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Hybrid Knowledge Bases based on Lifschitz’s logic of Minimal Knowledge with Negation as Failure
are a successful approach to combine the expressivity of Description Logics and Logic Programming
in a single language. Their syntax, defined by Motik and Rosati, disallows function symbols. In
order to define a well-founded semantics for MKNF HKBs, Knorr et al. define a partition of the
modal atoms occurring in it, called the alternating fixpoint partition. In this paper, we propose an
iterated fixpoint semantics for HKBs with function symbols. We prove that our semantics extends
Knorr et al.’s, in that, for a function-free HKBs, it coincides with its alternating fixpoint partition.
The proposed semantics lends itself well to a probabilistic extension with a distribution semantic
approach, which is the subject of future work.

1 Introduction

When modelling complex domains it is of foremost importance to choose the logic that better fits with
what must be represented. Therefore, many languages have been defined, based on First Order Logic
such as Logic Programming (LP) or Description Logic (DL). These languages share many similarities
but, on the other hand, they differ in the domain closure assumption they make: closed-world assumption
for LP and open-world assumption for DLs.

Since many domains, such as legal reasoning [1], require different closure assumptions to coexist in
the same model, combinations of LP and DL have been proposed by several authors. One of the most
effective approaches is called Minimal Knowledge with Negation as Failure (MKNF) [7]. MKNF was
then applied to define hybrid knowledge bases (HKBs) [10], which are defined as the combination of a
logic program and a DL KB.

In the original HKB language, function symbols are not allowed. However, this is a feature that is
useful in many domains. Consider, for example, the behaviour of a virus, which can mutate and spillover
may happen due to each mutation. To trace the evolution of a virus, it is necessary to identify the sequence
of spillover events starting from the initial version of the virus. We can represent the spillover count by
Peano numbers, by means of a function symbol s/1 modelling that, e.g., s(Y ) represents the spillover
event that follows the spillover identified by Y , which may have happened after another spillover, and so
forth.

In this paper, we propose to extend the HKB syntax with function symbols, and we present an
iterated fixpoint semantics for HKBs with Function Symbols (HKBFS). We prove that our semantics
coincides with that of [5] and [8] in the case of HKBs not including function symbols, and therefore can
be considered an extension of that semantics to the case with function symbols.
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The proposed semantics will also serve as the basis for a further (probabilistic) extension of the
language, based on a distribution semantics approach, which is the subject of an ongoing effort.

We provide the necessary background notions in Section 2. We define the syntax and semantics of
HKBFSs in Section 3. In Section 4, we prove that our semantics extends Knorr et al’s. We conclude the
paper in Section 5.

2 Background

In this section, we provide the necessary background notions on the syntax and semantics of the language
of MKNF Hybrid Knowledge Bases, which we extend with function symbols in Section 3. We start with
Description Logics, which are a part of the language of HKBs.

2.1 Description Logics

Description Logics (DLs) are decidable fragments of First Order Logic used to model ontologies [3].
Usually their syntax is based on concepts and roles, corresponding to unary and binary predicates, re-
spectively. In the following we briefly recall the DL A L C ; see [2] for a complete introduction to
DLs.

A L C ’s alphabet is composed of a set C of atomic concepts, a set R of atomic roles and a set I of
individuals. A concept C is defined by:

C ::=C1|⊥|>|(CuC)|(CtC)|¬C|∃R.C|∀R.C

where C1 ∈ C and R ∈ R.
A TBox T is a finite set of concept inclusion axioms C v D, where C and D are concepts. An ABox

A is a finite set of concept membership axioms a : C and role membership axioms (a,b) : R, where C is
a concept, R ∈ R and a,b ∈ I. An A L C knowledge base K = (T ,A ) consists of a TBox T and an
ABox A .

DL axioms can be mapped to FOL formulas by the transformation π shown in Table 1 for the A L C
DL [15]. π is applied to concepts as follows:

πx(A) = A(x)
πx(¬C) = ¬πx(C)

πx(CuD) = πx(C)∧πx(D)
πx(CtD) = πx(C)∧πx(D)
πx(∃R.C) = ∃y.R(x,y)∧πy(C)
πx(∀R.C) = ∀y.R(x,y)→ πy(C)

2.2 MKNF-based Hybrid Knowledge Bases

The logic of Minimal Knowledge with Negation as Failure (MKNF) was introduced in [7] to support
epistemic queries on logic programs. MKNF was inspired by several works [6, 12] on epistemic query
answering on non-monotonic databases, which is essential when databases contain incomplete informa-
tion.

The syntax of MKNF is the syntax of FOL augmented with the modal operators K and not .
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Axiom Translation
C v D ∀x.πx(C)→ πx(D)
a : C πa(C)

(a,b) : R R(a,b)
a = b a = b
a 6= b a 6= b

Table 1: Translation of A L C axioms into FOL.

