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Abstract

The mechanism of the generation of dark matter and dark radiation from the evaporation
of primordial black holes is very interesting. We consider the case of Kerr black holes to
generalize previous results obtained in the Schwarzschild case. For dark matter, the results do
not change dramatically and the bounds on warm dark matter apply similarly: in particular,
the Kerr case cannot save the scenario of black hole domination for light dark matter. For
dark radiation, the expectations for ∆Neff do not change significantly with respect to the
Schwarzschild case, but for an enhancement in the case of spin 2 particles: in the massless
case, however, the projected experimental sensitivity would be reached only for extremal
black holes.

1 Introduction

If primordial Black Holes (BH) [1–3] were generated in the early Universe, they would have
emitted, via their evaporation mechanism [4], not only the Standard Model (SM) particles, but
also all existing particles beyond the SM with mass below their Hawking temperature. It was
soon proposed that such particles might be responsible for the excess of baryons over anti-baryons
[5,6], that they might account for some or all of the Dark Matter (DM) we observe today [7–10],
and that they might even provide a contribution to Dark Radiation (DR) [8, 11–13].

The masses of the primordial BHs could be in the broad range 10−5 − 109 g, i.e. from the
Planck mass up to the mass allowing for evaporation before the nucleosynthesis epoch. Apart
from the case of gravitino production [14, 15], the primordial BH density at formation for the
range 10−5 − 109 g is at present unconstrained, as reviewed e.g. in ref. [16]. There however
upper bounds [17,18] on the fraction of the universe collapsed into primordial BHs from possible
backreaction gravitational waves. Depending on the fraction of primordial BHs at formation
with respect to radiation, β, there is the possibility that the Universe was radiation or BH
dominated at the evanescence of the BHs [7, 19, 20]: this situation is referred to as radiation or
BH domination, respectively.
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Much work has been done in the past, and also recently, in the case of non-rotating, i.e.
Schwarzschild BHs, for both DM and DR. It is natural to ask what changes in the case of
rotating, i.e. Kerr BHs [21,22]: this is the goal of the present work. To motivate the interest in
the extension to the Kerr case, let us first summarize the results so far obtained for DM and DR
in the Schwarzschild case.

As for DM, Fujita et al. [7], assuming BHs domination, found that a significant contribution
could come from stable particles that are either superheavy or light, that is with masses in the
MeV range. In the light case, DM candidates would be warm, while in the superheavy case they
would be cold. Exploiting the warm DM velocity constraints available at that time [23], ref. [7]
discussed the lower limits on the mass of the light DM candidates, using an order-of-magnitude
argument (for an up-to-date presentation, see [10]). More sophisticated analysis were done in
refs. [8, 24]. Ref. [25] presents a complete study on the viability of warm DM candidates from
the evaporation of primordial BHs: it was found that, assuming BH domination, the scenario of
warm DM is excluded for all spins and for all BH masses in the range 10−5− 109 g; for radiation
domination, upper limits on β (or, equivalently, on the warm DM mass) were derived for the
various DM spins.

It is natural to ask what happens to warm DM in the Kerr case [21, 22]. Since Kerr BHs
have shorter lifetimes, one might expect that the mean velocity of DM gets reduced, and the
tension with structure formation alleviated. This is what we study in the next sections, finding
that the tension with structure formation is practically unchanged for DM particles with spins
s = 0, 1/2, 1, while it is even exacerbated for s = 2 increasing the value of the Kerr BH spin.

As for DR, in the Schwarzschild case, Hooper et al. [11] pointed out that, for BH domination,
the contribution to the effective number of relativistic degrees of freedom, ∆Neff , might be at
hand of future observations, for DR particles with spins s = 0, 1/2, 1, but not for s = 2. The
effect of primordial BHs merging was recently reconsidered in ref. [13], showing that a population
of Kerr BHs might be formed and that their evaporation would produce a significant fraction of
hot (high-energy) gravitons: exploiting previous results from [26], ref. [13] finds an increase in
∆Neff at a potentially observable level, even for non extremal BH spin values (such as a∗ = 0.7),
for BHs evaporating just before nucleosynthesis.

Here we reconsider the calculation of ∆Neff in the Kerr case, for any value of the BH spin and
independently of the mechanism responsible for the rotation. In order to numerically account for
the greybody factors associated to the different spins, we use the recently developed and publicly
available code BlackHawk [27]. We find less optimistic results than those of ref. [13]. According
to our results, the contribution to ∆Neff by hot massless gravitons, would escape detection by
projected experiments, unless in the case of extremal BH spin values, for all the range of BH
masses (that is 10−5 − 109 g).

In this work we consider BH evaporation as the only production mechanism. The conse-
quences of allowing for other production mechanisms have been recently explored in refs. [28]
and [29, 30]. For an updated analysis of the possibility that the matter-antimatter asymmetry
is due to particles produced by primordial BHs evaporation, we refer the interested reader to
ref. [31] for GUT baryogenesis, and to ref. [32] for leptogenesis.

The paper is organized as follows. In sec. 2 we introduce our notation and review the basics
for primordial Kerr BHs. In sec. 3, the evaporation process for Kerr BHs is discussed. In sec. 4
we show the dynamics of the relevant densities from formation to evaporation, while in sec. 5 we
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calculate the distribution of the momentum of the emitted particle at the time of evaporation,
for the various particle spins. The number and energy densities at evaporation are calculated in
sec. 6, and the upper limit on the DR mass is reviewed in sec. 7. The contributions to DM and
DR are studied in secs. 8 and 9 respectively. We draw our summary in the conclusive sec. 10.

In order to have a better control of our formulas for dimensional analysis and numerical
computations, we do not use natural units.

2 Preliminaries on primordial BHs

The formation from early Universe inhomogeneities of collapsed objects [1], later called primordial
BHs, was considered in refs. [2–4]. Since inflation removes all pre-existing inhomogeneities, any
cosmologically interesting primordial BH density has however to be created after inflation. We
refer to [16, 33] for reviews of the various mechanism proposed, with proper references to the
associated literature. In the following, we present our notations and review the relevant formulas
for primordial Kerr BHs formation and dynamics.

2.1 Radiation dominated era

According to the first Friedmann equation (neglecting the curvature and cosmological constant
terms), the early Universe evolution is described by(

ȧ

a

)2

≡ H(t)2 =
8πG

3
ρ(t) , (1)

where a(t) is the scale factor, H(t) is the Hubble parameter, ρ(t) is the mass density of the
Universe and G is the Newton gravitational constant, G ' 6.674×10−11 m3/(kg s2). The Planck
mass is MPl =

√
~c/G ≈ 1.221× 1019 GeV/c2 ≈ 2.176× 10−8 kg.

