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ON TANGENTIAL WEAK DEFECTIVENESS AND IDENTIFIABILITY OF

PROJECTIVE VARIETIES

AGEU BARBOSA FREIRE, ALEX CASAROTTI, AND ALEX MASSARENTI

Abstract. A point p ∈ PN of a projective space is h-identifiable, with respect to a variety
X ⊂ PN , if it can be written as linear combination of h elements of X in a unique way. Identifia-
bility is implied by conditions on the contact locus in X of general linear spaces called non weak
defectiveness and non tangential weak defectiveness. We give conditions ensuring non tangential
weak defectiveness of an irreducible and non-degenerated projective variety X ⊂ PN , and we apply
these results to Segre-Veronese varieties.
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1. Introduction

A point p ∈ PN of a projective space is h-identifiable with respect to a variety X ⊂ PN if it can
be written as linear combination of h elements of X in a unique way.

Identifiability problems and techniques are of relevance in both pure and applied mathematics.
For instance, identifiability algorithms have applications in psycho-metrics, chemometrics, signal
processing, numerical linear algebra, computer vision, numerical analysis, neuroscience and graph
analysis [KB09], [CM96], [CGLM08]. In pure mathematics identifiability questions often appears in
rationality problems [MM13], [Mas16].

Identifiability has been related to the concept of weak defectiveness in [Mel06], and more recently
to the notion of tangential weak defectiveness in [CO12].

We introduce the concept of (h, s)-tangential weakly defectiveness, where h, s are positive integers.
A variety X ⊂ P

N is (h, s)-tangentially weakly defective if a general linear subspace of dimension s,
which is tangent toX at h general points x1, . . . , xh ∈ X , is tangent toX along a positive dimensional
subvariety of X containing at least one of the xi. In particular, when s = dim 〈Tx1X, . . . , Txh

X〉
we recover the notion of h-tangential weak defectiveness while for s = N − 1 we get the notion of
h-weak defectiveness.

The h-secant variety Sech(X) of a non-degenerate n-dimensional variety X ⊂ PN is the Zariski
closure of the union of all linear spaces spanned by collections of h points of X . The expected
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dimension of Sech(X) is expdim(Sech(X)) := min{nh+h−1, N}. The actual dimension of Sech(X)
may be smaller than the expected one. Following [CC10, Section 2], we say that X is h-defective if
dim(Sech(X)) < expdim(Sech(X)).

Note that if X ⊂ PN is (h, s)-tangentially weakly defective then it is (h, s′)-tangentially weakly
defective for any s′ ≥ s. Furthermore, if X ⊂ PN is h-defective then it is (h, s)-tangentially weakly
defective for all s ≥ dim 〈Tx1X, . . . , Txh

X〉. Moreover, if X ⊂ PN is not h-tangentially weakly
defective then it is h-identifiable. In Section 2 we recall all these notions and the relations among
them in detail.

In Section 3, mixing the notion of osculating regularity introduced in [MR19] with that of weak
defectiveness, we prove a general result for producing bounds yielding the non (h, s)-tangential
weak defectiveness of a projective variety X ⊂ P

N . Thanks to this machinery in Section 4 we
prove a number of results on weak defectiveness of Segre-Veronese varieties. Given two r-uples
n = (n1, . . . , nr) and d = (d1, . . . , dr) of positive integers, with n1 ≤ · · · ≤ nr we will denote by
SV n

d
⊂ PN the corresponding Segre-Veronese variety that is the product Pn1 × · · · × Pnr embedded

by the complete linear system
∣∣OPn1×···×Pnr (d1, . . . , dr)

∣∣. Our main results in Propositions 4.2, 4.6,
4.11, 4.13, 4.14, 4.17, Theorems 4.9, 4.18 and Remark 4.10 can be summarized as follows.

Theorem 1.1. If h ≤ (n1 + 1)⌊log2(d)⌋ then the Segre-Veronese variety SV n

d
⊂ PN is not h-weakly

defective, where d = min{d1, . . . , dr}. In particular, under this bound SV n

d
⊂ PN is not h-defective.

Furthermore, SV n

d
is 1-weakly defective if and only if dr = 1 and nr >

∑r−1
i=1 ni.

Moreover, consider SV n

d
with n = (n1, . . . , nr) and d = (d1, . . . , dr−1, 1), and assume that nr >∑r−1

i=1 ni. If

s ≤
r∏

i=2

(
ni + di
ni

)
− nr

r−1∑

i=1

ni

then SV n

d
is not (1, s)-tangentially weakly defective.

Finally, if n = (1, n) and d = (1, d) then SV n

d
is not (1, s)-tangentially weakly defective if and

only if s ≤ d(n+ 1).

In Section 5 we give a criterion for non tangential weak defectiveness of products, and we apply
it to Segre-Veronese varieties. Our main result is the following:

Theorem 1.2. Consider a Segre-Veronese variety SV n

d
⊂ PN(n,d) with n = (1, n2, . . . , nr) and

d = (1, d2, . . . , dr). Assume that n2 ≤ n3 ≤ · · · ≤ nr and let d := min{di} − 1. If

h < hn2+1(d) ∼ n
⌊log2(d)⌋
2

then SV n

d
is not h-tangentially weakly defective, and hence SV n

d
is h-identifiable. In particular,

under this bound SV n

d
is not h-defective.

We would like to stress that, as noticed in Remark 5.4, the non secant defectiveness of SV n

d

is not needed in the proof of Theorem 1.2. For results and conjectures on the secant dimensions
of Segre-Veronese varieties we refer to [AB12], [AB13], [AB09], [LP13] and [AMR19]. Finally, we
would like to mention that results on the identifiablity of SV n

d
, under hypotheses on its non secant

defectiveness, have been recently given in [BBC18].
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INDAM). We thank the referee for the helpful comments that helped us to improve the paper.
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2. Secant defectiveness, (h, s)-tangential weak defectiveness and identifiability

Throughout the paper we work over the field of complex numbers. In this section we recall the
notions of secant variety, secant defectiveness and identifiability. We refer to [Rus03] for a nice and
comprehensive survey on the subject.

Let X ⊂ PN be an irreducible non-degenerate variety of dimension n and let Γh(X) ⊂ X × · · · ×
X × G(h − 1, N), where h ≤ N , be the closure of the graph of the rational map α : X × · · · ×
X 99K G(h− 1, N) taking h general points to their linear span 〈x1, . . . , xh〉. Observe that Γh(X) is
irreducible and reduced of dimension hn. Let π2 : Γh(X) → G(h− 1, N) be the natural projection,
and Sh(X) := π2(Γh(X)) ⊂ G(h − 1, N). Again Sh(X) is irreducible and reduced of dimension
min{hn, h(N − h+ 1)}. Finally, let

Ih = {(x,Λ) | x ∈ Λ} ⊂ P
N ×G(h− 1, N)

with natural projections πh and ψh onto the factors. The abstract h-secant variety is the irreducible
variety

Sech(X) := (ψh)
−1(Sh(X)) ⊂ Ih

The h-secant variety is defined as

Sech(X) := πh(Sech(X)) ⊂ P
N

It immediately follows that Sech(X) is an (hn + h − 1)-dimensional variety with a Ph−1-bundle
structure over Sh(X). We say that X is h-defective if dim Sech(X) < min{dimSech(X), N}.