MKNF-based Hybrid Knowledge Bases [10] are combinations of DL axioms and LP rules that can
be mapped to a MKNF formula, as follows. As shown in [10], MKNF-based HKBs exhibits desirable
properties (faithfulness, i.e., preservation of the semantics of both formalisms when the other is absent;
tightness, i.e., no layering of LP and DL; flexibility, i.e., the possibility to view each predicate under both
open and closed world assumption; decidability), which each of the other existing approaches to LP and
DL integration lacks at least partly.

Definition 1. A Hybrid Knowledge Base (HKB) is a pair K = 〈O,P〉 where O is a set of axioms in a
description logic (Section 2.1) and P is a finite set of normal function-free logic programming rules.

In the rest of the paper, with a slightly abuse of notation, we will say that a HKB K1 = 〈O1,P1〉 is a
subset of a HKB K2 = 〈O2,P2〉, i.e., K1⊆K2 iff O1⊆O2 and P1⊆P2. Given a HKB K = 〈O,P〉,
an atom in P is a DL-atom if its predicate occurs in O , a non-DL-atom otherwise.

Definition 2 (DL-safety). A rule is DL-safe if each of its variables occurs in at least one positive non-
DL-atom in the body; a HKB is DL-safe if all its rules are DL-safe.

In this paper, we assume that all HKBs are DL-safe.
An HKB K = 〈O,P〉 can be mapped to an MKNF formula by extending the standard transforma-

tion π for DL axioms (Table 1) to support LP rules:

• if r is a rule of the form h← a1, . . . ,an,∼b1, . . . ,∼bm where all ai and b j are atoms and X is the
tuple of all variables in r, then π(r) = ∀X(Ka1∧ . . .∧Kan∧notb1∧ . . .∧notbm→Kh)

• π(P) =
∧

r∈P π(r)

• π(〈O,P〉) = Kπ(O)∧π(P)

This transformation is a way to give a semantics to a HKB: MKNF formulas have been given two-
valued [10] and three-valued [5] semantics, so the (two or three-valued) semantics of the resulting MKNF
formula can be taken as the semantics of the original HKB. We refer the reader to those articles for an
in-depth discussion of the semantics and their respective merits.

In the following, we recall the three-valued MKNF semantics, which is more relevant to our work.
For simplicity, we omit the signature Σ from the definitions.

Three-valued MKNF semantics [5] The truth of an MKNF formula ψ is defined relatively to a three-
valued MKNF structure (I,M ,N ), which consists of a first-order interpretation I over a universe ∆ and
two pairs M = (M,M1) and N = (N,N1) of sets of first-order interpretations over ∆ where M1 ⊆M and
N1 ⊆ N. Kψ is true (resp. false) with respect to (M,M1) if and only if ψ is true in all elements of M
(resp. not true in all elements of M1). N and N1 serve the same purpose for defining the truth value of
notψ .
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Satisfaction of a closed formula by a three-valued MKNF structure is defined as follows (where
p is a predicate, ψ is a formula, the values true, undefined and false follow the order false <
undefined < true, and ε I represents the individual or relation in the domain of discourse assigned to
ε by the interpretation I):

(I,M ,N )(p(t1, . . . , tn)) true iff (tI
1, . . . , t

I
n) ∈ pI

false iff (tI
1, . . . , t

I
n) 6∈ pI

(I,M ,N )(¬ψ) true iff (I,M ,N )(ψ) = false,
undefined iff (I,M ,N )(ψ) = undefined,
false iff (I,M ,N )(ψ) = true

(I,M ,N )(ψ1∧ψ2) min{(I,M ,N )(ψ1),(I,M ,N )(ψ2)}
(I,M ,N )(ψ1→ ψ2) true iff (I,M ,N )(ψ1)≤ (I,M ,N )(ψ2),

false otherwise
(I,M ,N )(∃x : ψ) max{(I,M ,N )(ψ[α/x])|α ∈ ∆}
(I,M ,N )(Kψ) true iff (J,(M,M1),N )(ψ) = true for all J ∈M,

false iff (J,(M,M1),N )(ψ) = false for some J ∈M1,
undefined otherwise

(I,M ,N )(notψ) true iff (J,M ,(N,N1))(ψ) = false for some J ∈ N1,
false iff (J,M ,(N,N1))(ψ) = true for all J ∈ N,
undefined otherwise

An MKNF interpretation over a universe ∆ is a non-empty set of first order interpretations over ∆. An
MKNF interpretation pair (M,N) over a universe ∆ consists of two MKNF interpretations M, N over
∆, with /0 ⊂ N ⊆ M. An MKNF interpretation pair (M,N) satisfies a closed MKNF formula ψ iff, for
each I ∈ M, (I,(M,N),(M,N))(ψ) = true. If M = N, then the MKNF interpretation pair (M,N) is
called total. If there exists an MKNF interpretation pair satisfying ψ , then ψ is consistent. An MKNF
interpretation pair (M,N) over a universe ∆ is a three-valued MKNF model for a given closed MKNF
formula ψ if

• (M,N) satisfies ψ and

• for each MKNF interpretation pair (M′,N′) over ∆ with M ⊆M′ and N ⊆ N′, where at least one of
the inclusions is proper and M′=N′ if M =N, there is I′ ∈M′ such that (I′,(M′,N′),(M,N))(ψ) =
false. In other words, M and N cannot be extended while satisfying ψ; the semantics implements
minimal knowledge by requiring as many possible worlds as possible.

