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A B S T R A C T

Digital factories are poised to achieve unseen levels of resiliency and flexibility, facing increasingly demanding
requirements by customers and market conditions. Digital twins are one of the building blocks fueling
this vision. They provide a software counterpart for industrial assets enabling control, simulation, analytics
and ‘‘servitization’’ functionalities. To effectively fulfill their tasks, digital twins need to embed adaptive,
autonomous, and context-awareness functionalities. In this work, we propose an organic vision of digital twin
design and implementation with the goal of clearly identifying the primary steps towards this goal. First, we
detail how current requirements for digital twins have to be enriched for supporting adaptivity, autonomy,
and context-awareness. Second, we propose a set of reusable design patterns mostly popularized in the field of
micro-services allowing engineers to meet these new demanding requirements while keeping complexity and
management costs under control. Finally, we present our working prototype based on the identified design
patterns and implemented with orchestrated micro-services, demonstrating the feasibility of our solution and
quantifying its networking and computational overhead.
1. Introduction

Manufacturing companies are increasingly confronted with several
challenges, such as shorter product lifecycles, demanding quality stan-
dards, sustainability, mass customization, and servitization of physical
products. To cope with such issues, the Industry 4.0 guidelines are
pushing towards industrial environments composed of heterogeneous
machines provided by different manufacturers and interacting one each
other in an articulated and flexible manner (Corradi et al., 2019).
Digital Twins (DTs) and digital factories are two concepts aiming at
alleviating these challenges. DTs can be conceptualized as comprehen-
sive, actionable, digital representations of physical systems (Minerva
et al., 2020; Jones et al., 2020; Vuković et al., 2021; Bellavista et al.,
2021) providing a software copy of a Physical Object (PO) reflecting
its properties, behaviors, and relationships according to the opera-
tional context. The physical and software counterparts cooperate and
co-evolve for enabling features such as device control, simulation,
analytics, and, more generally, the ability to enhance the function-
alities of POs. The DT capability of carrying out simulations may
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help system design (Leng et al., 2021a), improve system flexibility
(e.g., rapid reconfiguration to meet ever-changing product orders Leng
et al., 2020), and push towards cost-saving (e.g., remote semi-physical
commissioning of manufacturing systems Leng et al., 2021b).

The adoption of DTs pushes for a simplified interaction among
software and hardware modules. DTs not only allow to hide hetero-
geneity of machines, but also to make easier their monitoring and
reconfiguration. Such aspects are of particular importance, considering
that modern industrial environments are characterized by fast-changing
requirements. This requires a significant configuration/reconfiguration
effort, which is typically carried out manually by practitioners (Bolen-
der et al., 2021). If compared with the recent past, plants are nowadays
reconfigured much more frequently, with the ultimate goal of sup-
porting a higher degree of differentiated production, also changing at
runtime without significant stopping intervals (Liu et al., 2022b). More
specifically, DTs increase the adaptivity of industrial environments by
interacting with each other (e.g., through uniform interfaces Platenius-
Mohr et al., 2020) and providing high-level abstractions for external
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services and applications towards the underlying industrial machines.
However, it is worth noting that while the adoption of DTs within
industrial environments might simplify the interaction with floor-level
equipment (by hiding low-level technical details) and increase their
flexibility, it does not guarantee easier management of the environment
as a whole. The spread of DTs, in fact, shifts part of the complexity of
managing POs to the management of DTs.

To further simplify the management of industrial environments,
goal-oriented central control has to be intertwined with some degree of
distributed autonomy (Azarmipour et al., 2020). In fact, while produc-
ion managers should be in charge of dictating high-level objectives for
he whole industrial environment (e.g., by specifying to devices which
roduct should be crafted and the number and size of lots that should
e realized), DTs should be able to autonomously pursue the provided
oals by re-configuring industrial machines in a distributed manner,
ither on their own or as the result of collective interactions (Ding
t al., 2019). In other words, production goals are pre-determined and
rovided in a top-down manner, while DTs (and related PO coun-
erparts) cooperate to pursue such goals by autonomously adapting
heir behaviors in a distributed manner, also considering the time-
arying state of the runtime industrial environment and with little or
o centralized coordination.

Such adaptive manufacturing systems require forms of context-
awareness (Alexopoulos et al., 2016) to support DT autonomous
decision-making at the plant production level, based on goals provided
by the plant management level. In particular, DTs have to take into
account their internal state, the state of their associated machines, and
also the distributed state of cooperating machines. More in general, the
state of the entire industrial environment at different abstraction levels
(from the temperature/vibration of the surrounding physical environ-
ment to the currently available network bandwidth) is increasingly
needed as the level of required context-awareness increases.

This paper intends to contribute to the evolution of DTs by pro-
viding practical guidelines for the design, implementation, and man-
agement of adaptive, autonomous, and context-aware DTs in industrial
scenarios. In this regard, the contribution of this paper is threefold:

1. We tackle the problem of merging established requirements for
DTs with the essential capabilities of adaptivity, autonomy, and
context-awareness. Due to their transversal nature, we do not
treat adaptivity, autonomy, and context awareness as additional
requirements per se but, instead, we elaborate in which ways
current requirements, especially those elaborated in Minerva
et al. (2020), might be articulated for supporting them.

2. We investigate design patterns and reusable solutions concerning
both single components and the whole architecture which can be
applied for engineering the DT lifecycle, thus allowing the imple-
mentation of increasingly large and complex deployments while
keeping operating costs manageable. We also originally present
how well-known design patterns for software architectures can
be applied to the design and implementation of DTs.

3. We demonstrate the feasibility of our proposals by emulating an
industrial environment in which next-generation containerized
DTs build on top of documented design patterns and Kuber-
netes enable adaptive, autonomous, and context-aware behav-
iors within both single DTs and the system as a whole.

The remainder of the paper is organized is follows. In Section 2,
we briefly introduce most relevant aspects of modern industrial envi-
ronments and how DTs can improve their flexibility. In Section 3, we
discuss the requirements for adaptive, autonomous, and context-aware
DTs in light of the current consensus about the requirements for general
purpose DTs. In Section 4, we illustrate how the identified requirements
can be implemented by conceptualizing DTs as containerized software
components and making use of the design patterns popularized in the
field of micro-services. In Section 5, we use an emulated industrial
2

environment constructed around Kubernetes for discussing feasibility,
benefits, and drawbacks of the proposed approaches. Finally, Section 6
presents related work in the field and Section 7 concludes the paper
and draws final remarks.

2. Digital twins in modern industrial environments

To better present our solution for DT management in Industry 4.0,
this section introduces the primary characteristics of modern industrial
environments and how the adoption of DTs can improve their flexi-
bility. Modern industrial environments are typically modeled in three
layers: shop floor, plant, and enterprise.

The shop floor level hosts industrial machines and is mainly focused
on industrial automation. Industrial machines are equipped with sen-
sors (e.g., working temperature, pressure) and actuators (e.g., drills,
presses). Industrial machines tend to have extremely long lifetimes
(between 10 and 15 years, if not even longer in some cases) and may
implement different (proprietary) protocols. In addition, software up-
grades may not always be possible, since manufacturers usually forbid
software upgrades for safety reasons, or industrial machines may not
support them at all. Up-to-date industrial guidelines for cyber security
(e.g., IEC 62443, 2013) recommend splitting the network topology
into several shop floor subnets accessing the backbone via dedicated
gateways, as depicted in Fig. 1. In addition, each shop floor subnet is
also composed of Industrial Internet of Things (IIoT) devices and Edge
Nodes (ENs). In contrast to industrial machines, IIoT devices are char-
acterized by a substantially shorter lifetime, usually communicate via
well-known protocols, and support monitoring and control capabilities
while being low cost. It is worth mentioning, however, that IIoT devices
also present complex chains of software dependencies (e.g., third-
party libraries), thus making integrity mechanisms challenging to be
guaranteed (Maggi and Pogliani, 2017). Instead, ENs provide relatively
high computational and memory capabilities on the premises (Shi and
Dustdar, 2016), close to industrial machines. This may improve, among
others, data protection (e.g., by processing sensitive data on-premises
rather than in the cloud), real-time responsiveness (since latency at the
edge is much lower than at the cloud), and traffic management (e.g., by
enforcing fine-grained control over mission-critical traffic flows as they
traverse the industrial network) (Fogli et al., 2022a,b).

