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When investigating epidemic dynamics through differential models, the parameters

needed to understand the phenomenon and to simulate forecast scenarios require a delic-

ate calibration phase, often made even more challenging by the scarcity and uncertainty
of the observed data reported by official sources. In this context, Physics-Informed Neural

Networks (PINNs), by embedding the knowledge of the differential model that governs

the physical phenomenon in the learning process, can effectively address the inverse and
forward problem of data-driven learning and solving the corresponding epidemic prob-

lem. In many circumstances, however, the spatial propagation of an infectious disease

is characterized by movements of individuals at different scales governed by multiscale
PDEs. This reflects the heterogeneity of a region or territory in relation to the dynamics

within cities and in neighboring zones. In presence of multiple scales, a direct application
of PINNs generally leads to poor results due to the multiscale nature of the differential

model in the loss function of the neural network. To allow the neural network to operate

uniformly with respect to the small scales, it is desirable that the neural network satis-
fies an Asymptotic-Preservation (AP) property in the learning process. To this end, we
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consider a new class of AP Neural Networks (APNNs) for multiscale hyperbolic trans-
port models of epidemic spread that, thanks to an appropriate AP formulation of the

loss function, is capable to work uniformly at the different scales of the system. A series

of numerical tests for different epidemic scenarios confirms the validity of the proposed
approach, highlighting the importance of the AP property in the neural network when

dealing with multiscale problems especially in presence of sparse and partially observed

systems.

Keywords: Asymptotic-Preserving Methods, Physics-Informed Neural Networks,

Discrete-Velocity Transport Models, Multiscale Hyperbolic Models, Epidemic Compart-

mental Models, Diffusion Limit

AMS Subject Classification: 65L04, 68T07, 92D30, 65M08, 35K57, 35L04

1. Introduction

In recent decades, enormous progress has been made in the understanding of com-

plex systems described by multiscale PDEs with applications ranging from classical

physics and engineering to biology and social sciences [1, 5, 6, 12,16,28,39].

Despite continuing progress, modeling and predicting the evolution of nonlin-

ear multiscale systems using classical analytical or computational tools inevitably

faces severe challenges. Firstly, numerically solving a multiscale problem requires

complex and sophisticated computational codes and can introduce prohibitive costs

(due to the well-known curse of dimensionality). Moreover, we are always facing

the difficulties related to the scarcity of data and multiple sources of uncertainty,

especially when concerning social sciences [2, 8, 9, 11]. Above all, solving real phys-

ical problems with missing or incomplete initial or boundary conditions through

traditional approaches is currently impractical. This is where and why data-driven

models began to play a crucial role [19,41].

Machine Learning (ML) is an incredibly powerful tool, which has proven to have

an enormous impact in many fields of our society. This has led to great interest in

using ML techniques also to study challenging scientific problems in science, engin-

eering, medicine, concerning complex multiscale dynamics. However, it is clear that

the problems we are dealing with are very different from the classical problems in

which ML has proved to be so successful. So, we cannot simply take the available ML

methods as a “black box” and use them uncritically [3]. Purely data-driven models

may fit observations very well, but predictions may result physically inconsistent

and, consequently, lead to erroneous generalizations. Therefore, there is an urgent

need to integrate fundamental physical laws and related mathematical models into

the learning process of the neural networks [20, 31, 36, 41]. The main motivation

for developing this new class of physics-informed machine learning algorithms is

that such prior physical knowledge or constraints can ensure that ML methods re-

main robust even in the presence of imperfect data (such as missing, incomplete

or noisy data) and provide accurate predictions that adhere to the physics of the

phenomenon under study.

A recent example of this new learning paradigm is represented by Physics-
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Informed Neural Networks (PINNs) [17, 31, 42, 49]. PINNs are a new class of deep

neural networks (DNNs) that are trained to solve supervised learning tasks while

respecting any given physical laws described through general nonlinear ordinary dif-

ferential equations (ODEs) or partial differential equations (PDEs). The physical

knowledge of the underlying phenomenon is incorporated into the PINN mainly in

two ways: either it is introduced directly through the data embodying the under-

lying physics of the phenomenon of interest (observational bias) or it is introduced

by an appropriate choice of the loss function that the PINN must minimize, forcing

the training phase of the neural network to converge to solutions that adhere to the

underlying physics (learning bias).

Nevertheless, the adoption of a standard formulation of PINNs in the context

of multiscale problems may still lead to incorrect inferences and predictions [29].

This is mainly due to the presence of small scales leading to reduced or simplified

models in the system that need to be enforced consistently during the learning

process. In these cases, a standard PINN formulation allows an accurate description

of the process only at the leading order, thus loosing accuracy in the asymptotic

limit regimes. One remedy for this, as recently proposed in [29], is to modify the

loss function to include asymptotic-preserving (AP) properties during the training

process. The realization of such an AP-loss function will therefore depend on the

particular problem under study and will be based on an appropriate asymptotic

analysis of the model.

One particularly interesting area where the use of machine learning techniques

can play a key role concerns epidemiological dynamics. In this context, a number

of mathematical models have recently been proposed that require the estimation of

several parameters from data to provide predictive scenarios and to test their reliab-

ility [1,2,8,11–13,21,22,40,46]. In this paper we will focus on a new class of epidemic

models described by multiscale PDEs capable of describing both hyperbolic-type

phenomena characteristic of epidemic propagation over long distances and main

lines of communication between cities and parabolic-type phenomena in which clas-

sical diffusion prevails at the urban level [1, 8, 11, 12]. The multiscale nature of the

problem poses a challenge to the construction of PINN, and preservation of the

AP property is therefore essential in order to obtain reliable results. Following the

approach recently introduced in [29], we will show how to construct AP neural net-

works (APNNs) that are capable to solve both inverse and forward problems of

interest in epidemic dynamics.

The rest of the paper is organized as follows. The next section is devoted to

the description of the model under study and a formal analysis of the different

multiscale behaviors. In Section 3 we introduce the notion of APNN and describe

how to construct such a neural network in the case of a simplified multiscale hyper-

bolic model and then how to extend it to the epidemic case under study. A series

of numerical results for both inverse and forward problems using synthetic data

produced by the numerical solution of the mathematical model illustrate the valid-
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ity of the present approach. In particular, the case of partially observed systems,

as commonly found in epidemics, will be considered and permits to emphasize the

relevance of the AP-property. Some final considerations and future developments

are reported in a concluding section.

2. Hyperbolic models of epidemic spread

For simplicity, we illustrate the space dependent epidemiological modeling in the

case of a classic SIR compartmental dynamics, in which we consider a population

subdivided in susceptible S (individuals who may be infected by the disease), in-

fectious I (individuals who may transmit the disease) and removed R (individuals

healed and immune or died due to the disease). We assume to have a population

with subjects having no prior immunity and neglect the vital dynamics represented

by births and deaths due to the time scale considered. Nevertheless, it is straight-

forward to extend our arguments to more enriched compartmentalizations, designed

to take into account specific features of the infectious disease of interest, as those

proposed recently in [8, 11–13,21,22,40,46] to study the spread of COVID-19.

2.1. The hyperbolic SIR model

By analogy with discrete-velocity kinetic theory [5,39], we consider individuals mov-

ing in a one-dimensional domain D ⊆ R in two opposite directions, with velocities

±λS,I,R = ±λS,I,R(x), distinguished for each epidemic compartment. Notice that

the characteristic velocities reflect the heterogeneity of geographical areas, and,

therefore, are chosen dependent on the spatial location x ∈ D. Hence, we can de-

scribe the space-time dynamics of the population for t > 0 through the following

two-velocity SIR epidemic transport model [1, 9, 10]:

∂S±

∂t
+ λS

∂S±

∂x
= −βS±I ∓ 1

2τS

(
S+ − S−

)
,

∂I±

∂t
+ λI

∂I±

∂x
= βS±I − γI± ∓ 1

2τI

(
I+ − I−

)
,

∂R±

∂t
+ λR

∂R±

∂x
= γI± ∓ 1

2τR

(
R+ −R−

)
,

(2.1)

with the total densities of each compartment, S(x, t), I(x, t), and R(x, t), given by

S = S+ + S−, I = I+ + I−, R = R+ +R−.

The transport dynamics of the population is governed by the scaling parameters

λS,I,R as well as the relaxation times τS,I,R = τS,I,R(x). The quantity γ = γ(x, t)

is the recovery rate of infected, which corresponds to the inverse of the infectious

period. This rate may vary in space and time depending on the treatment therapies

used, even though generally can be assumed constant, especially for short-term ana-

lysis. The transmission of the infection is defined by an incidence function βSI mod-

eling the transmission of the disease [15, 26, 33]. The transmission rate β = β(x, t)
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characterizes the average number of contacts per person per time, multiplied by the

probability of disease transmission in a contact between a susceptible and an infec-

tious subject. Notice that this rate may vary in space and time as a consequence

of the intensification of governmental control actions (such as mandatory wearing

of masks, closing of specific activities or full lockdowns) or their relaxation (lift-

ing mask mandates, reopening schools, restaurants, leisure and cultural centers) in

specific locations.