2.3 Well Founded HKB Semantics

In [5], the well-founded model of an MKNF formula is defined as the three-valued MKNF model that,
intuitively, leaves as much as possible undefined. Not all HKBs have a well-founded model; MKNF-
coherent HKBs [8] have a unique well-founded model that is characterized by a partition of the atoms
that occur in rules, called the alternating fixpoint partition and defined by [5].

The NoHR query answering system [4] is based on the well-founded semantics for HKBs.
We recall these definitions below.
An MKNF formula ψ is ground if ψ does not contain variables. Given a hybrid MKNF knowledge

base K = 〈O,P〉, the ground instantiation of K is the KB Kg = 〈O,Pg〉 where Pg is obtained from
P by replacing each rule r of P with a set of rules substituting each variable in r with constants from
K in all possible ways. Let K = 〈O,P〉 be a ground HKB. Note that, if an HKB is DL-safe, it has the
same two-valued [10] and three-valued [5] MKNF models of its grounding over the constants that occur
in it, so it can be assumed, without loss of generality, that the HKB is ground. The set of known atoms
of K , KA(K ), is the set of all (ground) atoms occurring in P [10].
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Definition 3. A partition of KA(K ) is a pair (P,N) such that P⊆N ⊆KA(K ); (P,N) is exact if P = N.

Given S⊆ KA(K ), the objective knowledge of O with respect to S is the set of first order formulas

OBK ,S = {π(O)}∪S (1)

where π is the standard transformation π for DL axioms (Table 1).
The operators RK , DK and TK derive atoms that are consequences of a positive HKB K (i.e.,

one where no negative literals occur in rules) and a set S of atoms. RK (S) is the set of immediate
consequences due to rules, i.e., the heads of rules in P whose bodies are composed of atoms that
are a subset of S; DK (S) is the set of immediate consequences due to axioms, i.e., the atoms from
KA(K ) entailed by OBK ,S; and TK (S) = RK (S)∪DK (S). Given an HKB K and a set of atoms S ⊆
KA(K ), the following transformations, which yield positive knowledge bases, are defined: the MKNF
transformation K /S is 〈O,P/S〉 where P/S is the set of rules h← a1, . . . ,am such that there exists in
P a rule h← a1, . . . ,am,∼b1, . . . ,∼bn with {b1, . . . ,bn}∩S = /0, and the MKNF-coherent transformation
K //S is 〈O,P//S〉 where P//S is the set of rules h← a1, . . . ,am such that there exists in P a rule
h← a1, . . . ,am,∼b1, . . . ,∼bn with {b1, . . . ,bm}∩S = /0 and OBK ,S 6|= ¬h.

Since, as shown in [5], TK is monotonic if K is a ground positive HKB, the following transfor-
mations of sets of atoms are well defined: ΓK (S) = lfp(TK /S) and Γ′K (S) = lfp(TK //S). Using these
transformations, it is possible to define a partition of K ’s known atoms as follows.

Definition 4. For an HKB K , the sequences of sets of atoms P and N are defined as follows: P0 = /0,
N0 = KA(K ), Pn+1 = ΓK (Nn) and Nn+1 = Γ′K (Pn), Pω =

⋃
Pi, Nω =

⋂
Ni.

The pair (Pω ,Nω) is called K ’s alternating fixpoint partition.

[8] identify the class of MKNF-coherent HKBs, i.e., those whose alternating fixpoint partition defines
a well-founded model, as well as some sufficient conditions for a HKB to be MKNF-coherent.

We assume that the HKBs that we consider are MKNF-coherent.

Definition 5 (MKNF-coherent HKB (Def. 10 of [8])). An HKB K is MKNF-coherent if (IP, IN), where
IP = {I | I |= OBK ,Pω

} and IN = {I | I |= OBK ,Nω
}, is a three-valued MKNF model of K .

For MKNF-coherent HKBs, the model determined by the alternating fixpoint partition as in Defini-
tion 5 is the unique well-founded model.

Proposition 1 (Proposition 2 of [8]). If K is an MKNF-coherent HKB, then it has the unique well-
founded model ({I | I |= OBK ,Pω

},{I | I |= OBK ,Nω
})

We report some sufficient conditions for MKNF-coherence from [8] in Appendix A.
Intuitively, the alternating fixpoint partition marks each known atom in KA(K ) and induces the well

founded model.

3 HKBs with function symbols

In this section, we extend the language of HKBs (Section 2.2) to allow function symbols. We define the
syntax in Section 3.1 and the semantics in Section 3.2. We also provide a running example (Example
1) of the proposed syntax and semantics, which takes advantage of function symbols to model natural
numbers.
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3.1 Language

The syntax extension amounts to lifting the function-free limitation of the original HKB syntax.

Definition 6 (Hybrid Knowledge Base with Function Symbols). A Hybrid Knowledge Base with Func-
tion Symbols (HKBFS) is a Hybrid Knowledge Base (Section 2.2) whose rules can contain function ap-
plications.