The plant level regards the management of manufacturing processes.
he critical component is the Manufacturing Execution System (MES),
llowing information flowing upstream and downstream between the
hop floor level (where industrial machines produce goods) and the
nterprise one (where managers make decisions). In particular, the
ES receives instructions about how industrial machines should behave

rom operators, and then it transmits such instructions downwards,
.e., towards the shop floor.

The enterprise level is about making decisions on how to plan busi-
ess operations. In this regard, decision-makers rely on the Enterprise
esource Planning (ERP), collecting information about supply chains,
ash flows, customer orders, and production processes, to decide what,
hen, and how many products should be crafted.

The control room subnet comprises both plant and enterprise com-
onents (i.e., MES and ERP), plus a subnet gateway. In addition,
he networking side is evolving towards articulated topologies char-
cterized by backbones connecting several subnets through multiple
ommunication channels to increase performance and fault tolerance.

Typically, industrial machines are configured to receive control
essages from the control room (by the MES above all) and send back
few information about their current state (e.g., number of crafted

nd faulty products). Sporadically, industrial machines also exchange
essages with each other, e.g., machines in the same production line

hare information about the rate of crafted products. In any case, once
ndustrial machines and companion control servers are deployed, their
ynamic reconfiguration is not possible, e.g., requiring to stop pro-
uction to reroute messages towards a different control server. On the
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Fig. 1. Target environment. The overall topology is split into multiple subnets, con-
nected via gateways. The control room subnet hosts nodes monitoring and controlling
industrial machines and ENs, which run in the shop floor subnets.

contrary, modern industrial environments need to dynamically manage
machines and message flows, even at service provisioning time and
without imposing any pause to the production process. For instance,
since servers can be easily replicated and migrated while industrial
machines relocated, it is not possible anymore to support only static
deployments of software modules.

As introduced in Section 1, we believe that the adoption of DTs
may relevantly improve the flexibility of such environments in terms
of autonomy, adaptivity, and context-awareness. Let us note that de-
spite these concepts have been already introduced in the field, no
literature specifically addresses adaptivity, autonomy, and context-
awareness together in relation to DTs (Hribernik et al., 2021). Most
research work in the current literature, in fact, provides specific use
cases and applications (Hinduja et al., 2020; Jiang et al., 2021) instead
of attempting a systematic definition of their profound meaning in the
field of DTs, and the consequences of their formal introduction among
other well-established requirements (Minerva et al., 2020; Jones et al.,
2020; Fuller et al., 2020).

To promote the large scale adoption of the technology, DTs need
to evolve towards active software entities capable of extending the
capabilities of their PO counterparts, sensing their environment, pro-
actively communicating with each other, and taking decisions towards
cooperative goals, with the paramount objective of adapting themselves
and their counterparts to achieve those goals (Hribernik et al., 2021).
As a consequence, DTs need to be designed, implemented, and oper-
ated as mature software components that embed increasing levels of
automation and standardization (Al-Sehrawy and Kumar, 2020; Tekin-
erdogan and Verdouw, 2020). In particular, we claim that DTs should
be implemented and managed by following the micro-services ap-
proach (Dinh-Tuan et al., 2019; Dobaj et al., 2018; Ghosh et al., 2021)
together with containerization. The primary goal is to de/activate
and move software modules among nodes in a completely transparent
manner from a machine point of view, e.g., by migrating (part of) a
DT from the control room to a shop floor subnet. The adoption of
containerization allows to easily split software modules among differ-
ent components managed in a independent manner one each other.
In addition, containerization allows to redeploy software modules to
pursue a common goal, by taking into consideration business objectives
as well as QoS requirements. In other words, such solution ensures
the flexible management of software module (re-)deployment (and also
decommissioning) to cope with the dynamic nature and objectives of
modern industrial environments.

To support the dynamic lifecycle of DTs in an effective manner
3

and take full advantage of the micro-services approach, there is the m
need of easily interacting with DTs via well-known interfaces. To this
purpose, Fig. 2 presents the overall architecture and primary interfaces
of the proposed DTs. The Digital Twin Service is hosted within a Digital
Twin Container, in charge of enabling container de/activation and
migration. In addition, the Digital Twin Service contains and manages
the DT model of the machine (i.e., PO State, Design, Configuration, and
Behavior) and interacts with external entities via four interfaces.

The physical and digital interfaces are respectively responsible for
communicating with machines and digital services running industrial
applications. The digital interface is also used for actuating the manu-
facturing directives coming from the MES and eventually translated by
a dedicated software layer (i.e., the Digital Twin Manager). The storage
interface concern is managing past and also future representations of
the PO. Finally, the management interface exposes the state of the DT
itself thus allowing context-aware, adaptive behaviors mediated by the
container orchestrator. Let us anticipate that by clearly defining the pri-
mary modules and interfaces of DTs, it is possible to easily deploy them
as containerized software modules, with the notable benefit of allowing
to manage their lifecycles by exploiting orchestration solutions.

3. Requirements for next-generation industrial digital twins

Although DTs used in industrial applications differ in technical
and operational details (Hinduja et al., 2020; Jiang et al., 2021),
efforts have been made to define their general properties. In particu-
lar, Minerva et al. (2020) recently proposed a set of key requirements
summarizing the role of DTs in the cyber–physical systems domain.
DTs are characterized as event-driven entities capable of storage ca-
pabilities to maintain a log of status changes and offering methods and
functionalities to other services mediated by application programming
interfaces. Due to their generality, these requirements are focused on
functional aspects and do not clearly address the specific role and
meaning that adaptation, autonomy, and context-awareness acquire in
this context. Moreover, DTs current implementations are still conceived
as mostly passive entities representing the state of a PO or, alter-
natively, as cloud-oriented, platform-specific components delegating
the integration of physical and software entities to tailored solutions,
fragmented software layers, or even to POs themselves (Fuller et al.,
2020). These approaches are frequently based on loose standards and
implemented without documented design patterns, limiting reusabil-
ity and interoperability, as well as increasing long-term maintenance
costs (Tekinerdogan and Verdouw, 2020; Washizaki et al., 2020).

We argue that, for supporting dynamic and flexible industrial envi-
ronments, these aspects need to be addressed and formalized. Because
of this, in this section, we better articulate the idea of containerized
DTs running within a network of orchestrated components by enriching
well-established requirements with a set of additional constraints for
supporting adaptation and autonomy both at the DT and the factory
levels. It is also worth clarifying that we do not intend to introduce
brand-new requirements. Instead, we propose how to apply software
engineering design patterns to translate widely accepted requirements
in the field, e.g., the ones formerly introduced by Minerva et al.
(2020), into actionable tools usable as a foundation for context-aware,
adaptive, autonomous DTs.

3.1. Reflection

Definition: The reflection property describes a DT as an entity which
irrors the behavior and the status of the PO. Each change in status, each
vent faced by the PO is reflected by the DT. Changes that occur to the DT
hould be reproduced in the PO.
Engineering: (R1) The DT has to be capable of discovering available

Os present within the execution environment and consequently handle
he communication and interaction according to the supported proto-
ols and data formats. For example, a DT supporting a specific type of
achine should autonomously search for supported entities and either
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Fig. 2. Representation of a containerized DT. The DT model manages the properties associated with the linked machine. The physical and digital interfaces manage communications.
The storage interface stores and retrieves past and future states of POs. The management interface exposes the state and configuration of the container to other services.
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establish a permanent connection (i.e., enabling reflection) or ease its
configuration process. (R2) The DT has to be aware of the quality
of the reflection it provides to digital services. This notion, generally
identified as entanglement, can promote adaptive behaviors aimed at
providing determined service levels such as tuning communication
protocols, throttling external requests, or even migrating the DT on the
basis of internal or environmental conditions.

