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ON TANGENTIAL WEAK DEFECTIVENESS AND IDENTIFIABILITY OF
PROJECTIVE VARIETIES

AGEU BARBOSA FREIRE, ALEX CASAROTTI, AND ALEX MASSARENTI

ABSTRACT. A point p € PN of a projective space is h-identifiable, with respect to a variety
X C PV, if it can be written as linear combination of h elements of X in a unique way. Identifia-
bility is implied by conditions on the contact locus in X of general linear spaces called non weak
defectiveness and non tangential weak defectiveness. We give conditions ensuring non tangential
weak defectiveness of an irreducible and non-degenerated projective variety X C PV, and we apply
these results to Segre-Veronese varieties.
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1. INTRODUCTION

A point p € PV of a projective space is h-identifiable with respect to a variety X C PV if it can
be written as linear combination of h elements of X in a unique way.

Identifiability problems and techniques are of relevance in both pure and applied mathematics.
For instance, identifiability algorithms have applications in psycho-metrics, chemometrics, signal
processing, numerical linear algebra, computer vision, numerical analysis, neuroscience and graph

analysis [KB09|, [CM96|, [CGLMO0S]. In pure mathematics identifiability questions often appears in
rationality problems [MM13], [Mas16].

Identifiability has been related to the concept of weak defectiveness in [Mel06], and more recently
to the notion of tangential weak defectiveness in [CO12].

We introduce the concept of (h, s)-tangential weakly defectiveness, where h, s are positive integers.
A variety X C PV is (h, s)-tangentially weakly defective if a general linear subspace of dimension s,
which is tangent to X at h general points z1,...,z, € X, is tangent to X along a positive dimensional
subvariety of X containing at least one of the z;. In particular, when s = dim (T, X, ..., Ty, X)
we recover the notion of h-tangential weak defectiveness while for s = N — 1 we get the notion of
h-weak defectiveness.

The h-secant variety Sec,(X) of a non-degenerate n-dimensional variety X C PV is the Zariski
closure of the union of all linear spaces spanned by collections of h points of X. The expected
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dimension of Secp,(X) is expdim(Secy (X)) := min{nh+h—1, N}. The actual dimension of Secy,(X)
may be smaller than the expected one. Following [CC10, Section 2|, we say that X is h-defective if
dim(Secy (X)) < expdim(Secy, (X)).

Note that if X C PV is (h, s)-tangentially weakly defective then it is (h, s’)-tangentially weakly
defective for any s’ > s. Furthermore, if X C P is h-defective then it is (h, s)-tangentially weakly
defective for all s > dim (T}, X, ..., Ty, X). Moreover, if X C PV is not h-tangentially weakly
defective then it is h-identifiable. In Section [2] we recall all these notions and the relations among
them in detail.

In Section B, mixing the notion of osculating regularity introduced in [MR19] with that of weak
defectiveness, we prove a general result for producing bounds yielding the non (h,s)-tangential
weak defectiveness of a projective variety X C PV. Thanks to this machinery in Section Hl we
prove a number of results on weak defectiveness of Segre-Veronese varieties. Given two r-uples
n = (ny,...,n,.) and d = (dy,...,d,) of positive integers, with ny; < --- < n,. we will denote by
SVi C PV the corresponding Segre-Veronese variety that is the product P™ x --- x P" embedded
by the complete linear system |O[pm1 -xprr (d1,y . ,dr)‘. Our main results in Propositions [£.2] 0]
41T E131 [414 £.17, Theorems [4.9] and Remark [4.10] can be summarized as follows.

Theorem 1.1. If h < (ng + 1)U°82(D] then the Segre-Veronese variety SV C PN s not h-weakly

defective, where d = min{dy,...,d,}. In particular, under this bound SV} C PN is not h-defective.
Furthermore, SV} is 1-weakly defective if and only if d, =1 and n, > Z:;ll n;.

Moreover, consider SV} with n = (n1,...,n,) and d = (d1,...,d,—1,1), and assume that n, >
i i If

r r—1

ni +d;
§H2( N )_nrz;m
i= i=

then SVF is not (1, s)-tangentially weakly defective.
Finally, if n = (1,n) and d = (1,d) then SV} is not (1, s)-tangentially weakly defective if and
only if s <d(n+1).

In Section Bl we give a criterion for non tangential weak defectiveness of products, and we apply
it to Segre-Veronese varieties. Our main result is the following:

Theorem 1.2. Consider a Segre-Veronese variety SV C PN () with n = (1,n9,...,n,.) and
d=(1,da,...,d.). Assume that no <ng <---<n, and let d := min{d;} — 1. If

h < g (d) ~ nz !

then SV is not h-tangentially weakly defective, and hence SV3 is h-identifiable. In particular,
under this bound SV} is not h-defective.

We would like to stress that, as noticed in Remark [£.4] the non secant defectiveness of SV}
is not needed in the proof of Theorem For results and conjectures on the secant dimensions
of Segre-Veronese varieties we refer to [ABI12], [AB13|, [ABQ09], [LP13] and [AMRI9]. Finally, we
would like to mention that results on the identifiablity of SV !, under hypotheses on its non secant
defectiveness, have been recently given in [BBC1S].
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2. SECANT DEFECTIVENESS, (h,S)—TANGENTIAL WEAK DEFECTIVENESS AND IDENTIFIABILITY

Throughout the paper we work over the field of complex numbers. In this section we recall the
notions of secant variety, secant defectiveness and identifiability. We refer to [Rus03| for a nice and
comprehensive survey on the subject.

Let X C PV be an irreducible non-degenerate variety of dimension n and let T'),(X) C X x -+ x
X x G(h —1,N), where h < N, be the closure of the graph of the rational map o : X X -+ x
X --» G(h — 1, N) taking h general points to their linear span (x1,...,x). Observe that I',(X) is
irreducible and reduced of dimension hn. Let 72 : 'y (X) — G(h — 1, N) be the natural projection,
and Sp(X) := m(Th(X)) € G(h — 1,N). Again Sp(X) is irreducible and reduced of dimension
min{hn, h(N — h+1)}. Finally, let

T, = {(z,A) |z € A}y c PV xG(h —1,N)
with natural projections 7, and 1y, onto the factors. The abstract h-secant variety is the irreducible
variety
Secn(X) := ()" (Sh(X)) C T
The h-secant variety is defined as
Secn(X) = mn(Secn (X)) c PV

It immediately follows that Secy(X) is an (hn + h — 1)-dimensional variety with a P"~!-bundle
structure over Sy, (X). We say that X is h-defective if dim Secp,(X) < min{dim Sec;, (X ), N}.