In the early hot and dense Universe, it is appropriate to assume an equation of state corre-
sponding to a fluid of radiation (or relativistic particles). During radiation domination, ρ ∝ a−4,
a(t) ∝ t1/2, and

H(t) =
1

2t
. (2)

At relatively late times, non-relativistic matter eventually dominates the mass density over ra-
diation. A pressureless fluid leads to the expected dependence ρ ∝ a−3, a(t) ∝ t2/3, and

H(t) =
2

3t
. (3)

The radiation mass density (at high temperatures) can be approximated by including only
those particles which are in thermal equilibrium and have masses below the temperature TR of
the radiation bath:

ρR(t) =
π2g∗(t)

30

(kBTR(t))4

(~ c)3 c2
, g∗(t) =

∑
B

gB +
7

8

∑
F

gF , (4)
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where kB is the Boltzmann constant, kB ' 8.617×10−5 eV/K, ~ is the reduced Planck constant,
~ = 6.582 × 10−16 eV s, c is the velocity of light in vacuum, c = 2.998 × 108 m/s, and gB(F ) is
the number of degrees of freedom (dof) of each boson (fermion).

Below the electron mass, only the photon (gγ = 2) and three light left-handed neutrinos
contribute, so that g∗(t) = 7.25. Below the muon mass, also the electron (and the positron)
has to be included, so that g∗(t) = 10.75. For the full SM, here defined including three light
left-handed neutrinos, g∗(t) = 106.75. At higher temperatures, g∗(t) will be model-dependent.
Including the (massless) graviton, (gG = 2), has the effect of adding 2 units to the previously
mentioned values of g∗(t).

2.2 Formation of primordial BHs

As reviewed for instance in ref. [16], if a primordial BH forms at the time tf during the radiation
dominated era, typically its mass is close to the value enclosed by the particle horizon near the
end of inflation:

MBH = γ
4π

3
ρR(tf ) (2 c tf )3 = γ

4π

3
ρR(tf )

(
c

H(tf )

)3

, (5)

where γ . 1 is a numerical factor that depends on the details of the gravitational collapse, ρR(tf )
and H(tf ) are respectively the radiation density and the Hubble parameter at the formation of
the BH, and in the last equality we used eq. (2). Using eq. (1), we can also write

MBH =
γ

2

(MPlc
2)2

~H(tf )

1

c2
≈ γ 1010 GeV

~H(tf )
104 g &

γ

3
g , (6)

where the last lower bound follows from the fact that CMB observations put a naive upper bound
(which does not apply to all inflationary models) on the Hubble scale during inflation, ~HI .
3×1014 GeV at 95% C.L. [34], and H(tf ) . HI . In the literature the value γ = 1/(3

√
3) ≈ 0.2 is

usually taken as reference value [16]; in this case the lower limit would becomeMBH & 0.07 g. In
any case, the BH mass should be larger than the Planck mass, MBH & 10−5 g. As is well known,
there is also an upper bound, MBH . 109 g, because the primordial BH evaporation products
have negative effects on nucleosynthesis, see e.g. ref. [35]. The range of primordial BH masses
between these bounds is at present generically unconstrained [16].

Recalling eq. (2), the primordial BHs formation time is easily found from eq. (6) to be

tf
~

=
1

γ

MBHc
2

(MPlc2)2
. (7)

As for the radiation temperature at formation, combining eqs. (4), (1) and (6), we have

kBTR(tf ) =

(
45γ2

16π3g∗(tf )

)1/4(
MPl

MBH

)1/2

MPlc
2 . (8)

The temperature and the time at formation of primordial BHs, as a function of the their mass
at formation, are plotted e.g. in fig. 1 of ref. [10].

It is useful to introduce the parameter β defined as the BH over the radiation mass density
at the formation time

β =
ρBH(tf )

ρR(tf )
= MBH

nBH(tf )

ρR(tf )
, (9)
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where nBH(tf ) is the primordial BH number density at formation, whose explicit expression can
be obtained by combining eqs. (9) and (5) with eq. (1), so that

nBH(tf ) = β γ2
3

32π

(MPlc
2)6

(MBHc2)3(~c)3
. (10)

2.3 Kerr primordial BHs

Let J be the angular momentum of the rotating (uncharged) Kerr BH. While the mass of the
BH can take any positive value, there is an upper limit on J ,

J

~
<
M2
BH

M2
Pl

. (11)

This suggest to define a dimensionless spin parameter a∗,

a∗ =
J

~
M2
Pl

M2
BH

, (12)

such that 0 < a∗ < 1. Extremal Kerr BHs are characterized by having a∗ very close to 1, let say
a∗ > 0.9 for definiteness.

The size of a Schwarzschild (a∗ = 0) BH, as determined by the radius of the event horizon,
is proportional to its mass through

rS = 2~c
MBHc

2

(MPlc2)2
. (13)

For a BH with nonzero angular momentum, the radius of the event horizon, r+, is smaller than
the Schwarzschild radius

r+
rS

=
1 +

√
1− a2∗
2

, (14)

until an extremal BH could have an event horizon close to rS/2.

3 Evaporation of Kerr primordial BHs

Here we review the basic formulas describing the evaporation of a Kerr BH [21,22], following the
notations of refs. [27, 36].

Consider a Kerr BH of mass MBH(t) (we neglect the time dependence only when we refer to
the formation time). The Hawking radiation mimics thermal emission from a blackbody with a
temperature TBH(t), given by [4, 22,37]

kB TBH(t) =
1

8π

(MPlc
2)2

MBH(t)c2
2

1 + 1√
1−a∗(t)2

. (15)

In the following, we denote by TBH the Hawking temperature at formation, TBH = TBH(tf ).
For the Schwarzschild case, for which a∗ = 0, the formation temperature is denoted by TSBH .
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As discussed e.g. in [22], at the time t, such a hole emits particles of type i, spin si and total
energy between (E,E + dE) at a rate, per degree of freedom (dof), given by

1

gi

d2Ni

dt dE
=

d2N

dt dE
=

1

2π~
∑
`,m

Γsi`m(E,MBH(t), a∗(t))
1

e
E′

kBTBH (t) − (−1)2si
, (16)

where E′ = E − mΩ is the total energy of the particles, taking into account the BH horizon
rotation velocity on top of the total energy E2 = p2c2 + m2

i c
4 (where mi is the particle mass),

m is the particle angular momentum projection m ∈ [−`,+`], and Ω = ~c a∗/(2r+). The
greybody factors Γsi`m are dimensionless absorption probabilities for the emitted species (in
general functions of E, MBH(t), a∗(t) and the particle’s internal dof and rest mass), and gi are
the internal dof of the i-th particle, which account for the polarization and color dof.