Now, let X(h) be the symmetric product of h-copies of X , and consider the locus SX
h ⊂ X(h)

parametrizing sets of distinct points. Given a point y ∈ SX
h , corresponding to h distinct points

x1, . . . , xh ∈ X , we will denote by 〈y〉 the linear span 〈x1, . . . , xh〉 ⊂ PN .

Definition 2.1. A point p ∈ PN has rank h with respect to X if p ∈ 〈y〉 for some y ∈ SX
h but

p /∈ 〈y〉 for all y ∈ SX
k for any k < h.

A point p ∈ PN is h-identifiable with respect to X if p has rank h with respect to X and (πh)
−1(p)

is a single point. The variety X is h-identifiable if the general point of Sech(X) is h-identifiable.

Note that by Terracini’s lemma [Ter11] if y ∈ Sech(X) is a general point lying in the span of
x1, . . . , xh ∈ X then TySech(X) = 〈Tx1X, . . . , Txh

X〉. Therefore, if X is h-defective then the general
hyperplane tangent to X at h points is tangent to X along a positive dimensional subvariety.

Definition 2.2. Let x1, . . . , xh ∈ X be general points, and let H be a hyperplane tangent to X
at x1, . . . , xh. The h-contact locus Σx1,...,xh,H of X with respect to x1, . . . , xh, H is defined as the
union of the irreducible components of Sing(X∩H) containing at least one of the xi. Now, X is said
to be h-weakly defective if Σx1,...,xh,H has positive dimension for H a general hyperplane containing
〈Tx1X, . . . , Txh

X〉.

Therefore, if X is h-defective then it is h-weakly defective. However, the converse does not hold
in general. For instance, if we denote by V n

d ⊂ PN the degree d Veronese embedding of Pn we
have that for (d, n) ∈ {(6, 2), (4, 3), (3, 5)} the Veronese V n

d is never defective but it is respectively
9-weakly defective, 8-weakly defective and 9-weakly defective [CC02].

Furthermore, by the infinitesimal Bertini’s theorem [CC02, Theorem 1.4] if X is not h-weakly
defective then it is h-identifiable. Recently, a result translating non secant defectiveness into iden-
tifiability has been proven in [CM19].

Definition 2.3. Let x1, . . . , xh ∈ X be general points. The h-tangential contact locus Γx1,...,xh
of

X with respect to x1, . . . , xh is the closure in X of the union of all the irreducible components which
contain at least one of the xi of the locus of points of X where 〈Tx1X, . . . , Txh

X〉 is tangent to X .
Let γx1,...,xh

be the largest dimension of the components of Γx1,...,xh
. If γx1,...,xh

> 0 we say that X
is h-tangentially weakly defective.
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Clearly, if X is h-tangentially weakly defective then it is h-weakly defective. Moreover, by [CO12,
Proposition 2.4] if X is not h-tangentially weakly defective then it is h-identifiable. However, the
Grassmannian G(2, 7) parametrizing planes in P

7 is 3-tangentially weakly defective but it is 3-
identifiable [BV18, Proposition 1.7].

Finally, we introduce a notion that measures how much a h-weakly defective variety is far from
being h-tangentially weakly defective.

Definition 2.4. Let x1, . . . , xh ∈ X be general points and Π ⊂ PN a linear subspace of dimension
s containing 〈Tx1X, . . . , Txh

X〉. The (h, s)-tangential contact locus Γx1,...,xh,Π of X with respect
to x1, . . . , xh,Π is the closure in X of the union of all the irreducible components which contain
at least one of the xi of the locus of points of X where Π is tangent to X . Let γx1,...,xh,Π be the
largest dimension of the components of Γx1,...,xh,Π. If γx1,...,xh,Π > 0 for Π general, we say that X
is (h, s)-tangentially weakly defective.

In particular, when s = dim 〈Tx1X, . . . , Txh
X〉 from Definition 2.4 we recover the notion of h-

tangential weak defectiveness while for s = N − 1 we get the notion of h-weak defectiveness.

3. Osculating regularity and weak defectiveness

We begin by proving a simple result on the behavior of contact loci under flat degenerations.

Lemma 3.1. Let X ⊂ PN be a projective variety, ∆ ⊂ C a complex disk around the origin and

{Πt}t∈∆ a family of linear subspaces of PN . Then

dim(Sing(Π0 ∩X)) ≥ dim(Sing(Πt ∩X))

for t ∈ ∆.

Furthermore, let {Γt}t∈∆ be a family of linear subspaces Γt ⊂ PN , Λ ⊂ PN a linear subspace

containing Γ0, and Π a linear subspace containing Λ. Then

dim(Sing(Π̃t ∩X)) ≤ dim(Sing(Π ∩X))

where Π̃t is a general linear subspace of dimension dim(Π) containing Γt.

Proof. For the first claim it is enough to consider the variety

Y = {(x, t) | x ∈ Sing(X ∩ Πt)} ⊂ X ×∆

with projection π2 : Y → ∆ and to conclude by semi-continuity.
For the second part note that since Γ0 ⊆ Λ we have that Γ0 ⊆ Π. Let Γ′ ⊂ Π be a subspace such

that Π = 〈Γ0,Γ
′〉, Γ′∩Γ0 = ∅, and set Πt = 〈Γt,Γ

′〉. Then {Πt}t∈∆ is a family of linear subspace such
that Γt ⊂ Πt for all t ∈ ∆. By the first part of the proof we have dim(Sing(Π∩X)) ≥ dim(Sing(Πt∩
X)) for all t ∈ ∆. Now, consider the Grassmannian G(dim(Π) − dim(Γt) − 1, N − dim(Γt) − 1)
parametrizing dim(Π)-dimensional linear subspaces of PN containing Γt, and the variety

Z = {(x, Π̃t) | x ∈ Sing(Π̃t ∩X)} ⊆ X ×G(dim(Π)− dim(Γt)− 1, N − dim(Γt)− 1)

with projection π2 : Z → G(dim(Π)− dim(Γt)− 1, N − dim(Γt)− 1). Again by semi-continuity we
have

dim(Sing(Π̃t ∩X)) ≤ dim(Sing(Πt ∩X))

for Π̃t ∈ G(dim(Π) − dim(Γt) − 1, N − dim(Γt) − 1) general, and hence dim(Sing(Π ∩ X)) ≥

dim(Sing(Πt ∩X)) ≥ dim(Sing(Π̃t ∩X)). �

Let X ⊂ PN be a projective variety of dimension n, p ∈ X a smooth point, and

φ : U ⊆ Cn −→ CN

(t1, . . . , tn) 7→ φ(t1, . . . , tn)

with φ(0) = p, a local parametrization of X in a neighborhood of p ∈ X .
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For any s ≥ 0 let Os
pX be the affine subspace of CN passing through p ∈ X , and whose direction

is given by the subspace generated by the vectors φI(0), where I = (i1, . . . , ir) is a multi-index such

that |I| ≤ s and φI = ∂|I|φ

∂t
i1
1 ...∂t

ir
r

.