Now, let X" be the symmetric product of h-copies of X, and consider the locus S¥cX (r)
parametrizing sets of distinct points. Given a point y € S,i( , corresponding to h distinct points
x1,...,25 € X, we will denote by (y) the linear span (z1,...,x,) C PV,

Definition 2.1. A point p € PV has rank h with respect to X if p € (y) for some y € S;¥ but
p & (y) for all y € S for any k < h.

A point p € PV is h-identifiable with respect to X if p has rank h with respect to X and (7;,)~*(p)
is a single point. The variety X is h-identifiable if the general point of Sec, (X) is h-identifiable.

Note that by Terracini’s lemma [Terll] if y € Sec,(X) is a general point lying in the span of
x1,...,xp € X then T, Sec,(X) = (T, X, ..., Ty, X). Therefore, if X is h-defective then the general
hyperplane tangent to X at h points is tangent to X along a positive dimensional subvariety.

Definition 2.2. Let x1,...,25, € X be general points, and let H be a hyperplane tangent to X
at z1,...,zp. The h-contact locus X, . ;, g of X with respect to x1,...,xp, H is defined as the
union of the irreducible components of Sing(X N H) containing at least one of the z;. Now, X is said
to be h-weakly defective if ¥, ., m has positive dimension for H a general hyperplane containing
(T, X, Ty, X).

yeeny

Therefore, if X is h-defective then it is h-weakly defective. However, the converse does not hold
in general. For instance, if we denote by V' C PV the degree d Veronese embedding of P" we
have that for (d,n) € {(6,2),(4,3),(3,5)} the Veronese V] is never defective but it is respectively
9-weakly defective, 8-weakly defective and 9-weakly defective [CC02].

Furthermore, by the infinitesimal Bertini’s theorem [CC02, Theorem 1.4] if X is not h-weakly
defective then it is h-identifiable. Recently, a result translating non secant defectiveness into iden-
tifiability has been proven in [CM19].

Definition 2.3. Let z1,...,2z, € X be general points. The h-tangential contact locus I'y, .., of
X with respect to 1, ...,z is the closure in X of the union of all the irreducible components which
contain at least one of the x; of the locus of points of X where (T, X,...,T,, X) is tangent to X.

...z, be the largest dimension of the components of I'y,, . 4, . If v, ... 4, > 0 we say that X
is h-tangentially weakly defective.
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Clearly, if X is h-tangentially weakly defective then it is h-weakly defective. Moreover, by [CO12,
Proposition 2.4] if X is not h-tangentially weakly defective then it is h-identifiable. However, the
Grassmannian G(2,7) parametrizing planes in P7 is 3-tangentially weakly defective but it is 3-
identifiable [BV18| Proposition 1.7].

Finally, we introduce a notion that measures how much a h-weakly defective variety is far from
being h-tangentially weakly defective.

Definition 2.4. Let z1,...,2;, € X be general points and II C PV a linear subspace of dimension
_____ 2,1 of X with respect
to x1,...,xp, 11 is the closure in X of the union of all the irreducible components which contain
at least one of the x; of the locus of points of X where II is tangent to X. Let 7, . 4, m be the
largest dimension of the components of I'y, . o, 1. If v4,,... 2,0 > 0 for II general, we say that X
is (h, s)-tangentially weakly defective.

In particular, when s = dim (T, X, ..., Ty, X) from Definition 4] we recover the notion of h-
tangential weak defectiveness while for s = N — 1 we get the notion of h-weak defectiveness.

3. OSCULATING REGULARITY AND WEAK DEFECTIVENESS
We begin by proving a simple result on the behavior of contact loci under flat degenerations.
Lemma 3.1. Let X C PV be a projective variety, A C C a complex disk around the origin and
{IL;}1en a family of linear subspaces of PN. Then
dim(Sing(IIp N X)) > dim(Sing(II; N X))
forte A.

Furthermore, let {Tt}ien be a family of linear subspaces Ty C PN, A C PN q linear subspace
containing I'g, and I a linear subspace containing A. Then

dim(Sing(IT; N X)) < dim(Sing(IT N X))
where ﬁt is a general linear subspace of dimension dim(II) containing T'.

Proof. For the first claim it is enough to consider the variety
Y ={(z,t) |z € Sing(X NI,)} C X x A

with projection 7o : Y — A and to conclude by semi-continuity.

For the second part note that since I'g C A we have that I'g C II. Let IV C II be a subspace such
that IT = (T'o, IV), TVNIy = (), and set IT; = (T4, T”). Then {II; };ca is a family of linear subspace such
that I'y C II, for all t € A. By the first part of the proof we have dim(Sing(IIN X)) > dim(Sing(IL, N
X)) for all ¢ € A. Now, consider the Grassmannian G(dim(IT) — dim(T;) — 1, N — dim(T;) — 1)
parametrizing dim(II)-dimensional linear subspaces of PV containing I';, and the variety

Z = {(z,1L;) | € Sing(IL; N X)} € X x G(dim(IT) — dim(T';) — 1, N — dim(T';) — 1)

with projection 3 : Z — G(dim(IT) — dim(T;) — 1, N — dim(T;) — 1). Again by semi-continuity we
have

dim(Sing(IT; N X)) < dim(Sing(IL; N X))
for I, € G(dim(I) — dim(I';) — 1, N — dim(I';) — 1) general, and hence dim(Sing(II N X))

>
dim(Sing(IT, N X)) > dim(Sing(II, N X)). 0
Let X C PN be a projective variety of dimension n, p € X a smooth point, and
p: uUcCCr — cN
(t1,. .. tn) = O(t1,...,tn)
with ¢(0) = p, a local parametrization of X in a neighborhood of p € X.
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For any s > 0 let O, X be the affine subspace of CN passing through p € X, and whose direction

is given by the subspace generated by the vectors ¢;(0), where I = (iy,...,i,) is a multi-index such
_ _olg
that |I| < s and ¢; = NI

Definition 3.2. The s-osculating space T;X of X at p is the projective closure in P of the affine
subspace OZS,X C CN,

For instance, Ty X = {p}, and T, X is the usual tangent space of X at p. When no confusion
arises we will write 7,7 instead of Ty X. Now, let us recall [MR19, Definition 5.5, Assumption 5.2]
and [AMRI, Definition 4.4].