Let us consider in some detail the SM. For the Higgs boson (s = 0), gh0 = 1. For the massless
(s = 1) photon and the 8 gluons, gγ = 2 and gg = 16. For the massive (s = 1) W± and Z,
gW+ = gW− = gZ = 3. As for the fermions (s = 1/2): the charged leptons, being Dirac fermions,
have ge = gµ = gτ = 4; the neutrinos have gνe = gνµ = gντ = 2(4) in the case they are Majorana
(Dirac) particles, respectively; the quarks have gu = gc = gt = gd = gs = gb = 12. Finally, one
might also include the massless graviton (s = 2), with gG = 2.

3.1 Rate of mass and angular momentum loss

The rate of mass loss for an evaporating BH is proportional to the total power emitted

c4M4
Pl

~
f(MBH , a∗)

M2
BH

= −c2dMBH

dt
=
dE

dt
=
∑
i

∫ ∞
0

dE E
d2Ni

dt dE
. (17)

where, to parametrize this, Page [22,37] introduced the adimensional Page function, f(MBH , a∗).
For the evolution of the BH angular momentum, Page introduced the adimensional function

g(MBH , a∗) such that

M2
Plc

2 g(MBH , a∗) = −MBH

a∗

dJ

dt
=
MBH

a∗

∑
i

∫
dE ji

d2Ni

dtdE
, (18)

where ji is the angular momentum taken by the i-th particle, ji = m~. The time dependence of
MBH and a∗ are left understood in the above equations.

Inverting these equations and using the definition of a∗, one obtains the differential equations
governing the mass and spin of a Kerr BH

dMBH

dt
= −

c2M4
Pl

~
f(MBH , a∗)

M2
BH

, (19)

da∗
dt

= a∗
(MPlc

2)4

~(MBHc2)3
(2f(MBH , a∗)− g(MBH , a∗)) . (20)

For the SM (including gravitons), the functions f(MBH , a∗) and g(MBH , a∗) are constant
over the whole range of BH masses we are interested in, namely (10−5 − 109) g, while their
dependence on the spin parameter a∗ is shown in the left panel of fig. 1. We calculated the
f(MBH , a∗) and g(MBH , a∗) Page functions using the code BlackHawk [27], and we checked
that they are consistent with previous numerical estimates [22, 38, 39]. In particular, in the
Schwarzschild case, one has fS(MBH) = f(MBH , 0) = 4.27× 10−3.
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Figure 1: Left: The Page functions f and g as a function of a∗, within the SM (including gravitons)
and for BHs with initial mass MBH . 1010 g. Right: Time dependence of the mass (solid) and spin
(dashed) of a Kerr BH in the SM (including gravitons), for a∗ = 0, 0.5, 0.8, 0.9, 0.97 and for any value of
MBH . 1010 g.

3.2 BH lifetime

Given any initial values for the BH mass and spin, the functions f(MBH , a∗) and g(MBH , a∗)
allow one to obtain the time evolution of the BH mass and spin, by using eqs. (19) and (20).

For a Schwarzschild BH, the lifetime equals the time of the BH evanescence, tSev, so that

tSev
~

=
1

c2M4
Pl

∫ MBH

0
dM

M2

f(M, 0)
=

1

3fS(MBH)

(MBHc
2)3

(MPlc2)4
, (21)

where in the last equality we assumed f(M, 0) to be constant over the BH lifetime (as in the
SM). For Schwarzschild, one thus obtains a simple time dependence for the ratio of the BH mass
at time t over its initial value,

MS
BH(t)

MBH
=

(
1− t

tSev

)1/3

, (22)

as illustrated in the right panel of fig. 1.
For the more general Kerr case, considering for definiteness the SM (including gravitons),

we display in fig. 1 the time dependence of the mass ratio MBH(t)/MBH (solid lines) and of
the spin a∗(t) (dashed lines). In particular, we select some representative initial spin values,
a∗ = 0.5, 0.8, 0.9, 0.97. The results hold for any value of MBH . 1010 g. The lifetime is more
and more reduced the higher is the initial spin of the BH: this means that the evaporation time
in the Kerr case is smaller than in the Schwarzschild case. To account for the shortening in the
lifetime, it is useful to introduce the parameter αK such that

tev = αKt
S
ev . (23)

From fig. 1, one might suppose that a Kerr BH behaves like a Schwarzschild BH in the final
stages of its lifetime. In particular, in his last period, the time dependence of a Kerr BH mass is
similar to the one of a Schwarzschild BH with an initial effective mass given byM eff

BH = α
1/3
K MBH .
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It is not difficult to study the effect of adding beyond SM particles, like for instance axions
and right-handed neutrinos. As far as the number of dof of the additional particles is small with
respect to the SM one, the inclusion of such additional particles does not change appreciably the
results of fig. 1.

4 From formation to evaporation

4.1 Radiation vs BH domination

Let us define the ratio f(t) = ρBH(t)/ρR(t). Since ρBH(t) ∝ 1/a(t)3, while ρR(t) ∝ 1/a(t)4, such
ratio increases as the scale factor, f(t) ∝ a(t). It is thus possible that BHs come to dominate
the energy content of the universe before they completely evaporate [7, 19, 20]: this situation
is referred to as BH domination. The scenario in which evaporation takes place before BH
domination might occur is referred to as radiation domination.

