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ABSTRACT

Introduction: Type 2 diabetes mellitus (T2DM)
is a relevant risk factor for severe forms of

COVID-19 (SARS coronavrus 2 [SARS-CoV-2]
disease 2019), and calls for caution because of
the high prevalence of T2DM worldwide and
the high mortality rates observed in patients
with T2DM who are infected with SARS-CoV-2.
People with T2DM often take dipeptidyl pepti-
dase-4 inhibitors (DPP-4is), glucagon-like pep-
tide-1 receptor agonists (GLP-1ras), or sodium-
glucose co-transporter-2 inhibitors (SGLT-2is),
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all of which have clear anti-inflammatory
effects. The study aimed to compare (i) the
severity and duration of hospital stay between
patients with T2DM categorized by pre-hospi-
talization drug class utilization and (ii) the
COVID-19-related death rates of those three
groups.
Methods: We designed an observational, retro-
spective, multi-center, population-based study
and extracted the hospital admission data from
the health care records of 1916 T2DM patients
over 18 years old who were previously on GLP-
1ra, SGLT-2i, or DPP-4i monotherapy and were
hospitalized for COVID-19 (diagnosis based on
ICD.9/10 codes) between January 2020 and
December 2021 in 14 hospitals throughout
Italy. We analyzed general data, pre-admission
treatment schedules, date of admission or
transfer to the intensive care unit (ICU) (i.e., the
index date; taken as a marker of increased
COVID-19 disease severity), and death (if it had
occurred). Statistics analyzed the impact of drug
classes on in-hospital mortality using propen-
sity score logistic regressions for (i) those
admitted to intensive care and (ii) those not
admitted to intensive care, with a random
match procedure used to generate a 1:1 com-
parison without diabetes cohort replacement
for each drug therapy group by applying the
nearest neighbor method. After propensity
score matching, we checked the balance
achieved across selected variables if a balance
was ever achieved. We then used propensity
score matching between the three drug classes
to assemble a sample in which each patient
receiving an SGLT-2i was matched to one on a
GLP-1ra, and each patient on a DPP-4i was
matched to one on a GLP-1ra, adjusting for

covariates. We finally used GLP-1ras as refer-
ences in the logistic regression.
Results: The overall mortality rate (MR) of the
patients was 14.29%. The MR in patients with
COVID was 53.62%, and it was as high as
42.42% in the case of associated T2DM,
regardless of any glucose-lowering therapy. In
those on DPP-4is, there was excess mortality; in
those treated with GLP-1ras and SGLT-2is, the
death rate was significantly lower, i.e., almost a
quarter of the overall mortality observed in
COVID-19 patients with T2DM. Indeed, the
odds ratio (OR) in the logistic regression resul-
ted in an extremely high risk of in-hospital
death in individuals previously treated with
DPP-4is [incidence rate (IR) 4.02, 95% confi-
dence interval (CI) 2.2–5.7) and only a slight,
nonsignificantly higher risk in those previously
treated with SGLT-2is (IR 1.42, 95% CI 0.6–2.1)
compared to those on GLP-1ras. Moreover, the
longer the stay, the higher the death rate, which
ranged from 22.3% for B 3-day stays to 40.3%
for 4- to 14-day stays (p\ 0.01 vs. the former)
and 77.4% for over-14-day stays (p\0.001 vs.
both the others).
Discussion: Our data do not support a protec-
tive role of DPP-4is; indeed, this role has already
been questioned due to previous observations.
However, the data do show a strong protective
effect of SGLT-2is and GLP-1ras. Beyond lower-
ing circulating glucose levels, those two drug
classes were found to exert marked anti-phlo-
gistic effects: SGLT-2is increased adiponectin
and reduced urate, leptin, and insulin concen-
trations, thus positively affecting overall low-
grade inflammation, and GLP-1ras may also
greatly help at the lung tissue level, meaning
that their extra-glycemic effects extend well
beyond those acknowledged in the cardiovas-
cular and renal fields.
Conclusions: The aforedescribed observational
clinical data relating to a population of Italian
inpatients with T2DM suggest that GLP-1ras
and SGLT-2is can be considered antidiabetic
drugs of choice against COVID-19, and might
even prove beneficial in the event of any
upcoming pandemic that has life-threatening
effects on the pulmonary and cardiovascular
systems.
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Key Points

Type 2 diabetes mellitus (T2DM) is a
relevant risk factor for severe forms of
COVID-19 (SARS coronavirus 2 [SARS-
CoV-2] disease 2019).

