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Abstract. Probabilistic Logic Programs under the distribution seman-
tics (PLPDS) do not allow statistical probabilistic statements of the form
“90% of birds fly”, which were defined “Type 1” statements by Halpern. In
this paper, we add this kind of statements to PLPDS and introduce the
PASTA (“Probabilistic Answer set programming for STAtistical probabil-
ities”) language. We translate programs in our new formalism into prob-
abilistic answer set programs under the credal semantics. This approach
differs from previous proposals, such as the one based on “probabilistic
conditionals” as, instead of choosing a single model by making the max-
imum entropy assumption, we take into consideration all models and we
assign probability intervals to queries. In this way we refrain from making
assumptions and we obtain a more neutral framework. We also propose an
inference algorithm and compare it with an existing solver for probabilistic
answer set programs on a number of programs of increasing size, showing
that our solution is faster and can deal with larger instances.
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1 Introduction

Probabilistic Logic Programming (PLP) [19] extends Logic Programming (LP)
by considering various probabilistic constructs. ProbLog [8] is an example of a
PLP language based on the distribution semantics (PLPDS) [20]. This semantics
assumes that every program has a two-valued well-founded model [24].

In giving a semantics to First-Order knowledge bases, Halpern [13] dis-
tinguishes statistical statements from statements about degrees of belief, and
presents two examples: “the probability that a randomly chosen bird flies is 0.9”
and “the probability that Tweety (a particular bird) flies is 0.9”. The first state-
ment captures statistical information about the world while the second captures
a degree of belief. The first type of statement is called “Type 1” while the latter
“Type 2”. The first statement can be read as “90% of the population of birds
flies”.
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The distribution semantics allows statements stating that, if a specific x is
a bird, then x flies with probability 0.9 (or it does not with probability 0.1).
In fact, the semantics of general rules of the form 0.9::flies(X) :- bird(X).
is given by the set of its ground instantiations of the form 0.9::flies(x) :-
bird(x)., which has the just described meaning. In this paper, we aim at adding
to PLPDS the possibility of expressing “Type 1” statements, exploiting for this
purpose Probabilistic Answer Set Programming.

Answer Set Programming (ASP) [5] is a powerful rule-based language for
knowledge representation and reasoning. An extension to ASP that manages
uncertain data is Probabilistic Answer Set Programming (PASP). The credal
semantics [6] assigns a probability range to every query to probabilistic answer
set programs - instead of a sharp value as in PLPDS - where lower and upper
probability bounds are computed by analyzing the stable models of every world.

“Type 1” statements are called “probabilistic conditionals” in [15], where they
are given a semantics in terms of the principle of maximum entropy: the unique
model with maximum entropy is chosen. Instead of selecting only one model, we
keep all models at the cost of inferring a probability interval instead of a sharp
probability. We think this is of interest because it avoids making the rather
strong maximum entropy assumption.

We propose a new language, called PASTA for “Probabilistic Answer set pro-
gramming for STAtistical probabilities”, where we exploit the credal semantics
to take into account “Type 1” statements in PLPDS. In particular, probabilis-
tic conditionals are converted into an ASP rule plus two constraints: the rule
characterizes the elements of the domain while the constraints inject the statis-
tical information on the possible stable models of every world. To perform exact
inference under this semantics we developed an algorithm, taking the same name
of the language, which returns lower and upper bounds for the probability of
queries, and compared it with PASOCS [23]. The results show that, if we pre-
process the input program into a form that allows reasoning about its structure,
it is possible to obtain better performance on every program we tested.

The paper is structured as follows: in Sect. 2 we review the basic knowledge
relative to ASP, PLPDS, the credal semantics, and probabilistic conditionals. In
Sect. 3 we describe the PASTA language. In Sect. 4 we introduce an algorithm
to perform exact inference on PASTA programs, that is experimentally tested
in Sect. 5. Section 6 surveys related work and Sect. 7 concludes the paper.