Impact: The availability of DTs capable of delivering adaptive reflec-
tion represents a fundamental enabler towards their use as autonomous
entities instead of passive digitalized replicas of POs. Each DT has to
be in charge of tasks concerning the reflection requirement, such as
discovering the supported PO counterparts, identifying their properties,
and maintaining the desired level of entanglement according to internal
and environmental conditions. Additionally, DTs can autonomously
detect and react to eventual issues (e.g., adapting networking configu-
ration for increasing or decreasing entanglement). Eventually, DTs can
also notify external observers about misalignments with the PO. It is
worth noting that the autonomous discovery of compatible POs has
benefits cascading to other requirements. For example, a composed DT
representing thermal-related features of a smart-building might search
and connect to all the compatible devices of the building, or their
associated DTs, without time-consuming manual interventions.

3.2. Persistency

Definition: The persistency property defines a DT as an entity which
is always available. Its availability exceeds the actual existence of the PO.
A DT could be available before the creation, during malfunctioning and
crashes, and after the end of life of the PO.

Engineering: (R3) The DT must be resilient and thus organized in
decoupled and independent components, represented in Fig. 2, so that
a localized fault does not compromise the entire container. (R4) The DT
as to be highly available, i.e., it must support replication in response
o failures, both internal (e.g., the DT model fails) or environmental
e.g., the node running the DT container fails). (R5) To minimize the
ffects of such events, DTs must support autonomous re-configuration.
ndeed, their configuration have to be remotely stored and fetched
hen needed. In this manner, replicas, instead of restarting with the

ame configuration of a failed container, can eventually retrieve an
lternative version.
Impact: Once we adopt DTs to decouple applications from the com-

lexity and fragmentation of the physical layer, we establish an hidden
greement between these two levels. Digital services rely on DTs to
nteract with POs and any disruption in their functioning potentially
4

u

represent a critical issue (e.g., the plant control room that suddenly
stops receiving telemetry from deployed robots). These requirements
represent a crucial pillar to build reliable and dependable networks of
DTs.

3.3. Memorization

Definition: The memorization property defines a DT as an entity
toring all the status changes and events occurred to the PO. A DT represents
he status of the PO over time and space.
Engineering: (R6) The DT must be able to maintain the current state

f the PO internally, acting as a cache between POs and digital services.
ndeed, for improving autonomy and minimizing response times to
igital services, the current state of the PO has to be held within the
T itself, without using external storage services. (R7) The DT must
anage the entire history of states and events involving the PO in a

ontext-aware fashion. Furthermore, the DT has to manage different
oads of requests from digital services. Thus, the DT has to support
ifferent replication strategies for its storage services and autonomously
elect the most suitable one.
Impact: Observing and efficiently interacting with a PO not only at

ts current state but also through the navigation of its historical data
ia a uniform interface segregates responsibilities and has the potential
o significantly simplify the design of applications. Memorization can
e also exploited to support context-awareness and adaptation directly
n DTs via machine learning algorithms capable of predicting future
tates from past states. Furthermore, the resulting outputs (i.e., the pre-
icted future states) can be memorized within the same data structure,
nabling a forward navigation in the predicted ‘‘future’’ of the DT.

.4. Augmentation

Definition: The augmentation property defines a DT as an entity
hich can extend the PO functions and offer them by means of APIs.
ugmentation can add new functionalities that the PO does not support or
rovide access to data in particular formats.
Engineering: (R8) The DT has to be expandable (adaptive) with

dditional functionalities by supporting dynamic configuration. For
xample, a complex DT supporting multiple POs or functionalities could
e deployed with different configurations on different nodes depend-
ng on their resources. The configuration must be updated, without
equiring manual interventions, whenever the DT is migrated to a
ode with different capabilities. (R9) The DT must support software

pdates. At the most basic level, both POs and digital services might
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receive updates over time, thus requiring changes in the DT to keep it
functional. Furthermore, updates enable the addition of augmentation
capabilities to the DT itself without the need of a re-deployment.

Impact: The possibility to easily and dynamically extend the ca-
pabilities provided by a DT with respect to the original associated
PO counterpart represents the fundamental characteristic of DTs and
the reason why they should be seen and modeled as active software
components with an independent behavior. Through a dynamic aug-
mentation it is possible to extend interoperability without changes on
the PO or without requiring DT re-deployment (e.g., to support new
protocols or data formats). It can also allow to introduce intelligent and
cognitive functionalities directly on the DT for optimizing both digital
and physical layers (e.g., reducing the speed of a production robot or
moving the DT to a different EN to improve performance).

3.5. Composability

Definition: The composability property defines a DT as an entity
which must support the correlation of different elementary DTs into complex
organizations and provide views on the aggregated DT and individual
components.

Definition: (R10) The DT has to be able to manage other DTs as if
they were POs. Each change in any DT which is part of a composition
scheme (i.e., an observed DT) is communicated to an observing DT. In
this way, as soon as one DT detects a change in its PO, the change is
propagated towards the upper levels of the composition scheme. Alter-
natively, in case the composed DT is not observed by any digital service,
the lower levels might choose not to communicate the changes to save
bandwidth. The same principles have to be also applied to commands
that can be propagated from the composed DT to the underlying DTs
in order to modify and actuate the physical environment.

Impact: The communication scheme used for composition is strictly
tied to reflection, entanglement, and adaptive capabilities. In fact, being
a distributed communication scheme, it might require remarkable net-
work resources to guarantee acceptable entanglement levels to digital
services observing composed DTs. To avoid network overload, DTs
participating in a composition scheme have to coordinate to dynam-
ically select a suitable trade-off between entanglement and networking
resources.

3.6. Replication

Definition: The replication property defines a DT as an entity which
can be replicated to serve the needs of different applications. Replicas of the
same PO must behave consistently, i.e., they cannot have a different status
and they cannot exhibit different behaviors.

Engineering: (R11) The DT, eventually leveraging the container or-
hestrator, must support replication for facing variable loads of re-
uests coming from digital services. However, as soon as replicas are
pawned, two different communication schemes become possible: peer
nd master–slave. The former implies that all replicas of the same DT
ommunicate directly with the PO. The latter implies that the group
f replicas elects a master responsible of managing the PO, while all
he others, behaving as slaves, communicate with the master to receive
pdates about the state of the PO. As a consequence, the DT has to
e aware of internal and environmental conditions for autonomously
electing the most suitable approach.
Impact: The DT leverages its awareness of the computational en-

ironment for autonomously selecting the most suitable replication
cheme. As an example, when dealing with constrained POs, the
aster–slave approach could be preferred. In contrast, when powerful
Os are involved, the peer approach might reduce communication
verhead among replicated DTs and avoid all the intricacies of master-
lection distributed protocols. The same flexibility can also be exploited
o handle different visibility and responsibilities levels, allowing to
egregate the DT authorized and in charge of communicating with the
O (master) from the others (slaves), which, for example, might be
imited to specific interactions with digital services and unauthorized
5

o directly interact with the physical layer.
3.7. Accountability/manageability

Definition: The accountability property defines a DT as an entity
which allows to determine its status and activities and to optimize its execu-
tion in the framework in which it is operating. It must provide information
about the usage of the PO by the applications associated with it.