A high prevalence was reported in Italian
diabetic patients admitted to intensive
care units (ICUs) for severe COVID-19.

dipeptidyl peptidase-4 inhibitors (DPP-4is)
and glucagon-like peptide-1 receptor
agonists (GLP-1ras) have anti-
inflammatory effects which might help
protect against COVID-19 and are
typically associated with multiple organ
inflammation and cytokine storming.

The use of sodium-glucose co-transporter-
2 inhibitors (SGLT-2is) promotes
encouraging COVID-19 clinical outcomes
thanks to their anti-inflammatory effects.

The results of a head-to-head comparison
of the effects of taking the three drugs
before hospitalization on COVID-19-
related hospital mortality clearly indicate
that GLP-1ras and SGLT-2is have favorable
effects but DPP-4is do not.

These results indicate that GLP-1ras and
SGLT-2is are preferred therapeutic options
in type 2 diabetics affected by COVID-19.

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a relevant
risk factor for severe forms of COVID-19 (SARS
coronavirus 2 [SARS-CoV-2] disease 2019) [1],
and calls for caution because of the high
prevalence of T2DM worldwide and the high
mortality rates observed in T2DM patients
infected with SARS-CoV-2 [2].

According to various studies, a 5% to 36%
prevalence of diabetes was estimated in COVID-
19 patients [3], and a 17% prevalence of dia-
betes was reported in Italian patients admitted
to intensive care units (ICUs) for severe COVID-
19 [4]. In addition, cardiovascular diseases
(CVDs) and obesity, which are frequently asso-
ciated with T2DM, worsen COVID-19 clinical
outcomes [5].

Both of the SARS coronaviruses (SARS-CoV-1
and SARS-CoV-2, the causative agent of COVID-
19) invade the epithelial cells in the respiratory
tract [6] by linking virion surface spike proteins
to angiotensin-converting enzyme 2 (ACE2)
receptors, which are also known for their role in
determining micro- and macrovascular compli-
cations in people with diabetes [7].

MERS (Middle East respiratory syndrome)
coronavirus, i.e., the second member of the
coronavirus family in order of appearance, uses
the enzyme dipeptidyl-peptidase-4 (DPP-4) [8]
as a cell receptor. DPP-4 degrades glucagon-like
peptide-1 (GLP-1), which is involved in the
balance of insulin–glucagon secretion [9];
however, in the presence of T2DM, it does not
always optimally control the glucose balance
[10], thus inducing a chronic low-grade
inflammatory condition, which, in turn, sets
the stage for the severe expression of COVID-19
[11].

People with T2DM often take DPP-4 inhibi-
tors (DPP-4is) or GLP-1 receptor agonists (GLP-
1ras) [12]. All have anti-inflammatory effects,
which might help against the multiple organ
inflammation and cytokine storming typically
associated with COVID-19 [13, 14].

Sodium-glucose co-transporter-2 inhibitors
(SGLT-2is), i.e., another innovative class of anti-
hyperglycemic drugs endowed with anti-in-
flammatory properties, have been proven to
promote encouraging COVID-19 clinical out-
comes through decreased exposure to pro-in-
flammatory cytokines such as tumor necrosis
factor a (TNF-a), interleukin-6 (IL-6), and C-re-
active protein (CRP) [15]. Several clinical and
experimental studies have witnessed such
effects, which apparently depend on decreased
uric acid, insulin [16], and leptin blood con-
centrations [17], increased adiponectin secre-
tion [18], suppression of the advanced glycation
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end product (AGE) receptor (RAGE) axis [19]—
notoriously responsible for the low-grade
inflammation and oxidative stress associated
with diabetes [20]—and polarization of mono-
cyte-macrophage cells in the anti-inflammatory
M2 phenotype [21].

Although home therapy with SGLT-2is was
found to be associated with a lower risk for
hospital mechanical ventilation [22], some
authors have hypothesized that SGLT-2is may
also enhance the expression of ACE-2 in the
heart and the kidney [23] in such a way as to
exert a favorable effect on SARS-CoV-2 infec-
tion. However, to further complicate matters,
dapagliflozin recently failed to show any sig-
nificant effects on the complication or mortal-
ity rate in patients with cardiovascular risk
factors hospitalized for COVID-19 [24].