We define β̄ to be the maximum value of β corresponding to radiation domination, namely
the value of β leading to f(tev) = 1; this value can be obtained from the following relation,

β̄ =
f(tf )

f(tev)
=

a(tf )

a(tev)
=

(
tf

αKtSev

)1/2

=
1

α
1/2
K

(
3fS(MBH)

γ

)1/2 MPl

MBH
, (24)

where we used eqs. (23), (7) and (21). For all the values of β . β̄, the primordial BHs evaporate
before they come to dominate the matter content of the Universe, and the increase in the scale
factor is simply given by

a(tf )

a(tev)
= β̄ . (25)

For all the values of β & β̄, BH domination occurs. We have thus to consider: first, the
radiation dominated period from the formation time, tf , to the time when BHs start to dominate,
tBH , such that f(tBH) = 1; and second, the matter dominated period from tBH to tev. The first
period is characterized by the following increase in the scale factor

β =
f(tf )

f(tBH)
=

a(tf )

a(tBH)
=

(
tf
tBH

)1/2

, (26)

while the second period is characterized by

a(tBH)

a(tev)
=

(
tBH
tev

)2/3

=

(
1

β2
tf
tev

)2/3

=

(
1

β2
tf

αKtSev

)2/3

=

(
β̄

β

)4/3

, (27)

so that, putting together, the total increase in the scale factor is given by

a(tf )

a(tev)
=

a(tf )

a(tBH)

a(tBH)

a(tev)
=
β̄4/3

β1/3
= β̄

(
β̄

β

)1/3

. (28)
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4.2 BH density at evaporation

The BH number density at the time of evaporation is related to the one at formation by

nBH(tev) = nBH(tf )

(
a(tf )

a(tev)

)3

. (29)

Using the equation above together with eqs. (10), (24) and (25), one obtains for radiation domi-
nation

nBH(tev) =
1

α
3/2
K

β γ1/2
3

32π
(3fS(MBH))3/2

(
MPl

MBH

)6 (MPlc
2)3

(~c)3
, (30)

while, using eq. (28), one obtains for BH domination

nBH(tev) =
1

α2
K

3

32π
(3fS(MBH))2

(
MPl

MBH

)7 (MPlc
2)3

(~c)3
, (31)

which displays an increase with respect to radiation domination by the factor β̄/β.

4.3 Radiation temperature at evaporation

One can grossly assume that all the energy density stored in the BHs goes, after their evaporation,
into the radiation energy density of the SM particles and of possibly beyond SM particles emitted
by the BH:

ρBH(tf )

(
a(tf )

a(tev)

)3

= ρBH(tev) ≈ ρSM (tev) + ρBSM (tev) . (32)

Both the SM and beyond SM particles are emitted with a spectrum of momenta that is not
thermal. However, the SM particles produced in the evaporation of the BH rapidly thermalize
as soon as they are emitted. In this work we assume that the beyond SM particles are stable
and interact feebly or only gravitationally, so that they never come in thermal equilibrium.

In the case of radiation domination, the radiation energy density from the SM particles
emitted by the BH is negligible with respect to the radiation present since the formation of the
BH, ρBH(tev) << ρR(tev). Combining eqs. (1), (2) and eq. (23),

8πG

3
ρR(tev) =

1

4t2ev
=

1

4α2
Kt

S
ev

2 , (33)

and using eqs. (4) and (21), one obtains

kBTR(tev) =
1

α
1/2
K

(3fS(MBH))1/2
(

45

16π3g∗(tev)

)1/4( MPl

MBH

)3/2

(MPlc
2) ≈ 1

α
1/2
K

kBT
S
R(tev) ,

(34)
namely that the temperature in the Kerr case is slightly higher than in the Schwarzschild case:
notice indeed that, since αK is in general bigger than 1/2 (see right panel of fig. 1), the function
g∗(tev) is very similar to what it is in the Schwarzschild case, here denoted by g∗(tSev). The values
of g∗(tSev), as a function of the BH mass, are shown in the right panel of fig. 3 of ref. [25].
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In the case of BH domination, by definition, ρBH(tev) >> ρR(tev). If the fraction of beyond
SM particles is not enormous, one also has ρSM (tev) ≈ ρBH(tev). The beyond SM particles
remain non thermal if they interact feebly or only gravitationally. At the contrary, the SM
particles produced in the evaporation of the BH rapidly thermalize as soon as they are emitted,
so that the radiation energy density (and thus the radiation temperature) gets a sudden increase,
going up to ρR(tev) ≈ ρBH(tev) after thermalization. Assuming the period of matter domination
by BHs is respectively short or long with respect to the first period of radiation domination, and
combining eqs. (1) and (3), we have

8πG

3
ρR(tev) =

(
1 or

16

9

)
1

4t2ev
. (35)

For a short or long period of matter domination by BHs, the radiation temperature after evapo-
ration gets slightly enhanced with respect to radiation domination, by a factor going from 1 up
to (16/9)1/4 ≈ 1.15.

4.4 BH number to entropy density at evaporation

For later convenience it is useful to introduce YBH(t), the number to entropy density of BHs at
time t

YBH(t) =
nBH(t)

s(t)
, (36)

where the entropy density is defined as

s(t) =
2π2g∗,S(t)

45

(kBTR(t))3

(~c)3
. (37)

The difference between g∗(t) and g∗,S(t) can in general be neglected.
For radiation domination, using eqs. (30) and (34), we have that the number-to-entropy

density in the Kerr and Schwarzschild cases are equal

YBH(tev) = β γ1/2
3

4

(
45

16π3g∗(tev)

)1/4( MPl

MBH

)3/2

, (38)

as the dependence on αK disappears. For a short period of matter domination by BHs, using
eqs. (31) and (34)

YBH(tev) =
1

α
1/2
K

(3fS(MBH))1/2
3

4

(
45

16π3g∗(tev)

)1/4 ( MPl

MBH

)5/2

, (39)

which displays an increase with respect to radiation domination by the factor β̄/β.

5 Momentum distribution at evaporation

Eq. (16) gives the instantaneous spectrum of the particles of type i emitted by a single BH. The
maximum of the energy distribution is at about E ∼ kBTBH . If the particle is sufficiently light,
as we are going to assume in the following, the ultra relativistic limit applies, E ≈ cp > mic

2.
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The distribution of the momentum at evaporation for the particle of type i, normalized per
dof, is a superposition of all the instantaneous distributions, each redshifted appropriately from
its time of emission tem (see e.g. ref. [40])

1

gi

dNi

d(cp)
(tev) =

∫ tev

tem

dt
d2N

dt d(cp(t))

cp(tev)a(tev)

a(t)︸ ︷︷ ︸
cp(t)

, TBH(t), a∗(t)

 a(tev)

a(t)
. (40)

Notice that tem might be larger than tf if the initial BH temperature is smaller than the particle
mass but, since we are interested in light DM, tem = tf .

For radiation domination, the ratio of scale factors to be put in eq. (40) is

a(tev)

a(t)
=

(
tev
t

)1/2

. (41)

For BH domination, the integral of eq. (40) should be split into two contributions, corre-
sponding to a first period of radiation domination, and a second of BH domination. For the
second period of BH domination, starting at tBH = tf/β

2 and ending at tev, the ratio of scale
factors to be put in the integrand is

a(tev)

a(t)
=

(
tev
t

)2/3

, (42)

while for the first period of radiation domination, starting at tf and ending at tBH , the ratio of
scale factors to be put in the integrand is rather

a(tev)

a(t)
=

a(tev)

a(tBH)

a(tBH)

a(t)
=

(
tev
tBH

)2/3( tBH
t

)1/2

. (43)

For short (long) BH domination, clearly the dominant contribution comes from the first (second)
period.