Engineering: (R12) The DT has to be observable. Indeed, the DT
must be not only aware of its state but also make it available via
standard interfaces (e.g., RESTful APIs, event-driven communication
patterns). Additionally, the complete event history concerning the DT
(i.e., execution logs) has to be exposed in a similar fashion.

Impact: Observability pushes adaptation outside the DT itself. For
example, the orchestrator could detect a DT running on limited re-
sources and respond by either migrating it to another node or spawning
a replica for the sake of guaranteeing the required entanglement level.
Additionally, the availability of the event history concerning the DT
enables long-term analytics based on machine learning algorithms, such
as failure prediction or anomaly detection.

4. Design patterns

Industrial networks can be composed of several devices, possibly
thousands of heterogeneous devices interacting one each other. To
exploit DTs as universal interfaces for both monitoring and control,
the requirements identified in the previous section have to be engi-
neered in a reliable and dependable way, by following norms and
well-documented practices (Wedyan and Abufakher, 2020). In this
section, we show how design patterns for both monolithic applications
and micro-services can be used for achieving such goals.

4.1. Patterns for single-node, single-container services

Despite we envision industrial deployments of DTs as a distributed
network of containerized entities, the DT itself still has to be developed
as a monolithic service. Nevertheless, since component isolation (R3,
R6) and extensibility (R9) are key requirements, we propose to use the
microkernel pattern, one of the most modular approaches in the realm
of patterns for monolithic services.

The microkernel pattern consists of two types of components: a core
system (i.e., the DT model) and plug-in modules (i.e., the physical, dig-
ital, management, and storage interfaces) as shown in Fig. 3. The core
system, usually containing only the minimal functionalities required
to make the system operational, manages the state, configuration, and
behavior of the PO (R6). The plug-in modules, instead, are independent
components enhancing or extending the core system with additional
capabilities without the need of re-deployments (R9). As an example,
the storage plug-in provides a clear boundary between the management
of the present state of the PO which happens inside the DT core and past
and predicted states which are, instead, externalized (R7). Generally,
plug-in modules should be independent one each other and can be
connected to the core in a number of different ways, from point-to-
point binding (i.e, the core accepts an object instance of a plug-in)
to messaging. This kind of architecture provides decoupled operations
and prevents generalized failures (R3). Indeed, the failure of one plug-
in does not determine the failure of the whole container. To further
improve isolation and decoupling, we propose to implement messaging
via an asynchronous queuing pattern. The introduction of asynchronous
queues allows extremely evolvable and resilient architectures. In fact,
protection mechanisms against bursts or sustained rates of excessive
requests can be transparently embedded within the queue themselves,

thus simplifying the development of the other components.
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Fig. 3. A DT implemented with the microkernel pattern. The core system containing the state and the logic for interacting with the PO is enhanced by plug-ins implementing
additional functionalities.
4.2. Patterns for single-node, multi-container services

Even if there are valid reasons to decompose DTs in multiple com-
ponents (i.e., core system and plug-ins), there are also reasons for
breaking up DTs into multiple containers. Imagine a DT supporting
dynamic configuration and exposing its configuration via a standard
API. One approach could be to add a specific plug-in to the microkernel
architecture described above, while another approach could be to break
up the DT into two separate containers: one running the DT itself
(i.e., core and basic plugins) and the other running a dynamic con-
figuration daemon. While the former is perfectly legitimate, the latter
case has notable advantages. Containers, in fact, establish boundaries
around resources (e.g., 8 GB of memory, 6 cores), teams (e.g., one
team owns one container image), and concerns (e.g., this image pro-
vides dynamic configuration). As an example, using multiple containers
allows to assign them different priorities and resource requirements,
e.g., ensuring that the configuration daemon uses computing resources
only when the DT is offloaded. In addition, containers represent a
relatively small and focused piece of code managed by a single team
and usually they can be updated, tested, and deployed more eas-
ily than complex, monolithic services. Containers can also be easily
reused across multiple teams and applications, often leading to high-
quality implementations, since they are built once and used in different
contexts. For these reasons, we make the case of DTs conceived as
multi-container entities, namely pods (a term introduced in Kubernetes,
currently one of the most prominent container orchestrators). The three
patterns we discuss here, represented in Fig. 4, propose to deploy the
DT container along with a secondary container responsible for different
tasks. In addition to being scheduled on the same machine, the two
containers are assumed to have access to shared resources, such as the
filesystem and network interfaces.

The sidecar pattern considers two containers: the application con-
tainer (i.e., the DT container) and the sidecar container, augmenting the
application usually without accepting or establishing network connec-
tions on its behalf. In its simplest form, a sidecar container can be used
to add functionalities to a container that might otherwise be difficult
to improve. In more articulated cases, sidecars can be used to engineer
multi-container services which are inherently more robust and scalable
than those structured in a single container. Remote configuration (R5),
requiring DTs to store and retrieve their configuration from a remote
server, can be implemented with a sidecar container monitoring the
configuration files of the DT. The sidecar is responsible for keeping
aligned local and remote configurations. If the remote configuration
diverges from the local one, it downloads the new configuration and
6

notifies the DT to reconfigure itself using the updated files. Similarly,
software updates (R9) can also be implemented using a sidecar con-
tainer. As an example, it is possible to use a containerized daemon
which periodically downloads changes from a git repository, updates
the local code of the DT (e.g., the folder containing plug-ins), and
triggers the DT to restart itself. As a consequence, pushing updates to
a git repository results in updated code being deployed to the running
DT in a simple yet reusable fashion.

The ambassador pattern uses an ambassador container to act as a
broker among the application container and external services. Sim-
ilarly to sidecars, ambassadors are paired to the primary container
and scheduled on the same node. Requirements concerning adaptive
reflection (R2) can be implemented using both the ambassador and
the microkernel patterns in a complementary fashion. For example,
they could be either implemented within the communication plug-
ins of the DT (i.e., physical/digital interface plug-ins) or delegated
to a specialized daemon running within the ambassador. In the latter
case, the communication plug-ins of the DT act as basic network
proxies and delegate external connections entirely to the ambassador
container. As an intermediate solution, an ambassador could be used for
enhancing a DT providing only basic reflection capabilities with more
advanced properties, such as autonomously switching among different
communication protocols (R2) or automatically searching compatible
POs (R1). In addition, an ambassador can be used for providing the
communication interfaces of the DT with additional layers of protection
from failures of other services. For example, protection patterns such as
throttling, circuit breaker, or retry (R3) can be easily implemented within
ambassadors without the need of modifying and re-deploying the DT
container.

Ambassador containers are not limited to function with digital
or physical interfaces. Indeed, they can be used for brokering any
connection to external services. The storage interface, for example,
is designed for storing and retrieving from external storage services
past and future states of the PO. As expressed in (R7), the DT has
to be capable of dealing with high request loads from digital services
asking for past or future states of the PO as well as with large bodies
of data representing its entire history. These functionalities can be
implemented within ambassador containers as depicted in Fig. 5. In
case of high load of requests, data can be statelessly replicated so that
each replica manages the whole history of the DT, thus scaling up the
number of manageable requests. Alternatively, in case of large bodies
of data, sharding (i.e., partitioning based on content, for example, each
shard contains one year of history) can be applied. This approach does
not necessarily unload the storage services (i.e., all requests might ask
for the same shard) but, instead, allows for scaling up the size of DT’s
past and future states. In Fig. 5, the two cases are managed by separate

ambassadors. Nevertheless, it would be possible to implement both
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Fig. 4. A DT conceived as multi-container entity using a secondary container for enhancing the primary container. Ambassadors mediate external communications, adapters expose
uniform interfaces to other services, while sidecars often act locally.
Fig. 5. Two ambassador containers brokering the connection between the storage interface of the DT and two external services adopting different replication strategies.
eplication strategies in a single container, capable of choosing the most
uitable one.

