above hyperparameters. Table 7 reports
their values for the considered configurations.

As shown in Figure 7, the LISA scheme is very robust toward the choice of the hyperpa-
rameters. Indeed, for all the configurations explored, it achieves an accuracy comparable to
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Figure 4. MNIST data set with LD loss: optimality gap (top left panel), increase of mini batch size in ASM
and ASM-BB1 (top right panel) and increase of mini batch size in LISA (bottom panel).

Figure 5. Artificial neural network structure.

that obtained by SG equipped with the optimal learning rate and constant mini batch size.
For completeness we report in Table 8 the accuracy achieved for each of the five epochs by
the LISAmethod (measured on the test set) and the corresponding loss values on the train
set in Table 9.

A further remark is related to the sample size reached at the end of five epochs. As shown
in Table 10, the final sample size is only slightly over a hundred, thus remaining far from
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Figure 6. CNN accuracy in the SG case.

Figure 7. Accuracies for LISA method in the CNN case, with different hyperparameter configuration.

Table 8. Accuracies obtained by LISAmethod in the CNN case, with
different hyperparameter configurations.

Epoch Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

0 0.1028 0.1028 0.1028 0.1028 0.1028
1 0.8907 0.9208 0.9332 0.9343 0.9077
2 0.9457 0.9573 0.9658 0.9666 0.9583
3 0.9512 0.9645 0.9732 0.9691 0.9718
4 0.9682 0.968 0.9775 0.975 0.9733
5 0.973 0.9724 0.9773 0.9791 0.9789

the hardware memory constraint. Furthermore, for comparison with ASM-A-R and ASM-
AA-R methods, we notice that the sample size increases up to a maximum of 204 and 182
respectively.

4. Conclusions

In this paper, we discussed several updating rules to choose the learning rate in stochastic
gradient methods to face finite-sum problems. We considered standard and line search
based learning rate selection techniques and we compared them in combination with
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Table 9. Loss values for LISAmethod in the CNN case, with different
hyperparameter configurations.

Epoch Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

0 2.7872 2.7872 2.7872 2.7872 2.7872
1 0.4089 0.3045 0.2687 0.2558 0.3127
2 0.2403 0.1897 0.1697 0.1622 0.1890
3 0.2097 0.1576 0.1431 0.1534 0.1446
4 0.1581 0.1424 0.1285 0.1328 0.1370
5 0.1476 0.1457 0.1273 0.1202 0.1228

Table 10. Final mini batch cardinality for LISA method in the CNN case, with
different hyperparameter configurations.

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

Size of final minibatch 113 121 106 105 106

proper strategies to fix the mini batch size along the iterative process. The stochastic gra-
dient algorithms which exploit a line search procedure to determine the learning rate have
performance comparable to that of the standard stochastic gradientmethods but they avoid
the computational expensive trial and error phase to manually adjust the learning rate
(and other hyperparameters) needed instead by the latter ones. Moreover the line search
based schemes do not even require the setting of proper bounds on the learning rate. For
these reasons, the line search approaches appear preferable and they are worthy of further
investigation.
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