2 Background

2.1 Answer Set Programming

We expect the reader to be familiar with the basic concepts of Logic Program-
ming and First-Order Logic. We consider here also aggregate atoms [1] of the
form g0 �0#f{e1; . . . ; en}�1 g1, where f is an aggregate function symbol, �0 and
�1 are arithmetic comparison operators, and g0 and g1 are constants or vari-
ables called guards; each ei is an expression of the form t1, . . . , tl : F , where F
is a conjunction of literals and t1, . . . , tl, with l > 0, are terms whose variables
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appear in F . g0�0 or g1�1 or even both can be omitted. Moreover, �0 and �1 can
be omitted as well and, if omitted, are considered equivalent to ≤. A disjunctive
rule (or simply rule) is an expression of the form

H1 ∨ · · · ∨ Hm ← B1, . . . , Bn

where each Hi is an atom and each Bi is a literal. H1 ∨ · · · ∨ Hm is the head
of the rule and B1, . . . , Bn is the body. We will usually replace ∨ with ; and
← with :- when describing actual code. We consider only safe rules, where all
variables occur in a positive literal in the body. If m = 0 and n > 0, the rule is an
integrity constraint. Facts can also be defined through a range with the notation
f(a..b), where both a and b are integers. A rule is ground when it does not
contain variables. A program, also called knowledge base, is a finite set of rules.
Given an answer set program P, we define its Herbrand base (denoted with BP)
as the set of all ground atoms that can be constructed using the symbols in the
program. An interpretation I for P is a set such that I ⊂ BP . An interpretation
I satisfies a ground rule if at least one head atom is true in I when the body
is true in I. If an interpretation satisfies all the groundings of all the rules of a
program it is called a model. Given a ground program Pg and an interpretation
I we call reduct [10] of Pg with respect to I the program obtained by removing
from Pg the rules in which a literal in the body is false in I. An interpretation I
is an answer set (also called stable model) for P if I is a minimal model (under
set inclusion) of the reduct of Pg. We denote with AS (P) the set of all the
answer sets of a program P. Sometimes, not all the elements of an answer set
are needed, so we can project the computed solution into a set of atoms. That
is, we would like to compute the projective solutions [12] given a set of ground
atoms V , represented by the set ASV (P) = {A ∩ V | A ∈ AS(P)}. An atom
a is a brave consequence of a program P if ∃A ∈ AS (P) such that a ∈ A. We
denote the set containing all the brave consequences with BC (P). Similarly, a is
a cautious consequence if ∀A ∈ AS (P), a ∈ A, and we denote the set containing
all the cautious consequences with CC (P).

Example 1 (Bird). Consider the following answer set program P:
bird(1..4).
fly(X) ; not_fly(X):- bird(X).
:- #count{X:fly(X),bird(X)} = FB,

#count{X:bird(X)} = B, 10*FB < 6*B.

The first line states that there are 4 birds, indexed with 1, 2, 3, and 4. The
disjunctive rule states that a bird X can fly or not fly. In the constraint, the
first aggregate counts the flying birds and assigns this value to FB, while the
second aggregate counts the birds and assigns the result to B. Overall, the con-
straint imposes that at least 60% of the birds fly (we converted the values into
integers since ASP cannot easily manage floating point numbers). This program
has 5 answer sets, BC(P) = {b(1) b(2) b(3) b(4) f(1) nf(1) f(2) nf(2)
f(3) nf(3) f(4) nf(4)}, CC(P) = {b(1) b(2) b(3) b(4)}, and ASV (P) =
{{b(1) b(2) b(3) b(4)}} where b/1 stands for bird/1, f/1 for fly/1, nf/1
for not_fly/1 and V = {b(1), b(2), b(3), b(4)}.
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2.2 Probabilistic Logic Programming

In LP, a large body of work has appeared for allowing probabilistic reasoning.
One of the most widespread approaches is the distribution semantics (DS) [20]
according to which a probabilistic logic program defines a probability distri-
bution over normal logic programs called worlds. The DS underlies many lan-
guages such as ProbLog [8]. Following the ProbLog syntax, probabilistic facts
take the form Π :: f. where f is a fact and Π ∈ ]0, 1]. For example, with
0.9::fly(tweety). we are stating that the probability that tweety flies is 0.9,
i.e., we believe in the truth of fly(tweety) with probability 0.9. This is a“Type
2” statement.