Definition 3.2. The s-osculating space T s
pX of X at p is the projective closure in PN of the affine

subspace Os
pX ⊆ CN .

For instance, T 0
pX = {p}, and T 1

pX is the usual tangent space of X at p. When no confusion
arises we will write T s

p instead of T s
pX . Now, let us recall [MR19, Definition 5.5, Assumption 5.2]

and [AMR19, Definition 4.4].

Definition 3.3. Let X ⊂ PN be a projective variety. We say that X has m-osculating regularity if
the following property holds: given general points p1, . . . , pm ∈ X and an integer s ≥ 0, there exists
a smooth curve C and morphisms γj : C → X , j = 2, . . . ,m, such that γj(t0) = p1, γj(t∞) = pj ,
and the flat limit T0 in the Grassmannian of the family of linear spaces

Tt =
〈
T s
p1
, T s

γ2(t)
, . . . , T s

γm(t)

〉
, t ∈ C\{t0}

is contained in T 2s+1
p1

.
We say that X has strong 2-osculating regularity if the following property holds: given general

points p, q ∈ X and integers s1, s2 ≥ 0, there exists a smooth curve γ : C → X such that γ(t0) = p,
γ(t∞) = q and the flat limit T0 in the Grassmannian of the family of linear spaces

Tt =
〈
T s1
p , T s2

γ(t)

〉
, t ∈ C\{t0}

is contained in T s1+s2+1
p .

For a discussion on the notions of m-osculating regularity and strong 2-osculating regularity and
their application to Grassmannians, Segre-Veronese varieties, Lagrangian Grassmannians and Spinor
varieties, and flag varieties we refer to [MR19], [AMR19], [FMR20], [FCM19].

Now, we define a function hm : N≥0 −→ N≥0 counting how many tangent spaces can be degen-
erated into a higher order osculating space.

Definition 3.4. Given an integer m ≥ 0 we define a function

hm : N≥0 −→ N≥0

as follows: hm(0) = 0 and for any k > 0 write

k + 1 = 2λ1 + 2λ2 + · · ·+ 2λa + ε

where λ1 > λ2 > · · · > λa ≥ 1 and ε ∈ {0, 1}, then

hm(k) = mλ1−1 +mλ2−1 + · · ·+mλa−1

We are ready to prove the main result of this section relating osculating regularity to tangential
weak defectiveness.

Theorem 3.5. Let X ⊂ PN be a projective variety having m-osculating regularity and strong 2-
osculating regularity. Assume that there exist integers l, k1, . . . , kl ≥ 1, general points p1, . . . , pl ∈ X
and a linear subspace of dimension s containing 〈T k1

p1
, . . . , T kl

pl
〉 that is not tangent to X along a

positive dimensional subvariety. Set

h :=

l∑

j=1

hm(kj)

Then X is not (h, s)-tangentially weakly defective.
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Proof. Let us consider the linear span

T =

〈
T 1
p1
1
, . . . , T 1

p
hm(k1)
1

, . . . , T 1
p1
l
, . . . , T 1

p
hm(kl)

l

〉

and p11 = p1, . . . , p
1
l = pl. For seek of notational simplicity along the proof we will assume l = 1.

For the general case it is enough to apply the same argument l times.
Let us begin with the case k1 + 1 = 2λ. Then hm(k1) = mλ−1. Since X has m-osculating

regularity we can degenerate T , in a family parametrized by a smooth curve, to a linear space U1

contained in

V1 =

〈
T 3
p1
1
, T 3

p
m+1
1

, . . . , T 3

p
mλ−1−m+1
1

〉

Again, since X has m-osculating regularity we may specialize, in a family parametrized by a smooth
curve, the linear space V1 to a linear space U2 contained in

V2 =

〈
T 7
p1
1
, T 7

p
m2+1
1

, . . . , T 7

p
mλ−1−m2+1
1

〉

Proceeding recursively in this way in last step we get a linear space Uλ−1 which is contained in

Vλ−1 = T 2λ−1
p1
1

Now, more generally, let us assume that

k1 + 1 = 2λ1 + · · ·+ 2λa + ε

with ε ∈ {0, 1}, and λ1 > λ2 > · · · > λa ≥ 1. Then

hm(k1) = mλ1−1 + · · ·+mλa−1

By applying a times the argument for k1 +1 = 2λ in the first part of the proof we may specialize T
to a linear space U contained in

V =

〈
T 2λ1−1
p1
1

, T 2λ2−1

p
mλ1−1+1
1

, . . . , T 2λa−1

p
mλ1−1+···+m

λa−1−1
+1

1

〉

Finally, using that X has strong 2-osculating regularity a− 1 times we specialize V to a linear space
U

′

contained in

V
′

= T 2λ1+···+2λa−1

p1
1

Note that T 2λ1+···+2λa−1
p1
1

= T k1

p1
1

if ε = 0, and T 2λ1+···+2λa−1
p1
1

= T k1−1
p1
1

⊂ T k1

p1
1

if ε = 1. In any case,

since by hypothesis there is an s-dimensional linear subspace containing 〈T k1
p1
, . . . , T kl

pl
〉 that is not

tangent to X along a positive dimensional subvariety we conclude by Lemma 3.1. �

4. On tangential weak defectiveness of Segre-Veronese varieties

Let n = (n1, . . . , nr) and d = (d1, . . . , dr) be two r-uples of positive integers, with n1 ≤ · · · ≤ nr

and d = d1 + · · · + dr ≥ 3. Let SV n

d
⊂ PN(n ,d), where N(n ,d) =

∏r
i=1

(
ni+di

di

)
− 1, be the

corresponding Segre-Veronese variety that is the product Pn1 ×· · ·×Pnr embedded by the complete
linear system

∣∣OPn1×···×Pnr (d1, . . . , dr)
∣∣. We recall the notion of distance for Segre-Veronese varieties

given in [AMR19, Definition 2.4].

Definition 4.1. Let n and d be positive integers, and set

Λn,d = {I = {i1, . . . , id}, 0 ≤ i1 ≤ · · · ≤ id ≤ n}
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For I, J ∈ Λn,d, we define their distance d(I, J) as the number of different coordinates. More
precisely, write I = {i1, . . . , id} and J = {j1, . . . , jd}. There are r ≥ 0 distinct indexes λ1, . . . , λr ⊂
{1, . . . , d} and distinct indexes τ1, . . . , τr ⊂ {1, . . . , d} such that iλk

= jτk for every 1 ≤ k ≤ r, and

{iλ | λ 6= λ1, . . . , λr} ∩ {jτ | τ 6= τ1, . . . , τr} = ∅

Then d(I, J) = d− r. Now, set

Λ = Λn ,d = Λn1,d1 × · · · × Λnr ,dr

For I = (I1, . . . , Ir), J = (J1, . . . , Jr) ∈ Λ, we define their distance as

d(I, J) = d(I1, J1) + · · ·+ d(Ir, Jr)

Such a distance, called the Hamming distance, was defined in [CGG02, Section 2] for Segre
varieties. We will denote the homogeneous coordinates and the corresponding coordinate points of
P
N(n,d) by XJ and eJ respectively, for J ∈ Λ.