The definition of DL-safety (Def. 2) also applies to HKBFSs. In this paper, we assume that all
HKBFSs are DL-safe.

Example 1 (Spillover). Let K = 〈O,P〉, where

P = safe(X)←∼spillover count(X ,s(s(Y ))).

spillover count(X ,s(Y ))← virus(X),mutated(X),spillover count(X ,Y ).

spillover count(X ,0)← virus(X).

virus(t).

O = ∃mutation.>v mutated

t : ∃mutation.>

This HKB models that t is a virus and there is at least a mutation of the virus t. If there exists at least
one mutation for virus t, it is mutated, and so, a spillover may have happened. Finally, we can model the
series of spillover events by means of predicate spillover count. Function s(Y ) represents the successor
of Y . Finally, a virus is safe if the spillover count is less than two.

3.2 Iterated fixpoint HKBFS semantics

In this section, we define the semantics of an HKBFS as a partition of its known atoms.
We proceed in a bottom-up way, similarly to [11]. In particular, we define two inner operators

(Def. 8) that, assuming sets of true and false atoms (a 3-valued interpretation for the HKBFS, Def. 7)
possibly derive new true and false atoms, respectively. These operators are monotonic in their argument
(Proposition 2), so they have a least and a greatest fixpoint, which are used to define the outer operator
(Def. 9) which updates the 3-value interpretation. The outer operator is itself monotonic (Proposition 4),
so it has a least fixpoint, which we define (Definition 10) as the semantics of the HKBFS.

Definition 7. A 3-valued interpretation for an HKBFS K is a pair 〈IT, IF〉 where IT and IF are disjoint
sets of K ’s known atoms, i.e., IT ⊆ KA(K ), IF ⊆ KA(K ), IT∩ IF = /0

Given a 3-valued interpretation 〈IT, IF〉, an atom a is true in it if a ∈ IT, false in it if a ∈ IF, undefined
in it otherwise.

We also define 〈IT, IF〉 ≤ 〈I′T, I′F〉 iff IT ⊆ I′T and IF ⊆ I′F.

We denote by Int3K the set of 3-valued interpretations for an HKBFS K .

Definition 8. Given a ground HKBFS K = 〈O,P〉, and a 3-valued interpretation I = 〈IT, IF〉 for K ,
we define the operators OpTrueK

I : 2KA(K )→ 2KA(K ) and OpFalseK
I : 2KA(K )→ 2KA(K ) as

• OpTrueK
I (Tr) = {a ∈ KA(K ) | there is a clause a← a1, ...,an,∼b1, . . . ,∼br in the grounding of

P such that for every i (1≤ i≤ n) ai is true in I or ai ∈ Tr, and for every j (1≤ j≤ r) b j is false
in I }∪{a ∈ KA(K )|OBK ,IT∪Tr |= a};
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• OpFalseK
I (Fa) = {a ∈ KA(K ) | OBK ,IT |= ¬a, or, for every clause a← a1, ...,an,∼b1, . . . ,∼br

in the grounding of P , there is some i (1≤ i≤ n) such that ai is false in I or ai ∈ Fa, or there is
some j (1≤ j ≤ r) such that b j is true in I }∩{a ∈ KA(K )|OBK ,KA(K )\(IF∪Fa) 6|= a}

In words, OpTrueK
I (Tr) represents the true atoms that can be derived from K knowing I and true

atoms Tr, while OpFalseK
I (Fa) represents the false atoms that can be derived from K by knowing I

and false atoms Fa.

Proposition 2. Given an HKBFS K and a 3-valued interpretation I for K , OpTrueK
I and OpFalseK

I

are both monotonic in their argument.

Proof. Monotonicity of OpTrueK
I means that if Tr ⊆ Tr′, then OpTrueK

I (Tr)⊆ OpTrueK
I (Tr′). Analo-

gously, monotonicity of OpFalseK
I means that if Fa⊆ Fa′, then OpFalseK

I (Fa)⊆ OpFalseK
I (Fa′).

Regarding OpTrueK
I , if a ∈ OpTrueK

I (Tr), Definition 8 ensures that either there is a clause a←
a1, ...,an,∼b1, . . . ,∼br in P’s grounding such that for each 1 ≤ i ≤ n ai is true in I or ai ∈ Tr and for
each 1 ≤ j ≤ r b j is false in I , or OBK ,IT∪Tr |= a, i.e., π(O)∪ IT∪Tr |= a. Since Tr ⊆ Tr′, if ai ∈ Tr,
then also ai ∈ Tr′, and if π(O)∪ IT∪Tr |= a, then also π(O)∪ IT∪Tr′ |= a by the monotonicity of first
order logic. So a ∈ OpTrueK

I (Tr′).
Regarding OpFalseK

I , if a ∈ OpFalseK
I (Fa), then either

• OBK ,IT |= ¬a, or

• for each clause a← a1, ...,an,∼b1, . . . ,∼br in P there is some i (1≤ i≤ n) such that either ai is
false in I or ai ∈ Fa (and since Fa ⊆ Fa′, ai ∈ Fa′), or some j (1 ≤ j ≤ r) such that b j is true in
I .