An atomic choice indicates whether a grounding fθ, where θ is a substitution,
for a probabilistic fact Π :: f is selected for a world or not, and it is represented
with the triple (f, θ, k) where k can be 1 (fact selected) or 0 (fact not selected).
A composite choice is a consistent set of atomic choices, i.e., only one choice can
be made for a single ground probabilistic fact. The probability of a composite
choice κ can be computed with the formula:

P (κ) =
∏

(fi,θ,1)∈κ

Πi ·
∏

(fi,θ,0)∈κ

(1 − Πi) (1)

If a composite choice contains one atomic choice for every grounding of each
probabilistic fact, it is called a total composite choice or selection, and it is
usually indicated with σ. Every selection identifies a normal logic program w
called world composed of the rules of the program and the probabilistic facts
that correspond to atomic choices with k = 1. Finally, the probability of a query
q (a ground literal or a conjunction of ground literals) is computed as the sum
of the probabilities of the worlds where the query is true:

P (q) =
∑

w|=q

P (w) (2)

where P (w) is given by the probability of the corresponding selection (computed
with Eq. 1).

2.3 Credal Semantics

The DS considers only programs where each world has a two-valued well-founded
model [24]. However, in the case of answer set programs, this often does not hold.
When logic programs are not stratified, they may have none or several stable
models, in which case the well-founded model is not two-valued. If the program
has multiple stable models, there are various available semantics: here we focus
on the credal semantics [6,7]. Under this semantics, every query q is described
by a lower and an upper probability, denoted respectively with P (q) and P (q),
with the intuitive meaning that P (q) lies in the range [P (q), P (q)]. If every world
has exactly one stable model, P (q) = P (q) and the credal semantics coincides
with the DS. A world w contributes to the upper probability if the query is true



Statistical Statements in Probabilistic Logic Programming 47

in at least one of its stable models and to the lower probability if the query is
true in all its stable models. In formulas,

P (q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi), P (q) =
∑

wi|∀m∈AS(wi), m|=q

P (wi) (3)

[6] also suggested an algorithm to compute the probability of q given evidence e
(conditional probability). In this case, the upper conditional probability is given
by

P (q | e) =
P (q, e)

P (q, e) + P (¬q, e)
(4)

If P (q, e) + P (¬q, e) = 0 and P (¬q, e) > 0, P (q | e) = 0. If both P (q, e) and
P (¬q, e) are 0, this value is undefined. The formula for the lower conditional
probability is

P (q | e) =
P (q, e)

P (q, e) + P (¬q, e)
(5)

If P (q, e)+P (¬q, e) = 0 and P (q, e) > 0, P (q | e) = 1. As before, if both P (q, e)
and P (¬q, e) are 0, this value is undefined.

2.4 Probabilistic Conditionals

Following [15], a probabilistic conditional is a formula of the form K = (C |
A)[Π] where C and A are First-Order formulas and Π ∈ [0, 1]. The intuitive
meaning is: the number of individuals that satisfy C is 100 · Π percent of the
individuals that satisfy A.

Example 2 (Bird conditional). Consider the following example, inspired by [25]:

bird(1)
(fly(X) | bird(X))[0.6]

The second statement says that, out of all the birds, 60% fly.