On the contrary, no conclusive data have
been published on the effects of other hypo-
glycemic drugs on the clinical course of SARS-
Cov-2 infection, except for metformin, which
seems to help reduce both hospitalization and
mortality risk [25], especially in obese women
[26]. Moreover, the inpatient use of metformin
or acarbose was associated with reduced
COVID-19 mortality in T2DM [27]; however,
their lower hypoglycemic potential and typical
utilization in people with less severe T2DM
forms [28] could have resulted in the selection
of clusters of patients with less severe diabetes
and related complications, thus introducing a
bias into the overall assessment of the effect of
hypoglycemic drugs in patients with COVID-19
and DM, and suggesting the need for further
studies to dispel pending doubts about the safe
in-hospital use and efficacy of those drugs.

In this article, we discuss the possible pro-
tective potential of GLP-1ras, SGLT-2is, and
DPP-4is against subsequent COVID-19 hospi-
talization regarding disease course and mortal-
ity (death rate).

The aim of our paper was to compare:

1. The severity and duration of hospital stay
between three groups of T2DM patients
who were grouped based on the pre-hospi-
talization drug class they used: GLP-1ras,
SGLT-2is, or DPP-4is

2. The COVID-19-related death rates of those
three groups.

METHODS

Study Design

We designed the investigation as an observa-
tional, retrospective, multi-center, population-
based study and extracted the hospital admis-
sion data from the health care records of the
patients, none of whom were directly
contacted.

We selected subjects with type 2 diabetes
who were older than 18 years and hospitalized
for COVID-19 (with the diagnosis based on
ICD.9/10 codes) between January 2020 and
December 2021 in 14 hospitals throughout
Italy. We analyzed general data, pre-admission
treatment schedules, date of admission or
transfer to the intensive care unit (ICU) (i.e., the
index date; taken as a marker of increased
COVID-19 disease severity), and death (if it
occurred) of only those who had been recorded
as taking GLP-1ras, SGLT-2is, or DPP-4is as
monotherapy at least twice (within a time
interval of at least 6 months) before
hospitalization.

We excluded those on other hypoglycemic
drugs to reduce biases from expected con-
founding factors as follows: (i) insulin treat-
ment could reflect greater clinical severity in
T2DM; (ii) secretagogues carry potential car-
diotoxicity or nephrotoxicity; and (iii) met-
formin might increase the risk for ketoacidosis
in the case of respiratory disease, despite its
beneficial effects on inflammation. Moreover,
secretagogues and metformin have been limited
to a secondary role in the latest American Dia-
betes Association (ADA) Standards of Care [28].

In particular, we need to remind the reader
that, in the first months of the pandemic,
COVID-19 cases dramatically increased within a
few days, thus causing a severe shortage of
hospital beds. Therefore, sub-intensive and
intensive care wards were also used to cope with
the high demand until beds became available
again in ordinary wards. In general, patients
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with severe COVID-19 could not be transferred
to the ordinary wards again, and they stayed in
sub-intensive or intensive care beds for over a
certain number of days, which was suggestive of
severe disease. Based on the average duration of
hospital stays for non-severely ill patients before
transfer to ordinary beds, we arbitrarily chose an
over-3-day stay as a marker of disease severity.

We identified treatments using the
Anatomical Therapeutic Chemical (ATC) drug
classification: DDP-4is as ATC A10BH, GLP1-ras
as ATC A10BJ, and SGLT-2is as ATC A10BK.

We classified comorbidities according to the
ICD.9/10 codes. They included myocardial
infarction, cardiac arrhythmias, cardiac valvu-
lopathies, hypertension, congestive heart fail-
ure (CHF), peripheral vascular disease, stroke,
chronic obstructive pulmonary disease (COPD),
pulmonary circulation disorders, rheumatoid
disease, peptic ulcer disease, liver disease,
paralysis and other neurological disorders,
chronic kidney disease, cancer with/without
metastasis, and hypothyroidism. The Charlson
comorbidity index (CCI), a prognostic, predic-
tive index of severity and life expectancy in
patients with multiple comorbidities, helped us
to individually identify the overall impact of
comorbidities, treatment, and hospital dis-
charge [29]. We calculated the previous hospi-
talization rate (9 1000) as the number of in-
hospital stays during the 2 years before the
index date.

Ethical Approval

This study complied with good clinical practice
standards and followed the ethical guidelines of
the 1964 Declaration of Helsinki and its subse-
quent amendments. The study protocol was
approved by the IRB (trial registration: Protocol
n. 5, May 16, 2022), and the Ethical and Sci-
entific Committee of the reference center, the
Department of Endocrinology, San Raffaele
Pisana Clinical Research Institute, Rome, Italy,
served as the central reference ethical commit-
tee for the 14 affiliated hospitals contributing to
the study. All subjects with T2DM who partici-
pated in the study signed an informed consent

form before being included in the present
investigation.