Also, if OBK ,KA(K )\(IF∪Fa) 6|= a, then OBK ,KA(K )\(IF∪Fa′) 6|= a by the monotonicity of first order logic.
So a ∈ OpFalseK

I (Fa′).

Proposition 3. Given an HKBFS K , OpTrueK
I and OpFalseK

I are monotonic in I , i.e., if I and I ′

are three-valued interpretations for K such that I ≤I ′, then

1. for each Tr ⊆ KA(K ), OpTrueK
I (Tr)⊆ OpTrueK

I ′(Tr)

2. for each Fa⊆ KA(K ), and OpFalseK
I (Fa)⊆ OpFalseK

I ′(Fa).

Proof. 1. If a ∈ OpTrueK
I (Tr), then

• either there is a clause a← a1, ...,an,∼b1, . . . ,∼br in P’s grounding such that for each i
(1≤ i≤ n) ai is true in I (and then it is true in I ′) or ai ∈ Tr and for each j (1≤ j ≤ r) b j

is false in I (and then it is also false in I ′); which would ensure a ∈ OpTrueK
I ′(Tr)

• or OBK ,IT∪Tr |= a, i.e., π(O)∪ IT∪Tr |= a. Since IT ⊆ I′T, then also π(O)∪ I′T∪Tr′ |= a by
the monotonicity of first order logic; which, also, would ensure a ∈ OpTrueK

I ′(Tr)

So a ∈ OpTrueK
I ′(Tr).

2. If a ∈ OpFalseK
I (Fa), then

• OBK ,KA(K )\(IF∪Fa) 6|= a, so also OBK ,KA(K )\(I′F∪Fa)u 6|= a because I′F ⊇ IF and by the mono-
tonicity of first order logic;

• and
– either OBK ,IT |= a, so also OBK ,I′T

|= a by the monotonicity of first order logic;
– or for all clauses a← a1, ...,an,∼b1, . . . ,∼br in P’s grounding either there exists an

ai ∈ IF∪Fa, so ai ∈ I′F∪Fa, or a b j ∈ IT, so b j ∈ I′T.
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In conclusion, a ∈ OpFalseK
I ′(Fa).

Given an HKBFS K and a 3-valued interpretation I , since OpTrueK
I and OpFalseK

I are monotonic
in their argument, they both have least and greatest fixpoints.

So it is possible to define the following iterative operator on a 3-valued interpretation I .

Definition 9 (Iterated Fixed Point). For an HKBFS K , we define IFPK : Int3K → Int3K as
IFPK (I ) = 〈lfp(OpTrueK

I ),gfp(OpFalseK
I )〉.

Proposition 4. For each HKBFS K , IFPK is monotonic w.r.t. the order relation among 3-valued inter-
pretations defined in Definition 7.

Proof. Let I and I ′ be two three-valued interpretations of K such that I ≤ I ′. By propositions 2
and 3,

1. OpTrueK
I ↑ n⊆ OpTrueK

I ′ ↑ n for all n

2. OpFalseK
I ↓ n⊆ OpFalseK

I ′ ↓ n for all n

Thus,

1. lfp(OpTrueK
I )⊆ lfp(OpTrueK

I ′)

2. gfp(OpFalseK
I )⊆ gfp(OpFalseK

I ′)

i.e., IFPK (I )≤ IFPK (I ′).

By virtue of being monotonic, IFPK admits a least fixpoint for each HKBFS K , which we define as
the semantics of the HKBFS.

Definition 10 (Iterated fixpoint semantics). Given an HKBFS K , its iterated fixpoint semantics is lfp(IFPK ).

Example 2 (Spillover cont.). Consider the K = 〈O,P〉 of Example 1. Figure 1 shows the computation
of the iterated fixpoint semantics for the HKB K . Given the presence of the function symbol s(·), the
model is infinite because there are countably many substitutions for spillover count.

IT0 = /0 IF0 = /0
IT1 = {virus(t), IF1 = KA(K )\ IT1 \{safe(t)}

mutated(t),
spillover count(t,0),
spillover count(t,s(0)),
spillover count(t,s(s(0))),
· · ·}

IT2 = IT1 IF2 = KA(K )\ IT1
IT3 = IT2 IF3 = IF2

Figure 1: Iterations of the IFPK operator for Example 1.

Each Im, for m = 1,2,3 is determined by the fixpoints of OpTrueK
Im−1

and OpFalseK
Im−1

as follows.

• OpTrueK
I0
↑ 0 = /0,

• OpTrueK
I0
↑ 1 = OpTrueK

I0
↑ 0∪{virus(t),mutated(t)},
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• OpTrueK
I0
↑ 2 = OpTrueK

I0
↑ 1∪{spillover count(t,0)},

• OpTrueK
I0
↑ 3 = OpTrueK

I0
↑ 2∪{spillover count(t,s(0))},

• OpTrueK
I0
↑ 4 = OpTrueK

I0
↑ 3∪{spillover count(t,s(s(0)))},

and so on to the least fixpoint IT1.