It is useful to define the adimensional momentum

x(tev) ≡
cp(tev)

kBTSBH
, (44)

with the related adimensional momentum distribution at evaporation

F̃si(x(tev)) ≡
(kBT

S
BH)3

(MPlc2)2
1

gi

dNi

d(cp)
(tev) , (45)

which has the nice property of depending only on the particle spin si and the BH spin a∗, while
being independent of the BH mass.

For the Schwarzschild case, previously studied in ref. [25], the quantity F̃si(x(tev)) derived
from BlackHawk [27] is shown in the top left panel of fig. 2, assuming radiation domination with
β = β̄ (solid) and full (namely a long period of) BH domination (dotted). The suppression due

11
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Figure 2: Adimensional function F̃ (x(tev)), as defined by eq. (45), assuming radiation domination with
β = β̄ (solid) or full BH domination (dashed), calculated using BlackHawk [27] within the SM and for
various particle spins, as indicated. Top left: Schwarzschild case. Top right and bottom: Kerr case with
a∗ = 0.5, a∗ = 0.8 and a∗ = 0.9.

to the different values of the spin is manifest. The other panels show the same for the Kerr case,
taking different initial spins, a∗ = 0.5, 0.8, 0.9, as indicated.

Since the particle momentum scales in time as the inverse of the scale factor, the contribution
at small x(tev) is dominated by evaporation in the first period of the BH lifetime, while the
contribution at large x(tev) is dominated by evaporation in the last period of the BH lifetime,
for which the momentum is not much suppressed. The contribution at small x(tev) is thus
particularly sensitive to the Kerr regime: the higher is the value of BH spin parameter a∗, the
more the contribution from particles with high spin, like s = 2 and s = 1, gets enhanced. This fact
is well known, in particular for gravitons [22]. For large x(tev) the four plots of fig. 2 are instead
similar, because the Kerr BH has already slowed down its rotation, so that the evaporation at
late times resembles the Schwarzschild case.

12



6 Particle densities at evaporation

In this section we calculate the particle number and energy densities for a Kerr BH, which will
be useful in the following sections.

6.1 Number densities at evaporation

The density at the evaporation time of the particles of type i emitted in the evaporation of the
BHs, is given by

ni(tev) =

∫
dE

dni
dE

(tev) = nBH(tev)

∫
dE

dNi

dE
(tev) = nBH(tev)Ni , (46)

where Ni is the total number of i particles produced in the evaporation of a single BH.
For the relativistic regime, the calculation of dNi

d(cp)(tev) was done in the previous section,
eq. (40). Using also eq. (45), we have

Ni = (8π)2
M2
BH

M2
Pl

gi φ̃si , φ̃si =

∫ ∞
0

dx(tev) F̃si(x(tev)) . (47)

We show in the left panel of fig. 3 the quantity φ̃si : notice that it does not depend on the BH
mass, but only on the particle spin si and the initial spin of the BH, a∗. It turns out that φ̃si
is not appreciably different for radiation or BH domination (the difference being at the percent
level). We can see the remarkable increase in φ̃si going from Schwarzschild to extremal Kerr BHs
for si = 2; for lower particle spins, the dependence on a∗ is instead mild.

It is interesting to compare the results of the left panel of fig. 3 for a∗ = 0, with an approxima-
tion, obtained in the Schwarzschild case by adopting the geometrical optics approximation (that
differentiates only bosons and fermions). Neglecting redshift effects and using the geometrical
optics approximation, we have

Ni =

∫ tev

tf

dt

∫ ∞
0

dE
d2Ni

dtdE
=

1

2fS(MBH)

27ζ(3)

83π4
{1, 3

4
} gi

M2
BH

M2
Pl

, (48)

where the first (second) factor in the curly brackets stands for bosons (fermions). In particular,
comparing with eq. (47), we identify

φ̃si ↔
1

(8π)2
1

2fS(MBH)

27ζ(3)

83π4
{1, 3

4
} = {1.2, 0.90} × 10−4 , (49)

which is quite good in the bosonic case, but not very satisfctory in the fermionic one.

6.2 Energy densities at evaporation

The energy density of the particle i at evaporation is

ρi(tev) =

∫
dE

E

c2
dni
dE

(tev) =
nBH(tev)

c2

∫
dE E

dNi

dE
(tev) =

nBH(tev)

c2
Ni < Ei(tev) > , (50)
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Figure 3: Dependence on a∗ of the quantities φ̃si and x̃si , for various particles spins, as indicated.
Radiation domination and BH domination give nearly indistinguishable results.

where < Ei(tev) > is the mean energy of the i particle at evaporation.
In the relativistic regime, we use eqs. (40) and (45), to obtain

Ni < Ei(tev) >= (8π)(MBHc
2) gi x̃si , x̃si =

∫ ∞
0

dx(tev)x(tev) F̃si(x(tev)) . (51)

As it was the case for φ̃si , also x̃si depends on a∗ and the particle spin, but not on the BH mass.
The right panel of fig. 3 shows the numerical values of x̃si and its dependence on a∗. The

results are obtained for radiation domination, but x̃si is only marginally different for BH domi-
nation. We can see a remarkable increase for extremal BHs for si = 2 particles, while for lower
particle spins the dependence on a∗ is mild.