Definition 3.3. Let X C PV be a projective variety. We say that X has m-osculating regularity if
the following property holds: given general points p1,...,p,m € X and an integer s > 0, there exists
a smooth curve C' and morphisms v; : C' — X, j = 2,...,m, such that v;(to) = p1, Vj(tec) = Pjs
and the flat limit Tj in the Grassmannian of the family of linear spaces

Ty = (T3 Ty Ty ) » £ € C\{to}

is contained in 7751

We say that X has strong 2-osculating regularity if the following property holds: given general
points p,q € X and integers s1, s2 > 0, there exists a smooth curve v : C'— X such that v(¢g) = p,
Y(tso) = ¢q and the flat limit Tj in the Grassmannian of the family of linear spaces

T, = <T;1,T;gt)> te C\{to}
is contained in Tzfl“?“.

For a discussion on the notions of m-osculating regularity and strong 2-osculating regularity and
their application to Grassmannians, Segre-Veronese varieties, Lagrangian Grassmannians and Spinor
varieties, and flag varieties we refer to [MR19], [AMR19], [FMR20|, [FCMI9].

Now, we define a function h,, : N>g — N> counting how many tangent spaces can be degen-
erated into a higher order osculating space.

Definition 3.4. Given an integer m > 0 we define a function
hm : N>g — Nxg
as follows: hp,(0) = 0 and for any k > 0 write
E+1=2M42% ... 2% 4 ¢
where Ay > A9 > -+ >\, > 1 and € € {0, 1}, then
B (k) = m™ =1 £ P2t el

We are ready to prove the main result of this section relating osculating regularity to tangential
weak defectiveness.

Theorem 3.5. Let X C PV be a projective variety having m-osculating regularity and strong 2-
osculating regularity. Assume that there exist integers I, ky,..., k; > 1, general points p1,...,p; € X
and a linear subspace of dimension s containing (T;ll, .. .,Tfll> that is not tangent to X along a
positive dimensional subvariety. Set

l
hi=>"hm(k;)

Then X is not (h, s)-tangentially weakly defective.
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Proof. Let us consider the linear span
—_— 11 e 1h k e 11 .. 1h k
1 jpla ajplm( 1) ajpla ajplm( 1)

and pl = py,... ,pll = p;. For seek of notational simplicity along the proof we will assume [ = 1.
For the general case it is enough to apply the same argument [ times.

Let us begin with the case k1 +1 = 2*. Then hm(k1) = m*~ 1. Since X has m-~osculating
regularity we can degenerate T', in a family parametrized by a smooth curve, to a linear space U
contained in

_ 3 3 3
Vl — <Tpi,Tpgn+1, e 7Tpm>‘1m+1>

1

Again, since X has m-osculating regularity we may specialize, in a family parametrized by a smooth
curve, the linear space V to a linear space U; contained in

_ 7 7 7
Vo = <Tpi,TpT2+l, T Hm2+1>

Py’
Proceeding recursively in this way in last step we get a linear space Uy_1 which is contained in
Vi =Ty
Now, more generally, let us assume that
ki+1=2M+4 ... 42" 4
with e € {0,1}, and A\y > Ay > -+ > A\, > 1. Then
B (k1) = m ML 4o el

By applying a times the argument for k; + 1 = 2* in the first part of the proof we may specialize T
to a linear space U contained in

_ 2M 1 2721 2%a 1
V = <Tpi 7Tmh*1+1"'"meru...“n*a—l*ul
Py Py

Finally, using that X has strong 2-osculating regularity a — 1 times we specialize V to a linear space
U’ contained in
V/ _ T21>\1 4. 2ra—l

Py
Note that T51A1+”'+2Aa_1 = T:f if e =0, and T51A1+"'+2Aa_1 = T:f_l C T:f if ¢ = 1. In any case,
1 1 1 1 1
since by hypothesis there is an s-dimensional linear subspace containing <T§11, e ,TZ§Z> that is not
tangent to X along a positive dimensional subvariety we conclude by Lemma 311 O

4. ON TANGENTIAL WEAK DEFECTIVENESS OF SEGRE-VERONESE VARIETIES

Let n = (n1,...,n,) and d = (di,...,d,) be two r-uples of positive integers, with ny < --- <n,
and d = dy + -+ +dp > 3. Let SV C PN where N(n,d) = [[i_, ("/%) — 1, be the
corresponding Segre-Veronese variety that is the product P™ x --- x P"" embedded by the complete
linear system ‘O[pml xxprr (d1, ..o dy) ‘ We recall the notion of distance for Segre-Veronese varieties
given in [AMRI9] Definition 2.4].

Definition 4.1. Let n and d be positive integers, and set

Apag=1{1={i1,...,ia},0<ip <+ <idg <n}
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For I,J € A, 4, we define their distance d(I,.J) as the number of different coordinates. More
precisely, write I = {i1,...,iq} and J = {j1,...,ja}. There are r > 0 distinct indexes A1,..., A, C
{1,...,d} and distinct indexes 7y,...,7 C {1,...,d} such that iy, = j,, for every 1 <k <r, and
Lix| £ A, 0 |74, ., =0
Then d(I,J) = d —r. Now, set
A=Ana=MAnay X XAy, 4.
For I = (I',...,I"),J = (J',...,J") € A, we define their distance as
d(I,J)=d(I", J" + - +d(I",J")
Such a distance, called the Hamming distance, was defined in [CGGO02, Section 2] for Segre

varieties. We will denote the homogeneous coordinates and the corresponding coordinate points of
PN(™4d) by X ; and ey respectively, for J € A.

Proposition 4.2. Let po,...,pn, € SVJ be general points. If d := min{d;,...,d,} > 2 then a
general hyperplane H C PN containing T = (Tpdo_lSVJ‘, e ,Tpdn_llSVJ‘> is not tangent to SV along
a positive dimensional subvariety.