• OpFalseK
I0
↓ 0 = KA(K )

• OpFalseK
I0
↓ 1 = OpFalseK

I0
↓ 0\{virus(t),mutated(t),safe(t)}

• OpFalseK
I0
↓ 2 = OpFalseK

I0
↓ 1\{spillover count(t,0)}

• OpFalseK
I0
↓ 3 = OpFalseK

I0
↓ 2\{spillover count(t,s(0))}

• OpFalseK
I0
↓ 4 = OpFalseK

I0
↓ 3\{spillover count(t,s(s(0)))}

and so on to the greatest fixpoint IF1.

• OpTrueK
I1
↑ 0 = /0

• OpTrueK
I1
↑ 1 = IT1

which is the least fixpoint.

• OpFalseK
I1
↓ 0 = KA(K )

• OpFalseK
I1
↓ 1 = OpFalseK

I1
↓ 0 \ {virus(t),mutated(t)}. In this case, safe(t) is kept because

spillover count(s(s(0))) is false in I1.

• OpFalseK
I1
↓ 2 = OpFalseK

I1
↓ 1\{spillover count(t,0)}

• OpFalseK
I1
↓ 3 = OpFalseK

I1
↓ 2\{spillover count(t,s(0))}

• OpFalseK
I1
↓ 4 = OpFalseK

I1
↓ 3\{spillover count(t,s(s(0)))}

to the greatest fixpoint IF2 = KA(K )\ IT1∪{safe(t)}.
For all m, OpTrueK

I2
↑ m = OpTrueK

I1
↑ m and OpFalseK

I2
↓ m = OpFalseK

I1
↓ m, so I2 = I3 =

lfp(IFPK ).

4 Properties

In this section, we prove that, for function-free HKBFSs, which are also HKBs, Knorr et al.’s alternating
fixpoint partition (def. 4) and our iterated fixpoint (def. 10) coincide, modulo a set complement operation.

Theorem 1. Given a function-free HKBFS K = 〈O,P〉, let lfp(IFPK )= 〈IT, IF〉. Then 〈IT,KA(K )\ IF〉
is K ’s alternating fixpoint partition.

Proof. We prove the claim by double induction. Since P is function-free, its grounding is finite so all
fixpoints occur at finite ordinals and it is not necessary to consider limit ordinals.

We show by induction that IFPK ↑ n = 〈Pn;KA(K )\Nn〉.
For n = 0 (base case), IFPK ↑ 0 = 〈 /0, /0〉, while P0 = /0 and N0 =KA(K ), thus 〈P0,KA(K )\N0〉=

〈 /0, /0〉= IFPK ↑ 0.
For the inductive case, assume IFPK ↑ n = 〈Pn,KA(K )\Nn〉= I = 〈IT, IF〉.
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We now prove that (1) lfp(OpTrueK
I )= lfp(TK /KA(K )\IF) and that (2) KA(K )\(gfp(OpFalseK

I ))=
lfp(TK //IT).

To prove (1), we first show by induction that TK /KA(K )\IF ↑ m⊆ OpTrueK
I ↑ m.

For m = 0 TK /KA(K )\IF ↑ 0 = /0 so TK /KA(K )\IF ↑ 0⊆ OpTrueK
I ↑ 0.

For m+1, let Tr be TK /KA(K )\IF ↑ m, and assume that Tr ⊆ OpTrueK
I ↑ m.

If a ∈ TK /KA(K )\IF(Tr), suppose a ∈ RK /KA(K )\IF(Tr). Then there exists a rule a← l1, ..., ln in
Pg/KA(K )\ IF, where Pg is the grounding of P , with each li ∈ Tr. This means that Pg contains a rule
a← l1, ..., ln,∼b1, . . . ,∼br with b1, . . . ,br in IF. So a ∈ OpTrueK

I ↑ m+1 by the definition of OpTrueK
I .

If a ∈ DK /KA(K )\IF(Tr) then OBK ,Tr |= a so a ∈ OpTrueK
I (Tr) by the definition of OpTrueK

I .
Since TK /KA(K )\IF ↑ m ⊆ OpTrueK

I ↑ m, for all m, lfp(TK /KA(K )\IF) ⊆ lfp(OpTrueK
I ), so to prove

(1) it is sufficient to show that lfp(OpTrueK
I )⊆ lfp(TK /KA(K )\IF).

To this end, consider the sequence S of sets defined by S0 = IT, Sm+1 = TK /KA(K )\IF(Sm). Note that
Sm ⊆ Sm+1 for all m, which can be proved by induction. For m = 0, IT = TK ′(IT) where K ′ is a subset of
K /KA(K )\ IF, so if a∈ IT, then a∈ TK /KA(K )\IF(IT) = S1. For the inductive case, assume Sm−1 ⊆ Sm:
by the monotonicity of TK /KA(K )\IF (because of Proposition 4 of [5], K /KA(K )\ IF being positive),
Sm = TK /KA(K )\IF(Sm−1)⊆ TK /KA(K )\IF(Sm) = Sm+1.