Statistical Analysis

We analyzed the data using SAS 9.1 software
and assessed the impact of drug classes on in-
hospital mortality using the double propensity
score logistic regression: (i) intensive care
admission and (ii) no-intensive care admission.

We considered potential confounders, i.e.,
variables associated with drug choice (age,
gender, previous hospitalization, Charlson
index), and used them to calculate the propen-
sity score.

We used a random match procedure to gen-
erate a 1:1 comparison without diabetes cohort
replacement for each drug therapy group by
applying the nearest neighbor method. After
propensity score matching, we checked the
balance achieved across selected variables, if so,
ever.

We then used propensity score matching
between the three drug classes to assemble a
sample in which each patient receiving an
SGLT-2i was matched to one on a GLP-1ra, and
each patient on a DPP-4i was matched to one on
a GLP-1ra, adjusting for covariates, as shown in
Table 1. We finally used GLP-1ras as references
in the logistic regression.

We chose these matching goals to reflect the
relative number of users in each group and
matched patients without replacement based
on the propensity score within a range of 0.025,
i.e., * 0.2 times the standard deviation of the
propensity score. We obtained the estimated
propensity scores from the logistic regression.
We took an iterative approach to selecting
confounders; a potential confounder was
included in the model if this was required to
ensure that the variable was balanced across
treatment groups, as measured by the stan-
dardized mean difference. Imbalances of up to
0.2 were accepted.

We reported patient characteristics as
mean ± standard deviation (SD) for continuous
variables or number/percentage for categorical
variables. We calculated, according to the Pois-
son regression model, the incidence rate (IR)
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within the 95% confidence interval (95% CI) for
several parameters expressed as the number or
percent. We used, as appropriate, analysis of
variance (rANOVA) supplemented by the two-
tailed paired Student’s t-test with 95% confi-
dence intervals for parametric variables and the
Mann–Whitney U test for nonparametric vari-

ables. We implemented the v2 test with Yates’s

correction or Fisher’s exact test to achieve cat-
egorical variable differentiation. Finally, we
considered all p values\ 0.05 to be statistically
significant.

When writing this manuscript, we followed
STROBE (Strengthening the Reporting of
Observational Studies in Epidemiology)

Table 1 General characteristics of the enrolled subjects divided up by treatment (DPP-4is, GLP-1ras, SGLT-2is),
comorbidities, and summarized in-hospital outcomes

DPP-4is GLP-1RAs SGLT-2is

D
PP

-4
is

 v
s.

 G
LP

1-
ra

s

D
PP

-4
is

 v
s.

 S
G

LT
-2

is

G
LP

1-
ra

s 
vs

. S
G

LT
-2

is

n. 1,023 567 326
Age at COVID-19 admission    M±SD 61±12 55±13 61±8 p<0.001 p=1.000 p<0.001

1st quartile                              n 57 56 52 - - -
2nd quartile                             n 66 64 62 - - -
3rd quartile                              n 72 74 70 - - -
4th quartile                              n 88 89 88 - - -

Male/Female ratio 0.8 0.8 0.9 p=0.559 p= 0.766 p= 0.491
BMI (kg/m2)                              M±SD
                                                 range

29.5±2.5
27 - 33

30.1±1.8
27 - 34

29.8±1.7
28 - 34 p= 0.653 p= 0.734 p= 0,429

HbA1c (%)                               M±SD
                                                 range

7.9±1.5
7.1- 8.4

7.8±1.7
7.2 - 8.7

7.7±1.8
7.3 - 8.8 p= 0.765 p= 0.557 p= 0.527

Creatinine (mg/dl)                    M±SD
                                                 range