It is interesting to compare the results of the plot for a∗ = 0, with an approximation obtained
in the Schwarzschild case and neglecting the redshift effect, so that, instead of eq. (40), one uses

dNi

d(cp)
(tev) =

∫ tev

tem

dt
d2Ni

dt d(cp(t))
(cp(t), TBH(t)) , (52)

and the energy density of eq. (50) becomes instead

ρi(tev) =
nBH(tev)

c2
c4M4

Pl

~

∫ tev

tem

dt
gi fi(MBH(t))

MBH(t)2
= nBH(tev)MBH

gi fi,S(MBH)

fS(MBH)
. (53)

where gifi,S(MBH) is the contribution to the Page function fS(MBH) by the i particle, which
in the last equality was assumed to be constant over the BH lifetime. Recalling the definition of
x̃si , eq. (51), we can identify

x̃si ↔
1

8π

fi,S(MBH)

fS(MBH)
= {7.0, 3.9, 1.6, 0.18} × 10−4 , for s = 0, 1/2, 1, 2 , (54)

where the numerical values in the right hand side have been obtained within the SM (that is for
MBH < 1010 g). Notice the quite good agreement with the numerical values of fig. 3 for a∗ = 0:
this demonstrates that the inclusion of the redshift effect is not dramatic.
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In the case of BH domination, from eqs. (50) and (51), the fraction of the energy density of
the i species with respect to the energy density of radiation (that is all the SM particles) at the
evaporation is

ρi(tev)

ρBH(tev)
≈ ρi(tev)

ρR(tev)
=

Ni < Ei(tev) >∑
j=RNj < Ej(tev) >

=
gi x̃si∑
j=R gj x̃sj

, (55)

where the sum over radiation includes all the SM. This is shown the left plot of fig. 4, considering
a boson (gi = 1), a Weyl fermion (gi = 2), a massive vector (gi = 3), a massive (gi = 5) and
a massless (gi = 2), graviton. For instance, for a massless (massive) graviton and a∗ = 0.7, we
have ρG/ρR = 0.20%(0.50%); for an extremal BH with a∗ = 0.97, the latter values increase to
1.4%(3.6%) respectively.

In the case of radiation domination, exploiting the fact that ρBH(tev)/ρR(tev) = f(tev) = β/β̄,
one has

ρi(tev)

ρR(tev)
=

ρi(tev)

ρBH(tev)

ρBH(tev)

ρR(tev)
=
β

β̄

gi x̃si∑
j=R gj x̃sj

, (56)

namely a global suppression by a factor β/β̄ with respect to the results in the left panel of fig. 4.
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Figure 4: Left: The fraction of the energy density of the i species with respect to the energy density of
radiation (that is all the SM particles) at the evaporation, ρi(tev)/ρR(tev), as a function of a∗ and for
BH domination. We consider a boson (gi = 1), a Weyl fermion (gi = 2), a massive vector (gi = 3), a
massive (gi = 5) and a massless (gi = 2), graviton. Right: The dependence of α1/2

K δ̃sX on the BH spin
a∗, for various particle spins, as indicated.

7 Viable masses for DR

In this paper we consider the possibility that, in top of the SM, a particle of the species X, with
mass mX , is produced in the evaporation of the BH. If such particle is stable, it would contribute
to DM and, if sufficiently light, it would give a significant contribution to DR [8, 10, 11]. Here
we generalize to the Kerr case the argument reviewd in ref. [10] for the Schwarzschild case.
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In order for the X particles to give a sizable contribution to DR, their average kinetic en-
ergy evaluated at the time of matter radiation equality, tEQ, must exceed their mass: cpEQ ≈
〈EX(tEQ)〉 & mXc

2. Using eqs. (47) and (51), the average kinetic energy of the emitted X
particles is1

cpev ≈< EX(tev) >=
x̃sX
φ̃sX

kBT
S
BH ≡ δ̃sX kBT

S
BH . (57)

Since the momentum scales as the scale factor,

〈EX(tEQ)〉 ≈ 〈EX(tev)〉
a(tev)

a(tEQ)
= δ̃sX (kBT

S
BH)

1

α′
kBTR(tEQ)

kBTR(tev)

(
g∗,S(tEQ)

g∗,S(tev)

)1/3

, (58)

where in the last equality we assumed entropy conservation from evaporation to matter-radiation
equality, α′(sa3)ev = (sa3)EQ. Using eq. (34), we find the dependence on the BH mass

kBT
S
BH

kBTR(tev)
= α

1/2
K

1

8π

(
1

3fS(MBH)

)1/2(16π3g∗(tev)

45

)1/4(
MBH

MPl

)1/2

, (59)

so that, assuming g∗,S(tEQ) ≈ 3.94, g∗,S(tev) ≈ 108.75, taking kBTR(tEQ) ≈ 0.75 eV and α′ = 1,
the condition to contribute significantly to DR becomes

mXc
2 . 〈EX(tEQ)〉 ≈ α1/2

K δ̃sX

(
MBH

1 g

)1/2

0.11 keV . (60)

The right panel of fig. 4 shows the dependence of the quantity α1/2
K δ̃sX on the BH spin a∗.

For a boson in the Schwarzschild case δ̃0 ≈ 4.5, so that mXc
2 . 0.50 keV for MBH = 1 g, in

agreement with ref. [10]. For the Kerr case, the suppression induced by factor α1/2
K is mild (at

most 0.7 for extremal BH). Including also the factor δsX , we can see from the right panel of fig. 4
no significant difference with respect to the Schwarzschild for s = 0, 1/2, while the decrease is
significant for s = 1 and especially for s = 2.

8 Stable particles as dark matter

In this section we assume that the X particle is going to provide the full contribution to the DM
observed today.

In the Schwarzschild case, it is well known that there are two possible solutions for DM,
denoted as "light" and "heavy" DM [7], according to the fact that the particles are produced
during all the BH lifetime or just in its final stages (see e.g. [10] and references therein). If
mXc

2 < kBT
S
BH , the DM candidate belongs to the "light" category, otherwise to the "heavy"

one. In particular, the light DM case is subject to strong constraints from structure formation
[7, 8, 10, 24, 25], so that the BH domination scenario is ruled out. One might guess [25] that
the Kerr case would manage to escape such constraints. This what we study in this section, by
generalizing the study of the light DM scenario to Kerr BHs.

1It is interesting to compare our numerical result with a previous analytical approximation, valid in the
Schwarzschild case [7], cpev ≈ 〈EX(tev)〉 ≈ 6 kBT

S
BH .
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The cosmological abundance related to the species X at the present time, t0, is proportional
to the present number to entropy density of such species

ΩX =
ρX
ρc

=
mX

ρc

nX(t0)

s(t0)
s(t0) =

mX s(t0)

ρc
YX(t0) , (61)

where, defining H = 100h km s−1 Mpc−1,

ρc =
3H2

8πG
= 1.88× 10−26 h2

kg

m3
. (62)

The entropy density now is obtained from eq. (37) by putting the CMB temperature TCMB =
2.7255 K [34]: s(t0) = 2891/cm3. Observationally, the cosmological abundance of cold DM has
to be Ωc ≈ 0.25.