It is worth to highlight that, when investigating real epidemic scenarios, the

above-mentioned parameters are, in general, unknown. While the recovery rate

might be fixed based on clinical data, the transmission rate must always be es-

timated through a delicate calibration process in order to match available data. It

is also well-known that this process is highly heterogeneous which makes the inverse

problem even more challenging [18].

The standard threshold of epidemic models is the so-called basic reproduction

number R0, which defines the average number of secondary infections produced

by one infected individual in a totally susceptible population [26]. The effective

reproduction number Rt, instead, defines the variation in time of this rate, giving

information on the progress of the infectious spread. Indeed, this number determines

when an infection can invade and persist in a new host population (Rt > 1), or tend

to fade away (Rt < 1). The endemic state corresponds to the case Rt = 1.

Assuming no inflow/outflow boundary conditions in D, integrating in space and

summing up the second equation in (2.1) we are able to define the effective repro-

duction number of the SIR transport model

Rt(t) =

∫
D β(x, t)S(x, t)I(x, t) dx∫
D γ(x, t)I(x, t) dx

≥ 1. (2.2)

Notice that this definition naturally extends locally by integrating over any subset

of the computational domain D if one ignores the boundary flows. Under the same

no inflow/outflow boundary conditions, if we integrate in D equations (2.1), we can

finally observe that the model fulfill the conservation of the total population, being

∂

∂t

∫

D
(S(x, t) + I(x, t) +R(x, t)) dx = 0 , (2.3)

with S(t) + I(t) + R(t) = P , and P total population reference size, constant over

time.

2.2. Multiscale behavior and diffusion limit

Introducing the fluxes, defined by

JS = λS
(
S+ − S−

)
, JI = λI

(
I+ − I−

)
, JR = λR

(
R+ −R−

)
, (2.4)
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we obtain a hyperbolic model equivalent to (2.1), but presenting a macroscopic

description of the propagation of the epidemic at finite speeds

∂S

∂t
+
∂JS
∂x

= −βSI,
∂I

∂t
+
∂JI
∂x

= βSI − γI,
∂R

∂t
+
∂JR
∂x

= γI,

∂JS
∂t

+ λ2
S

∂S

∂x
= −βJSI −

JS
τS
,

∂JI
∂t

+ λ2
I

∂I

∂x
=
λI
λS
βJSI − γJI −

JI
τI
,

∂JR
∂t

+ λ2
R

∂R

∂x
=
λR
λI
γJI −

JR
τR
.

(2.5)

Let us now consider the behavior of this model in diffusive regimes [10,35]. To this

aim, we introduce the space dependent diffusion coefficients

DS = λ2
SτS , DI = λ2

IτI , DR = λ2
RτR. (2.6)

which characterize the diffusive transport mechanism of susceptible, infectious and

removed, respectively. Keeping the above quantities fixed while letting the relaxa-

tion times τS,I,R → 0 (and so the characteristic velocities λS,I,R → ∞), from the

last three equations in (2.5) we obtain, for each epidemic compartment, a propor-

tionality relation between the flux and the spatial derivative of the corresponding

density (Fick’s law)

JS = −DS
∂S

∂x
, JI = −DI

∂I

∂x
, JR = −DR

∂R

∂x
. (2.7)

Substituting (2.7) into the first three equations in (2.5), we recover the following

parabolic reaction-diffusion model, widely used in literature to study the spread of

infectious diseases [7, 27,38,45,48]

∂S

∂t
= −βSI +

∂

∂x

(
DS

∂S

∂x

)
,

∂I

∂t
= βSI − γI +

∂

∂x

(
DI

∂I

∂x

)
,

∂R

∂t
= γI +

∂

∂x

(
DR

∂R

∂x

)
.

(2.8)

The model’s capability to account for different regimes, ranging from hyperbolic

to parabolic, according to the space dependent values τS,I,R and λS,I,R, makes it

suitable for describing the dynamics of human beings. Our daily routine is, indeed,

a complex mixing of individuals moving at the scale of a city center and individuals

traveling among different municipalities. In this situation, it results more appropri-

ate to describe the human dynamics in city centers with a high density of individuals
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through a diffusion operator, while characterizing the mobility of subjects in extra-

urban areas through a hyperbolic, advective, mechanism, avoiding in this case a

propagation of the information at infinite speeds [8, 11,12].

Remark 2.1.

• We refer to [23, 35, 43] concerning rigorous results on the diffusion limit of

kinetic models of type (2.1) and to [14] for a more general perspective on

diffusion equations in biology. Here, we note that the results in [23, 35, 43]

cannot be extended directly to system (2.1) except for the case where λS =

λI = λR and DS = DI = DR for which the total density of individuals

S+I+R satisfies the classical Goldstein-Taylor model. In the general case,

in fact, the epidemic reaction terms destroy the monotone behavior of the

solution.

• Although the model here discussed, for simplicity of presentation, is based

on a simple SIR structure, the approach can be extended naturally to more

realistic compartmental models such as those specifically developed to deal

with the COVID-19 pandemic [21, 22]. Similarly, the analogous diffusion

limit permits to recover at a formal level the corresponding diffusive system

for the specific compartmental dynamics [1].

3. Asymptotic-Preserving Neural Networks (APNNs)

In this section, we provide a brief overview of the general framework of PINNs [31,42]

and then we shall discuss the relevant concepts of Asymptotic-Preserving Neural

Networks (APNNs) for the problems of interest.

3.1. Basics of PINNs

The design of a standard deep neural network (DNN) by supervised learning can

be summarized in three main steps [20]:

(1) The choice of the neural network structure.

(2) The loss function that minimizes the classical empirical risk, typically charac-

terized by the difference between model and data.

(3) A method to minimize loss over the parameter space. The most popular

choices are stochastic gradient descent (SGD) and advanced optimizers such

as Adam [34].

In practice, the performance of the neural network is estimated on a finite data

set (which is unrelated to any data used to train the model) and called test error,

whereas the error in the loss function (which is used for training purposes) is called

the training error.
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Compared to the above classical deep learning methodology, the major difference

of PINN is the integration of physical laws, usually in the form of PDEs

F(u, x, t; ξ) = 0, (x, t) ∈ Ω,

B(u, x, t; ξ) = 0, (x, t) ∈ ∂Ω.
(3.1)

Here Ω ⊂ Rd × R is the spatio-temporal domain of the system, ∂Ω represents its

boundary, F is the differential operator, u represents the solution to the system, ξ

is the parameter related to the physics. Since the initial condition is mathematically

equivalent to the boundary condition in the spatio-temporal domain, we use B as a

general operator for arbitrary initial and boundary conditions of the system.

PINN models usually include a neural network representation of the solution

u ≈ uNN (z; θ), parameterized by network parameters θ and having z ∈ Rd input

data. In PINN literature, the most widely used neural network architecture is the

feed-forward neural network (FNN). A L+1 layered FNN consists of an input layer,

an output layer, and L− 1 hidden layers, which can be defined as follows

z1 = W 1z + b1,

zl = σ ◦ (W lzl−1 + bl), l = 2, . . . , L− 1

uNN (z; θ) = zL = WLzL−1 + bL,

where W l ∈ Rml×ml−1 are the weights, bl ∈ Rml the bias, ml is the width of

the l-th hidden layer with m1 = din = d the input dimension and mL = dout
the output dimension, σ is a scalar activation function (such as ReLU [24]), and

“◦” denotes entry-wise operation. Thus, we denote the set of network parameters

θ = (W 1, b1, . . . ,WL, bL).

To find the optimal values for θ, the neural network is trained by minimizing

the following type of loss (also called cost or risk) function

L(θ) = wTr Lr(θ) + wTb Lb(θ) + wTd Ld(θ). (3.2)

Here Lr and Lb quantify the discrepancy of the neural network surrogate uNN with

the underlying PDE and its initial or boundary conditions in (3.1), respectively. The

data mismatch loss Ld is applied when additional measurement data are available,

e.g., when solving inverse problems, and wr, wb, wd are the corresponding weight

vectors. The most popular methods chosen to solve this optimization problem re-

main stochastic gradient descent (SGD) and Adam [34]. After finding the optimal

set of parameter values θ∗ by minimizing the PINN loss (3.2), i.e.,

θ∗ = argminL(θ), (3.3)

the neural network surrogate uNN (x, t; θ∗) can be evaluated at any given spatio-

temporal point to get the solution.