In this setting, [21] define a possible world w as an interpretation. Let Ω be
the set of all possible worlds. A probabilistic interpretation P is a probability
distribution over Ω, i.e., a function P : Ω → [0, 1]. Given a conjunction of
ground literals q, P (q) =

∑
w|=q P (w). The aggregating semantics states that

a probability distribution P over interpretations is a model of a First-Order
formula if and only if w �|= F =⇒ P (w) = 0 ∀w, and is a model of a conditional
K = (C | A)[Π] if and only if

∑
(Ci|Ai)∈G(K) P (Ai, Ci)∑

(Ci|Ai)∈G(K) P (Ai)
= Π (6)

where G(K) is the set containing all the ground instances of a conditional K.
A probabilistic interpretation is a model for a knowledge base if it models all
the formulas and all the conditionals. According to [18,25], the semantics of a
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knowledge base composed of probabilistic conditionals is given by the model
with the highest entropy. The maximum entropy (MaxEnt) distribution for a
knowledge base K is defined as:

PMaxEnt = argmax
P |=K

−
∑

wi

P (wi) · log(P (wi))

With this formulation, it is possible to assign a sharp probability value to every
query. In this paper, we follow a different approach and we consider probabilistic
conditionals as statistical “Type 1” statements [13], interpreting them under the
credal semantics.

3 Probabilistic Answer Set Programming for Statistical
Probabilities (PASTA)

A probabilistic conditional expresses statistical information about the world of
interest, but we would like to avoid selecting a model making the maximum
entropy assumption. We would rather consider all possible models and derive
lower and upper bounds on the probability of queries using the credal semantics.
Here, we consider “Type 1”/probabilistic conditionals of the form

(C | A)[Πl,Πu].

with a lower (Πl) and an upper (Πu) bound, with the intuitive meaning that the
fraction of As that are also Cs is between Πl and Πu. Note that Πl and Πu can
be vacuous, i.e., they can be respectively 0 and 1. We follow an approach based
on the DS, so here worlds are ground programs. The meaning of the statement
above is that the models of a world where the constraint

Πl ≤ #count{X : C(X), A(X)}
#count{X : A(X)} ≤ Πu (7)

does not hold should be excluded, where X is the vector of variables appearing
in C and A.

We consider a program as being composed of regular rules, probabilistic facts,
and conditionals of the previously described form, and we assign a semantics to it
by translating it into a probabilistic answer set program. We call this language
PASTA (Probabilistic Answer set programming for STAtistical probabilities).
Probabilistic facts and rules appear unmodified in the probabilistic answer set
program. The conditional (C | A)[Πl,Πu] is transformed into three answer set
rules. The first is a disjunctive rule of the form C;not_C:-A. We require this
rule to be safe. Then, we introduce two integrity constraints that mimic Eq. 7
through aggregates: we count all the ground atoms that satisfy A (call this value
ND) and A and C (call this value NN) and we impose that NN must be greater
than or equal to 100 · Πl percent of ND and smaller than or equal to 100 · Πu

percent of ND. The constraints are not generated if the bounds are vacuous. The
conditional (fly(X) | bird(X))[0.6] of Example 2 is transformed into the
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rule and the constraint shown in Example 1. Finally, the probability interval of
a query from a PASTA program is the probability interval of the query computed
from the transformed probabilistic answer set program.

Example 3 (Bird probabilistic). Consider the program

0.4::bird(1..4).
(fly(X)|bird(X))[0.6].

This program is transformed into a probabilistic answer set program includ-
ing four probabilistic facts, the rule, and the constraint from Example 1. There
is only one constraint since the upper bound is vacuous. Consider the query q =
fly(1). There are 24 = 16 possible worlds. The query is false if bird(1) is false,
so we can consider only 23 = 8 worlds. There is 1 world with 4 birds, and it has
5 models. The query is true only in 4 of them, so we have a contribution of 0.44
to the upper probability. There are 3 worlds with 3 birds: these have 4 models
each and the query is true in only three of them, so we have a contribution of
3 · (0.43 · (1 − 0.4)) to the upper probability. There are 3 worlds with 2 birds:
these have only one model and the query is true in it, so we have a contribution
to both lower and upper probabilities of 3 ·(0.42 ·(1−0.4)2). Finally, there is only
1 world with 1 bird, it has only 1 model and the query is true in it, so we have a
contribution to both lower and upper probabilities of 0.4 · (1−0.4)3. Overall, for
the query fly(1) we get 0.2592 for the lower and 0.4 for the upper probability, so
the probability lies in the range [0.2592, 0.4]. Similarly, by applying Formulas 4
and 5, the probability of the same query given evidence e = fly(2) is in the
range [0.144, 0.44247] since P (q, e) = 0.0576, P (q, e) = 0.16, P (¬q, e) = 0.2016,
and P (¬q, e) = 0.3424.