One can treat evaporation [20] as if all particles were produced at a single instant, t ≈ tev.
The present number-to-entropy density of a stable particle X produced by evaporation is directly
related to the BH abundance at evaporation [7, 20] by

YX(t0) =
nX(t0)

s(t0)
=

1

α

nX(tev)

s(tev)
=

1

α
NX

nBH(tev)

s(tev)
=

1

α
NXYBH(tev) , (63)

where α parametrizes a possible entropy production after evanescence, α(sa3)ev = (sa3)0, and
NX is the number of X particles produced in the evaporation of a single BH2. The detailed
calculation of NX was carried out in sec. 6, while YBH(tev) can be read from eqs. (38) and (39).

As reference DM case, we consider a scalar boson (with gX = 1) from a Schwarzschild BH.
The associated value of the DM mass giving the full contribution to DM is denoted by m̄. We
display the iso-contours of Log10m̄c

2[GeV] in the left panel of fig. 5, taken from [10]. The shaded
area, which fully includes the region of BH domination (β > β̄), is excluded by the constraints
on structure formation, as we are going to discuss in the following.

Let us call mX the mass in the case of a Kerr BH with spin a∗, emitting the X particle of spin
sX = 0, 1/2, 1, 2 (with gX = 1, 2, 3, 5, respectively), providing the full contribution to DM. Using
eq. (47), the ratio mX/m̄ turns out to be, for radiation domination, in which case YBH(tev) is
the same in the Kerr and Schwarzschild case,

mX

m̄
=

N0

NX
=

φ̃0(0)

gX φ̃sX (a∗)
. (64)

In the right panel of fig. 5 we show the ratio mX/m̄ as a function of a∗. Notice that the
Schwarzschild case for the various particle spins agrees with the findings of [25]. In the more
general Kerr case, we can see that the ratio mX/m̄ increases marginally as a function of a∗ for
s = 0, 1/2, it slightly decreases for s = 1, while drastically decreases for s = 2.

For BH domination, using eq. (39) to take into account the difference in YBH(tev) for the
Kerr and Schwarzschild case, one has

mX

m̄
= α

1/2
K

φ̃0(0)

gX φ̃sX (a∗)
. (65)

2It is reasonable to assume that entropy is conserved from matter-radiation equality to the present time, so
thatα ≈ α′.
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Figure 5: Left: Isocontorurs of Log10m̄c
2[GeV] for a boson with gX = 1, in the Schwarzschild case,
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domination, is ruled out by constraints on structure formation. Right: Ratio mX/m̄ as a function of a∗,
for radiation domination, with gX = 1, 2, 3, 5 and sX = 0, 1/2, 1, 2 respectively.

8.1 Constraints on warm DM

If the X particle is going to provide the full contribution to DM, one has to check that it was
cold enough not to waste structure formation. The X particles are emitted with a distribution
of momenta. An argument based on mean quantities [7] allows to derive a good estimate for the
lower value of mX that would be compatible with structure formation. We now generalize the
argument of [7,10,24] to the Kerr case, in order to inspect if the tension with structure formation
is alleviated3.

The momentum of the X particle is red-shifted by the expansion of the Universe,

p0 =
a(tev)

a(t0)
pev = a(tEQ)

a(tev)

a(tEQ)

〈EX(tev)〉
c

= a(tEQ)
〈EX(tEQ)〉

c
, (66)

where we used eqs. (57), (58), a(t0) = 1. Assuming that it is no more relativistic, the velocity of
the X particle now is

vX
c

=
p0
cmX

= a(tEQ)
〈EX(tEQ)〉
mXc2

= α
1/2
K

δ̃sX
δ̃0

m̄

mX

v̄

c
(67)

where we used eqs. (60) and defined v̄/c to be the velocity of the previously introduced reference
DM case, that is a scalar (with gX = 1) in the Schwarzschild case, so that

v̄

c
= a(tEQ)

1

m̄c2
δ̃0

(
MBH

1 g

)1/2

0.11 keV = 0.9× 10−6 , (68)

where in the last equation we used a(tEQ) = ΩR/ΩM ≈ 1.8× 10−4.
3A more sophisticated analysis should follow the lines of [25].
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For radiation domination, using eq. (64), eq. (67) becomes

vX
c

= gX α
1/2
K

x̃sX (a∗)

x̃0(0)

v̄

c
, (69)

while for BH domination, using eq. (65), it becomes

vX
c

= gX
x̃sX (a∗)

x̃0(0)

v̄

c
, (70)

The velocity vX is subject to an upper bound that can be estimated to be comparable to
the upper limit on the velocity of a warm thermal relic DM candidate. Assume that a warm
thermal relic giving the full contribution to DM was relativistic at decoupling. In order not to
waste structure formation, the lower bound on its mass is mW c

2 & 3.5 keV (at 2σ) [41]. Since
both the velocity and particle temperature scale as the inverse of the scale factor, and assuming
entropy conservation from decoupling to the present epoch [42] 4

vW
c
≈ kBTW (t0)

mW c2
=

(
g∗,S(tr)

g∗,S(tdec)

)1/3( 4

11

)1/3 kBTCMB

mW c2
. 0.7× 10−8 , (71)

where we used the fact that g∗,S(tr)/g∗,S(tdec) = 11 eV/(mW c
2) (see e.g. the discussion in [25]).

If thew X particles are going to fully contribute to DM, we have to require vX . vW . Hence
there is a tension with structure formation because v̄ turns out to be bigger than vW by two
orders of magnitude (consistently with the findings of [7,10,24,25]). This rules out all the region
of BH domination, and also a small confining portion of radiation domination, as can be seen
from the left panel of fig. 5.

In the Schwarzschild case with non zero spins, the tension is reduced for increasing spin
values, because of the suppression in vX coming from the factor x̃sX (0)/x̃0(0), see eqs. (69), (70)
and the right panel of fig. 3. But even for s = 2 (with gX = 5) the tension persists because, as
can be seen from fig. 3, one has gX x̃2(0)/x̃0(0) ≈ 0.1: the tension is thus reduced at the level of
one order of magnitude, consistently with the findings of [25].

In the more general Kerr case, we can derive from the right panel of fig. 3 what is the behavior
of the quantity x̃sX (a∗)/x̃0(0) for increasing values of a∗. For s = 0, 1/2, 1 there is no significant
difference with respect to the Schwarzschild case; for s = 2, since x̃2(a∗) is an increasing function
of a∗, the tension with structure formation become definitely worse than in the Schwarzschild
case.

This hows that there is no possibility to save the BH domination scenario with Kerr BHs.