Proposition 4.2. Let p0, . . . , pn1 ∈ SV n

d
be general points. If d := min{d1, . . . , dr} ≥ 2 then a

general hyperplane H ⊂ P
N containing T = 〈T d−1

p0
SV n

d
, . . . , T d−1

pn1
SV n

d
〉 is not tangent to SV n

d
along

a positive dimensional subvariety.

Proof. Since PGL(n1+1)×· · ·×PGL(nr+1) acts transitively on SV n

d
we may assume that pi = eIi ,

where Ii = ({i, . . . , i}, . . . , {i, . . . , i}). By [AMR19, Proposition 2.5] T d−1
eIi

= 〈eJ | d(Ii, J) ≤ d − 1〉,

and hence

〈T d−1
eI0

, . . . , T d−1
eIn1

〉 = 〈eJ | d(Ii, J) ≤ d− 1 for some i = 0, . . . n1〉

= {XJ = 0 | d(Ii, J) > d− 1 for all i = 0, . . . n1}

Now, let H ⊂ PN(n ,d) be a general hyperplane containing T . We have that H is given by an equation
of type

(4.3)
∑

J∈Λ | d(Ii,J)>d−1,∀ i=0,...,n1

αJXJ = 0, αJ ∈ C

Let us denote by PN(n,d)−dim(T )−1 the projective space whose homogeneous coordinates are the αJ

with J ∈ Λ and d(Ii, J) > d− 1 for all i = 0, . . . , n1. Now, for each fixed i = 0, . . . , n1 we consider
the following subset of Λ: for each 1 ≤ l ≤ r and 0 ≤ j ≤ nl with j 6= i let

Ji,j,l = (J1, . . . , Jr) ∈ Λ where Jl = {j, . . . , j} and Jk = {i, . . . , i} for k 6= l

and set Λi = {Ji,j,l ∈ Λ | for all 1 ≤ l ≤ r and 0 ≤ j ≤ nl with j 6= i} .
Observe that, since d = min{di} and j 6= i, each J ∈ Λi satisfies d(Ii, J) ≥ d > d − 1 for all

i = 0, . . . , n1. Consider the projection

πi : PN(n ,d)−dim(T )−1
99K P

∑
i6=j

nj

(αJ )J∈Λ | d(Il,J)>d−1 l=0,...,n1
7−→ (αJ)J∈Λi

the point [1 : · · · : 1] ∈ P

∑
j 6=i

nj and let H ∈ π−1
i ([1 : · · · : 1]) be the hyperplane given by∑

J∈Λi
XJ = 0. The intersection H ∩ SV n

d
corresponds to the hypersurface

(4.4)
∑

J∈Λi

Xd1

1,i · · ·X
dl

l,j · · ·X
dr

r,i = 0

where Xl,j for j = 0, . . . , nl are the homogeneous coordinates on Pnl . Thus, in the affine chart
X1,i = · · · = Xr,i = 1 equation (4.4) becomes

(4.5)
∑

1≤l≤r
0≤j≤nl, j 6=i

Xdl

l,j = 0
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The singular locus of H ∩ SV n

d
in the affine chart X1,i = · · · = Xr,i = 1 is given by the following

system of equations

{dlX
dl−1
l,j = 0}1≤l≤r, 0≤j≤nl, j 6=i

The only solution of this system is Xl,j = 0, and so the hypersurface (4.5) is singular only at
p0 = (0, . . . , 0). Therefore, we conclude that the intersection of SV n

d
with a general hyperplane H

containing T is singular, in a neighborhood of p0, only at p0. Since this argument holds for each
i = 0, . . . , n1 using Lemma 3.1 we get the claim. �

Proposition 4.6. Let p0, . . . , pn1 ∈ SV n

d
be general points and assume that d = d1 ≤ di−2 for each

i 6= 1. Then a general hyperplane H ⊂ PN containing T = 〈T d
p0
SV n

d
, . . . , T d

pn1
SV n

d
〉 is not tangent

to SV n

d
along a positive dimensional subvariety.

Proof. As in Proposition 4.2 we may assume that pi = eIi , with Ii = ({i, . . . , i}, . . . , {i, . . . , i}). By
[AMR19, Proposition 2.5] T d

eIi
= 〈eJ | d(Ii, J) ≤ d〉. Hence

〈T d
eI0
, . . . , T d

eIn1
〉 = 〈eJ | d(Ii, J) ≤ d for some i = 0, . . . n1〉

= {XJ = 0 | d(Ii, J) > d for all i = 0, . . . n1}

Now, let H ⊂ PN(n ,d) be a general hyperplane containing T . We have that H is given by an equation
of type ∑

J∈Λ | d(Ii,J)>d,∀ i=0,...,n1

αJXJ = 0, αJ ∈ C

Let us denote by PN(n,d)−dim(T )−1 the projective space whose homogeneous coordinates are the αJ

with J ∈ Λ and d(Ii, J) > d for all i = 0, . . . , n1. Now, for each fixed i = 0, . . . , n1 we consider the
following subset of Λ: for each 2 ≤ l ≤ r and 0 ≤ j ≤ nl with j 6= i set

Ji,j,l = (J1, . . . , Jr) ∈ Λ where Jl = {i, j, . . . , j}, Jk = {i, . . . , i} for k 6= l

and Λi,1 = {Ji,j,l ∈ Λ | for all j, l 6= i}.
Moreover, we also consider another subset of Λ defined as follows: for each 0 ≤ j ≤ n1 with j 6= i

let

Ji,j = (J1, . . . , Jr) ∈ Λ where J1 = {j, . . . , j}, J2 = {j, i, . . . , i}, Jk = {i, . . . , i} for k 6= 1, 2

and Λi,2 = {Ji,j,l ∈ Λ | for all j, l 6= i} , Λi = Λi,1 ∪ Λi,2.
Observe that, since d = d1 < di − 2 for i 6= 1 and j 6= i, each J ∈ Λi satisfies d(Il, J) ≥ d+ 1 > d

for all l = 0, . . . , n1. Therefore, we have a projection

πi : PN(n ,d)−dim(T )−1
99K P

∑
i6=j nj

(αJ )J∈Λ | d(Il,J)>d l=0,...,n1
7−→ (αJ )J∈Λi

Now, consider the point [1 : · · · : 1] ∈ P

∑
j 6=i nj and let H ∈ π−1

i ([1 : · · · : 1]) be the hyperplane given
by ∑

J∈Λi

XJ = 0

The intersection H ∩ SV n

d
corresponds to the hypersurface

(4.7)
∑

J∈Λi,1

Xd1

1,i · · ·Xl,iX
dl−1
l,j · · ·Xdr

r,i +
∑

J∈Λi,2

Xd1

1,jX2,jX
d2−1
2,i Xd3

3,i · · ·X
dr

r,i = 0

where Xj,i, i = 0, . . . , nj , are the homogeneous coordinates on P
nj . Thus, in the affine chart