The adapter pattern is used to modify the interface of the primary
container so that it conforms to a predefined interface. For example,
an adapter might ensure that an application implements a consistent
monitoring interface (i.e., all logs saved using the same format). The
observability (R12) and dynamic configuration (R8) requirements can
be implemented using this approach. Indeed, instead of modifying the
DT model or adding plug-ins, a dedicated daemon could be run inside
an adapter container. In regard to the observability requirement (R12),
a daemon could monitor the logs produced within the DT container
and expose them via standard APIs. Accordingly, also the internal state
of the DT (exposed via its management interface) can be monitored
and exposed to external services, such as the container orchestrator
using the same interface. Large factories running massive deployments
could greatly benefit from this containerized approach. For example,
it could be possible to deploy any kind of DT, possibly produced by
different vendors, and then make them uniformly observable by adding
a properly crafted adapter to their pod. Dynamic configuration (R8)
shares many similarities with remote configuration (R5). A daemon
containerized as an adapter can read the configuration files of the DT
and expose them via a standard interface. Whenever users or external
services apply changes to the configuration, the daemon updates the
configuration files within the DT filesystem and signals the DT to reload
it.

4.3. Patterns for multi-node services

In this section, we discuss requirements and related design patterns,
involving not only containers running within the same scheduling unit
(e.g., a pod) but also on different nodes. In particular, we discuss
requirements inherently involving multiple nodes, such as persistency,
7

replication, and composition.
The persistency requirement (R4) relates to the availability of soft-
ware components. Indeed, DTs have to be restarted if their container
fails or hangs. If the node running the DT fails, the container has to
be migrated and restarted on another node. The implementation of
this feature is based on a properly implemented management interface
exposing the internal state of the DT. For example, the interface has to
provide HTTP endpoints specifying if the container is either ready for
execution or actually serving requests. By querying this interface, the
container orchestrator can take autonomous decision on whether the
DT have to be either restarted or migrated to another node. Another
approach is based on the singleton pattern. The singleton pattern, despite
the different flavors it assumes in different contexts, generally implies
that only one instance (of an object, a process, a container, etc.)
should exist at any given time for the sake of maintaining integrity
and consistency. In the context of containerized services, this pattern
implies the use of a load balancer managing only one replica of a
service. Since only one instance is running, that instance owns the
access right to all the resources (i.e., in this case the PO) without
the need for electing a master replica. This simplifies implementation
and deployment, but introduces disadvantages in terms of reliability
since, in case of issues, such as software updates or migrations, a little
downtime is required for reverting to a functioning state. Frequently,
however, its simplicity outweighs the reliability trade-off.

The replication requirement (R11) can be similarly implemented
by making use of the load balancer pattern prescribing the use of a
load balancer for splitting requests among a pool of replicas. The pool
can be monitored via the management interfaces of the replicas and,
depending on environmental conditions, can be enlarged, shrunk, or
migrated to different network locations. It is worth noting that stateless
replicas are advisable since requests can be routed to any replica
regardless of their content or their state. In stateless replication, in
fact, each replica is aware of the entire state which, in our context,

comprises both the PO and the set of containers storing its future and
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Fig. 6. Three DT replicas handling requests related to same PO. A stateless load balancer splits requests among them. The number of replicas can be either increased or reduced
depending on data observed via their management interfaces. Leader election, when needed, can be implemented with a dedicated daemon implementing consensus algorithms
packaged in a sidecar container.
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past representations. Despite clear benefits in terms of reliability, this
approach has some potential issues. For example, the concurrent access
of all replicas might overload the PO thus degrading entanglement
levels. To prevent this drawback, replicas can adopt a master–slave
strategy. The master DT is the single owner of the PO, while slave DTs
lose the right of direct access and interact with the PO only via the
master DT. In other words, the master enacts a proxy pattern between
slaves and the PO, thus reducing its load. However, the master–slave
approach requires to implement a master election algorithm usually
based on distributed consensus algorithms like Paxos or RAFT (Howard
and Mortier, 2020). Luckily, there are a number of distributed key–
value stores embedding such consensus algorithms without the need of
complex implementations within the DT itself. These systems, which
can be packaged in a sidecar container as depicted in Fig. 6, provide a
replicated and reliable data store comprising the primitives necessary
to build election abstractions out-of-the-box.

The composability requirement (R10) prescribes that DTs must
receive updates and eventually send commands to a group of peers
instead of a single PO. A bare implementation of this feature might
require only slight changes to the physical and digital interfaces of the
DT for supporting groups of devices instead of a single one. Indeed,
each command directed to a PO could be sent to a group of POs or
other DTs and each update directed to a digital service can be sent
to a group of digital services or other DTs. However, the mere fact
of receiving updates or sending commands to a group of peers do not
make a composed DT but more a proxy between digital services and
the physical environment. What makes composability meaningful is
providing applications with composed APIs representing, in a synthetic
way, a complex underlying reality. As an example, a composed DT
representing a smart-building should provide APIs for querying the
average temperature or the presence of fire in the entire building,
instead of the bare access to a list of sensors. This problem is often
tackled in software engineering with the API gateway pattern. This
pattern has been in fact proposed to aggregate multiple requests, often
directed to different micro-services, into a single one. That is, a digital
service attached to a composed DT sends a single request which is
decomposed in simpler requests and dispatched to the involved DTs.
The received replies are then aggregated and presented to the digital
service as one single response. In addition to providing a unified
synthetic representation of a complex system, this pattern is also useful
in reducing chattiness among involved components.
8
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5. Prototype insights and performance evaluation

This section details the proof-of-concept prototype we implemented
and evaluated through an illustrative scenario closely resembling a
modern industrial environment. The objective is not only to demon-
strate the feasibility of the proposed adaptive, autonomous, and
context-aware DT solution, but also to stress how the adoption of
the identified design patterns within a realistic environment keeps
complexity and costs manageable.

The envisioned experimental scenario puts into action the design
patterns presented in Section 4 to enable the requirements laid out in
Section 3 through the identification of three phases depicted in Fig. 7
and characterized by: (i) the initial deployment (left); (ii) the context
variation (center); and (iii) the deployment adaptation (right). Each of
the reference experimental phases are described and detailed in the
following paragraphs.

Initial deployment. The initial deployment phase describes a typical in-
dustrial setting in a steady state. As illustrated in Fig. 7, we distinguish
three logical layers: physical, DT, and application. The physical layer
is on the shop floor and comprises three IIoT devices associated to a
target deployed industrial machine that publish their status information
on a MQTT (2014) message broker, i.e., the so-called IIoT Devices
Broker. Such a broker may be defined as a physical broker to refer
to its responsibility to exchange data with physical devices. In con-
trast, the DT layer spreads from the control room to the shop floor.
Here, three elementary DTs consume the information published on the
physical broker to clone the IIoT devices into software counterparts.
Each physical device handles three sub-resources (energy consumption,
battery level, and temperature) and publish on independent topics with
a configurable message rate (ranging from 10 ms to 100 ms) and an
verage payload size for each sensor information of 100 Bytes.

The evaluated DTs have been implemented through the creation of
Java DT engine (the core container), which follows the presented

esign patterns to support built-in modularity and a microkernel ori-
nted structure. The resulting solution is based on a shared multi-thread
ngine able to effectively implement the DT behavior and to define
ts shadowing procedures, data processing, and the interaction with
xternal entities through dedicated digital, physical, and management
nterfaces. Each DT is responsible to digitalize a target MQTT device
anaging incoming packets to: (i) process and adapt received payloads

o the standard Sensor Measurement Lists (SenML) (Jennings et al.,

018) data format; (ii) evaluate and maintain the internal status; and
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Fig. 7. Phases of the illustrative scenario: initial deployment (left), context variation (center), and deployment adaptation (right).
(iii) handle possible incoming commands and re-configuration requests
sent by applications. Such elementary DTs publish their status variation
(always using SenML) to a dedicated MQTT message broker, i.e., the
so called DTs Broker. Such a broker may be defined as a digital
broker to identify its responsibility to handle only packets from DT and
applications.