In the context of inverse problems, the structure of the network is almost the

same with respect to the forward problem setting, except that unknown physical
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Figure 1: AP diagram for neural networks. Fε is the multiscale problem that de-

pends on the scaling parameter ε, while F0 is the corresponding formulation in

the reduced order limit, which does not depend anymore on ε. The solution of the

system Fε is approximated by the neural network through the imposition of the

residual term RNN (Fε) = RεNN . The asymptotic limit of RNN (Fε) as ε → 0 is

denoted with RNN
(
F0
)

= R0
NN . The neural network is called AP if RNN

(
F0
)

is

consistent with the residual of the reduced system F0.

parameters ξ are treated as learnable parameters. As a result, the training process

involves optimizing θ and ξ jointly

(θ∗, ξ∗) = argminL(θ, ξ). (3.4)

In summary, PINN can be regarded as an unsupervised learning approach when used

to train forward problems, with only equations residual and boundary conditions in

the loss function, and as a semi-supervised learning approach for inverse problems,

when some measurements are available. In the last part of this section, we shall

further discuss in detail each component of this learning framework through several

examples.

3.2. Extension to APNNs

Since we aim at analyzing multiscale hyperbolic dynamics regardless of the propaga-

tion scaling, in order to obtain physically-based predictions, it is important that the

PINN can preserve the correct equilibrium solution (2.8) in the diffusive regime,

which means that the PINN should fulfill the AP property [25, 28, 29, 37]. We re-

mark that in the context of the epidemic modeling of this work, the AP property

is of particular importance, allowing the same neural network to efficiently and ro-

bustly simulate population dynamics characterized by both diffusive and hyperbolic

transport behaviors (the former in urban centers and the latter for mobility along

connecting routes).

The neural networks satisfying this property are called Asymptotic-Preserving

Neural Networks (APNNs), and have been recently introduced in [28, 29] to effi-

ciently solve multiscale kinetic problems with scaling parameters that can have sev-

eral orders of magnitude of difference. The definition of an APNN reported in [29]
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for the case of multiscale kinetic models with continuous velocity fields is generalized

in the following (see Figure 1).

Definition 3.1 (Asymptotic-Preserving Neural Network). Assume the solu-

tion is parameterized by a PINN trained by using an optimization method to min-

imize a loss function which includes a residual term enforcing the physics of the

phenomenon. Then we say it is an Asymptotic-Preserving Neural Network (APNN)

if, as the physical scaling parameter of the multiscale model tends to zero, the loss

function of the full model-constraint converges to the loss function of the corres-

ponding reduced order model.

In other words, the loss function, viewed as a numerical approximation of the

original equation, benefits from the AP property.

3.3. A simple example: APNN for the Goldstein–Taylor model

To illustrate the relevance of the AP property in the construction of the neural

network, let us carry on a detailed example by considering a simplified case in which

there are no epidemic source terms that allow individuals to move to a different

compartment and the entire population behaves as a single compartment. Such a

case corresponds to the so-called Goldstein–Taylor model in discrete velocity kinetic

theory [30, 39]. This model, indeed, describes the space-time evolution of the two

particles densities f+(x, t) and f−(x, t), at time t > 0, traveling in a one-dimensional

domain, x ∈ D ⊆ R, with velocity ±c, respectively. At the same time, particles can

change and assume the opposite velocity, randomly. The dynamics of this system

of particles is governed by the following system of PDEs

∂f±

∂t
± c

ε

∂f±

∂x
=

σ

2ε2

(
f∓ − f±

)
, (3.5)

with ε scaling parameter of the kinetic dynamics and σ scattering coefficient. The

total particles density is given by ρ(x, t) = f+(x, t) + f−(x, t).

We consider f±NN (x, t; θ) to be a DNN with inputs x and t and trainable para-

meters θ, to approximate the solution of our system: f±(x, t) ≈ f±NN (x, t; θ). Then,

we define the PDEs residual

RεNN (f±) = ε2 ∂f
±
NN

∂t
± εc∂f

±
NN

∂x
− σ

2

(
f∓NN − f±NN

)
, (3.6)

and incorporate it into the loss function term ωTr Lr(θ) of the neural network by

taking the weighted mean square error of the residual to obtain a standard PINN.

To understand the asymptotic behavior of the model we resort on a suitable

macroscopic formulation of the system which is achieved through the introduction

of the scaled flux j = c (f+ − f−) /ε. This permits to write the system (3.5) in

equivalent form as

∂ρ

∂t
+
∂j

∂x
= 0 ,

∂j

∂t
+
c2

ε2

∂ρ

∂x
= − σ

ε2
j .

(3.7)
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In the diffusion limit, i.e. let ε→ 0, we obtain

j = −c
2

σ

∂ρ

∂x
, (3.8)

which, inserted into the first equation, leads to the reduced diffusive model (which

recalls the standard heat equation)

∂ρ

∂t
=
c2

σ

∂2ρ

∂x2
. (3.9)

We refer to [35,43] for rigorous results related to the diffusion limit just illustrated.

We emphasize that the form (3.7), where the flux implicitly depends on the scaling

parameter ε, is essential in order to derive the AP formulation of the NN. It is clear

that the standard PINN residual (3.6) is not consistent with the above analysis

since RεNN (f±) in the limit ε→ 0 reduces to

R0
NN (f±) = −σ

2

(
f∓NN − f±NN

)
,

which corresponds to force f+(x, t) = f−(x, t) and does not suffice to achieve the

correct diffusive behavior (3.9).

In contrast, using the macroscopic formulation (3.7), we can construct an APNN

incorporating in the loss function the mean square error of the PDEs residuals

RεNN (ρ) =
∂ρNN
∂t

+
∂jNN
∂x

, RεNN (j) = ε2 ∂jNN
∂t

+ c2
∂ρNN
∂x

+ σjNN . (3.10)

Now, in the limit ε→ 0, we obtain

R0
NN (ρ) =

∂ρNN
∂t

+
∂jNN
∂x

, R0
NN (j) = c2

∂ρNN
∂x

+ σjNN , (3.11)

which is consistent with the residual of the limiting diffusive model (3.9). We refer to

Appendix A for a detailed description of the loss function for the Goldstein-Taylor

model, including data and boundary conditions loss terms.

3.4. APNN for the hyperbolic SIR model

To achieve the AP property in the neural network for the hyperbolic SIR model,

we follow the same approach of the previous section. Thus, we consider the system

written in macroscopic form defined by equations (2.5). Multiplying both members

of each equation for the corresponding scaling parameter τi, i ∈ {S, I,R}, we can

rewrite the system in the following compact form

τ(x)
∂U(x, t)

∂t
+D(x)

∂F (U(x, t))

∂x
= G(U(x, t)), (x, t) ∈ Ω, (3.12)

where

U =




S
I
R
JS
JI
JR



, τ =




1
1
1
τS
τI
τR



, D =




1
1
1
DS
DI
DR



, F (U) =




JS
JI
JR
S
I
R



, G(U) =




−βSI
βSI − γI

γI
−τSβJSI − JS

τI
λI
λS
βJSI − τIγJI − JI
τR

λR
λI
γJI − JR



.
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Figure 2: APNN schematic work-flow. The NN architecture is integrated with the

physical knowledge of the dynamics of interest through the inclusion of the PDE

system and the enforcement of initial and boundary conditions (and eventually con-

servation properties), when known, becoming a PINN. The AP property, which is a

fundamental feature when dealing with multiscale hyperbolic systems, is guaranteed

through the correct design of an AP-loss function.

We consider UNN (x, t; θ) to be a deep neural network (NN) with inputs x and t

and trainable parameters θ, to approximate the solution of our system: U(x, t) ≈
UNN (x, t; θ). Then, we define the residual term

RτNN (U) = τ
∂UNN
∂t

+D
∂F (UNN )

∂x
−G(UNN ), (3.13)

and embed it into the loss function of the neural network to obtain an APNN. We

omit for brevity the detailed analysis of the AP property. In the limit as τi → 0,

λi →∞, i ∈ {S, I,R}, under conditions (2.6), such analysis follows the same steps

of the previous section, and R0
NN results in agreement with the diffusion limit

computed in Section 2.2.

We restrict the neural network approximation UNN to satisfy the physics im-

posed by the residual (3.13) on a finite set of Nr user-specified scattered points

inside the domain, {(xnr , tnr )}Nr
n=1 ⊂ Ω (referred as residual points) and we also en-

force the initial and space-boundary conditions of the system on Nb scattered points

of the space-time boundary B(U(x, t)), i.e. {(xkb , tkb )}Nb

k=1 ⊂ ∂Ω [32]. In the context

of inverse problems, we also consider to have access to measured data, with a data-

set {(U id, xid, tid)}Nd
i=1, with U id = U(xid, t

i
d), available in a finite set of fixed training

points. Thus, in the training process of the PINN, we minimize the following AP-loss

function, composed of four mean squared error terms

L(θ) = ωTd Ld(θ) + ωTb Lb(θ) + ωTr Lτr (θ) + ωc Lc(θ), (3.14)

where ωd, ωr, ωb, ωc characterize the weights associated to each contribution. Notice

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

FE
R

R
A

R
A

 o
n 

09
/0

5/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



15th July 2022 8:57 WSPC/INSTRUCTION FILE
PINN-SIR˙M3AS˙rev˙final

Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread 13

that Ld quantifies the mismatch of the approximated solution with respect to known

data samples, while Lb, Lτr and Lc represent the discrepancy in initial/boundary

conditions of (3.12), in the residual (3.13) and with respect to the conservation of

the total density in the domain (2.3), respectively, all three contributing to enforce

the physical structure of the problem. We present the detailed expression of each

term in (3.14) in Appendix B. A schematic representation of the APNN architecture

is given in Figure 2.