Proof. Since PGL(n1+1)x---x PGL(n,+1) acts transitively on SV}* we may assume that p; = ey,,
where I; = ({4,...,i},...,{i,...,i}). By [AMRI19, Proposition 2.5]| TgI:l =(ey|d(l;,J) <d—-1),
and hence

(Tedlgl7...,T(i:11> = (es|d(I;,;J) <d—1 for some i=0,...n1)
= {X;=0|d(;,J)>d—1 forall i=0,...n1}

Now, let H  PN(™@) be a general hyperplane containing 7. We have that H is given by an equation
of type

(4.3) Z ajX;=0, ay € C
JEA | d(I;,J)>d—1,Y i=0,...,n1

Let us denote by PN (@) —dim(T)—1 the projective space whose homogeneous coordinates are the o
with J € A and d(I;,J) >d—1for alli =0,...,n1. Now, for each fixed i = 0,...,n; we consider
the following subset of A: for each 1 < <7 and 0 < j < mn; with j #£ i let

Jiﬁjyl:(Jl,...,Jr)EA where Jl:{],,]} and Jk:{i,...,i} for k#l

and set A; ={J;j; € A| forall 1 <I<r and 0<j<n with j#i}.
Observe that, since d = min{d;} and j # i, each J € A; satisfies d(I;,J) > d > d — 1 for all
1=0,...,n1. Consider the projection

m PN (n,d)—dim(T)—1 ey P

(r)sen | dn,N)>d—11=0,...n; = (QJ)sen,
the point [1 : --- : 1] € PZi#™ and let H € m Y([1 : --- : 1]) be the hyperplane given by
> e A, X7 = 0. The intersection H N SV* corresponds to the hypersurface

d d d,
(4-4) Z Xl,li"'Xl,;'"'Xr,i =0
JeA;
where X; ; for j = 0,...,n; are the homogeneous coordinates on P". Thus, in the affine chart
X1, == X,; =1 equation (7)) becomes
d

(4.5) > oxM=0

1<i<r
0<j<ny, j#i
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The singular locus of H NSV} in the affine chart X, ; = --- = X, ; = 1 is given by the following

system of equations

{di X[ = 0}1<i<r 0<jcny, i
The only solution of this system is X;; = 0, and so the hypersurface (@3] is singular only at
po = (0,...,0). Therefore, we conclude that the intersection of SV} with a general hyperplane H
containing T is singular, in a neighborhood of pg, only at pg. Since this argument holds for each

1=0,...,n1 using Lemma [3.I] we get the claim. O

Proposition 4.6. Let po,...,pn, € SV3 be general points and assume that d = dy < d; —2 for each
i # 1. Then a general hyperplane H C PN containing T = (TISIOSVd", . ,TlflnlSVd"> 1s not tangent
to SV along a positive dimensional subvariety.
Proof. As in Proposition 4.2l we may assume that p; = ey,, with I; = ({,...,4},...,{i,...,i}). By
[AMR19, Proposition 2.5] T¢, = (e | d(1;,J) < d). Hence
(Tedlo,...,Tedl y = A(es|d(I;,J) <d forsome i=0,...nq)
i
= {X;=0]|d(;,J)>d foral i=0,...n1}
Now, let H c PN(:4) be a general hyperplane containing 7. We have that H is given by an equation
of type
Z a;X;=0, ay € C
JeA|d(I;,J)>dV i=0,...,n1
Let us denote by PN(md)—dim(T)—1 the projective space whose homogeneous coordinates are the oy
with J € A and d(I;,J) > d for all i = 0,...,n;. Now, for each fixed i = 0,...,n; we consider the
following subset of A: for each 2 <[ <r and 0 < j < n; with j # i set
Ji,j,l = (Jl,...,JT) € A where J; = {i,j,...,j}, Jy = {’L,,’L} for k#l

and A;1 = {J;;; € A| for all j,1+#i}.

Moreover, we also consider another subset of A defined as follows: for each 0 < j < ny with j # i
let

Ji,j = (Jl,...,JT) € A where J; = {],,]}, Jo = {j,i,...,i}, Jk:{i,...,i} for k;é 1,2

and Ai)g = {Ji,j,l SN | for all j,l }é Z} R Al = Ai71 U Ai)g.
Observe that, since d =dy < d; —2 for i # 1 and j # i, each J € A; satisfies d(I;,J) >d+1>d
for all ] =0,...,n;. Therefore, we have a projection
T PN (n,d)—dim(T)—1 s P T
(1) gen d(n,N>di=0,..n; > (7)€,

Now, consider the point [1: ---: 1] € P2# "™ and let H € 7 *([1 : - -- : 1]) be the hyperplane given
by
S =0
JeA;
The intersection H N SV} corresponds to the hypersurface
(4.7 Z X -Xl_,ing;.—l ce X4 Z XX X2 X X =
JeN; 1 JEN; 2
where X;;, ¢ = 0,...,n;, are the homogeneous coordinates on P"/. Thus, in the affine chart
X1, =---= X,; =1 the equation ([@T) becomes
(4.8) F= > X'+ 3 X{LXy;=0

2<i<r 0<j<ny, j#i
0<j<ny, j#i
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The system of the partial derivatives of F' is given by
G X Xy ;=0
do—2 d
(d2 —1)X5% "+ X7, =0
(di— X2 =0,1=3,...,r and j#i
This system has a solution only when all the coordinates X;; vanish, and so the hypersurface
{F = 0} in ([&8) is singular only at pyp = (0,...,0). Therefore, we conclude that for a general

hyperplane H containing 7" the hypersurface H NSV} is singular, in a neighborhood of pg, only at
po- Since this argument holds for each i = 0, ..., n; using Lemma Bl we get the statement. O

Theorem 4.9. Set d := min{dy,...,d.}. If

- h<(n1+1hp,+1(d—1) or

-h<(ni+4+1hp,41(d) andd=d; <d; — 2 for each 2 <i<r
then SV is not h-weakly defective.

Proof. Since by [AMRI19, Propositions 5.1, 5.10] the Segre-Veronese variety SV* has strong 2-
osculating regularity and (n; + 1)-osculating regularity, the statement follows immediately from
Propositions [4.2] and Theorem O

Remark 4.10. Write d = 2™ +2% ... 4+ 2% 4+ e with Ay > Ag > ... > A\, > 1 and € € {0,1},
so that A\ = [log,(d)]. The first part of Theorem says that SV} is not h-weakly defective for
h<(ni+1)((n1+ )M 4 (ng+ D)2 L4 4 (ng + 1)1,

Now, write d +1 = 2% 4 2% 4 2% 4+ e with Ay > Ay > ... > A\ > 1 and € € {0, 1}, hence
A1 = [logy(d + 1)|. The second part of Theorem yields that SV is not h-weakly defective for
h<(mi+1)((ni+1D)M "4 (ny+1)2" 4.4 (ny+1)*~1). Therefore, we have that asymptotically
for

h < (ni+ 1)Llog2(d)J

SV3 is not h-weakly defective.

4.10. On 1-weak defectiveness of Segre-Veronese varieties. In this section we give condition
ensuring that Segre-Veronese varieties are not 1-weakly defective. Note that this yields that their
dual varieties are hypersurfaces.