9 Stable particles as dark radiation

Let us assume that the X particle is light enough to contribute to DR (in which case the
contribution to DM is marginal). The contribution of such a DR component to the effective

4If the warm particles decouple when relativistic, their momentum distribution function remains constant
until gravitational clustering begins. All particle momenta scale as a−1 which we can describe by scaling their
temperature TW accordingly. When the particles become non-relativistic we can use p = mW vW .
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number of relativistic dof is parametrized by

∆Neff =
ρX(tEQ)

ρR(tEQ)

(
Nν +

8

7

(
11

4

)4/3
)
, (72)

where Nν = 3.045 [43], and tEQ is the time of matter-radiation equality.
We now extend to the Kerr case the argument followed in ref. [10, 11] to calculate ∆Neff .

The ratio of the energy density in DR with respect to radiation at matter-radiation equality is

ρX(tEQ)

ρR(tEQ)
=

1

α′4/3
ρX(tev)

ρR(tev)

g∗,S(tEQ)

g∗(tEQ)

g∗,S(tEQ)1/3

g∗,S(tev)1/3
. (73)

As shown e.g. in fig. 3 of [25], within the SM, g∗,S(tev) = 106.75 is constant for MBH < 106 g
(while it drops down to the value 10.75 at MBH ≈ 109 g). Substituting the above expression in
eq. (72), and taking g∗,S(tEQ) = 3.94, g∗(tEQ) = 3.38, Nν = 3.045, g∗,S(tev) = 106.75, one has

∆Neff ≈ 2.89
1

α′4/3
ρX(tev)

ρR(tev)
. (74)

In the BH mass range above 106 g, there is a slight enhancement with respect to the factor 2.89,
which has to be substituted by 6.21 for MBH = 109 g.

The ratio ρX(tev)/ρR(tev) was already studied in eqs. (55), (56). For BH domination, within
the SM with the additional DR, it was shown in the left panel of fig. 4, for different particle spins.
For radiation domination the results have to be suppressed by β/β̄.

For the Schwarzschild case and BH domination, the associated prediction for ∆Neff is shown
in the left panel of fig. 6, taking α′ = 1, and for various particle spins, as indicated. These results
are in full agreement with [11]. The present sensitivity to ∆Neff of CMB observations is shown:
since Neff = 2.99± 0.17 [44], one has Neff < 3.33 at 2σ, or equivalently ∆Neff = Neff −Nν <
0.29 at 2σ. Interestingly enough, there are optimistic possibilities of detecting some signal in the
future [11], as the predicted contribution to ∆Neff is potentially within the projected reach of
stage IV experiments, ∆Neff ≈ 0.02: this is the case for DR particles with s < 3/2, but not for
a massless or massive s = 2 particle (called graviton for short).

The right panel of fig. 6 shows the dependence of ∆Neff on the BH spin, a∗. One can see that
for s = 0, 1/2, 1 there are no significant changes, while for s = 2 there is a significant increase.
However, for s = 2, the contribution to ∆Neff remains below the future observable region,
unless a∗ > 0.9 (0.75) in the massless (massive) case respectively, for MBH < 106 g. In the case
of larger values of MBH (corresponding to evaporation just before nucleosynthesis), there is a
further slight increase, as the left panel of fig. 6 shows.

We thus find less optimistic results than those presented in ref. [13] for "hot" gravitons.
We comment here on the source of the discrepancy. The latter work studies the case of BHs
that are spinning as a consequence of having undergone previous mergers. The distribution of
angular momenta predicted for such a BH population peaks strongly at a∗ = 0.7, almost entirely
independently of the masses or the initial spin distribution of the merging binaries [26]. After
integrating over the evolution of BHs with a distribution of initial spins as described in [26],
ref. [13] finds that approximately fG ≈ 0.47% of the energy emitted as Hawking radiation is in
the form of massless "hot" gravitons. On the contrary, as appears from the left panel of fig. 4,
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Figure 6: Left: Various DR contributions to ∆Neff , as a function of the BH mass, assuming an epoch of
BH domination and taking α′ = 1. Right: the dependence of ∆Neff on the BH spin a∗, forMBH < 106 g.

we find less optimistic values: in particular for a massless (massive) graviton and a∗ = 0.7, we
have fG = ρG/ρR = 0.20%(0.50%); for an extremal BH with a∗ = 0.97, the latter values increase
to 1.4%(3.6%) respectively. Our significantly smaller estimate for fG is thus the source of the
discrepancy in the associated "hot" graviton contribution to ∆Neff : indeed, for ref. [13], ∆Neff

might be as large as 0.01−0.03 for a∗ = 0.7, and even as large as ∆Neff = 0.3 for near extremal
BHs. According to our findings, this would rather apply to the massive graviton case, but not
to the massless one.

10 Conclusions

We have extended to the Kerr case the study of DM and DR from evaporating primordial BHs.
For DM, one might have expected [25] that the constraints from structure formation that

exclude the scenario of BH domination for light DM in the Schwarzschild case, would have been
softened. We find instead that, while for the lower spins as s = 0, 1/2, 1 the tension is not
changed significantly for all values of the BH spin a∗, for s = 2 the tension is even enhanced with
increasing values of a∗. We conclude that invoking an angular momentum for the evaporating
BHs, does not offer a solution to save the BH domination scenario.

A couple of possibilities to save BH domination should be mentioned. As suggested in [7],
some mechanism providing entropy non conservation and taking place after the evaporation of
primordial BHs (like e.g. moduli decay) might succeed this task. In this work we considered
non-interacting DM from primordial BHs evaporation, but allowing for self-interacting DM offers
the possibility to escape the structure formation bound in the light case for BH domination [45]:
thermalization in the DM sector decreases the mean DM kinetic energy and, together with
number-changing processes, can have a strong impact, in particular enhancing the DM relic
abundance by several orders of magnitude.

For DR, it is well known [10, 11] that in the Schwarzschild case particles with s = 0, 1/2, 1
might give a contribution to ∆Neff at hand of future experimental sensitivity, while this does
not applies to the massive or massless s = 2 case (see the left panel of fig. 6). In the Kerr case,
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we find that the contribution to ∆Neff by particles with spin s = 0, 1/2, 1 has a very mild
dependence on a∗, while for s = 2 the contribution significantly increases with a∗ [13]. In any
case, for s = 2 and a moderate value of the spin parameters like a∗ = 0.7, we find that ∆Neff

remains below the projected sensitivity in the massless case (while in the massive case it would
reach the level of the planned sensitivity only for BHs evaporating just before nucleosynthesis),
see the right panel of fig. 6. In the massless case for s = 2, only for extreme values of the spin
parameter, a∗ > 0.9, ∆Neff would reach the projected experimental sensitivity. Our results are
thus less optimistic than those of ref. [13] for the "hot" graviton case.
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