4. Numerical examples and applications

In this section, various numerical tests are presented to assess the performance of

the proposed APNNs. The first two examples concern the usage of an APNN for the

solution of inverse and forward problems set up considering as prototype multiscale

hyperbolic system either the standard Goldstein–Taylor model (3.7) or a slightly

modified version of it. Even if this model is a simpler system of equations with

respect to (2.5), it well represents the dynamics of interest, as discussed in Section

3.3. These tests are designed to further highlight how the choice of the APNN

formulation proposed in this work is fundamental for the treatment of multiscale

problems, especially in the context of partial availability of information. We shall

demonstrate also numerically with this prototype model (and we refer to Section

3.3 for the analytical proof) that a standard PINN formulation leads to the loss of

the AP property and, consequently, to non-physical reconstructions of the sought

dynamics.

Following that, various tests concerning the solution of epidemic problems are

discussed, examining the APNN performance in inferring the unknown epidemic

parameters, solving the forward problem, and forecasting the spread of the infectious

disease also when spatially heterogeneous parameters are considered.

The numerical solution obtained with a second-order AP-IMEX Runge-Kutta

Finite Volume method [10,11] is considered as synthetic data for the ground truth

and used in the APNN to build up the training dataset. With regard to epidemic

test cases, we remark here, as also discussed in Appendix B, that since data of

fluxes JS , JI , JR are not accessible in real-world applications, we only enforce the

measurements of S, I,R in Ld. Nevertheless, unless otherwise specified, we impose

initial conditions of the fluxes in Lb. In all the examples, periodic boundary condi-

tions are considered. To strictly impose them (accounted again in Lb), we employ

the periodic mapping technique taken from [50] in the input layer

UNN (x, t) = UNN (cos(αx), sin(αx), t) , (4.1)

where α is a hyperparameter controlling the frequency of the solution. For the tests

concerning the Goldstein–Taylor model, the activation function sin is chosen, ad-

opting the SIREN framework [44]; for the epidemic tests, the function tanh is used.

Finally, the Adam method [34] is used for the optimization process and derivatives

in the NN are computed applying automatic differentiation [4].
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Figure 3: Test 1: Inverse problem for the Goldstein-Taylor model in the diffusive

regime (ε = 10−4). Convergence of the target parameter σ = 4 with respect to

epochs using the APNN (left) and the standard PINN (right).

For all the numerical examples, we adopt a single feed-forward neural network

with depth 8 and width 32. The model structure is deliberately fixed among nu-

merical experiments in both parabolic and hyperbolic regime, to highlight the main

advantage of AP schemes that macroscopic behavior can be captured without resolv-

ing small physical parameters numerically (i.e. the architectural parameters of the

neural network are independent of the physical scaling parameters). The chosen

model and training hyperparameters are given in Tables 7–9 of Appendix C for

each test case.

4.1. Test 1: Goldstein-Taylor model in diffusive regimes

In the following, we seek to emphasize numerically the importance of choosing the

correct formulation of the loss function in the PINN to preserve the AP property and

correctly approximate population dynamics even in diffusive regimes, particularly

when dealing with partial information available. To this aim, we set up for problem

(3.5) a test with initial conditions

ρ(x, 0) = 6 + 3 cos(3πx), j(x, 0) =
9πc2

σ
sin(3πx),

with c = 1 and σ = 4. We consider periodic boundary conditions, choosing α = 3 in

the periodic mapping (4.1), and only the diffusive, parabolic regime of the model,

fixing ε = 10−4, with final time of the simulation tend = 0.1.

Inverse Problem

Initially, we consider an inverse problem inferring the scattering coefficient σ from

the available measurement data using the APNN formulation presented in Appendix

A, with loss function (A.1) and Lεr term given in (A.3), with residual (3.10). For

comparison, we also solve the inverse problem applying the standard PINN residual

(3.6) in the loss function. For both APNN and standard PINN formulations, we
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Figure 4: Test 1: Forward problem for the Goldstein-Taylor model with standard

PINN in the diffusive regime (ε = 10−4) considering only initial and boundary

conditions and no further dataset available. Solution of the forward problem by

PINN (left) and ground truth (right) of the kinetic densities f+ (top) and f−

(bottom).

train the network model on measurements composed of Nd = 24000 equally spaced

samples in the domain (x, t) ∈ [−1, 1] × [0, 0.1], from which 20% (4800) points are

randomly selected for validation purpose. For the APNN model we consider meas-

urements only for the density ρ, hence assuming to have no information on the flux

j, whereas for the standard formulation we employ data samples for both the dens-

ities f+ and f− (therefore, in the latter case we assume we have more information

on the system (3.5)). In addition, Nr = 24000 residual points are employed with

the same data split for validation set. With respect to loss function and training

hyperparameters of the APNN given in Tables 7 and 9, the same setting has been

used also for the standard PINN, with the only difference just stated that, when

used, the training dataset is given for both variables f± considering equal weights

ω±d .

We show the convergence of the target parameter σ in Figure 3 for both PINN

formulations. A very fast convergence can be observed in the APNN, with the initial

guess σ0 = 2 and a final relative error O(10−3). However, it can be observed that,

even with the availability of data for both the state variables f±, the standard

PINN fails to recover the correct value of the scattering parameter σ (at epoch

4000, early-stopping to prevent further training of the PINN).
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Figure 5: Test 1: Forward problem for the Goldstein-Taylor model with APNN in

the diffusive regime (ε = 10−4) considering only initial and boundary conditions

and no further dataset available. Solution of the forward problem by APNN (left)

and ground truth (right) of the density ρ (top) and flux j (bottom).

Forward Problem

To further highlight the importance of the AP property, we consider a forward

problem for the Goldstein-Taylor model, where scattering coefficient σ = 4 is given

and the goal now is to solve the equations on the spatio-temporal domain knowing

only the corresponding initial and boundary conditions. For APNN formulation,

Nb = 200 points are employed to enforce initial conditions of both ρ and j, with

equation enforced on Nr = 24000 residual points on the domain (x, t) ∈ [−1, 1] ×
[0, 0.1]. The standard PINN formulation based on the kinetic equations (3.5) share

the same set with APNN, but initial conditions are given for f±.

We plot the solutions obtained with the standard PINN in Figure 4 and with

APNN in Figure 5. The standard PINN shows again its weakness, in fact converging

to a trivial solution on the space-time domain, failing to approximate the forward

solution of both the state variables. On the contrary, the adoption of the APNN

ensures the convergence towards the correct diffusive limit of both density and flux,

which is also beneficial for the inverse problem we considered before.

4.2. Test 2: Goldstein–Taylor model with source term

To examine the performance of the APNN with a more challenging setting closely

related to epidemic scenarios that we shall discuss later on, we introduce a source
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term that creates an oscillatory effect in the density ρ in the Goldstein–Taylor

model. The resulting system reads

∂ρ

∂t
+
∂j

∂x
= κρ ,

∂j

∂t
+
c2

ε2

∂ρ

∂x
= − σ

ε2
j ,

(4.2)

where κ = κ(x). In the limit ε → 0 formally the model relaxes towards a diffusion

equation with source term. To the best of our knowledge, the above model for

general k has never been studied before, and we leave a detailed analysis of its

convergence properties in the diffusion limit to further research. We refer to [35] for

rigorous results that apply in the case k ≤ 0.

For this problem, we reformulate the AP-loss function accordingly to the model,

simply including the presence of the source term with respect to the formulation

discussed in Appendix A. In the source term, we set κ(x) = κ0 + κ1 sin(κ2πx),

with a baseline value κ0 = 0 perturbed by sinusoidal oscillations having amplitude

κ1 = 3 and frequency κ2 = 4. We consider again a spatial domain L = [−1, 1] and

c = 1. The final goal in this test is to infer parameters κ0, κ1 and κ2 and evaluate

the spatio-temporal reconstruction given by the APNN with a partially observed

system, having only information of ρ, considering a known scattering coefficient

σ = 1 and the following initial conditions:

ρ(x, 0) = 1 + 0.5 e−10x2

, j(x, 0) = 10x e−10x2

.