X1,i = · · · = Xr,i = 1 the equation (4.7) becomes

(4.8) F =
∑

2≤l≤r
0≤j≤nl, j 6=i

Xdl−1
l,j +

∑

0≤j≤n1, j 6=i

Xd1

1,jX2,j = 0
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The system of the partial derivatives of F is given by




d1X
d1−1
1,j X2,j = 0

(d2 − 1)Xd2−2
2,j +Xd1

1,j = 0

(dl − 1)Xdl−2
l,j = 0, l = 3, . . . , r and j 6= i

This system has a solution only when all the coordinates Xl,j vanish, and so the hypersurface
{F = 0} in (4.8) is singular only at p0 = (0, . . . , 0). Therefore, we conclude that for a general
hyperplane H containing T the hypersurface H ∩ SV n

d
is singular, in a neighborhood of p0, only at

p0. Since this argument holds for each i = 0, . . . , n1 using Lemma 3.1 we get the statement. �

Theorem 4.9. Set d := min{d1, . . . , dr}. If

- h ≤ (n1 + 1)hn1+1(d− 1) or

- h ≤ (n1 + 1)hn1+1(d) and d = d1 ≤ di − 2 for each 2 ≤ i ≤ r

then SV n

d
is not h-weakly defective.

Proof. Since by [AMR19, Propositions 5.1, 5.10] the Segre-Veronese variety SV n

d
has strong 2-

osculating regularity and (n1 + 1)-osculating regularity, the statement follows immediately from
Propositions 4.2, 4.6 and Theorem 3.5. �

Remark 4.10. Write d = 2λ1 + 2λ2 . . . + 2λs + ǫ with λ1 > λ2 > . . . > λs ≥ 1 and ǫ ∈ {0, 1},
so that λ1 = ⌊log2(d)⌋. The first part of Theorem 4.9 says that SV n

d
is not h-weakly defective for

h ≤ (n1 + 1)((n1 + 1)λ1−1 + (n1 + 1)λ2−1 + · · ·+ (n1 + 1)λs−1).
Now, write d + 1 = 2λ1 + 2λ2 . . . + 2λs + ǫ with λ1 > λ2 > . . . > λs ≥ 1 and ǫ ∈ {0, 1}, hence

λ1 = ⌊log2(d + 1)⌋. The second part of Theorem 4.9 yields that SV n

d
is not h-weakly defective for

h ≤ (n1+1)((n1+1)λ1−1+(n1+1)λ2−1+ · · ·+(n1+1)λs−1). Therefore, we have that asymptotically
for

h ≤ (n1 + 1)⌊log2(d)⌋

SV n

d
is not h-weakly defective.

4.10. On 1-weak defectiveness of Segre-Veronese varieties. In this section we give condition
ensuring that Segre-Veronese varieties are not 1-weakly defective. Note that this yields that their
dual varieties are hypersurfaces.

Proposition 4.11. If nr ≤
∑r−1

i=1 ni then SV n

d
is not 1-weakly defective.

Proof. First of all, let us consider the Segre embedding of Pn1 ×· · ·×Pnr , that is d = (1, . . . , 1). Let
p ∈ Pn1 × · · · × Pnr be a general point, without loss of generality we may assume that p = e0,...,0.
Hence Tp(P

n1 × · · · × P
nr ) = 〈eJ | d(J, ({0}, . . . , {0})) ≤ 1〉. Thus, a general hyperplane containing

Tp(P
n1 × · · · × Pnr) is given by an equation of type

∑

J∈Λ | d(J,({0},...,{0}))≥2

αJXJ = 0

where Λ is the set of indexes of the standard Segre variety. On the affine chartX1,0 = · · · = Xr,0 = 1,
where Xi,0, . . . , Xi,ni

are homogeneous coordinates of Pni , we have that H ∩ (Pn1 × · · ·×Pnr ) is the

hypersurface in C
∑

ni given by

(4.12)
∑

J=({j1},...,{jr})∈Λ | d(J,({0},...,{0}))≥2

αJX1,j1 · · ·Xr,jr = 0

where in the above formula whenever some of the variables X1,0, . . . , Xr,0 appear we set them equal
to one. Note that for a general choice of the αJ the hypersurface defined by 4.12 has 0-dimensional
singular locus, since by [Ott13, Theorem 2.1] the Segre variety Pn1 × · · · × Pnr is not 1-weakly
defective.
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From now on Λ will be the set of indexes of a Segre-Veronese variety. Let p ∈ SV n

d
. As before

without loss of generality we can assume that p = eI0 . By [AMR19, Proposition 2.5] TpSV
n

d
=

〈eJ | d(I0, J) ≤ 1〉. Observe that for each J = ({j1}, . . . , {jr}) such that d(J, ({0}, . . . , {0})) ≥ 2 we
can consider J ′ = (J1, . . . , Jr) ∈ Λ where Ji = {0, . . . , 0, ji}. Therefore, considering the hyperplane
H given by ∑

J′

αJXJ′ = 0

where we set X1,0 = · · · = Xr,0 = 1 whenever these variables appear in the expression above, we

see that in the affine chart X1,0 = · · · = Xr,0 = 1 the hypersurface H ∩ SV n

d
in C

∑
ni is given by

(4.12). Thus, the statement follows from the first part of the proof. �

Proposition 4.13. Assume that nr >
∑r−1

i=1 ni.

- If dr ≥ 2 then SV n

d
is not (n1 + 1)-weakly defective.

- If dr = 1 then SV n

d
is 1-weakly defective.

Proof. Let p0, . . . , pn1 ∈ SV n

d
be general points. Without loss of generality, we can suppose that

pi = eIi . By [AMR19, Proposition 2.5] TeIiSV
n

d
= 〈eJ | d(Ii, J) ≤ 1〉, and hence

T = 〈T 1
eI0
, . . . , T 1

eIn1
〉 = 〈eJ | d(Ii, J) ≤ 1 for some i = 0, . . . n1〉

= {XJ = 0 | d(Ii, J) > 1 for all i = 0, . . . n1}

Now, let H ⊂ PN(n ,d) be a general hyperplane containing 〈T 1
p0
, . . . , T 1

pn1
〉. Then H is given by

an equation of type ∑

J∈Λ | d(Ii,J)>1,∀ i=0,...,n1

αJXJ = 0, αJ ∈ C

Let us denote by PN(n,d)−dim(T )−1 the projective space whose homogeneous coordinates are the αJ

with J ∈ Λ and d(Ii, J) > d for all i = 0, . . . , n1.
To prove the first claim let us fix l ∈ {0, . . . , n1}. We will discuss in detail the case l = 0, the

argument for the remaining values of l is analogous.
Let us consider the subset Λ′ ⊂ Λ given by the set of indexes J ′ = (J1, . . . , Jr) where for each

pair i, j with i ∈ {1, . . . , r − 1} and 1 ≤ j ≤ ni we set

Ji = {0, . . . , 0, j}, Jr =

{
0, . . . , 0, 1 + j +

∑

l<i

nl

}
and Jk = {0, . . . , 0} for k 6= i, r

Furthermore, consider the subset Λ′′ ⊂ Λ given by the set of indexes J ′′ = Jj = (J1, . . . , Jr) such
that

Jr = {j, . . . , j}, and Jk = {0, . . . , 0} for k 6= r

for each 2 +
∑

l≤r−1 nl ≤ j ≤ nr and j = 1.