Proposition 4.11. Ifn, < Z::_ll n; then SV is not 1-weakly defective.

Proof. First of all, let us consider the Segre embedding of P x - - - x P that is d = (1,...,1). Let
p € P™ x ... x P™ be a general point, without loss of generality we may assume that p = eq_.. 0.
Hence T,,(P™ x --- x P") = (es | d(J, ({0},...,{0})) <1). Thus, a general hyperplane containing
T,(P™ x --- x P™) is given by an equation of type

Z OLJXJ:O

JeA | d(J,({0},..,{0})) =2

where A is the set of indexes of the standard Segre variety. On the affine chart X1 0=+ = X, o =1,

where X o, ..., X, n, are homogeneous coordinates of P™, we have that H N (P"* x - .- x P"") is the

hypersurface in C2=" given by

(4.12) Z ayXyg - Xy, =0
J=({g1},-{drHEA 1 d(J,({0},...,{0})) >2

where in the above formula whenever some of the variables X g, ..., X, o appear we set them equal

to one. Note that for a general choice of the a; the hypersurface defined by 412 has 0-dimensional
singular locus, since by [Ott13, Theorem 2.1] the Segre variety P™ x --- x P" is not 1-weakly
defective.
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From now on A will be the set of indexes of a Segre-Veronese variety. Let p € SV . As before
without loss of generality we can assume that p = e;,. By [AMRI9, Proposition 2.5] T,,SV} =
(ey | d(lo,J) < 1). Observe that for each J = ({j1},...,{jr}) such that d(J, ({0},...,{0})) > 2 we
can consider J' = (Jy,...,J,) € A where J; = {0,...,0,j;}. Therefore, considering the hyperplane

H given by

Z OéJXJ/ =0

J
where we set X7 = --- = X, o = 1 whenever these variables appear in the expression above, we
see that in the affine chart X; o = --- = X, 0 = 1 the hypersurface H N SV} in CX" is given by
(I2). Thus, the statement follows from the first part of the proof. O

Proposition 4.13. Assume that n, > Z::_ll n;.
- If d, > 2 then SV} is not (ny + 1)-weakly defective.
- Ifd, =1 then SV} is 1-weakly defective.

Proof. Let pg,...,pn, € SV be general points. Without loss of generality, we can suppose that
pi = er,- By [AMRI19, Proposition 2.5] T,, SV3* = (e | d(I;,J) < 1), and hence

T=<T€110,...,Tell )y = (esj|d(I;,J) <1 for some i=0,...n1)
ni
(X;=0]d(I;,J)>1 forall i=0,...n1}

Now, let H ¢ PN(™@) be a general hyperplane containing <Tp10, . 7Tpln1>' Then H is given by
an equation of type
Z ajX;=0, ay € C

JeA|d(I;,J)>1,V i=0,...,n1

Let us denote by PN(md)—dim(T)—1 the projective space whose homogeneous coordinates are the oy
with J € A and d(I;,J) > d for alli =0,...,n;.

To prove the first claim let us fix [ € {0,...,n1}. We will discuss in detail the case | = 0, the
argument for the remaining values of [ is analogous.

Let us consider the subset A’ C A given by the set of indexes J' = (J1,...,J,) where for each
pair ¢, with i € {1,...,r — 1} and 1 < j < n; we set

Ji={0,...,0,5}, JT—{O,...,O,I—I—j—i-Zm} and Jp = {0,...,0} for k#£4,r
I<i

Furthermore, consider the subset A” C A given by the set of indexes J” = J; = (Ji,...,J,) such
that

Jr={4,...,7}, and J, ={0,...,0} for k #r
for each 2 + Zlgr—l n<j<n.andj=1.

Since 1 < j <1+j+4 3 ,;m,each J € Ag = A" UA" satisfies d(I;, J) > 1 for all i =0,...,n;.
Thus, we have a natural projection

o ]P)N(n,d)—dim(T)—l —_s P
(1) sen | d(1;,J)>1i=0,...na 7 (1) sen,
Now, consider the point [1 :---: 1] € P" and let H € m; *([L : --- : 1]) be the hyperplane given

by

> X;=0

JeAo
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In the affine chart X9 = -+ = X, o = 1, where for each i € {1,...,r}, Xio0,...,X;n, are the
homogeneous coordinates on P", we have that H NSV is the hypersurface in CX " given by
d’l" d’l" p—
Z Xi,jXr,j+1+El<im + Z Xr,j + Xr,l =
1S 2452, m<j<n,

Looking at the system of the partial derivatives we see that this hypersurface is singular only at
(0,...,0). Therefore, using Lemma 3.l we prove the first claim. For the second part, let us consider
a general hyperplane H that contains T,, SV;*. Hence, H is the zero locus of a polynomial F' of
the form

F = Z ajXy, ajeC
JEA | d(J,Ip)>2
In the affine chart X;9 = --- = X, 0 = 1 the intersection H N SV} is the hypersurface in C2mi
given by
F= > ayXi g Xy =0

J=(J1,e Jr—1,{GHEA | d(J,I0) >2

where with X5 ;, we denote the product of powers of the homogeneous coordinates on P™ with
exponents given by the Ji. Observe that for each 1 <¢ <r —1and 1 < j < n; we have

OF o
X (Z af j Xok +Ge(X1, - Xo1m, ) Xok) + G(X1 1, X1,
7 k=1
and for each 1 < k < n, we have

— =G(X11,.- . Xrc100 1)

with Gk (Xl,lu e ,Xr_lmq_l), G(X171, . 7Xr—1,nT,1) and GI(XLl, . 7Xr—1,nT,1) polynomials with
no constant terms since by assumption d, = 1.

Now, note that the locus given by X1 1 =X10=--=X,_1p, -1 =Xy—1n,, =0 and
N Ny Ny
k k k
E al,er,k = E 041,2Xr,k == E ar—l,r—er,k =0
k=1 k=1 k=1

is contained in the singular locus of {ﬁ = 0}. Therefore, we get a linear system in n, variables and
Z::_ll n; equations. Since n, > Z::_ll n; we conclude that the singular locus of H N SV} contains
at least a linear space of dimension n, — Z:;ll n; > 0 yielding that SV} is 1-weakly defective. [

By Proposition 13 we have that SV} with n = (1,n) and d = (d,1) is 1-weakly defective.
Now, we determine the smallest dimension of a linear subspace tangent to SV* along a positive
dimensional subvariety.