Test 2 (a): Diffusive regime with density data only

We initially consider a diffusive, parabolic regime defined by ε = 10−5, with

tend = 0.1. We employ Nd = 12000 uniformly distributed data samples for ρ, not

considering any dataset for j, while still imposing initial and boundary conditions

for both variables. For the residual term, we use Nr = 12000 residual points on the

domain (x, t) ∈ [−1, 1]× [0, 0.1]. We use 20% of Nd and Nr for validation purposes

and the rest for the training. Results of the parameters inference are shown in Table

1, where initial guesses of target variables are listed, even though we observed that

Parameter Ground Truth Initial Guess Estimation Relative Error

κ0 0 0.5 0.0011 N/A

κ1 3 2 2.9263 2.46× 10−2

κ2 4 3 4.0003 7.50× 10−5

Table 1: Test 2 (a): Goldstein-Taylor model with source in diffusive regime (ε =

10−5) with density data only. Inference results for the source term coefficients using

the APNN.
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Figure 6: Test 2 (a): Goldstein-Taylor model with source in diffusive regime (ε =

10−5) with density data only. Approximated forward solution (left column), ground

truth (middle column) and relative L2 error (right column) of density ρ (first row)

and flux j (second row) obtained with the APNN.

the neural network is not very sensitive to the choice of these values. From these

results we can observe that, in general, the most difficult coefficient to calibrate

with the NN is the amplitude of the perturbation of the source term, κ1.

The APNN forward approximations of ρ and j are presented in Figure 6, where

we can observe that solutions well capture the correct dynamics of ρ and accurately

recover j without any measurement on the latter. Nonetheless, we acknowledge

that when concerning diffusive regimes as in Eq. (3.9), the problem results fully

described by the sole density ρ, and the absence of information on j does not lead

to an actual lack of data knowledge.

Parameter Ground Truth Initial Guess Estimation Relative Error

κ0 0 0.5 4.37× 10−5 N/A

κ1 3 2 3.0005 1.67× 10−4

κ2 4 3 4.0002 5.00× 10−5

Table 2: Test 2 (b): Goldstein-Taylor model with source in hyperbolic regime (ε = 1)

with density data only. Inference results for the source term coefficients using the

APNN.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

FE
R

R
A

R
A

 o
n 

09
/0

5/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



15th July 2022 8:57 WSPC/INSTRUCTION FILE
PINN-SIR˙M3AS˙rev˙final

Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread 19

Figure 7: Test 2 (b): Goldstein-Taylor model with source in hyperbolic regime (ε =

1) with density data only. Approximated forward solution (left column), ground

truth (middle column) and relative L2 error (right column) of density ρ (first row)

and flux j (second row) obtained with the APNN.

Test 2 (b): Hyperbolic regime with density data only

In the second case, we consider a hyperbolic regime with ε = 1 and tend = 0.5.

We employ Nd = 16800 data samples for ρ only, not considering again any dataset

for j, and fix Nr = 16800 on the domain (x, t) ∈ [−1, 1] × [0, 0.5], with 20% of

each dataset for validation. Coefficients inferred by the APNN are listed in Table

2, while forward solutions are shown in Figure 7. Similar to the diffusive regime,

the APNN correctly infer all the unknown parameters and well approximates the

solution of densities ρ and j, but in this case in a much more demanding scenario.

Indeed, even though in hyperbolic regimes the problem is not completely defined

by the sole density of the system, being the dataset really incomplete without any

information on the flux j, the APNN is still capable of approximating the correct

solution of the whole dynamics.

4.3. Test 3: SIR transport model with constant epidemic

parameters

In the following, we evaluate the performance of the APNN with respect to the

dynamics governed by the SIR multiscale transport model (2.5). We first design a

numerical test with an initial condition that simulates the presence of two epidemic

hot-spots, aligned in the spatial domain L = [0, 20], presenting a different number

of infected individuals, distributed following a Gaussian function,

I(x, 0) = α1 e
−(x−x1)2 + α2 e

−(x−x2)2 ,
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where x1 = 5 and x2 = 15 are the coordinates of the hot-spots, while α1 = 0.01

and α2 = 0.0001 define the different initial epidemic concentration in the two cities,

hence with a deeply higher density of infected individuals in the first city. Assuming

that there are no immune individuals at t = 0 and that the total population is

uniformly distributed in the domain, we have

S(x, 0) = 1− I(x, 0), R(x, 0) = 0.

We impose initial fluxes in equilibrium, following (2.7), and periodic boundary con-

ditions to allow both directions of connection for the two cities. We initially consider

a simple setting defined by constant epidemic parameters in space and time, with

β = 12 and γ = 6, which lead to study an infectious disease characterized by an

initial reproduction number Rt(0) = 2.

The APNN is used to infer both the epidemic parameters as well as approximate

the solutions for a parabolic and a hyperbolic scenario. To mimic the availability

of data close to reality, we use a sparse dataset for the training process, sampling

the spatio-temporal points from the available dataset with probability proportional

to the magnitude of I. We consider, indeed, that in real-world epidemic scenarios

data on the evolution of the infectious disease are only available in the regions in

which the virus has already started to spread. Specifically, the probability of each

spatio-temporal location (x, t) chosen for the training dataset is given by

p(x, t) =
I(x, t)∫
Ω
I(x, t)

. (4.3)

Test 3 (a): Partially observed dynamics in diffusive regime

In the first case, a parabolic configuration of speeds and relaxation parameters is

considered, with λ2
S,I,R = 103 and τS,I,R = 10−3. We examine the performance of

the APNN in the two following different problems.

• Test 3.1 (a): Parameter inference test. We consider a sparse dataset where

only Nd = 20 measurements are selected from the entire space-time domain

Parameter Ground Truth Initial Guess Estimation Relative Error

β 12 8 11.9428 4.76× 10−3

γ 6 3 5.9772 3.80× 10−3

Table 3: Test 3.1 (a): SIR transport model with constant epidemic parameters and

partially observed dynamics, with sparse density data only and no initial conditions

available, in diffusive regime (λ2
S,I,R = 103, τS,I,R = 10−3). Inferred results for

transmission rate β and recovery rate γ from a sparse measurement dataset of

Nd = 20 samples, and the relative error with respect to the ground truth values.
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Figure 8: Test 3.1 (a): SIR transport model with constant epidemic parameters and

partially observed dynamics, with sparse density data only and no initial conditions

available, in diffusive regime (λ2
S,I,R = 103, τS,I,R = 10−3). Identification of the

sparse samples (Nd = 20) selected sampling the spatio-temporal points from the

available dataset with probability proportional to the magnitude of I marked with

white crosses (left column), approximation obtained in the inverse problem (middle

column), and ground truth (right column) of the densities of infected I.

0 1 2 3 4
t

0.0

0.5

1.0

1.5

2.0

I(t
)

approx
true

0 1 2 3 4
t

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

R t
(t)

approx
true

Figure 9: Test 3.2 (a): SIR transport model with constant epidemic parameters

and partially observed dynamics, with uniformly distributed density data only and

no initial conditions available, in diffusive regime (λ2
S,I,R = 103, τS,I,R = 10−3).

Approximation and forecast with measurements on a short time t ∈ [0, 1.5] denoted

by the dashed line (left column), and ground truth (middle column) of infected

I (first row) and removed R (second row). Temporal evolution of the cumulative

density of infected individuals I in the whole domain (first row, right) and of the

reproduction number Rt (second row, right) obtained with the APNN, trained based

on a short time period t ∈ [0, 1.5] (marked by the dotted line).

(x, t) ∈ [0, 20]× [0, 4] of densities S, I and R, according to the density of I, as
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described in (4.3), as shown in Figure 8 (left).

• Test 3.2 (a): Forecasting test. As a second problem, we intend to invest-

igate the forecasting capability of the APNN. In contrast with sampling meas-

urements available across the entire spatio-temporal domain in the parameter

inference test, we generate a training dataset of size Nd = 5300 of densities S,

I and R on a shorter time domain t ∈ [0, 1.5] and we assess the correctness of

APNN approximations in t ∈ [0, 1.5] and forecasting performance in t ∈ [1.5, 4].

In both cases, equations residual are enforced on Nr = 40000 residual points on the

spatio-temporal domain and 20% of Nd and Nr is used for validation. In addition, we

assume initial conditions for S, I,R are unknown in both problems, thus requiring

an even more demanding performance to the APNN.

Results of the parameter inference task based on the sparse measurement dataset

are reported in Table 3, where an excellent estimation of both β and γ can be

observed with respect to the ground truth. Figure 8 shows that the reconstructed

forward approximations for the density of the epidemic compartment I have an

excellent agreement with the true solution in the entire domain even if considering

very few and sparse data samples in the training process. Also in the forecasting

test, the approximated and predicted dynamics (based on the measurements from

the time period t ∈ [0, 1.5]) perfectly match the ground truth in the entire domain

t ∈ [0, 4], as shown in Figure 9, even if in this demanding setting initial conditions of

densities are assumed to be unknown. These results further highlight the capability

of APNN to forecast the spread of an infectious disease in diffusive regimes thanks

to the physical knowledge of the PDE system embedded in the NN together with the

preservation of the AP property. In the same Figure, we present also the temporal

evolution of the cumulative density of infected individuals I in the whole domain as

well as the effective reproduction number Rt predicted by the APNN. The excellent

agreement between predictions (t > 1.5) and the ground truth out of the training

domain further assess the forecasting capability of APNNs.