Since 1 ≤ j < 1 + j +
∑

l<i nl, each J ∈ Λ0 = Λ′ ∪ Λ′′ satisfies d(Ii, J) > 1 for all i = 0, . . . , n1.
Thus, we have a natural projection

πl : PN(n ,d)−dim(T )−1
99K Pnr

(αJ )J∈Λ | d(Ii,J)>1 i=0,...,n1
7−→ (αJ)J∈Λ0

Now, consider the point [1 : · · · : 1] ∈ Pnr and let H ∈ π−1
l ([1 : · · · : 1]) be the hyperplane given

by ∑

J∈Λ0

XJ = 0
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In the affine chart X1,0 = · · · = Xr,0 = 1, where for each i ∈ {1, . . . , r}, Xi,0, . . . , Xi,ni
are the

homogeneous coordinates on Pni , we have that H ∩ SV n

d
is the hypersurface in C

∑
ni given by

∑

1≤i≤r−1
1≤j≤ni

Xi,jXr,j+1+
∑

l<i nl
+

∑

2+
∑

l≤r−1 nl≤j≤nr

Xdr

r,j +Xdr

r,1 = 0

Looking at the system of the partial derivatives we see that this hypersurface is singular only at
(0, . . . , 0). Therefore, using Lemma 3.1 we prove the first claim. For the second part, let us consider
a general hyperplane H that contains TeI0SV

n

d
. Hence, H is the zero locus of a polynomial F of

the form

F =
∑

J∈Λ | d(J,I0)≥2

αJXJ , αJ ∈ C

In the affine chart X1,0 = · · · = Xr,0 = 1 the intersection H ∩ SV n

d
is the hypersurface in C

∑
ni

given by

F̃ =
∑

J=(J1,...,Jr−1,{j})∈Λ | d(J,I0)≥2

αJX1,J1 · · ·Xr,j = 0

where with X1,Jk
we denote the product of powers of the homogeneous coordinates on Pnl with

exponents given by the Jk. Observe that for each 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ ni we have

∂F̃

∂Xi,j

= (

nr∑

k=1

αk
i,jXr,k +Gk(X1,1, . . . , Xr−1,nr−1)Xr,k) +G(X1,1, . . . , Xr−1,nr−1)

and for each 1 ≤ k ≤ nr we have

∂F̃

∂Xr,k

= G′(X1,1, . . . , Xr−1,nr−1)

with Gk(X1,1, . . . , Xr−1,nr−1), G(X1,1, . . . , Xr−1,nr−1) andG′(X1,1, . . . , Xr−1,nr−1) polynomials with
no constant terms since by assumption dr = 1.

Now, note that the locus given by X1,1 = X1,2 = · · · = Xr−1,nr−1−1 = Xr−1,nr−1 = 0 and

nr∑

k=1

αk
1,1Xr,k =

nr∑

k=1

αk
1,2Xr,k = · · · =

nr∑

k=1

αk
r−1,r−1Xr,k = 0

is contained in the singular locus of {F̃ = 0}. Therefore, we get a linear system in nr variables and∑r−1
i=1 ni equations. Since nr >

∑r−1
i=1 ni we conclude that the singular locus of H ∩ SV n

d
contains

at least a linear space of dimension nr −
∑r−1

i=1 ni > 0 yielding that SV n

d
is 1-weakly defective. �

By Proposition 4.13 we have that SV n

d
with n = (1, n) and d = (d, 1) is 1-weakly defective.

Now, we determine the smallest dimension of a linear subspace tangent to SV n

d
along a positive

dimensional subvariety.

Proposition 4.14. Let SV n

d
with n = (1, n) and d = (d, 1). Then SV n

d
is not (1, s)-tangentially

weakly defective if and only if s ≤ d(n+ 1).

Proof. Let p ∈ SV n

d
be a general point, without loss the generality we can suppose that p =

e{0,...,0},{0}. Then we have TpSV
n

d
= 〈eJ | d(J, ({0, . . . , 0}, {0})) ≤ 1〉.

Now, let Π ⊂ Pdn+d+n be a general linear subspace of dimension s such that TpSV
n

d
⊂ Π.

Therefore, we may write Π =
⋂

i=1,...,dn+d+n−sHi, where the Hi are general hyperplanes tangent
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to SV n

d
at p. We have that Π ∩ SV n

d
is given by






F1 =
∑

1≤i≤d
1≤j≤n

α
1
i,jX

d−i
0 X

i
1Yj +

∑
2≤i≤d

α
1
i,0X

d−i
0 X

i
1Y0 = 0

.

.

.

Fdn+d+n−s =
∑

1≤i≤d
1≤j≤n

α
dn+d+n−s
i,j X

d−i
0 X

i
1Yj +

∑
2≤i≤d

α
dn+d+n−s
i,0 X

d−i
0 X

i
1Y0 = 0

and working on the affine chart X0 = Y0 = 1 we reduce to

(4.15)






F1 =
∑

1≤i≤d
1≤j≤n

α1
i,jX

i
1Yj +

∑
2≤i≤d α

1
i,0X

i
1 = 0

...

Fdn+d+n−s =
∑

1≤i≤d
1≤j≤n

αdn+d+n−s
i,j X i

1Yj +
∑

2≤i≤d α
dn+d+n−s
i,0 X i

1 = 0

Then, Sing(H1 ∩ · · · ∩Hdn+d+n−s ∩ SV n

d
) contains the variety cut out by the following equations

(4.16)





∑
1≤j≤n α

1
1,jYj = 0

...∑
1≤j≤n α

dn+d+n−s
1,j Yj = 0

X1 = 0

and, for a general choice of the αk
i,j we have that this is a linear space in the hyperplane X1 = 0 of

dimension s− d(n+ 1).
Now, consider a special linear space Π such that (4.15) takes the following form





F1 =
∑

1≤j≤n α
1
1,jX1Yj = 0

...

Fdn+d+n−s =
∑

1≤j≤n α
dn+d+n−s
1,j X1Yj = 0

Then {F1 = · · · = Fdn+d+n−s = 0} splits as

{X1 = 0} ∪ {
∑

1≤j≤n

α1
1,jYj = · · · =

∑

1≤j≤n

αdn+d+n−s
1,j Yj = 0}

and its singular locus is exactly given by (4.16). Now, Lemma 3.1 yields that a general linear space
of dimension s containing TpSV

n

d
has contact locus of dimension at most s− d(n+1). Hence, SV n

d

is not (1, s)-tangentially weakly defective for s ≤ d(n+ 1). �

Following the line of proof of Proposition 4.14 we can prove the following result on (1, s)-tangential
weak defectiveness.