According to the design patterns presented in Section 4, each DT
has been structured as a pod where the core engine container is
put side by side with a sidecar to support communication proxying
functionalities and an ambassador to handle a uniform and fine-grained
metric collection (we recall patterns and ideas presented in Figs. 4 and
5).

Following the same patterns and re-using the DT core engine men-
tioned above, we defined the behavior of a Composed Digital Twin
(CDT). Such a CDT is responsible for periodically aggregating infor-
mation and statuses from other active DTs and exposing the new
computed representation to applications and services interested to have
an aggregate representation of the target industrial machine. The CDT
directly observes the variations of connected DTs, reading data from
the digital broker and publishing its new status on the same broker but
on a different topic.

The application layer is about industrial digital services, i.e., those
applications built on top (and by means) of the abstractions provided
by the DT layer. A telemetry observer and a real-time telemetry ob-
server are the industrial applications part of this illustrative scenario.
It is worth noting that such observers differ in the entanglement they
demand. Specifically, the real-time telemetry observer demands that
observed DTs are strongly entangled with their PO counterparts in
order to receive fresh data. This means the information dispatched
among IIoT devices and DTs must flow upward and downward as close
to real-time as possible.

Context variation. The context variation phase is the result of a drop in
network performance, slowing down information circulation between
DTs executed in the control room and IIoT devices active at the shop
floor. As a result, DTs can no longer guarantee a strong entanglement
with their PO counterparts. This generates a misalignment between the
physical entity and its digital representation.

The network degradation has a direct impact on different com-
ponents and multiple metrics. Specifically, it will directly affect the
message rate received on each DT and, consequently, the same metric
detected by both telemetry and real-time observers. Similarly, the CDT
will slow-down the reconstruction of the aggregated representation,
resulting misaligned with the respect to the real industrial machine.
Note that the acceptable misalignment between DT and PO states is
strongly associated to the nature of applications and services, and
different tolerance levels may coexist in the same deployment. In
our experimental setup, only the real-time observer is affected by a
misalignment between POs and DTs, while the telemetry observer is
used just for reporting purposes.

Thanks to the possibility of effectively monitoring every single
aspect of the involved entities (e.g., through ambassadors on each DT
adapting and collecting metrics), we may have multiple decision points
able to detect the context variation and react to it by adapting the
deployment to restore the target working conditions. In the conducted
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experiments, this responsibility was delegated to the control room,
since it has global awareness on the deployment and thus can determine
how and when it should take management actions.

Deployment adaptation. The context variation phase triggers the de-
ployment adaptation phase, which ends with a steady state. The ob-
jective of the deployment adaptation phase is to properly react to
meet target conditions. In the context of the illustrative scenario, the
objective is to dynamically re-configure DTs and applications to meet
the demanded level of entanglement through a migration of target
components directly on ENs in the shop floor.

This adaptation requires to: (i) deploy a new MQTT digital broker
at the edge and configure it to work in bridged mode with the other
one already running in the control room to automatically synchronize
target topics; (ii) migrate DTs and the real-time telemetry observer on
the edge to be physically close to the IIoT devices; and (iii) re-configure
DTs and the observer to work in the new environment with the correct
brokers.

5.1. Testbed setup

The testbed consisted of six Virtual Machines (VMs), each running
Ubuntu 20.04 LTS and provided with two vCPU and four GB of RAM.
Fig. 8(a) shows the physical setup (i.e., roles of the VMs and their
physical location), while Fig. 8(b) the cluster pods (i.e., containerized
applications deployed in the cluster).

We used Kubernetes (v1.21.11),1 the de facto industry standard
container-orchestration system, to build a cluster of four VMs. The
cluster spreads from the control room (a single control plane and
two cluster nodes) to the shop floor (one EN). On the one hand,
ENs are not as resource-rich as cluster nodes, which typically rely on
commodity server technology. On the other hand, ENs are physically
closer to data sources. Thus, the rationale for making ENs part of the
cluster is not only to add mere resources to the cluster, but more
importantly to orchestrate services physically close to data sources
(e.g., to improve entanglement). We chose Docker (v20.10.14)2 as the
container runtime and Flannel (v0.17.0)3 as the network plugin. On top
of Kubernetes, we deployed Istio (v1.10.0)4 as the service mesh. We
configured Istio to automatically inject Envoy proxies5 as sidecars to
our services running within the cluster. By doing so, such Envoy proxies
intercept all inbound and outbound traffic of the services. This allows
Istio to enforce policies and collect telemetry for other monitoring
systems. In this regard, we also integrated Istio with telemetry add-
ons, i.e., Prometheus (a monitoring system and time series database),6

1 https://github.com/kubernetes/kubernetes.
2 https://github.com/docker.
3 https://github.com/flannel-io/flannel.
4 https://github.com/istio/istio.
5 https://github.com/envoyproxy/envoy.
6 https://github.com/prometheus/prometheus.

https://github.com/kubernetes/kubernetes
https://github.com/docker
https://github.com/flannel-io/flannel
https://github.com/istio/istio
https://github.com/envoyproxy/envoy
https://github.com/prometheus/prometheus
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Fig. 8. Comparison between the physical testbed and the structure of involved cluster pods.
Fig. 9. Traffic flows at the digital and application level.
Grafana (a monitoring tool for visualizing time series data in dash-
boards),7 Kiali (a management console for the service mesh),8 and
Jaeger (an end-to-end distributed tracing system).9

We deployed the containerized DTs and the digital broker in the Ku-
bernetes cluster. Note that Kubernetes allows to specify both resource
requests and limits. Specifically, a resource request states the minimum
amount of a given resource a container needs to run, while a resource
limit indicates the maximum amount of that resource a container can
take while running. We set the memory request and limit for DTs to 64
MB and 128 MB, respectively.

A distinct VM hosted PO counterparts of DTs. In this case, PO
counterparts were IIoT devices and a broker used by such devices
to publish MQTT messages. The last VM acted as control node, in
charge of configuring the testbed, running the experiments consistently
and reproducibly, and gathering the performance results for further
analysis. In this regard, we used Ansible (a configuration management
tool),10 Shell scripts, and Python programs.

5.2. Performance results

The performance results we collected detail (i) the overhead intro-
duced by the used technology stack to enable adaptive, autonomous,
and context-aware DTs and (ii) how the whole system behaves while
adapting to triggering events. The discussion about the performance
results revolves around the steady and transitory states the cluster

7 https://github.com/grafana/grafana.
8 https://github.com/kiali/kiali.
9 https://github.com/jaegertracing/jaeger.
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https://github.com/ansible/ansible.
went through while performing the phases depicted by the illustrative
scenario. In particular, we measured both resource (i.e., CPU and
memory) and network consumption. We extracted the performance
results from Prometheus with a per-pod granularity.

Steady state. In the illustrative scenario, a steady state (i.e., a stable
cluster configuration over a period) occurs twice: throughout the initial
deployment phase (up to the context variation phase) and in the
adaptive deployment phase once the new cluster configuration occurs.
Fig. 9 details the cluster pods for the digital and application levels
during the steady states of the initial (left side) and adaptive (right side)
deployment.

Table 1 shows the average resource consumption in a steady state of
the following macro-components: Kubernetes, Istio, monitoring addons,
and DTs. Fig. 8(b) breaks down such macro-components on a per-
pod basis. Kubernetes consumed the majority of resources overall.
Specifically, it took 265.75 milliCPU, 2.02 GB (memory), 450.23 KB
(traffic in), and 516.06 KB (traffic out). Although the highest in this
comparison, the resources allocated for Kubernetes are still minimal.
This makes Kubernetes suitable for typical devices within industrial
environments. In addition, note that there are also Kubernetes dis-
tributions designed explicitly for resource-constrained scenarios. Such
distributions may represent a reasonable option for those environments
that cannot afford the overhead introduced by vanilla Kubernetes or
need to support specific use cases (e.g., semi-autonomous ENs).