1.1±0.4
0.8 -1.4

1.1±0.6
0.8 -1.5

1.2±0.4
0.9 - 1.6 p= 0.874 p=881 p= 0.698

Previous Hospitalization          M±SD 8±3 5±3 6±5 p<0.001 p<0.001 p<0.001

COMORBIDITIES

Heart Failure                               % 3.9 3.2 3.3 p= 0.527 p = 0.725 p = 0.931
Cardio-Vascular Disease            % 7.7 7.9 7.5 p= 0.387 p= 0.441 p= 0.817
Lipid-lowering agents                 % 70.5 72.2 70.6 p= 0.774 P = 0.867 p= 0.927
Stroke                                         % 6.6 3.2 5.5 p=0.063 p=0.413 p = 0.146
Hypertension                              % 10.2 8.4 9.5 p= 0.265 p=0.755 p = 0.569
COPD                                         % 9.3 9.7 8.2 p= 0.806 p=0.912 p= 0.932
Hypothyroidism                           % 8.2 6.1 3.3 p= 0.132 P=0.005 p = 0.082
Charlson Index                         M±SD 8.7±5 9.2±4 8.6±4 p=0.409 p = 0.742 p = 0.031
High Charlson Index score          % +19% +18% +25% p= 0.692 p = 0.065 p = 0.048

SUMMARIZED IN-HOSPITAL OUTCOMES

Intensive Care Admission            %  47.3 33.9 18.8 p<0.001 P = 0.151 p<0.001
Death Rate                            per 1000   
                                                     n

309
316

100
56

110
36 p<0.001 p<0.001 p = 0.601

DPP-4is dipeptidyl peptidase-4 inhibitors, GLP-1ras glucagon-like peptide-1 receptor agonists, SGLT-2is sodium-glucose
co-transporter-2 inhibitors, COPD chronic obstructive pulmonary disease, High CharlsonIndex score: over 13
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guidelines for observational study reporting (see
the supplementary material).

RESULTS

The cohort analyzed in the present study per-
tains to the whole registry, including all hospi-
talizations in the 14 participating structures, as
seen from the flowchart shown in Fig. 1.

Figure 2 depicts the main parameters
indicative of COVID-19-related mortality by
hypoglycemic class, using DDP-4is as the com-
parator. The overall mortality rate (MR) of the
patients was 14.29%. The MR in COVID
patients was 53.62%, and it was as high as
42.42% in the case of associated T2DM regard-
less of any glucose-lowering therapy. In those
on DPP-4is, there was excess mortality. At the
same time, in those treated with GLP-1ras and
SGLT-2is, the death rate was significantly lower,
i.e., almost a quarter of the overall mortality
observed in COVID-19 patients with T2DM.

Therefore, according to the inclusion crite-
ria, we enrolled 1,916 patients (Table 1), who
were divided into a DPP-4is group (n = 1023;
41%), a GLP-1ras group (n = 567; 22%), and a
SGLT-2is group (n = 326; 37%).

Figure 3 depicts the pre-hospitalization dis-
tribution by age quartile, which shows no dif-
ferences among drug classes. Patients in the
GLP-1ras group were younger than the others
(GLP-1ras: 55 years, DPP-4is and SGLT-2is: 61
years) but displayed the highest prevalence of a
high Charlson index score (DPP-4is: 8.7, GLP-
1ras: 9.2, SGLT-2is: 8.6) despite a lower, non-
significant prevalence of heart failure, stroke,
and hypertension, and thus had a higher
prevalence of intensive care admission (60%)
than the others.

The all-cause mortality rate in the DDP-4is
group was the highest (DPP-4is: 309 units of
death per 1,000 individuals, GLP-1ras: 100 units
of death per 1000 individuals, SGLT-2is: 110
units of death per 1000 individuals). Figures 4
and 5 display the COVID-19-related death rate

Fig. 1 Flowchart of the enrollment procedure. MR
percentage mortality rate, T2DM type 2 diabetes mellitus,
DPP-4is dipeptidyl peptidase-4 inhibitors, GLP-1ras

glucagon-like peptide-1 receptor agonists, SGLT-2is
sodium-glucose co-transporter-2 inhibitors
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in hospitalized patients with T2DM in relation
to the length of stay in the ICU and previous
home treatment, respectively.

We adopted two metrics to assess how well a
logistic regression model fits a dataset, i.e.,
sensitivity and specificity. Sensitivity is the
probability that the model predicts a positive
outcome for a specific observation when the

outcome is positive, also called the ‘‘true posi-
tive rate.’’ Specificity is the probability that the
model predicts a negative outcome for a specific
observation when the outcome is negative, also
called the ‘‘true negative rate.’’ One way to
visualize and summarize these two metrics is to
plot a ROC (receiver operating characteristic)
curve, i.e., a plot that displays the sensitivity
along the y axis and (1 - specificity) along the x
axis. One way to quantify how well the logistic
regression model classifies the data is to calcu-
late the AUC, which stands for the ‘‘area under
the curve.’’ The AUC value ranges from 0 to 1. A
model with an AUC of 1 can perfectly classify
observations, while a model with an AUC of 0.4
does no better than random guessing. The AUC
of the designed propensity score model was 0.52
in all the cohorts.