Proposition 4.17. Consider SV n

d
with n = (n1, . . . , nr) and d = (d1, . . . , dr−1, 1), and assume

that nr >
∑r−1

i=1 ni. If

s ≤
r∏

i=2

(
ni + di
ni

)
− nr

r−1∑

i=1

ni

then SV n

d
is not (1, s)-tangentially weakly defective.

Proof. Without loss of generality we can assume as usual that p = eJ0 ∈ SV n

d
where J0 =

({0, . . . , 0}, . . . , {0, . . . , 0}). A basis for the linear system of the hyperplanes containing TpSV
n

d

is given by

{X1,J1 . . . Xr−1,Jr−1Xr,j = 0}J={J1,...,Jr−1,{j}}∈Λ | d(J,I0)≥2

Now let us consider hyperplane sections of the form

Fi,j,l = Xd1
1,0 . . . Xi,jX

di−1
i,0 . . .Xr,l = 0
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for 1 ≤ i ≤ r − 1,1 ≤ j ≤ ni and 1 ≤ l ≤ nr.
In the affine chart C

∑
r
i=1 ni defined by X1,0 = · · · = Xr,0 = 1 the partial derivatives of Fi,j,l are

given by

∂(Xd1
1,0 . . . Xi,jX

di−1
i,0 . . .Xr,l)

∂Xi,j

= Xr,l,
∂(Xd1

1,0 . . . Xi,jX
di−1
i,0 . . . Xr,l)

∂Xr,l

= Xi,j

Then the Jacobian matrix of the Fi,j,l has rank zero if and only if all the coordinates Xi,j with
1 ≤ j ≤ ni vanish. In particular, the intersection of the special hyperplane sections

Xd1
1,0 . . . Xi,jX

di−1
i,0 . . .Xr,l = 0

has a singularity spanning the whole of C
∑

r
i=1 ni only at (0, . . . , 0). Now, to conclude it is enough

to note that the number of these special hyperplane sections is nr

∑r−1
i=1 ni and to apply Lemma

3.1. �

Finally, we have the following classification of 1-weakly defective Segre-Veronese varieties.

Theorem 4.18. The Segre-Veronese SV n

d
is 1-weakly defective if and only if dr = 1 and nr >∑r−1

i=1 ni.

Proof. It is an immediate consequence of Propositions 4.11, 4.13. �

5. On tangential weak defectiveness of products

In this section we study tangential weak defectiveness for varieties that can be written as a
product of a smaller dimensional variety and the projective line.

Lemma 5.1. Let W ⊆ P
m be a non-degenerated irreducible projective variety, and consider the

Segre embedding of X = W × Pr ⊆ Pm × Pr → PN with N = rm + r + m. Fix a point p ∈ Pr

and a hyperplane H ⊂ Pr not passing through p. Let Z = W × {p}, Y = W × H, and denote by

HZ = 〈Z〉, HY = 〈Y 〉 their linear spans. Then HZ and HY are complementary subspaces of PN ,

and X ∩HZ = Z, X ∩HY = Y .

Proof. Since W ⊆ P
m is non-degenerated we have that HZ = 〈Pm × {p}〉 and HY = 〈Pm ×H〉.

Consider homogeneous coordinates [x0 : · · · : xr] on Pr and [y0 : · · · : ym] on Pm. Without loss of
generality we may assume that p = [1 : 0 : · · · : 0] and H = {x0 = 0}. Hence, HZ = {z0,1 = · · · =
zm,r = 0} and HY = {z0,0 = · · · = zm,0 = 0}, where zi,j is the homogeneous coordinate on PN

corresponding to yixj . Hence HZ and HY are complementary subspaces of PN .
Now, assume that there is a point q ∈ X ∩HZ with q /∈ Z. Since X = W × Pr the point q lies

on a fiber Pr
w over a point w ∈ W . Such fiber intersects Z in a points z ∈ Z with z 6= q and hence

P
r
w intersects HZ in at least two distinct points. On the other hand, note that HZ = 〈Pm × {p}〉 is

the fiber Pm
p over p of the projection Pm × Pr → Pr. A contradiction.

Similarly, assume that there is a point q ∈ X ∩HY with q /∈ Y . The point q lies on a fiber P
r
w

over a point w ∈ W . Hence Pr
w intersects Y in a hyperplane Hw of Pr

w not containing q, and HY

contains the fiber Pr
w = 〈q,Hw〉. A contradiction. �

Proposition 5.2. Let W ⊆ Pm be a non-degenerated irreducible projective variety, and consider

the Segre embedding of X =W × Pr ⊆ Pm × Pr → PN with N = rm+ r +m.

If p, q ∈ X are two distinct points lying on the same fiber of π : X → W over a smooth point

w ∈ W then the span of the tangent spaces 〈TpX,TqX〉 is tangent to X along the line 〈p, q〉.

Proof. Let w ∈ W be a smooth point. We can parametrize W in a neighborhood of W as

ϕ : Cd −→ Cm

(x1, . . . , xd) 7−→ (φ1(x1, . . . , xd), . . . , φm(x1, . . . , xd))
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where d = dim(W ) and φ(0) = w. Hence, a parametrization of X is given by

ψ : Cd × Cr −→ CN

((x1, . . . , xd), (1, y1, . . . , yr)) 7−→ (φ1, . . . , φm, φ1y1, . . . , φmyr)

Let us set ai,j = ∂φi

∂xj
(0) and bk = φk(0). Without loss of generality we may assume that p =

ψ((0, . . . , 0), (1, 0, . . . , 0)) and p = ψ((0, . . . , 0), (1, . . . , 1)) so that the line 〈p, q〉 is parametrized by
γ(t) = ψ((0, . . . , 0), (1, t, . . . , t)). Now, the tangent space of X at γ(t) is spanned by the rows of the
following matrix

A(t) =




a1,1t . . . a1,1t a2,1t . . . a2,1t . . . . . . am,1t . . . am,1t a1,1 . . . am,1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a1,dt . . . a1,dt a2,dt . . . a2,dt . . . . . . am,dt . . . am,dt a1,d . . . am,d

b1 . . . 0 b2 . . . 0 . . . . . . bm . . . 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . b1 0 . . . b2 . . . . . . 0 . . . bm 0 . . . 0




and to conclude it is enough to observe that A(t) = tA(1)− (t− 1)A(0). �

Now, we are ready to prove our main result on tangential weak defectiveness of products.

Theorem 5.3. Let W ⊆ Pm be a non-degenerated irreducible projective variety, and consider the

Segre embedding of X = W × P
1 ⊆ P

m × P
1 → P

N with N = 2m + 1. Assume that W has

s−osculating regularity and 2−strong osculating regularity.

If the following conditions are satisfied:

- for a general point w ∈ W the intersection T d
wW ∩W = S is a zero dimensional scheme

supported on w;

- for a general choice of two points p, q ∈ P1 and a general hyperplane H in 〈W × {q}〉
containing T d

w(W × {q}) we have that
〈
H,T

d−1
2

π(w)(W × {p})
〉
∩W × {p} = S

and S is supported on the projection of w;

- hs(d) dim(X) + hs(d) − 1 < m;

then X is not (hs(d),m+hs(d)−1)-tangentially weakly defective, and hence X is hs(d)-identifiable.