Parameter Ground Truth Initial Guess Estimation Relative Error

β 12 8 12.0126 1.05× 10−3

γ 6 3 6.0447 7.45× 10−3

Table 4: Test 3.1 (b): SIR transport model with constant epidemic parameters and

partially observed dynamics, with sparse density data only and no initial conditions

available, in hyperbolic regime (λ2
S,I,R = 1, τS,I,R = 1). Inferred results for trans-

mission rate β and recovery rate γ from a sparse measurement dataset of Nd = 20

samples, and relative error with respect to the ground truth values.
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Figure 10: Test 3.1 (b): SIR transport model with constant epidemic parameters

and partially observed dynamics, with sparse density data only and no initial con-

ditions available, in hyperbolic regime (λ2
S,I,R = 1, τS,I,R = 1). Identification of the

sparse samples (Nd = 20) selected sampling the spatio-temporal points from the

available dataset with probability proportional to the magnitude of I marked with

white crosses (left column), approximation obtained in the inverse problem (middle

column), and ground truth (right column) of the densities of infected I.

Figure 11: Test 3.2 (b): SIR transport model with constant epidemic parameters and

partially observed dynamics, with uniformly distributed density data only and no

initial conditions available, in hyperbolic regime (λ2
S,I,R = 1, τS,I,R = 1). Approxim-

ation and forecast with measurements from a shorter time period t ∈ [0, 1.5] (first

column) or t ∈ [0, 2.5] (middle column), stopped at the dashed line, and ground

truth (last column), of the densities of infected I (first row) and removed R (second

row).

Test 3 (b): Partially observed dynamics in hyperbolic regime

In the second case, we consider a hyperbolic regime with λS,I,R = 1 and τS,I,R = 1.

As previously done, we consider two different contexts.
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Figure 12: Test 3.2 (b), SIR transport model with constant epidemic parameters and

partially observed dynamics, with uniformly distributed density data only and no

initial conditions available, in hyperbolic regime (λ2
S,I,R = 1, τS,I,R = 1). Temporal

evolution of the cumulative density of infected individuals I in the whole domain

(left) and of the reproduction number Rt (right) obtained with the APNN using

measurements from a shorter period of t ∈ [0, 1.5] or t ∈ [0, 2.5] (stopped at the

dotted lines) compared with ground truth.

• Test 3.1 (b): Parameter inference test. We first consider a sparse meas-

urement setting, where Nd = 20 measurements the spatio-temporal domain

(x, t) ∈ [0, 20]× [0, 5] of densities S, I and R are available. The chosen samples

are shown in Figure 10 (left) and have been selected again according to the

density of I, as described in (4.3).

• Test 3.2 (b): Forecasting test. Secondly, we consider a forecasting task,

training the APNN with the measurements generated from a limited time do-

main t ∈ [0, ttrain]. In this example, we chose ttrain = 1.5 and ttrain = 2.5 with

Nd = 5000 and Nd = 8500 measurements of densities S, I and R employed

respectively, and then evaluate the network performance over the time domain

t ∈ [0, 5].

In both scenarios, Nr = 23600 residual points are employed on the spatio-temporal

domain to enforce the underlying equations, still assuming that initial conditions of

densities S, I,R are unknown, as in the previous test case.

Parameters β and γ estimated by the APNN from the sparse measurements

are presented in Table 4, where we observe again a very good agreement with

respect to true values. At the same time, the APNN is capable of reconstructing

the correct dynamics of the phenomenon of interest in the whole domain besides

the sparsity and incompleteness of data, as shown in Figure 10. On the other hand,

we show results obtained when training the APNN with measurements taken from

a shorter time period in Figures 11 and 12. In Figure 12, we plot the temporal

evolution of the cumulative density of infected individuals I in the whole domain

as well as the effective reproduction number Rt predicted by the APNN when the

measurement data are restricted to the shorter time periods t ∈ [0, ttrain]. When
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1

2

3

3

3

3

Figure 13: Test 4: SIR transport model with spatially variable transmission rate.

Left: schematic representation of the spatial setting considered, with 3 initial hot-

spots presenting different initial concentrations of infectious people, proportional to

the light red circles. Individuals move from one location to another following the

two opposite directions defined in the one-dimensional space with periodic bound-

ary conditions. Due to the heterogeneous environment 3 additional hot spots will

form along the main connection lines. Right: initial conditions for susceptible (top),

infectious (middle) and removed (bottom).

ttrain = 1.5, APNN predictions deviate from the ground truth almost immediately

after the training period. In contrast, when the measurement data is extended

to ttrain = 2.5, the APNN produces good reconstructions and predictions in the

forecasting region (t > 2.5) with respect to the ground truth. Similar observations

can be made for the approximations of densities I and R presented in Figure 11.

We observe this behavior of the APNN because when considering a dataset only

for t ∈ [0, 1.5] we do not vehicle enough information of the major dynamics in

the training process. We remark indeed that no samples of fluxes is considered to

train the APNN, which, in a hyperbolic regime, means to deal with a consistent

lack of data knowledge. The predictions obtained, in fact, show that the APNN

tends to smooth out the actual epidemic propagation pattern, not describing the

correct transport/hyperbolic mechanism in the regions connecting the two urban

areas. This appears clear when looking at Figure 11 (first column) and Figure 12,

and observing that the dynamics predicted by the APNN tend to spread the virus

faster, in a more diffusive way, giving rise to a fake epidemic hot-spot around t = 2.5.

On the other hand, when extending the dataset to ttrain = 2.5, we cover enough of

the dynamics in the training process and the APNN performs correctly again.
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4.4. Test 4: SIR transport model with heterogeneous environment

Next, we consider a much more challenging scenario, taking into account a spatially

varied transmission rate that follows a hypothetical heterogeneous environment. An

initial condition of the SIR multiscale transport model is designed to simulate the

presence of 3 epidemic hot-spots aligned in the spatial domain L = [0, 20], each

one having a different initial density of infected individuals, distributed in space

following again a Gaussian:

I(x, 0) = α1 e
−(x−x1)2 + α2 e

−(x−x2)2 + α3 e
−(x−x3)2 .

Here x1 = 10/3, x2 = 10, x3 = 50/3 are the coordinates of the epidemic centers and

α1 = 0.01, α2 = 0.001, α3 = 0.004 define the different initial epidemic concentration

in each spot. Assuming again that there are no immune individuals at t = 0 and

that the total population is uniformly distributed in the spatial domain, we set

S(x, 0) = 1 − I(x, 0) and R(x, 0) = 0. As previously, we impose initial fluxes in

equilibrium, following (2.7), and periodic boundary conditions, to allow a connection

also between hot-spots 1 and 3, so that the domain connecting the positions of these

regions form the closed shape presented in Figure 13 (left). In the same figure (right),

initial conditions of the 3 epidemic compartments are shown. We set the following

spatially varied transmission rate [10,47]:

β(x) = β0 + β1 sin (ζπx) ,

with β0 = 9 and perturbing this baseline value with oscillations of amplitude

β1 = 2.5 and frequency ζ = 0.55. The recovery rate is set to be γ = 8. This

choice of parameters simulates an infectious disease characterized by an initial re-

production number Rt(0) ≈ 1.05. With the APNN, the goal is to infer β0, β1 and

ζ as well as approximate the dynamics of densities based on the partially available

measurements and the forecasting performance.

Parameter Ground Truth Initial Guess Estimation Relative Error

β0 9 5 9.0170 1.89× 10−3

β1 2.5 1.5 2.4512 1.95× 10−2

ζ 0.55 0.5 0.5508 1.45× 10−3

Table 5: Test 4.1 (a): SIR transport model with spatially variable transmission rate

and partially observed dynamics, with sparse density data only, in diffusive regime

(λ2
S,I,R = 105, τS,I,R = 10−5). Inferred results for the three different coefficients

in the incidence function, β0, β1, ζ, and relative error with respect to the correct

solution.
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Figure 14: Test 4.1 (a): SIR transport model with spatially variable transmission

rate and partially observed dynamics, with sparse density data only, in diffusive re-

gime (λ2
S,I,R = 105, τS,I,R = 10−5). Identification of the sparse samples (Nd = 1000)

selected sampling the spatio-temporal points from the available dataset with prob-

ability proportional to the magnitude of I marked with white crosses (left column),

approximation obtained in the inverse problem (middle column), and ground truth

(right column) of the densities of infected I.

0 1 2 3 4 5
t

0.05

0.10

0.15

0.20

0.25

0.30

I(t
)

approx
true

0 1 2 3 4 5
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1.20

R t
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Figure 15: Test 4.2 (a): SIR transport model with spatially variable transmission

rate and partially observed dynamics, with uniformly distributed density data only,

in diffusive regime (λ2
S,I,R = 105, τS,I,R = 10−5). Approximation and forecast with

measurements taken from a shorter time period, stopped at the dashed line (left

column), and ground truth (middle column) of the densities of infected I (first

row) and removed R (second row). Temporal evolution of the cumulative density

of infected individuals I in the whole domain (first row, right) and of the effective

reproduction number Rt (second row, right) obtained with the APNN, trained based

on measurements from a shorter time period t ∈ [0, 2.5] (marked by the dotted line).