The odds ratio (OR) in the logistic regression
resulted in an extremely high risk of in-hospital
death in individuals previously treated with
DPP-4is (Table 2; IR 4.02, 95% CI 2.2–5.7), and
only a slight and non-significantly higher risk
in those previously treated with SGLT-2is (IR
1.42, 95% CI 0.6–2.1) compared to those on
GLP-1ras.

Table 3 summarizes the results of the multi-
variate analysis comparing death rates adjusted

Fig. 2 Graphs of the main parameters indicative of
COVID-19-related mortality by hypoglycemic class, using
DDP-4is as the comparator. **p\ 0.001 vs. DPP-4is;
*p\ 0.05 vs. DPP-4is, ��p\ 0.001 vs. GLP-1ras. DPP-4is

dipeptidyl peptidase-4 inhibitors, GLP-1ras glucagon-like
peptide-1 receptor agonists, SGLT-2is sodium-glucose co-
transporter-2 inhibitors

Fig. 3 Pre-hospitalization distribution by age quartile and
drug utilization; blue bars DDP-4is, red bars GLP-1ras,
green bars SGLT-2is, DPP-4is dipeptidyl peptidase-4
inhibitors, GLP-1ras glucagon-like peptide-1 receptor
agonists, SGLT-2is sodium-glucose co-transporter-2
inhibitors
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for confounding factors between paired drug
classes stratified by propensity score matching.

Table 4 displays the distribution of the
COVID-19-related duration of stay in the ICU in
absolute numbers and by pre-hospitalization
anti-hyperglycemic drug class. It clearly shows
that the longer the stay, the higher the death
rate. The latter, indeed, went from 22.3% in
B 3-day stays to 40.3% in 4- to 14-day stays

(p\ 0.01 vs. the former) and 77.4% in over
14-day stays (p\0.001 vs. both the others) (as
also seen in Fig. 3). After dividing up the cases
by treatment class, we observed a lower death
rate in those administered GLP-1ras or SGLT-2is
(virtually superimposable levels, i.e., 38.1% and
33.7%, respectively, p was n.s.) than in those
administered DPP-4is (45.3%; p\0.001 vs.
GLP1-ras and SGLT-2is), as also seen in Fig. 4.
Indeed, the number of subjects on DPP-4is was
significantly higher than the number on GLP-
1ras (47.3% vs. 33.9%, p\0.01, respectively)
and, especially, the number on SGLT-2is (47.3%
vs. 18.8%, p\ 0.001).

DISCUSSION

Beyond lowering circulating glucose levels,
DPP-4is and GLP1-ras exert marked anti-phlo-
gistic effects by promoting blood and tissue
monocyte-macrophagic cell polarization into
the anti-inflammatory M2 phenotype [30] and
blunting inflammatory cytokine secretion [14].

The established GLP-1ras anti-inflammatory
effects [11] mainly rely on macrophage-derived
nuclear factor (NF)-jB pathway inhibition [31]
and related insulin resistance attenuation [32].
Therefore, GLP-1ras could act positively in dif-
ferent phases of COVID-19 by reducing risk
factors contributing to the development of
detrimental comorbidities before exposure to
the virus and by mitigating lung damage and
metabolic derangement in the acute phase of
the disease [33].

Moreover, these drugs may contribute to a
novel therapeutic strategy to counteract the
pulmonary arterial hypertension (PAH) condi-
tion often observed after COVID-19 infection
[34].

In addition, many pulmonary diseases,
including asthma, chronic obstructive pul-
monary disease (COPD), nosocomial pneu-
monitis, and pulmonary fibrosis, might benefit
from GLP-1-based therapies [35]. Therefore, it is
conceivable that incretin-based therapies
greatly help at the lung tissue level, thus
extending their extra-glycemic effects well
beyond those acknowledged in the cardiovas-
cular and renal fields [36]. Moreover, as

Fig. 4 The COVID-19-related death rate in hospitalized
patients with type 2 diabetes mellitus (T2DM) in relation
to the length of stay in the intensive care unit (ICU).
*p\ 0.01 vs. B 3 days; �p\ 0.05 vs.[ 3–14 days