An important outcome of the above performance results is that our
DT implementation is extremely frugal. It is worth noting that the item
‘‘Digital Twins’’ in Table 1 regards the DTs themselves and also side-
cars and ambassadors (deployed as containers within the same pod).
In particular, the DTs altogether consumed 43.31 milliCPU, 0.48 GB
(memory), 4.74 KB (traffic in), and 15.26 KB (traffic out). The overhead

https://github.com/grafana/grafana
https://github.com/kiali/kiali
https://github.com/jaegertracing/jaeger
https://github.com/ansible/ansible
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Fig. 10. Introduced overhead in terms of CPU and Memory consumption with respect to a basic Kubernetes deployment during the phases of migration and rollback.
Table 1
Steady state averaged collected performance metrics.

Metric Unit Component AVG STD

CPU milliCPU Kubernetes 265.75 8.05
CPU milliCPU Istio 12.00 0.78
CPU milliCPU Monitoring addons 4.51 0.78
CPU milliCPU Digital twins 43.31 4.38

Memory GB Kubernetes 2.02 0.01
Memory GB Istio 0.13 0.01
Memory GB Monitoring addons 0.23 0.001
Memory GB Digital twins 0.48 0.003

Traffic in KB Kubernetes 450.23 18.01
Traffic in KB Istio 2.62 0.44
Traffic in KB Monitoring addons 70.67 7.40
Traffic in KB Digital twins 4.74 1.56

Traffic out KB Kubernetes 516.06 19.31
Traffic out KB Istio 27.47 4.52
Traffic out KB Monitoring addons 7.02 0.82
Traffic out KB Digital twins 15.26 0.75

Table 2
Average execution time for involved migration steps.

Id Action Entity Location Exec. [ms]

1 CREATE Edge digital broker On edge 7.34
2 CREATE Digital twin 1 On edge 8.19
3 CREATE Digital twin 2 On edge 8.13
4 CREATE Digital twin 3 On edge 8.28
5 CREATE Real-time observer On edge 7.36
6 DELETE Digital twin 1 From control room 3.34
7 DELETE Digital twin 2 From control room 3.23
8 DELETE Digital twin 3 From control room 3.20
9 DELETE Real-time observer From control room 2.40

Table 3
Average execution time for involved rollback steps.

Id Action Entity Location Exec. [ms]

1 CREATE Digital twin 1 On control room 8.19
2 CREATE Digital twin 2 On control room 8.18
3 CREATE Digital twin 3 On control room 8.32
4 CREATE Real-time observer On control room 7.31
5 DELETE Digital twin 1 From edge 3.42
6 DELETE Digital twin 2 From edge 3.22
7 DELETE Digital twin 3 From edge 3.28
8 DELETE Real-time observer From edge 2.39
9 DELETE Edge digital broker From edge 2.46

introduced by sidecars and ambassadors is negligible. This notable
result fosters the use of design patterns whose benefits go far beyond
their costs.

Transitory state. A transitory state happens while moving from one
cluster configuration to another, and its analysis allows us to quantify
the overhead of a given transition. Typically, a transition is triggered
11
by a context variation, which forces the system to move towards a
new configuration. In the illustrative scenario, the transition is from the
initial deployment to the adaptive deployment. Such transition occurs
since the cluster as it was configured in the initial deployment phase
no longer meets the entanglement demanded by the real-time telemetry
observer. The proposed autonomous, adaptive, and context-aware DTs
can deal with context variation, forcing the cluster to move to a new
configuration, i.e., the adaptive deployment.

For completeness, we experimentally assessed both the transition
from the initial deployment (Fig. 9(a)) to the adaptive deployment
(Fig. 9(b)) and vice versa to rollback to the initial configuration of
the deployment. Table 2 itemizes the steps to move from the initial
deployment to the adaptive deployment (Table 3 presents the opposite).
It is worth mentioning that the container images were pre-pulled on the
cluster nodes. Therefore, a CREATE step did not require downloading
the related container image from a repository. Also, we executed the
steps sequentially, which means the total time of a given transition is
the sum of every single step. Note that some steps may be executed
concurrently to speed up the transition.

As a result (without parallel step execution), on average the overall
migration time was around 55 s and the rollback procedure required
about 50 s. Such time intervals include the reported action steps, the
execution time required by the container to start internal modules, con-
nect to brokers and start processing incoming data, and the overhead
introduced by Ansible.

Graphs in Figs. 10 and 11 depict the resource consumption dur-
ing the above-mentioned transitory states. The first peak regards the
transition from the initial deployment to the adaptive deployment,
whereas the second one is the rollback. The peak went over a steady-
state resource consumption of around 500 milliCPU, 360 MB (memory),
1600 KB (traffic in), and 1800 KB (traffic out). Graphs in Fig. 12 report
instead the distribution of CPU and memory consumption of the DT
pods considering both the migration and the rollback procedures. As
expected, reported values confirm the trends illustrated in the previous
timeline analysis, i.e., the overall limited resource consumption of DT
pods and their small variation during the transitions. The CDT kept
the same value distribution since it was not directly involved in the
migration procedures while DTs increased CPU and memory load only
during the transitory period. In both analysis, it is important to stress
that the memory occupied by removed containers was released by the
virtualization system only after a specific time period (around 5 min).
For this reason, in Fig. 10 the occupied memory does not decrease
immediately after the transition peak and in Fig. 12 there are two main
density areas associated to the memory (which also takes into account
the allocation of removed pods).

Let us finally note that the proper management of transition phases
is paramount to ensure the fulfillment of demanded requirements in the
case of dynamically changing environmental conditions. In this regard,
future digital factories will need to activate orchestration mechanisms,
while one-shot deployments will not be suitable anymore. Accordingly,
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Fig. 11. Received and transmitted KB by Kubernetes, Istio, Monitoring addons and DT applications during the phases of migration and rollback.
Fig. 12. Analysis of DT Pods resource consumption in terms of CPU and Memory during the phases of migration and rollback.
transitory states must be balanced between required resources to absorb
the peak, the following estimated steady-state time, and competing
application-level requirements.

6. Related work

Patterns are encapsulations of reusable common problems and so-
lutions under specific contexts. The general idea was conceptualized
for the first time by Christopher Alexander in 1966 (Alexander, 1966)
and it took 20 years before Cunningham et al. started experimenting
with patterns applied to programming (Cunningham and Beck, 1986).
Popularity of software design patterns grew within the industry since
the landmark contribution of Gamma et al. in 1993 (Gamma et al.,
1993) while the proper formalization of the concept finally arrived
in early 2000s (Baroni et al., 2003). A number of studies have been
conducted for categorizing and evaluating patterns both empirically
and analytically (Ali and Elish, 2013; Ampatzoglou et al., 2013; Riaz
et al., 2015; Mayvan et al., 2017). The impact of design patterns on
software quality attributes has been also extensively evaluated along
many directions. Wedyan and Abufakher (2020) recently surveyed 50
studies published between 2000 and 2018 and showed how the correct
use of well-documented software patterns impact on software qualities.

IIoT applications have recently gained remarkable traction, thus
requiring system designers to familiarize with software patterns specific
to the IoT and industrial domains. Ray (2016) conducted a survey
on IoT cloud platforms and their impacts on industrial solutions. Aly
et al. (2018) studied the state-of-practices of industrial IoT technologies
and highlighted how integration challenges have significantly shifted
the landscape of Internet-based collaborative services and applications.
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Washizaki et al. (2020) published a comprehensive survey on IoT
architecture and design patterns showing, among other things, the
relevance of documenting and properly classifying software patterns to
promote their widespread adoption.