Proposition 4.14. Let SV} with n = (1,n) and d = (d,1). Then SV} is not (1,s)-tangentially
weakly defective if and only if s < d(n+1).

Proof. Let p € SV be a general point, without loss the generality we can suppose that p =
ego,...,0},{0}- Then we have T,SV = (e | d(J,({0,...,0},{0})) <1).
Now, let II C P +4+" he a general linear subspace of dimension s such that T,5Vy c IL

Therefore, we may write II = (),_; . tdin_s Hi, where the H; are general hyperplanes tangent
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to SV3* at p. We have that IIN SV} is given by
Fi =Y 1cica o ;X0 X1Y) 4+ 20 g0l oX§ X{Yo =0

1<j<n

dntd d— dnt-d4n—s yrd—i yi
Fdn+d+n o= Yigica P TXETIXY 4+ 3, @l P T X T IX Y = 0
1<5<n

and working on the affine chart Xy = Yy = 1 we reduce to

Zl<z<da X1Y +22<1<d zOXl =0
1<j<n

(4.15)

dn-+d dn-+d
Fdn+d+n s = 21gi<d Oy XY 4 Y, g0 T TIX ] =0
1<j<n

Then, Sing(H1 N -+ N Hgpntd+n—s N SVE) contains the variety cut out by the following equations

Zl<]<n 0‘1 J Y; =0

(416) dn+d+n—s
Li<icn O Y=
X1 =0

and, for a general choice of the afyj we have that this is a linear space in the hyperplane X; = 0 of
dimension s — d(n + 1).
Now, consider a special linear space II such that [@I5) takes the following form

Py =3 1gjen 01 ;X1 =0

. dn+d+n—s
Fintdin—s = 21<jcn 01 X1Y; =0

Then {Fy =+ = Fgntd+n—s = 0} splits as
{(Xi=0)u{ > ai;¥j=-= Y afi*"=y; =0}
1<j<n 1<j<n

and its singular locus is exactly given by ([@I6). Now, Lemma BTl yields that a general linear space
of dimension s containing 7,,SV} has contact locus of dimension at most s —d(n+1). Hence, SV}
is not (1, s)-tangentially weakly defective for s < d(n + 1). O

Following the line of proof of Proposition[Z.I4we can prove the following result on (1, s)-tangential
weak defectiveness.

Proposition 4 17. Consider SV} with n = (ni,...,n,) and d = (di,...,dr-—1,1), and assume

that n,. > > \_ 1nZ If
r—1

3<H<n’:d) —anm

then SV} is not (1, s)-tangentially weakly defective.

Proof. Without loss of generality we can assume as usual that p = ej, € SV where Jy =
({0,...,0},...,{0,...,0}). A basis for the linear system of the hyperplanes containing TSV}
is given by

(X0 Xeo1,0, 0 X = 0 (1, e (G} EA | d(J,T0)>2
Now let us consider hyperplane sections of the form

o yvdi oy di—1 _
Fijy= X8 X X5 X =0
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for1<i<r—11<j<mn;and 1<1<n,.

In the affine chart C2i=1" defined by X; 9 = --- = X,.0 = 1 the partial derivatives of Fj ;; are
given by
AX XX LX) ¥ OX XX X) ¥
9Xi,; S X, = i

Then the Jacobian matrix of the F;;; has rank zero if and only if all the coordinates X; ; with
1 < j < n; vanish. In particular, the intersection of the special hyperplane sections

d di—1
X{y XX X =0

has a singularity spanning the whole of CZi=1" only at (0,...,0). Now, to conclude it is enough
to note that the number of these special hyperplane sections is n, E:;ll n; and to apply Lemma

1} O

Finally, we have the following classification of 1-weakly defective Segre-Veronese varieties.

Theorem 4.18. The Segre-Veronese SV} is 1-weakly defective if and only if d. = 1 and n, >
it i

Proof. Tt is an immediate consequence of Propositions E.1T] [4.13] O

5. ON TANGENTIAL WEAK DEFECTIVENESS OF PRODUCTS

In this section we study tangential weak defectiveness for varieties that can be written as a
product of a smaller dimensional variety and the projective line.

Lemma 5.1. Let W C P™ be a non-degenerated irreducible projective variety, and consider the
Segre embedding of X = W x P* C P™ x P* — PN with N = rm +r + m. Fiz a point p € PT
and a hyperplane H C P" not passing through p. Let Z = W x {p}, Y = W x H, and denote by
Hyz = (Z), Hy = (Y) their linear spans. Then Hz and Hy are complementary subspaces of PV,
and XNHz=Z,XNHy =Y.

Proof. Since W C P™ is non-degenerated we have that Hz = (P™ x {p}) and Hy = (P™ x H).

Consider homogeneous coordinates [xo : -+ : ] on P" and [yo : --- : ys,] on P™. Without loss of
generality we may assume that p =[1:0:---:0] and H = {zo = 0}. Hence, Hz = {z1 =+ =
Zmyr = 0} and Hy = {200 = --+ = 2mo = 0}, where 2;; is the homogeneous coordinate on PV

corresponding to y;x;. Hence Hz and Hy are complementary subspaces of PV.

Now, assume that there is a point ¢ € X N Hy with ¢ ¢ Z. Since X = W x P" the point ¢ lies
on a fiber P}, over a point w € W. Such fiber intersects Z in a points z € Z with z # ¢ and hence
P7, intersects Hz in at least two distinct points. On the other hand, note that Hz = (P™ x {p}) is
the fiber P over p of the projection P™ x P" — P". A contradiction.

Similarly, assume that there is a point ¢ € X N Hy with ¢ ¢ Y. The point ¢ lies on a fiber P},
over a point w € W. Hence PP}, intersects Y in a hyperplane H,, of P] not containing ¢, and Hy
contains the fiber P, = (¢, H,,). A contradiction. O

Proposition 5.2. Let W C P™ be a non-degenerated irreducible projective variety, and consider
the Segre embedding of X = W x P" C P™ x P" — PN with N = rm +r + m.

If p,q € X are two distinct points lying on the same fiber of m : X — W over a smooth point
w € W then the span of the tangent spaces (I, X,T,X) is tangent to X along the line (p, q).