Fig. 5 The COVID-19-related death rate in hospitalized
patients with type 2 diabetes mellitus (T2DM) in relation
to previous home treatment. *p\ 0.001 vs. DPP-4is;
�p\ 0.001 vs. GLP-1ras. ICU intensive care unit, DPP-4is
dipeptidyl peptidase-4 inhibitors, GLP-1ras glucagon-like
peptide-1 receptor agonists, SGLT-2is sodium-glucose co-
transporter-2 inhibitors
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endotoxin-induced GLP-1 secretion is blunted
in IL-6 knockout (KO) mice, IL-6 is thought to
be needed to directly stimulate GLP-1 produc-
tion and release [37], so GLP-1ras may also
reverse the inhibitory effects of biological anti-
IL-6 treatment regimes on GLP-1 secretion.

Several clinical and experimental investiga-
tions have shown that SGLT-2is also counteract
typical diabetes-associated low-grade inflam-
mation and oxidative stress [20] by polarizing

monocyte-macrophage cells into the anti-in-
flammatory M2 phenotype [21] and blunting
the release of the pro-inflammatory cytokines
TNF-a, interleukin-6 (IL-6), and C-reactive pro-
tein (CRP) [15] by increasing adiponectin [18]
and reducing urate, leptin, and insulin [16]
concentrations. SGLT-2is exert many favorable
effects on COVID-19 outcome as well [38],
conceivably due to their well-known anti-in-
flammatory properties [15]. In line with that, a
retrospective observational study of 76 T2DM
patients with T2DM in Singapore showed that
home therapy with SGLT-2is was associated
with a lower risk of mechanical ventilation [22].

Before our study, the abilities of those three
drug classes to reduce COVID-19 severity,
length of stay, and mortality had not been
compared head to head. Our study did that for
the first time using a random match procedure
to generate a 1:1 comparison for each of them.
For this purpose, we used the Charlson index to
stratify diabetes and comorbidities severity and
limited our study to patients on DPP-4i, GLP-
1ra, or SGLT-2i monotherapy to eliminate pos-
sible confounding effects due to other hypo-
glycemic treatments. As expected, of the 1916
selected subjects, most (41%) were on DPP-4is,
and 22% and 37% were on the other two drug
classes, respectively.

As easily observed in Table 1 and Fig. 2,
patients on GLP-1ras displayed a significantly
increased Charlson index and were more fre-
quently affected by arterial hypertension and
heart failure than the other two groups, which
turned out to be quite similar in those terms.
The age quartile partition was almost superim-
posable among all drug groups (Fig. 3). How-
ever, subjects treated with DPP-4is had been
more frequently hospitalized (Table 1), were
more often moved to the ICU and stayed there
longer (Table 4), and displayed a higher COVID-
19-related death rate (Tables 2, 3, and 4) than
the other two groups. Interestingly, their death
rate was higher whether calculated globally or
in terms of ICU stay (ward stay ? ICU stay =
309 per 1000 vs. 100 per 1000 and 110 per

1000, respectively, ; p\0.001).
In general, the death rate correlated signifi-

cantly with ICU stay independently of drug
class (22.3% in B 3-day stays, 40.3% in 4- to

Table 2 COVID-19-related mortality among hospitalized
patients during the index period

Mortality rate
(3 1000)

95%
confidence
interval

General population 1.9 1.8–2.0

Patients with T2DM

(overall)

150 80–630

Patients with T2DM

on DPP-4is

309 270–348

Patients with T2DM

on GLP-1ras

100 81–120

Patients with T2DM

on SGLT-2is

110 96–124

T2DM type 2 diabetes mellitus, DPP-4is dipeptidyl pep-
tidase-4 inhibitors, GLP-1ras glucagon-like peptide-1
receptor agonists, SGLT-2is sodium-glucose co-trans-
porter-2 inhibitors

Table 3 Results of the multivariate analysis comparing
death rates adjusted for confounding factors between
paired drug classes stratified by propensity score matching

OR 95% CI

DPP-4is vs. GLP-1ras 4.81 2.6–6.1

SGLT2-is vs. GLP-1ras 1.42 0.6–2.1

DPP-4is vs. SGLT-2is 2.45 1.01–3.84

OR odds ratio, CI confidence interval, DPP-4is dipeptidyl
peptidase-4 inhibitors, GLP-1ras glucagon-like peptide-1
receptor agonists, SGLT-2is sodium-glucose co-trans-
porter-2 inhibitors
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14-day stays (p\0.001 vs. the shorter stays),
and 77.4% in[ 14-day stays (p\0.001 vs. both
shorter stays) (Fig. 4).