On top of IIoT solutions, flexible and self-adapting software systems
are being developed. However, due to their high complexity, adaptive
components might be difficult to design, test, and deploy. Ramirez and
Cheng (2010) proposed a catalog of adaptation-oriented design patterns
supporting the engineering of systems capable of adaptive behaviors
and facilitating the segregation of functional and adaptive logic.

Recently the role of DTs has been re-analyzed and re-shaped both
by the scientific and the industrial communities. The primary aim is
to clearly identify their definitions and responsibilities as well as to
identify new challenges and opportunities among different application
domains, in particular in relation to IoT and IIoT (Tao et al., 2019;
Barricelli et al., 2019; Bellavista et al., 2022). A shared reference
architecture (Malakuti and Grüner, 2018; Souza et al., 2019) has been
proposed within the context of the Industrial Internet of Things Con-
sortium, taking into account DT relationships, composition, and main
services (e.g., prediction, maintenance, safety). Such architecture also
covers different production stages and use cases, in particular related
to manufacturing (Kritzinger et al., 2018) and product design (Wag-
ner et al., 2019). DTs are increasingly being considered a part of
cyber–physical system architectures, realizing twin models of assets and
machines (Josifovska et al., 2019), the computational modules of the
physical components of cyber–physical systems (Alam and El Saddik,
2017), or within the RAMI4.0 ecosystem as an important pattern for
the manufacturing process and the administration shell (Anderl et al.,
2018; Tantik and Anderl, 2017). Minerva and Crespi (2021) proposed
a definition and characterization of DTs in relation to software ar-

chitectures and their platform implementations, together with their
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applicability in different industries, while Tekinerdogan and Verdouw
(2020) proposed a catalog of software patterns for designing complex
systems specifically based on the DT technology. While these papers
represent solid groundwork, the investigation and definition of DT-
oriented software modeling and design patterns matching DT core
properties and responsibilities are still an open research opportunity
characterized by a variety of methodological and technical challenges
that have not yet been fully analyzed and addressed, as also illustrated
in Hribernik et al. (2021) and Koulamas and Kalogeras (2018).

By focusing on the adoption of micro-services for the development
of DTs, Siqueira and Davis (2022) provided a thorough analysis of
the state-of-the-art literature stressing how such approaches allow to
develop the software infrastructure supporting Industry 4.0. In particu-
lar, the survey outlines that even if containerization can be regarded
as a mature technology for cloud environments, on embedded de-
vices there is still limited support. In addition, there is the need of
fully supporting interoperability with orchestrators (and in particular
Kubernetes) to ensure DT seamless coordination. Liu et al. (2022a)
analyzed the smart meter industrial use case by adopting container-
based DTs on the server side to better manage novel applications. In
particular, the adoption of containerized DTs of smart meters hosted
on server-side distribution grids allows to provide a wider set of ap-
plications while minimizing the upgrading procedures on user-side
smart meters. Azarmipour et al. (2020) pursued the key objective of
developing a dynamic management solution by developing the MES
and programmable logic controllers as composition of multiple soft-
ware modules based on a micro-services approach. In particular, the
proposed architecture aims at facilitating the coordination among the
MES and control/optimization/management environments, by allowing
their communication among service interfaces. To support the deploy-
ment of DTs within industrial environments, Damjanovic-Behrendt and
Behrendt (2019) recognized the importance of adopting well-known
solutions integrated as containerized micro-services. In particular, their
proposal focuses on open source projects, by identifying three tech-
nology building blocks to develop the DT core components (i.e., Data
Manager, Models Manager, and Services Manager). The implementa-
tion of the DT core components is based on Apache Kafka, RabbitMQ,
Elasticsearch, Grafana, and Hadhoop (among the others). Finally, Wang
et al. (2022) presented a notable vehicular use-case demonstrating
the suitability of DTs and micro-services in a challenging mobile en-
vironment. The proposed architecture is composed of three building
blocks in the physical space, i.e., Human, Vehicle, and Traffic, and
their related DTs in the digital space implemented as micro-services,
i.e., the Human Digital Twin with user management and driver type
classification, the Vehicle Digital Twin with cloud-based advanced
driver-assistance systems, and the Traffic Digital Twin with traffic flow
monitoring and variable speed limit.

In this challenging ecosystem, DTs are conceived as flexible and
adaptive software entities that can be exploited to build context-
aware, autonomous, and adaptive applications across multiple do-
mains (Hribernik et al., 2021). The ability to design and build DTs that
are aware of their own context and capable of autonomous decision-
making/adaptation represents a strategic pillar for the next generation
of cyber–physical systems, as presented for example in Park et al.
(2020) to support personalized production systems and in Cronrath
et al. (2019) to enable intelligent manufacturing. In this context,
the MAPE-K feedback loop (Arcaini et al., 2015; Kephart and Chess,
2003) represents a well-adopted reference model for managing and
controlling autonomous and self-adaptive systems, and its adoption has
enabled relevant improvements in autonomous systems over the past
decades. Recently, its adoption in the DT ecosystem (Snijders et al.,
2020; Feng et al., 2022; Flammini, 2021) has opened up the possibility
of designing smart, resilient, and trustworthy DT-driven cyber–physical
applications through enhanced awareness and adaptiveness. Even if we
support and foster this approach by considering it suitable for possible
13

integration with our research results presented here, at the current
stage our proposal primarily focuses on DT-oriented software modeling
and design patterns with the aim of enabling a simplified and structured
definition of context-aware, autonomous, and adaptive DTs since their
foundations.

Overall, the above analysis demonstrates the current interest in
developing IIoT solutions and DTs based on clear design principles,
with the primary goal of making their development easier and in-
crease their adaptability and flexibility. However, the state-of-the-art
literature either only proposes high-level guidelines, e.g., stressing the
importance of micro-services architectures but without detailing how
to design them, or focuses on specific scenarios, e.g., by proposing
vertical solutions for specific markets. Instead, we presented an in-
depth analysis of DT requirements to support adaptability, autonomy,
and context-awareness in digital factories. Then, we identified best
design patterns allowing to satisfy such requirements, thus providing a
more general solution that can be adopted in a wide variety of Industry
4.0 environments.

7. Conclusions

In this paper, we discussed how system-wide properties of near
coming digital factories such as adaptivity, autonomy, and context-
awareness have to be supported by software components and architec-
tures showing, to some extent, the same properties. To this purpose, we
translated the general meaning of adaptivity, autonomy, and context-
awareness into well-defined, actionable requirements for DTs. We also
discussed the relevance of adopting well-understood norms and stan-
dards for building deployments counting thousands of DTs and POs and
proposed a set of software and architectural patterns that can be used
for implementing the identified requirements in a scalable and reliable
way.

In light of the benefits that the proposed solution brings to the
development and management of industrial DTs, we implemented a
working prototype to quantify the costs in terms of networking and
computational resources due to required additional software layers.
Achieved performance results not only demonstrated the effectiveness
of the proposed approach, but also how it can be implemented on top
of widely adopted solutions, such as containerization and Kubernetes.

Despite the interesting insights achieved in this work and mainly
related to the efficient and standardized modeling/design phases of
DTs, the road to the complete definition and efficient support of their
life-cycle in industrial contexts is still long. First of all, to encourage
the large scale adoption of our approach, we plan to deeply investigate
the associated security concerns. Secondly, we intend to further demon-
strate the findings originally presented in this paper by assessing and
validating them in additional realistic case studies, resembling different
and more complex aspects of modern industrial environments. Finally,
we plan to further investigating the entanglement property and how it
can be actually expressed in numerical terms (and efficiently exploited
in practical implementation terms) for re-configuring either DTs or the
orchestration environment.
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