Proof. Let w € W be a smooth point. We can parametrize W in a neighborhood of W as
Y Ce — Ccm
(@1, y2d) = (1(21,- - Ta),s ooy D@1, -, Ta))
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where d = dim(W) and ¢(0) = w. Hence, a parametrization of X is given by
Yo CcixcCr — CV
(@1, ma), Ly, owr)) — (D1, Oms P11, - - Omyr)
Let us set a;; = gf; (0) and by = ¢ (0). Without loss of generality we may assume that p =

¥((0,...,0),(1,0,...,0)) and p = ¥((0,...,0),(1,...,1)) so that the line (p,q) is parametrized by
~v(t) = ¥((0,...,0),(1,t,...,t)). Now, the tangent space of X at y(t) is spanned by the rows of the
following matrix

a1,1t a1,1t a2,1t a2,1t am,lt am,lt ai,i am,1
o ai gt ... aiqt azqt ... a4t ... ... amdt ... amdt aid ... QAm,d
A(t)_ b1 0 b 0 bm 0 0 0
0 b1 0 ba 0 bm 0 0
and to conclude it is enough to observe that A(t) = tA(1) — (¢t — 1) A(0). O

Now, we are ready to prove our main result on tangential weak defectiveness of products.

Theorem 5.3. Let W C P™ be a non-degenerated irreducible projective variety, and consider the
Segre embedding of X = W x P! C P™ x P! — PN with N = 2m + 1. Assume that W has
s—osculating regqularity and 2—strong osculating reqularity.

If the following conditions are satisfied:

- for a general point w € W the intersection TCW NW = S is a zero dimensional scheme
supported on w;

- for a general choice of two points p,q € P* and a general hyperplane H in (W x {q})
containing TE(W x {q}) we have that

d—1
<H, T2, (W {p})> AW x {p} =5
and S is supported on the projection of w;
- ho(d) dim(X) + hy(d) — 1 < m;
then X is not (hs(d), m+ hs(d) — 1)-tangentially weakly defective, and hence X is hs(d)-identifiable.
In particular, under this bound X is not hs(d)-defective.

Proof. Take two distinct points p,q € PL. Let Z =W x {p}, Y =W x {q}, Hz = (Z), Hy = (Y).
Note that by Lemmal5.dlwe have that HzNZy = 0, (Hz, Hy) =PN XNHy =Y, XNHz = Z. Let
h := hs(d). Fix y1,...,yn € Y general points, and let z1,...,z, € Z be their projections through
the projection map 7 : X — Z. Now, consider general points z1(t),...,zx(t) € X with ¢ € C* such
that limy o z;(t) = y;, and let
Ty = T,y X, Ty (pX)

Note that if z;(¢) = w(z;(t)) then limy o 2 (t) = z;. Set Ty = limy 0 T3. Since dim(7p) < hdim(X)+
h—1 and by hypothesis A dim(X)+h—1 < m there exists a hyperplane Hy C Hy containing ToNHy .

Let {H:}tec+ be a family of hyperplanes in P™ such that Hy D Ty N P™. Hence we have T} C
(Hy,z1(t), ..., zn(t)), and since Hy and (z1,...,2;) are disjoint and z1,...,2, € Z are general we
have that
lir% (Hy,21(t), .-, 20 (1)) = (Hoy 21, -« -5 21)

t—
with TO g <H0, ATEEEE) Zh>.
Let yo be a general point of Y and let

Yiyeoyyn : C =Y
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be smooth curves such that v;(to) =
we have that lim;_,¢ <T,Yl(t)Y, T
realizes the degeneration

Yo and v, (tso) = yn. By the hypotheses on osculating regularity
h,(t)> C Tj Y. Furthermore the curves mo~y,...,moy, : C — Z

Yo

d—

1
tim (1)), ... w(m (1)) € Ty 2

Thanks to Lemma Bl we have that (Hg, z1,...,2,) N Hz = (21,..., 2z) scheme theoretically in
a neighbourhood of the z;.

Assume that (Hy,z1,...,2p) is tangent to X at a points & # y; for all ¢ = 1,...,h. Then
(Hg, 21, .., z,) contains all the fiber P = 771(x) and therefore the point P N Z which must then
be one of the z;, say z,. Hence = € ]P’ih’.

Now, Proposition yields that (Hy,z1,...,2p) is tangent to X along the line (z,yn) = ]P’ih,
and in particular is tangent to X at zj, a contradiction. Therefore, (Hy,z1,...,2) and hence
(Hy, z1(t), ..., zn(t)) and T} are tangent to X just at the prescribed points z;(t) fori =1,...,h. O

Remark 5.4. Note that the non secant defectiveness of X is not needed anywhere in the proof of
Theorem B3

As an application to Segre-Veronese varieties we get the following result.
Corollary 5.5. Consider a Segre-Veronese variety SV C PN () with n = (1,ng,...,n,) and

d=(1,da,...,d.). Assume that no <ng <---<n, and let d := min{d;} — 1. If
h < g1 (d) ~ g

then SV is not h-tangentially weakly defective, and hence SV3 is h-identifiable. In particular,
under this bound SV is not h-defective.

Proof. Since T(SV]") C Tz‘f/(S’Vd") for d' > d and Tg(V;") C TH(SV,) for every i = 1,...,r we
can look only at the Veronese factor VCZj for which d = d; — 1. In this case if p = [xd] for a suitable
choice of coordinates [z, ..., 2y,;] in P" we have that

TV = (woF | deg(F) =d — 1)

and so TpdV(Zj N thj is supported on p.

We can assume that p,q € P! are given by p = [0,1] and ¢ = [1,0]. For every i = 2,...,7 let
I; be the set of multi-indexes of size |I;| = d; associated to the coordinates [zf, ..., 2}, ] under the
Veronese embedding given by |Opn. (d;)|. Finally let [Z1, ... 1,0, Z1,,...1,,1] (....,1,) be the coordinates
of the Segre-Veronese embedding in PN(™®)  If v = [®j:2,,,,)r(:vg)df] with J = (J1,...,J,) its
corresponding index then

TdY: ZIg,...,IT,O =0 V(IQ,...,IT)
ZIQ)...7IT71 =0 with d((IQ,...,IT),J) > d

77y a0 =0 V(... 1)
Zpyto0=0 with d((ls,..., 1), J) > 42

2

Za(12 _____ Ir)Zfz,mel =0 with d((IQ, .. .,IT), J) >d
Finally

Lo=0 d(l...,I),J) > &L
IT)Z12)~~~7IT‘71:0 with d((IQ,...,IT),J)>d

.....
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and since by construction we have that

Hy={Z1, 1.1=0 V(I,....I,)}

d—1

with T2

(w

VZNZ = m(w) we conclude. O

Remark 5.6. The previous corollary gives an asymptotic bound for the identifiability of SV}
depending only on the values of n = (1,n2...,n,) and d = (1,dz...,d,).