However, when stratifying drug classes by
length of stay in the ICU, we found patients on
DPP-4is to have a higher death rate (i.e., 45.3%)
than those on GLP-1ras (38.1%, p\ 001) and on
SGLT-2is (33.7%, p\0.01) (Fig. 5).

Our data do not support a protective role for
DPP-4is. Such a role has already been ques-
tioned due to previous observations [39, 40]
against a single multinational systematic review
and meta-analysis showing reduced mortality in
inpatients with COVID-19 (odds ratio [OR]
0.75) treated by DPP-4is [41]. The excess mor-
tality we observed in those taking DPP-4is
before hospitalization remains to be explained.

Bearing in mind that we only selected
patients on monotherapy with DPP-4is, GLP-
1ras, and SGLT-2is to avoid the risk for hospi-
talization and COVID severity described for
other hypoglycemic drugs, some additional
considerations should be made regarding the
role of pre-hospitalization therapy with DPP-4is,
as—differently from the other two drug clas-
ses—pre-hospitalization DPP-4is were associated
with excess COVID-related mortality in people
with T2DM in one study [42], while in-hospital
DPP-4is utilization seemed to have a protective
effect during the clinical course of COVID
[43, 44]. So, the topic remains debated: insuffi-
cient data have been collected so far, and fur-
ther research is needed in this specific field [45].

In contrast, our results showed a favorable
effect of GLP-1ras and SGLT-2is home therapy
on COVID-19 severity, length of hospital stay
(especially in the ICU), and COVID-related
deaths, thus confirming results in the literature
that—although not based on a direct head-to-
head comparison among drug classes—strongly
suggest an almost superimposable protective
role for GLP-1ras and SGLT-2is in patients with
T2DM hospitalized for COVID-19 [46]. In par-
ticular, our study demonstrated a positive effect
of pre-admission SGLT-2is utilization on
COVID-19 outcomes in hospitalized patients
with T2DM. This result is in line with a recent
meta-analysis showing that pre-admission
SGLT-2i utilization was associated with reduced
COVID-19 mortality (OR 0.69; 95% CI:

0.56–0.87, p = 0.001, I2 = 91%) and severity (OR
0.88; 95% CI: 0.80–0.97, p = 0.008, I2 = 13%)
independently of confounding factors like age
(p = 0.2335), gender (p = 0.2742), BMI
(p = 0.1797), HbA1c level (p = 0.4924), diabetes
duration (p = 0.7233), hypertension
(p = 0.2165), heart failure (p = 0.1616), and
metformin utilization (p = 0.6617) [47].

LIMITATIONS

Our study has some limitations. One is the
arbitrary choice, justified by clinical experience,
of the 3-day cutoff for the length of stay in the
ICU as a criterion for disease severity. Another
one is the utilization of hospital discharge
records, which, by definition, lack several clin-
ical parameters that would be extremely helpful
for an extensive, in-depth interpretation of our
results, including antiviral, antibiotic, antico-
agulant, corticosteroid, and immune-based
therapies and the need for mechanical ventila-
tion. Indeed, as ours was a retrospective, obser-
vational study, we had to rely only on the
above-mentioned records and pre-hospitaliza-
tion health care data. Therefore, we could not
rule out possible influences of risk factors other
than those available and reported in the
manuscript on the favorable effects of GLP-1ras
and SGLT-2is on COVID-related hospital mor-
tality. In other words, such effects might not be
independent of risk factors other than those we
could statistically analyze. Nevertheless, hospi-
tal discharge records have the great merit of
providing certified and uniform data according
to ICD9/10-CM criteria and allowing us to fol-
low individual patients during their shifts in
and out of different hospital wards in a head-to-
head extra-glycemic effect comparison of DPP-
4is, GLP-1ras, and SGLT-2is.

CONCLUSIONS

Based on the aforedescribed observational clin-
ical data relating to an Italian T2DM inpatient
population, our study suggests that GLP-1ras
and SGLT-2is can be considered antidiabetic
drugs of choice in COVID-19 and might,

2138 Diabetes Ther (2023) 14:2127–2142



therefore, even prove beneficial in the event of
any upcoming pandemic that has life-threat-
ening effects on the pulmonary and cardiovas-
cular systems. However, the role of DPP-4is
remains debated, and further studies are needed
on this drug class regarding the specific topic of
our investigation .
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