Test 4 (a): Partially observed dynamics in diffusive regime

In the first scenario, a parabolic configuration of speeds and relaxation parameters

is considered with λ2
S,I,R = 105 and τS,I,R = 10−5.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

FE
R

R
A

R
A

 o
n 

09
/0

5/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



15th July 2022 8:57 WSPC/INSTRUCTION FILE
PINN-SIR˙M3AS˙rev˙final

28 Giulia Bertaglia, Chuan Lu, Lorenzo Pareschi & Xueyu Zhu

Similar to the setting of Test 3, we investigate the capabilities of the proposed

APNN when concerning heterogeneous epidemic environments through the follow-

ing two scenarios.

• Test 4.1 (a): Parameter inference test. First, we consider a relatively sparse

availability of measurements, with Nd = 1000 samples over the spatio-temporal

domain (x, t) ∈ [0, 20] × [0, 5] of densities S, I and R, selected according to

(4.3), as previously described, with the main task to infer unknown physical

parameters β0, β1 and ζ. The selected samples are indicated in Figure 14 (left).

Notice that in this test we consider a higher amount of data samples with

respect to Test 3.1 (a) in response to the more complex dynamics to be captured,

characterized by a spatially heterogeneous epidemic transmission rate.

• Test 4.2 (a): Forecasting test. Secondly, the forecasting performance in

predicting the spread of the infectious disease until tend = 5 with Nd = 10100

measurements of densities S, I and R generated from a shorter time period

t ∈ [0, 2.5] is investigated.

In both scenarios, the equation residual is enforced on Nr = 10100 residual points

in the domain (x, t) ∈ [0, 20]× [0, 5], and initial conditions are enforced on Nb = 200

equally spaced points for densities S, I, R and fluxes JS , JI , JR. Furthermore, we

enforce the conservation (2.3) on Nc = 235 equally spaced temporal points, and we

randomly split 20% of each sample set for validation purpose.

In Table 5, we present the results of parameters inference based on the sparse

measurements. The APNN accurately recovers the correct values for parameters

β0, β1 and ζ characterizing the epidemic incidence function, even when initial

guesses are far way from the corresponding ground truth values. As illustrated

in Figure 14, reconstruction of the density I is also in a very good agreement with

the ground truth. Notice that the three initial epidemic concentrations give rise to

six different epidemic outbreaks in time due to the spatial heterogeneity assigned

to the transmission rate. In Figure 15, we also present the approximated forward

solutions for the forecasting task. A good match in the forecasting region (t > 2.5)

is observed, demonstrating once more the capability of the APNN to capture the

underlying physics and deliver reasonably accurate predictions in the forecasting

regions, even when spatially heterogeneous environments are considered in the con-

text of partially observed systems.

Test 4 (b): Partially observed dynamics in hyperbolic regime

In the second scenario, we consider a hyperbolic regime setting λS,I,R = 1 and

τS,I,R = 1. Similar to the previous test case, we consider two distinguished tasks

for the APNN.

• Test 4.1 (b): Parameter inference test. Initially, a sparse measurement

dataset of Nd = 1000 training samples over the spatio-temporal domain
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Figure 16: Test 4.1 (b): SIR transport model with spatially variable transmission

rate and partially observed dynamics, with sparse density data only, in hyperbolic

regime (λ2
S,I,R = 1, τS,I,R = 1). Identification of the sparse samples (Nd = 1000)

selected sampling the spatio-temporal points from the available dataset with prob-

ability proportional to the magnitude of I marked with white crosses (left column),

approximation obtained in the inverse problem (middle column), and ground truth

(right column) of the densities of infected I.

(x, t) ∈ [0, 20]× [0, 5] of densities S, I and R is considered, based on the import-

ance sampling previously described, and marked in Figure 16 (left), to solve the

inverse problem and also evaluate the following forward reconstruction. Again,

we consider a higher amount of data samples with respect to Test 3.1 (b) in

response to the more complex, spatially heterogeneous, dynamics to be approx-

imated.

• Test 4.2 (b): Forecasting test. Then, the APNN is trained with Nd = 8400

data samples selected from the spatio-temporal domain (x, t) ∈ [0, 20]× [0, 2.5]

of densities S, I and R, and the reconstruction of the dynamics is evaluated

until t = 5, to also examine the performance on the forecasting of the virus

spread.

Equation residual is enforced on Nr = 23500 residual points on the domain (x, t) ∈
[0, 20] × [0, 5] in both setups, while Nb = 600 points are applied to enforce initial

conditions for densities S, I,R and fluxes JS , JI , JR, and the conservation (2.3) is

Parameter Ground Truth Initial Guess Estimation Relative Error

β0 9 5 9.0205 2.28× 10−3

β1 2.5 1.5 2.4691 1.24× 10−2

ζ 0.55 0.5 0.5502 3.64× 10−4

Table 6: Test 4.1 (b): SIR transport model with spatially variable transmission

rate and partially observed dynamics, with sparse density data only, in hyperbolic

regime (λ2
S,I,R = 1, τS,I,R = 1). Inferred results from sparse measurements for the

three different coefficients in the incidence function, β0, β1, ζ, and relative error

with respect to the ground truth.
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Figure 17: Test 4.2 (b): SIR transport model with spatially variable transmission

rate and partially observed dynamics, with uniformly distributed density data only,

in hyperbolic regime (λ2
S,I,R = 1, τS,I,R = 1). Approximation and forecast with

measurements taken from a shorter time period, stopped at the dashed line (left

column), and ground truth (middle column) of the densities of infected I (first

row) and removed R (second row). Temporal evolution of the cumulative density

of infected individuals I in the whole domain (first row, right) and of the effective

reproduction number Rt (second row, right) obtained with the APNN, trained based

on measurements from a shorter time period t ∈ [0, 2.5] (marked by the dotted line).

enforced on Nc = 47 equally spaced temporal points. 20% of each sample set is

randomly used, as usual, for validation purposes during the training process.

Similarly to the parabolic setting, the APNN is able to estimate the correct

parameters of the spatially-varied transmission rate β from sparse measurements

given only in terms of epidemic densities and not fluxes in the hyperbolic regime, as

shown in Table 6, hence with a really partially observed dynamics. In Figures 16 and

17, the approximated forward solutions and the ground truth of I and R over the

space-time domain are shown. A good match between the APNN approximation and

the ground truth is observed, for both sparse measurement and the measurement

from a reduced training time domain, in the latter considering also predictions of

the space-time dynamics. Notice that, as expected, due to the hyperbolic setting of

the scaling parameters of this test, the six epidemic outbreaks that arise at different

temporal levels due to the spatial movement of individuals and the heterogeneity

of the transmission rate are more contained in terms of spatial spread with respect

to results obtained in the diffusive regime.
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5. Conclusions

The recent Covid-19 pandemic has led to a significant development of mathematical

models for describing epidemiological phenomena, which have also introduced the

challenge of identifying the parameters involved from partial information. In this

direction, recent developments in machine learning represent a promising tool for

addressing such problems in the hope of identifying robust procedures for solving

the corresponding inverse problems and also formulating predictive scenarios. This

paper has addressed these problems in the context of spatially dependent epidemic

models for which, in addition to the lack of information about the spread of the

epidemic, face additional difficulties induced by the different scales at which the

dynamics take place. These scales are representative of the different interactions

that occur in densely populated areas, such as urban areas, or in suburban areas

where the movement of individuals over long distances prevails. The construction

of neural networks that can accurately describe the various scales is thus essential.

In particular, we have shown how physically informed neural networks (PINN) that

benefit from the asymptotic-preserving (AP) property provide considerably better

results with respect to the different scales of the problem when compared with

standard PINN. Several numerical tests have been presented to illustrate the per-

formance of this new class of neural networks, referred to as asymptotic-preserving

neural network (APNN), both for inverse and forward problems. Finally, we em-

phasize that even if, for presentation simplicity, we focused on a single population

hyperbolic SIR model, the results extend naturally to multi-population transport

models which include additional epidemic compartments [1, 8, 12].
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Appendix A. AP-loss function for the Goldstein–Taylor model

Fixing a finite set of residual points {(xnr , tnr )}Nr
n=1 ⊂ Ω, {(xkb , tkb )}Nb

k=1 ⊂ ∂Ω, and

considering the available dataset {uid, xid, tid}Nd
i=1, we define the loss function for the

Goldstein–Taylor model as follows

L(θ) =ωTd Ld(θ) + ωTb Lb(θ) + ωTr Lεr(θ). (A.1)
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The expressions of Ld and Lb terms in (A.1) read

ωTd Ld(θ) =
ωρd
Nd

Nd∑

i=1

∣∣ρNN (xid, t
i
d; θ)− ρ(xid, t

i
d)
∣∣2 +

ωjd
Nd

Nd∑

i=1

∣∣jNN (xid, t
i
d; θ)− j(xid, tid)

∣∣2 ,

ωTb Lb(θ) =
ωρb
Nb

Nb∑

k=1

∣∣ρNN (xkb , t
k
b ; θ)− ρ(xkb , t

k
b )
∣∣2 +

ωjb
Nb

Nb∑

k=1

∣∣jNN (xkb , t
k
b ; θ)− j(xkb , tkb )

∣∣2 .