4 Inference in PASTA

By rewriting probabilistic conditionals as ASP rules, computing the probability
of a query requires performing inference in PASP. To the best of our knowl-
edge, the only system that allows (exact) inference in probabilistic answer set
programs with aggregates is PASOCS [23], an implementation of the algorithm
presented in [6]. The algorithm computes the probability of a query by generat-
ing all possible worlds (2n, where n is the number of ground probabilistic facts in
the program). For each world, it computes the brave and cautious consequences
(there is no need to compute all the answer sets). If the query is present in the
brave consequences of a world, that world contributes to the upper probabil-
ity. If the query is also present in the cautious consequences, that world also
contributes to the lower probability. Despite its simplicity, this algorithm relies
on the generation of all the possible worlds and does not take advantage of the
structure of a program. For example, in Example 3, with query fly(1), the
probabilistic fact bird(1) must be true to get a contribution to the lower or
upper probability, and so we can avoid generating the worlds where this fact is
not present. Moreover, for both conditional and unconditional queries, we do not
need to generate all the possible models for every world, we just need to check



50 D. Azzolini et al.

whether there is at least one model that satisfies the required constraints. To
accommodate these ideas, we propose Algorithm 1, that we call PASTA like the
language.

Consider first the problem of computing the probability of a query q (without
evidence). We generate a non-probabilistic answer set program as follows. Every
certain rule is kept unchanged. Every conditional is converted into three ASP
rules as described in Sect. 3. Every ground probabilistic fact of the form P::f is
converted into two rules of the form f(P1):- f. not_f(1-P1):- not f. where
P1 is P ·10n (since ASP cannot manage floating point numbers). The atom f is
then defined by a rule of the form 0{f}1. Function ConvertProbFactsAnd-
Conditionals performs these conversions. Let us call the resulting program
PASPp . We then add to PASPp a constraint (line 4) imposing that the query
must be true, represented with :- not query. (for Example 3 it becomes :-
not fly(1).). We are not interested in all possible solutions, but only in the
cautious consequences projected over the ground probabilistic facts, since we
want to extract the probabilistic facts that are true in every answer set. These
will constitute the minimal set of probabilistic facts. Function ComputeMini-
malSet computes this set. These facts can be set to true since they are always
present in the answer sets when the query is true, and so when there is a contri-
bution to the probabilities. In the worst case, the resulting set will be empty. If
we consider Example 3 and query fly(1), the only atom (already converted as
described before with n = 3) in this set will be bird(1,400), so the correspond-
ing probabilistic fact must be always true. After this step, we add to PASPp

one integrity constraint for every element in the minimal set of probabilistic
facts, to set them to true. Note that now PASPp does not contain the constraint
imposed on the query in the previous step. For Example 3 and query fly(1),
we add :- not bird(1,400). to the program (line 9). Moreover, we add two
more rules that indicate whether a model contains or not the query (line 11).
For Example 3 and query fly(1) these are: q:- fly(1). nq:- not fly(1).
Finally, we project the answer sets [12] to the probabilistic facts and atoms q
and nq, since we need to consider only the truth values of the probabilistic facts
to compute the probability of a world (line 13). The probabilistic facts present
in the projected answer sets identify a world. Given an answer set, its proba-
bility (the probability of the world it represents) is given by the product of the
probabilities of the probabilistic facts in it. Function ComputeContribution
(line 18) computes the probability of every world and counts the models, the
models where the query is true, the models where the query is false, the models
where the query and evidence are true, and the models where the query is false
and the evidence is true. For a query without evidence, the number of models
where the query is true and the number of models where the query is false will
only be either 0 or 1. To get the lower and upper probabilities, we apply For-
mulas 3. If we consider again Example 3 with query fly(1), two of the possible
projective solutions are:

b(1,400) b(2,400) b(3,400) b(4,400) nq
b(1,400) b(2,400) b(3,400) b(4,400) q
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where, for the sake of brevity, b/2 stands for bird/2. These two solutions show
that the world with 4 birds has at least one model where the query is true and
at least one model where the query is false, so it only contributes to the upper
probability with 0.4 · 0.4 · 0.4 · 0.4 = 0.0256. Here, we also see the improvement
given by computing the projective solutions: we only need to know whether the
query is true or false in some models of a world, and not the exact number
of models in which the query is true. For example, as shown in Example 1,
the world with 4 birds has 5 models: 4 where the query is true and 1 where the
query is false. However, to compute the probability bounds, it is not necessary to
know the exact number: at most two stable models (one with the query true and
one with the query false) for each world are needed instead of five. A difference
with [23] is that PASOCS computes both brave and cautious consequences for
every world, while PASTA computes projective solutions only once.

Consider now a conditional query. As before, we need to identify the mini-
mal subset of probabilistic facts. However, we now add a constraint forcing the
evidence (ev) to true instead of the query (line 6). We then add two more rules
of the form e:- ev. and ne:- not ev. (line 15) and project the solutions also
on the e and ne atoms (line 16). Finally, we analyse the resulting answer sets to
compute the values that contribute to the lower (lp) and upper (up) probability,
as described in Formulas 4 and 5.

5 Experiments

We implemented Algorithm 1 with Python3 using clingo [11] to compute answer
sets.1 We performed a series of experiments to compare PASTA with PASOCS [23].
For PASOCS, we use the single threaded mode and select exact inference. For
PASTA, the execution time includes both the computation of the minimal set
of probabilistic facts and the computation of the projective solutions. Usually,
the time required for the first operation is negligible with respect to the compu-
tation of the probability. We selected three different programs described in [25].
The first program, brd, is {(fly(X) | bird(X))[0.8,1],0.1::fly(1)} with an
increasing number of probabilistic facts bird/1 with an associated probability of
0.5. The goal is to compute the probability of the query fly(1). The second pro-
gram, mky, represents the pair of conditionals {(f(X) | h(X)) [0.2,1],(f(X,Y)
| h(Y),r(X,Y))[0.9,1]}, with an increasing number of probabilistic facts h/1
and r/2, both with an associated probability of 0.5. The distribution of the facts
r/2 follows a Barabási-Albert model, i.e., a graph, generated with the Python
networkx package with parameter m0 (representing the number of edges to attach
from a new node to existing nodes) set to 3 and an increasing number of nodes.
We randomly selected half of the total number of nodes to generate the h/1 facts.
The query is f(0),f(0,1). The third program, smk, represents the conditional
{(smokes(Y) | smokes(X),friend(X,Y))[0.4,1]} with an increasing number
of probabilistic facts friend/2 with an associated probability of 0.5, following the
Barabási-Albert model. The query is smokes(I), where I is a random node. For
both mky and smk, the results are averaged over 10 different programs, to make

1 Source code and programs available at: https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta
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Algorithm 1. Function ComputeProbabilityBounds: computation of the
probability bounds of a query query given evidence ev in a PASTA program P.
1: function ComputeProbabilityBounds(query, ev , P)
2: probFacts,PASPp ← ConvertProbFactsAndConditionals(P)
3: if ev is undefined then
4: minSet ← ComputeMinimalSet(PASPp ∪ {: - not query.})
5: else
6: minSet ← ComputeMinimalSet(PASPp ∪ {: - not ev .})
7: end if
8: for all a ∈ minSet do � a represents a probabilistic fact
9: PASPp ← PASPp ∪ {: - not a.}
10: end for
11: PASPq

p ← PASPp ∪{q: - query.,nq: - not query.}
12: if ev is undefined then
13: AS ← ProjectSolutions(PASPq

p , probFacts, q ∪ nq)
14: else
15: PASPqe

p ← PASPq
p ∪{e: - ev .,ne: - not ev .}

16: AS ← ProjectSolutions(PASPqe
p , probFacts, q ∪ nq ∪ e ∪ ne)