Note that in our case, i.e. for a Segre-Veronese in which there is a P! factor embedded linearly, the
bound on secant defectiveness given in [AMR19] is trivial while the bound coming from Corollary
[5.5] ensures that SV is h-identifiable asymptotically for

b~ n%logg (d)]

Finally, Theorem 5.3 does not require a further numerical assumption involving the rank. Indeed, at
the best of our knowledge, the principal result in order to prove identifiability is the one in [CM19],
in which it is shown that the extra inequality h > 2 dim(SV*) has to be fulfilled.

[ABOY]
[AB12]
[AB13]
[AMR19]
[BBC18]
[BV18]
[cCo2]
[CC10]
[CGGo2|
[CGLMO8|
[CM96]
[CM19]
[CO12]
[FCM19]
[FMR20|
[KB09]
[LP13]
[Mas16]

[Mel06]

REFERENCES

H. Abo and M. C. Brambilla, Secant varieties of Segre-Veronese varieties P™ x P™ embedded by O(1,2),
Experiment. Math. 18 (2009), no. 3, 369-384. MR 2555705

, New examples of defective secant varieties of segre-veronese varieties, Collect. Math. 63 (2012),
no. 3, 287-297. MR 2957971

, On the dimensions of secant varieties of Segre-Veronese varieties, Ann. Mat. Pura Appl. (4)
192 (2013), no. 1, 61-92. MR 3011324

C. Araujo, A. Massarenti, and R. Rischter, On non-secant defectivity of Segre-Veronese varieties, Trans-
actions of the American Mathematical Society 371 (2019), no. 4, 2255-2278.

E. Ballico, A. Bernardi, and L. Chiantini, On the dimension of contact loci and the identifiability of
tensors, Ark. Mat. 56 (2018), no. 2, 265-283. MR 3893774

A. Bernardi and D. Vanzo, A new class of non-identifiable skew-symmetric tensors, Ann. Mat. Pura Appl.
(4) 197 (2018), no. 5, 1499-1510. MR 3848461

L. Chiantini and C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 354 (2002), no. 1,
151-178. MR 1859030

, On the dimension of secant varieties, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1267-1291.
MR 2677616

M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Ranks of tensors, secant varieties of Segre varieties
and fat points, Linear Algebra Appl. 355 (2002), 263-285. MR 1930149

P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, STAM J.
Matrix Anal. Appl. 30 (2008), no. 3, 1254-1279. MR 2447451

P. Comon and B. Mourrain, Decomposition of quantics in sums of powers of linear forms, Signal Pro-
cessing 53 (1996), no. 2, 93-107.

A. Casarotti and M. Mella, From non defectivity to identifiability, https://arxiv.org/abs/1911.00780,
2019.

L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, STAM J. Matrix Anal.
Appl. 33 (2012), no. 3, 1018-1037. MR 3023462

A. Barbosa Freire, A. Casarotti, and A. Massarenti, On secant dimensions and identifiability of flag
varieties, https://arxiv.org/abs/1912.00788, 2019.

A. Barbosa Freire, A. Massarenti, and R. Rischter, Projective aspects of the geometry of Lagrangian
Grassmannians and Spinor varieties, Bull. Sci. Math. 159 (2020), 102829. MR 4041206

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, STAM Rev. 51 (2009), no. 3,
455-500. MR 2535056

A. Laface and E. Postinghel, Secant varieties of Segre-Veronese embeddings of (P1)", Math. Ann. 356
(2013), no. 4, 1455-1470. MR 3072808

A. Massarenti, Generalized varieties of sums of powers, Bull. Braz. Math. Soc. (N.S.) 47 (2016), no. 3,
911-934. MR 3549076

M. Mella, Singularities of linear systems and the Waring problem, Trans. Amer. Math. Soc. 358 (2006),
no. 12, 5523-5538. MR 2238925



https://arxiv.org/abs/1911.00780
https://arxiv.org/abs/1912.00788

ON TANGENTIAL WEAK DEFECTIVENESS AND IDENTIFIABILITY OF PROJECTIVE VARIETIES 17

[MM13] A. Massarenti and M. Mella, Birational aspects of the geometry of varieties of sums of powers, Adv.
Math. 243 (2013), 187-202. MR 3062744

[MR19] A. Massarenti and R. Rischter, Non-secant defectivity via osculating projections, Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 19 (2019), no. 1, 1-34. MR 3923838

[Ott13] G. Ottaviani, Identifiability and weak defectivity: informal notes for lukecin school, september 2-6, 2013,
http://web.math.unifi.it/users/ottaviani/lukecin.pdf, 2013.

[Rus03] F. Russo, Tangents and secants of algebraic varieties: mnotes of a course, Publicagbes Matematicas
do IMPA. [IMPA Mathematical Publications|, Instituto de Matematica Pura e Aplicada (IMPA), Rio
de Janeiro, 2003, 240 Coléquio Brasileiro de Matematica. [24th Brazilian Mathematics Colloquium)].
MR 2028046

[Ter11] A. Terracini, Sulle Vi per cui la varieta degli Sy, (h + 1)-seganti ha dimensione minore dell’ordinario,
Rend. Circ. Mat. Palermo 31 (1911), 392-396.

AGeEu BarBosa FREIRE, INSTITUTO DE MATEMATICA E EstaTisTicA, UNIVERSIDADE FEDERAL FLUMINENSE,
CamMPUs GRAGOATA, Rua ALEXANDRE MoOURA 8 - SAo DomiNGos, 24210-200 NiTeERSOI, R10 DE JANEIRO, BRAZIL
Email address: ageufreire@id.uff.br

ALEX CASAROTTI, DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITA DI FERRARA, VIA M ACHIAVELLI
30, 44121 FERRARA, ITALY
Email address: csrlxa@unife.it

ALEX MASSARENTI, DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITA DI FERRARA, Via MAcHI-
AVELLI 30, 44121 FERRARA, [TALY
Email address: alex.massarenti@unife.it


http://web.math.unifi.it/users/ottaviani/lukecin.pdf

	1. Introduction
	2. Secant defectiveness, (h,s)-tangential weak defectiveness and identifiability
	3. Osculating regularity and weak defectiveness
	4. On tangential weak defectiveness of Segre-Veronese varieties
	5. On tangential weak defectiveness of products
	References