(A.2)

The AP-residual term Lεr in (A.1) is defined through (3.10) and reads as follows

ωTr Lεr(θ) =
ωρr
Nr

Nr∑

n=1

∣∣∣∣
∂ρNN (xnr , t

n
r ; θ)

∂t
+
∂jNN (xnr , t

n
r ; θ)

∂x

∣∣∣∣
2

+
ωjr
Nr

Nr∑

n=1

∣∣∣∣ε2 ∂jNN (xnr , t
n
r ; θ)

∂t
+ c2

∂ρNN (xnr , t
n
r ; θ)

∂x
+ σ jNN (xnr , t

n
r ; θ)

∣∣∣∣
2

,

(A.3)

where we assumed that the scattering coefficient σ in system (3.5) is constant.

This formulation allows the neural network to benefit from the AP property.

Indeed, if we consider the zero relaxation (or diffusive) limit ε → 0, Eq. (A.3)

results

ωTr L0
r(θ) =

ωρr
Nr

Nr∑

n=1

∣∣∣∣
∂ρNN (xnr , t

n
r ; θ)

∂t
+
∂jNN (xnr , t

n
r ; θ)

∂x

∣∣∣∣
2

+
ωjr
Nr

Nr∑

n=1

∣∣∣∣c2
∂ρNN (xnr , t

n
r ; θ)

∂x
+ σNN jNN (xnr , t

n
r ; θ)

∣∣∣∣
2

,

which is consistent with the definition of residual term that we would have by

directly considering the diffusive limit of the model in (3.9).

Appendix B. AP-loss function for the hyperbolic SIR model

Aware that in real-world applications data on fluxes JS , JI , JR are generally difficult

to access, we consider the loss function

L(θ) = ωTd Ld(θ) + ωTb Lb(θ) + ωTr Lτr (θ) + ωc Lc(θ), (B.1)

where the first term is given by

ωTd Ld(θ) =
ωSd
Nd

Nd∑

i=1

∣∣SNN (xid, t
i
d; θ)− S(xid, t

i
d)
∣∣2 +

ωId
Nd

Nd∑

i=1

∣∣INN (xid, t
i
d; θ)− I(xid, t

i
d)
∣∣2

+
ωRd
Nd

Nd∑

i=1

∣∣RNN (xid, t
i
d; θ)−R(xid, t

i
d)
∣∣2 .
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Concerning the imposition of initial and boundary conditions, both included in the

Lb term in (B.1), we have the detailed expression

ωTb Lb(θ) =
ωSb
Nb

Nb∑

k=1

∣∣SNN (xkb , t
k
b ; θ)− S(xkb , t

k
b )
∣∣2 +

ωIb
Nb

Nb∑

k=1

∣∣INN (xkb , t
k
b ; θ)− I(xkb , t

k
b )
∣∣2

+
ωRb
Nb

Nb∑

k=1

∣∣RNN (xkb , t
k
b ; θ)−R(xkb , t

k
b )
∣∣2 +

ωJSb
Nb

Nb∑

k=1

∣∣JSNN (xkb , t
k
b ; θ)− JS(xkb , t

k
b )
∣∣2

+
ωJIb
Nb

Nb∑

k=1

∣∣JINN (xkb , t
k
b ; θ)− JI(xkb , tkb )

∣∣2 +
ωJRb
Nb

Nb∑

k=1

∣∣JRNN (xkb , t
k
b ; θ)− JR(xkb , t

k
b )
∣∣2 .

We underline here that, to impose boundary conditions, we apply the appropriate

mapping technique based on the specific boundary conditions of the problem of

interest [50].

The expression of the last mean squared error term in the loss function (B.1),

which concerns the residual presented in (3.13), reads

ωTr Lτr (θ) =
ωSr
Nr

Nr∑

n=1

∣∣∣∣
∂SNN (xnr , t

n
r ; θ)

∂t
+
∂JSNN (xnr , t

n
r ; θ)

∂x

+ β(xnr , t
n
r )SNN (xnr , t

n
r ; θ)INN (xnr , t

n
r ; θ)

∣∣∣∣
2

+
ωIr
Nr

Nr∑

n=1

∣∣∣∣
∂INN (xnr , t

n
r ; θ)

∂t
+
∂JINN (xnr , t

n
r ; θ)

∂x

− β(xnr , t
n
r )SNN (xnr , t

n
r ; θ)INN (xnr , t

n
r ; θ)

+ γ(xnr , t
n
r )INN (xnr , t

n
r ; θ)

∣∣∣∣
2

+
ωRr
Nr

Nr∑

n=1

∣∣∣∣
∂RNN (xnr , t

n
r ; θ)

∂t
+
∂JRNN (xnr , t

n
r ; θ)

∂x
− γ(xnr , t

n
r )INN (xnr , t

n
r ; θ)

∣∣∣∣
2

+
ωJSr
Nr

Nr∑

n=1

∣∣∣∣τS(xnr )
∂JSNN (xnr , t

n
r ; θ)

∂t
+DS(xnr )

∂SNN (xnr , t
n
r ; θ)

∂x

+ τS(xnr )β(xnr , t
n
r )JSNN (xnr , t

n
r ; θ)INN (xnr , t

n
r ; θ) + JSNN (xnr , t

n
r ; θ)

∣∣∣∣
2

+
ωJIr
Nr

Nr∑

n=1

∣∣∣∣τI(xnr )
∂JINN (xnr , t

n
r ; θ)

∂t
+DI(x

n
r )
∂INN (xnr , t

n
r ; θ)

∂x

− τI(xnr )
λI(x

n
r )

λS(xnr )
β(xnr , t

n
r )JSNN (xnr , t

n
r ; θ)INN (xnr , t

n
r ; θ)

+ τI(x
n
r )γ(xnr , t

n
r )JINN (xnr , t

n
r ; θ) + JINN (xnr , t

n
r ; θ)

∣∣∣∣
2
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+
ωJRr
Nr

Nr∑

n=1

∣∣∣∣τR(xnr )
∂JRNN (xnr , t

n
r ; θ)

∂t
+DR(xnr )

∂RNN (xnr , t
n
r ; θ)

∂x

− τR(xnr )
λR(xnr )

λI(xnr )
γ(xnr , t

n
r )JINN (xnr , t

n
r ; θ) + JRNN (xnr , t

n
r ; θ)

∣∣∣∣
2

.

If one considers the limit τi → 0, λi → ∞, i ∈ {S, I,R} s.t. equations (2.6) hold

true, the above term is clearly consistent with the definition of residual applied

directly to the diffusive limit given by equations (2.8).

Finally, in the SIR epidemic transport model, conservation (2.3) is enforced as

ωc Lc(θ) =
ωc
Nc

Nc∑

m=1

∣∣∣∣∣∣

Nq∑

q=1

(SNN (xq, t
m
c ; θ) + INN (xq, t

m
c ; θ) +RNN (xq, t

m
c ; θ))

−
Nq∑

q=1

(S(xq, 0) + I(xq, 0) +R(xq, 0))

∣∣∣∣∣∣

2

,

(B.2)

with Nq quadrature points in D.

Appendix C. Loss function and training hyperparameters

Loss function and training hyperparameters of the APNN for the various test cases

considered are listed in the following Tables.

Test ωρd (ωρb , ω
j
b) (ωρr , ω

j
r)

1 100 (1, 1) (1, 1)

2 (a) 100 (1, 1) (1, 1)

2 (b) 100 (1, 1) (1, 1)

Table 7: Goldstein-Taylor model. Weights used in the loss function of the APNN.

Test (ωSu , ω
I
u, ω

R
u ) (ωSb , ω

I
b , ω

R
b , ω

JS
b , ωJIb , ω

JR
b ) (ωSr , ω

I
r , ω

R
r , ω

JS
r , ωJIr , ω

JR
r )

3 (a) (1, 100, 10) (1, 10, 1,-,-,-) (1, 10, 1, 1, 10, 1)

3 (b) (1, 100, 10) (1, 10, 1,-,-,-) (1, 100, 10, 1, 100, 10)

4 (a) (1, 1000, 100) (1, 1000, 100, 1, 10, 1) (1, 1000, 100, 1, 10, 1)

4 (b) (1, 1000, 100) (1, 1000, 100, 1, 10, 1) (1, 1000, 100, 1, 10, 1)

Table 8: SIR hyperbolic model. Weights used in the loss function of the APNN. We

fix the weight for the conservation loss in SIR models ωc = 1.
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Test LR Epochs

1 10−2 20000

2 (a) 10−2 40000

2 (b) 10−2 12000

3 (a) 10−3 20000

3 (b) 10−2 20000

4 (a) 10−3 150000

4 (b) 10−3 150000

Table 9: Learning rate (LR) used in the optimization and epochs of the APNN for

each test case. In all the tests we consider full batch size.
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