17: end if
18: worldsList ← ComputeContribution(AS)
19: lp ← 0, up ← 0
20: for all w ∈ worldsList do � Loop through answer sets
21: if ev is undefined then
22: if w .modelQueryCounter > 0 then
23: up ← up +P (w)
24: if w .modelNotQueryCounter == 0 then
25: lp ← lp +P (w)
26: end if
27: end if
28: else
29: upqe ← 0, lpqe ← 0, upnqe ← 0, lpnqe ← 0
30: if w .modelQueryEvCounter > 0 then
31: upqe ← upqe + P (w)
32: if w .modelQueryEvCounter = w .models then
33: lpqe ← lpqe + P (w)
34: end if
35: end if
36: if w .modelNotQueryEvCounter > 0 then
37: upnqe ← upnqe + P (w)
38: if w .modelNotQueryEvCounter = w .models then
39: lpnqe ← lpnqe + P (w)
40: end if
41: end if
42: end if
43: end for
44: if ev is not undefined then
45: if upqe + lpnqe == 0 and upnqe > 0 then
46: lp ← 0, up ← 0
47: else if lpqe + upnqe == 0 and upqe > 0 then
48: lp ← 1, up ← 1
49: else
50: lp ← lpqe

lpqe+upnqe
, up ← upqe

upqe+lpnqe

51: end if
52: end if
53: return lp, up
54: end function

them more representative since the graph generation is not deterministic, and thus
some instances can be easier to query. For all the three programs, the minimal set
of probabilistic facts is empty, so the PASOCS and PASTA work on the same set
of worlds. Inference times are shown in Fig. 1a. PASOCS on mky returned an inter-
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Fig. 1. Results for the experiments.

nal error of the solver while parsing the program. In a second experiment, bird,
we modify the brd program by removing 0.1::fly(1), and we ask two queries:
fly(1), and fly(1) given that fly(2) has been observed. For these two experi-
ments, the minimal set of probabilistic facts contains bird(1). Results are shown
in Fig. 1b. Overall, with our solution we can manage a larger number of proba-
bilistic facts. Moreover, the introduction of the minimal set of probabilistic facts
gives a substantial improvement, as shown in Fig. 1b. However, both PASOCS and
PASTA rely on the generation of all the worlds, which increase in an exponen-
tial way.

6 Related Work

There are several PASP systems such as P-log [4], LPMLN [16], PrASP [17],
and SMProbLog [22]: these aim at finding sharp probability values. We compare
PASTA only with PASOCS [23] since, to the best of our knowledge, it is the
only system that performs inference on probabilistic answer set programs with
aggregates under the credal semantics. The solver proposed in [9] allows counting
the answer sets of a given program, so, in principle, may be applied to perform
inference in PASTA programs, however, aggregates are not allowed. The solution
proposed in [2] adopts ASP techniques to perform inference in probabilistic logic
programs but it is still focused on the computation of a sharp probability value.
Statistical statements are considered also by [14] where a semantics is given
by resorting to cross entropy minimization. Similarly to the case of [25], we
differ because we do not select a specific model but we consider all the models
consistent with the statements and we compare lower and upper bounds.

7 Conclusions

In this paper, we considered probabilistic conditionals as statistical statements
- “Type 1” statements according to Halpern’s definition - and interpreted them
under the credal semantics of probabilistic answer set programs. Our approach,
called PASTA, includes both a language and an inference algorithm: the lan-
guage is given a semantics by converting a probabilistic conditional into three
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ASP rules, one corresponding to the possible combinations of facts, and two con-
straints, one for the lower and one for the upper bound; the algorithm computes
lower and upper probability values for conditional queries. On various programs,
PASTA is able to handle a larger number of probabilistic facts than the state of
the art solver for probabilistic answer set programs under the credal semantics.
As future work, we plan to introduce abductive reasoning in this framework [3].
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