We now prove by induction that OpTrueK
I ↑ m ⊆ Sm. For m = 0, /0 ⊆ IT. Assuming the inclusion

holds for a generic m, then if a ∈ OpTrueK
I ↑ (m+1), either there is a rule a← a1, . . . ,an,∼b1, . . . ,∼br

in Pg with {a1, . . . ,an} ⊆ (OpTrueK
I ↑m∪ IT)⊆ (Sm∪S0)⊆ Sm and {b1, . . . ,br} ⊆ IF, so RK /KA(K )\IF

can be applied to derive a; or OBK ,IT∪OpTrueK
I ↑m

entails a, but then so does OBK ,Sm , by the inductive
hypothesis and because IT ⊆ Sm, so DK /KA(K )\IF applies.

Also, note that IT ⊆ lfp(TK /KA(K )\IF) because IT = Pn, Pn is the least fixpoint of a TK ′ operator
where K ′ ⊆K /KA(K )\ IF, and TK is monotonic in its (positive) HKB argument. In fact TK ′(S) ⊆
TK (S) if K ′ ⊆K because, if a is the head of a program rule of K ′ whose body is true in S, that rule is
also in K , and if OBK ′,S |= a, then OBK ,S |= a by the monotonicity of first order logic.

Moreover, Sm ⊆ lfp(TK /KA(K )\IF) for all m. By induction: S0 = IT ⊆ lfp(TK /KA(K )\IF). Suppose
Sm ⊆ lfp(TK /KA(K )\IF). Then a ∈ Sm+1 is the head of a rule of K /KA(K )\ IF whose body is true in
Sm. By the inductive hypothesis, it is also true in lfp(TK /KA(K )\IF) so a ∈ lfp(TK /KA(K )\IF).

Thus, lfp(OpTrueK
I )⊆ lfp(TK /KA(K )\IF), which concludes the proof of (1).

We prove (2) by proving that, for all m, TK //IT ↑ m = KA(K )\ (OpFalseK
I ↓ m).

For the base case of m = 0, TK //IT ↑ 0 = /0 and OpFalseK
I ↓ 0 =KA(K ), so TK //IT ↑ 0 =KA(K )\

(OpFalseK
I ↓ 0).

For the inductive case, m+1, let S be TK //IT ↑ m and let Fa be OpFalseK
I ↓ m. Note that, for all m,

IF ⊆ OpFalseK
I ↓ m, because by Proposition 4 IF ⊆ gfp(OpFalseK

I ); thus, IF∪Fa = Fa.
By the inductive hypothesis, S = KA(K ) \ (IF ∪Fa). We now show that, for all a ∈ KA(K ), a ∈

TK //IT(S) if and only if a 6∈ OpFalseK
I (Fa).

Assume a ∈ TK //IT(S): if OBK ,S |= a, then OBK ,KA(K )\(IF∪Fa) |= a, so a 6∈ OpFalseK
I (Fa); other-

wise, OBK ,IT 6|=¬a and there exists a rule a← a1, . . . ,am,∼b1, . . . ,∼bn in Pg such that {a1, . . . ,am} ⊆ S
and {b1, . . . ,bn}∩ IT = /0, which, by De Morgan’s laws and because S = KA(K )\ (IF∪Fa), is the nega-
tion of the fact that OBK ,IT |= ¬a or, for each rule a← a1, . . . ,am,∼b1, . . . ,∼bn in Pg, {a1, . . . ,am}∩
(IF∪Fa) 6= /0 or {b1, . . . ,bn}∩ IT 6= /0; so again a 6∈ OpFalseK

I (Fa).
On the other hand, if a 6∈OpFalseK

I (Fa), then either (i)OBK ,KA(K )\(IF∪Fa) |= a (and, since KA(K )\
(IF∪Fa)= S, OBK ,S |= a, so a∈ TK //IT(S)), or (ii) OBK ,IT 6|=¬a and for a rule a← a1, . . . ,am,b1, . . . ,bn

in P’s grounding {a1, . . . ,am}∩ (IF∪Fa) = /0 (i.e., {a1, . . . ,am} ⊆ S) and {b1, . . . ,bn}∩ IT = /0, so again
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a ∈ TK //IT(S).

5 Conclusions and future work

In this paper we proposed an extension of the language of MKNF-based Hybrid Knowledge Bases to
support function symbols in rules. We extended the syntax and proposed an iterative fixpoint semantics
for the extended language. We showed that the proposed semantics coincides with the one proposed by
[5] in the case of HKBs without function symbols, so it is an extension of it.

The proposed iterative fixpoint semantics also opens the way to the introduction of probabilities in
HKBs. We are currently working on a probabilistic extension of HKBs with function symbols, inspired
by Sato’s distribution semantics [14], which will be based on the iterated fixpoint operator defined in this
paper. The probabilistic language of probabilistic HKBFS will be also equipped with a query answering
system, in the style of what we did in TRILL [17, 16] and PITA [13], comparing our system with that of
Knorr and colleagues [9].
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A MKNF-coherent HKBs

We recall that the HKBs such that the alternating fixpoint partition defines a three-valued MKNF model
are called MKNF-coherent [8].