In particular, under this bound X is not hs(d)-defective.

Proof. Take two distinct points p, q ∈ P1. Let Z = W × {p}, Y =W × {q}, HZ = 〈Z〉, HY = 〈Y 〉.
Note that by Lemma 5.1 we have that HZ∩ZY = ∅, 〈HZ , HY 〉 = PN , X∩HY = Y , X∩HZ = Z. Let
h := hs(d). Fix y1, . . . , yh ∈ Y general points, and let z1, . . . , zh ∈ Z be their projections through
the projection map π : X → Z. Now, consider general points x1(t), . . . , xh(t) ∈ X with t ∈ C∗ such
that limt7→0 xi(t) = yi, and let

Tt =
〈
Tx1(t)X, . . . , Txh(t)X

〉

Note that if zi(t) = π(xi(t)) then limt7→0 zi(t) = zi. Set T0 = limt7→0 Tt. Since dim(T0) ≤ h dim(X)+
h−1 and by hypothesis h dim(X)+h−1 < m there exists a hyperplaneH0 ⊂ HY containing T0∩HY .

Let {Ht}t∈C∗ be a family of hyperplanes in Pm such that Ht ⊇ Tt ∩ Pm. Hence we have Tt ⊆
〈Ht, z1(t), . . . , zh(t)〉, and since H0 and 〈z1, . . . , zh〉 are disjoint and z1, . . . , zh ∈ Z are general we
have that

lim
t7→0

〈Ht, z1(t), . . . , zh(t)〉 = 〈H0, z1, . . . , zh〉

with T0 ⊆ 〈H0, z1, . . . , zh〉.
Let y0 be a general point of Y and let

γ1, . . . , γh : C → Y
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be smooth curves such that γj(t0) = y0 and γj(t∞) = yh. By the hypotheses on osculating regularity
we have that limt→0

〈
Tγ1(t)Y, . . . , Tγh(t)

〉
⊂ T d

y0
Y . Furthermore the curves π ◦γ1, . . . , π ◦γh : C → Z

realizes the degeneration

lim
t→0

〈π(γ1(t)), . . . , π(γh(t))〉 ⊂ T
d−1
2

π(y0)
Z

Thanks to Lemma 3.1 we have that 〈H0, z1, . . . , zh〉 ∩HZ = 〈z1, . . . , zh〉 scheme theoretically in
a neighbourhood of the zi.

Assume that 〈H0, z1, . . . , zh〉 is tangent to X at a points x 6= yi for all i = 1, . . . , h. Then
〈H0, z1, . . . , zh〉 contains all the fiber P1

x = π−1(x) and therefore the point P1
x ∩ Z which must then

be one of the zi, say zh. Hence x ∈ P1
zh

.

Now, Proposition 5.2 yields that 〈H0, z1, . . . , zh〉 is tangent to X along the line 〈x, yh〉 = P1
zh

,
and in particular is tangent to X at zh, a contradiction. Therefore, 〈H0, z1, . . . , zh〉 and hence
〈Ht, z1(t), . . . , zh(t)〉 and Tt are tangent to X just at the prescribed points xi(t) for i = 1, . . . , h. �

Remark 5.4. Note that the non secant defectiveness of X is not needed anywhere in the proof of
Theorem 5.3.

As an application to Segre-Veronese varieties we get the following result.

Corollary 5.5. Consider a Segre-Veronese variety SV n

d
⊂ PN(n,d) with n = (1, n2, . . . , nr) and

d = (1, d2, . . . , dr). Assume that n2 ≤ n3 ≤ · · · ≤ nr and let d := min{di} − 1. If

h < hn2+1(d) ∼ n
⌊log2(d)⌋
2

then SV n

d
is not h-tangentially weakly defective, and hence SV n

d
is h-identifiable. In particular,

under this bound SV n

d
is not h-defective.

Proof. Since T d
p (SV

n
d ) ⊂ T d′

p (SV n
d ) for d′ ≥ d and T di

p (V ni

di
) ⊂ T d

p (SV
n
d ) for every i = 1, . . . , r we

can look only at the Veronese factor V
nj

dj
for which d = dj − 1. In this case if p = [xd0] for a suitable

choice of coordinates [x0, . . . , xnj
] in Pnj we have that

T d
p V

nj

dj
= 〈x0F | deg(F ) = d− 1〉

and so T d
p V

nj

dj
∩ V

nj

dj
is supported on p.

We can assume that p, q ∈ P1 are given by p = [0, 1] and q = [1, 0]. For every i = 2, . . . , r let
Ii be the set of multi-indexes of size |Ii| = di associated to the coordinates [xi0, . . . , x

i
ni
] under the

Veronese embedding given by |OPni (di)|. Finally let [ZI2,...,Ir ,0, ZI2,...,Ir,1](I2,...,Ir) be the coordinates

of the Segre-Veronese embedding in PN(n ,d). If w = [⊗j=2,...,r(x
j
0)

dj ] with J = (J1, . . . , Jr) its
corresponding index then

T d
wY =

{
ZI2,...,Ir,0 = 0 ∀ (I2, . . . , Ir)
ZI2,...,Ir,1 = 0 with d((I2, . . . , Ir), J) > d

T
d−1
2

π(w)Z =

{
ZI2,...,Ir ,1 = 0 ∀ (I2, . . . , Ir)
ZI2,...,Ir ,0 = 0 with d((I2, . . . , Ir), J) >

d−1
2

Now a general hyperplane H ⊃ T d
wY in HY has equation

H =

{
ZI2,...,Ir,0 = 0 ∀ (I2, . . . , Ir)∑
α(I2,...,Ir)ZI2,...,Ir,1 = 0 with d((I2, . . . , Ir), J) > d

Finally

〈
H,T

d−1
2

π(w)Z
〉
=

{
ZI2,...,Ir ,0 = 0 d((I2, . . . , Ir), J) >

d−1
2∑

α(I2,...,Ir)ZI2,...,Ir,1 = 0 with d((I2, . . . , Ir), J) > d
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and since by construction we have that

HZ = {ZI2,...,Ir,1 = 0 ∀ (I2, . . . , Ir)}

with T
d−1
2

π(w)Z ∩ Z = π(w) we conclude. �

Remark 5.6. The previous corollary gives an asymptotic bound for the identifiability of SV n
d

depending only on the values of n = (1, n2 . . . , nr) and d = (1, d2 . . . , dr).
Note that in our case, i.e. for a Segre-Veronese in which there is a P

1 factor embedded linearly, the
bound on secant defectiveness given in [AMR19] is trivial while the bound coming from Corollary
5.5 ensures that SV n

d is h-identifiable asymptotically for

h ∼ n
⌊log2(d)⌋
2

Finally, Theorem 5.3 does not require a further numerical assumption involving the rank. Indeed, at
the best of our knowledge, the principal result in order to prove identifiability is the one in [CM19],
in which it is shown that the extra inequality h ≥ 2 dim(SV n

d ) has to be fulfilled.
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