From Definition 51 An HKB K is MKNF-coherent if (IP, IN), where IP = {I | I |= OBK ,Pω
} and

IN = {I | I |= OBK ,Nω
}, is a three-valued MKNF model of K .

For MKNF-coherent HKBs, the model determined by the alternating fixpoint partition as in Defini-
tion 5 is the unique well-founded model.

From Proposition 12 If K is an MKNF-coherent HKB, then it has the unique well-founded model
({I | I |= OBK ,Pω

},{I | I |= OBK ,Nω
})

For an MKNF-coherent HKB K with alternating fixpoint partition (Pω ,Nω) and a ∈ KA(K ), we
write WFM(K ) |= a if a ∈ Pω and WFM(K ) |= ¬a if a ∈ KA(K )\Nω .

[8] show a bijection between the three-valued MKNF models of an HKB K and certain partitions
of KA(K ), called stable partitions. In the following, we report the definition of stable partition and two
results on stable partitions.

The definition of stable partition depends on the following evaluation scheme of rules and logic
programs w.r.t. partitions of the set of known atoms of an HKB.

In the following, let K = 〈O,P〉 be an HKB, and T and F two subsets of KA(K ) such that
T ∩F = /0.

• A rule r in P is evaluated to a new rule as follows:

– r[K ,T,F ] denotes the rule obtained by replacing each positive literal a in r with true if
a ∈ T , with false if a ∈ F , and with undefined otherwise;

– r[not ,T,F ] denotes the rule obtained by replacing each negative literal ∼a in r with true if
a ∈ F , with false if a ∈ T , and with undefined otherwise;

– r[T,F ] denotes r[K ,T,F ][not ,T,F ].

• an evaluated rule is simplified as follows:

– if the value of the head atom in a rule is equal to or greater than the value of its body, the rule
is replaced by true←;

– if the value of the head atom in a rule is less than the value of its body, then the rule is
replaced by false←.

• A logic program is evaluated as follows:

– P[K ,T,F ], P[not ,T,F ], P[T,F ] denote the logic programs obtained by replacing each
rule r in P with r[K ,T,F ], r[not ,T,F ], r[T,F ], respectively;

– P[K ,T,F ], P[not ,T,F ], P[T,F ] evaluate to true if they are empty or if all of their rules
are of the form true←; they evaluate to false if at least one rule is of the form false←.

Definition 11 (Stable partition – Def. 11 of [8]). Let K be an HKB and P ⊆ N ⊆ KA(K ). (P,N) is a
stable partition of K if

1. OBK ,N is satisfiable;

2. ∀a ∈ KA(K ), if OBK ,P |= a then a ∈ P and if OBK ,N |= a then a ∈ N; and P[P,KA(K )\N] =
true

1MKNF-coherent HKB (Def. 10 of [8])
2Proposition 2 of [8]
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3. for any other partition (P′,N′) with P′ ⊆ P and N ′ ⊆ N where at least one of the inclusions is
proper, ∃a∈KA(K )\P′ |OBK ,P′ |= a, or ∃a∈KA(K )\N′ |OBK ,N′ |= a, or P[not ,P,KA(K )\
N][K ,P′,KA(K )\N′] = false

Definition 12 (Induced partition (Def. 7 and Lemma 1 of [8])). Let S⊆ KA(K ). An MKNF interpreta-
tion pair (M,N) induces the partition (T,P) of S by placing each atom a ∈ S as follows:

• a ∈ T if and only if ∀I ∈M,(I,(M,N),(M,N))(a) = true

• a 6∈ P if and only if ∀I ∈M,(I,(M,N),(M,N))(a) = false

• a ∈ P\T if and only if ∀I ∈M,(I,(M,N),(M,N))(a) = undefined

The following result establishes the correspondence between an HKB’s three-valued models and the
stable partitions of its known atoms.

Theorem 2 (Theorem 1 of [8]). Let K = (O,P) be a hybrid MKNF KB.

• If an MKNF interpretation pair (M,N) is a three-valued MKNF model of K , then the partition
(T,P) of KA(K ) induced by (M,N) is a stable partition of K .

• If a partition (T,P) is a stable partition of K , then the interpretation pair (M,N), where (M,N) =
({I | I |= OBK ,T},{I | I |= OBK ,P}), is a three-valued MKNF model of K .

The following theorem shows that, for certain HKBs, the alternating fixpoint partition is stable, so it
defines a three-valued model which, by Theorem 2, is the HKB’s unique well-founded model.

Theorem 3 (Theorem 3 of [8]). Let K = (O,P) be a hybrid MKNF KB.

• Assume π(O) is satisfiable. Then, for any E ⊆ KA(K ), (E,E) is a stable partition of KA(K ) iff
E = ΓK (E) = Γ′K (E).

• Assume K is MKNF-coherent. Then, for any partition (T,P) of KA(K ), (T,P) is a stable parti-
tion of K iff T = ΓK (P) and P = Γ′K (T ).
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