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Abstract
Blind Deconvolution problem is a challenging task in several scientific ima-
ging domains, such as Microscopy, Medicine and Astronomy. The Point
Spread Function inducing the blur effect on the acquired image can be solely
approximately known, or just a mathematical model may be available. Blind
deconvolution aims to reconstruct the image when only the recorded data is
available. In the last years, among the standard variational approaches, Deep
Learning techniques have gained interest thanks to their impressive perform-
ances. The Deep Image Prior framework has been employed for solving this
task, giving rise to the so-called neural blind deconvolution (NBD), where the
unknown blur and image are estimated via two different neural networks. In
this paper, we consider microscopy images, where the predominant noise is of
Poisson type, hence signal-dependent: this leads to consider the generalized
Kullback–Leibler as loss function and to couple it with regularization terms on
both the blur operator and on the image. Furthermore, we propose to modify
the standard NBD formulation problem, by including for the blur kernel an
upper bound which depends on the optical instrument. A numerical solution
is obtained by an alternating Proximal Gradient Descent-Ascent procedure,
which results in the Double Deep Image Prior for Poisson noise algorithm.
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We evaluate the proposed strategy on both synthetic and real-world images,
achieving promising results and proving that the correct choice of the loss and
regularization functions strongly depends on the application at hand.

Keywords: blind deconvolution, Poisson noise, neural networks,
deep image prior

(Some figures may appear in colour only in the online journal)

1. Introduction

Blind deconvolution (BD) consists in a image deblurring problem when the point spread func-
tion (PSF) is not known or only approximately known, e.g. only a rough approximation from
observation or a mathematical model, containing a limited number of unknown parameters,
is known. For a linear model of the acquisition process, the näive formulation of the BD is
to solve the equation g= h ∗ x, where ∗ denotes the convolution product and both the PSF h
and the object x are unknown and must be estimated from the recorded image g. A convenient
and realistic assumption is to consider a space-invariant model for the PSF. Nevertheless, the
problem is extremely under-determined and there exists an infinite set of solutions. One of
them is the trivial one, i.e. x= g and h= δ, where δ is the Dirac’s delta, which is 1 at the
center and zero elsewhere. Moreover, if the pair {h̃, x̃} is a solution and R is an injective linear
operation commuting with the cyclic convolution, then the pair {Rh̃,R−1x̃} is also a solution.

BD is the subject of a wide literature and the different approaches concern specific classes
of images and PSFs. For instance, approaches applicable to natural images may not be suitable
inMicroscopy or Astronomy; approaches developed for motion blur are not applicable to other
classes of blur, and so on [1]. The obvious reason is that, since the problem is extremely ill-
posed, specific kinds of prior knowledge must be introduced, for both the object and the PSF,
in order to reduce the class of possible solutions [2]; as concerns natural images, a survey paper
[3] contains a critical analysis of proposed methods as well as several relevant references.

In this paper we consider images acquired by a confocal microscopy, restricting the dis-
cussion to the methods of BD proposed in the framework of Poisson data. The model of the
acquisition process becomes then

g= P(h ∗ x+ b) (1)

where the acquired image g is a realization of a Poisson multivalued random variable whose
average is h ∗ x+ b; here b is a background function, usually a given constant function4. For
a description of a confocal microscopy system and the related mathematical modelling of the
imaging process, see [1]. We recall that, in the Bayesian approach, the PSF h∗ and the object
x∗ are considered realizations of multi-valued random variables, respectivelyH andX , so that
the conditional probability of h,x for a given value g of the random variable G of the image
domain is given by

PH,X (h,x|g) = PG(g|h,x)PH(h)PX (x)
PG(g)

, (2)

where PH(h) and PX (x) are the priors of the PSF and object, respectively. By assuming
Gibb’s priors and replacing PG(g|h,x)with the likelihood function, i.e. the Poisson probability

4 In microscopy a background emission can arise from auto-fluorescence, inadequate removal of fluorescence staining
material, offset levels of the detector gain or other electronic sources [4, 5].
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distribution of G for the realization g, the maximum a posteriori (MAP) estimates h̄, x̄ of h∗ and
x∗, respectively, can be obtained by maximizing (2) with respect to h and x, or equivalently
by minimizing the negative logarithm of the conditional probability PH,X (h,x|g):

min
h∈Ch,x∈Cx

fB(h,x;g)≡ fB0 (h,x;g)+ f1(h)+ f2(x). (3)

Under the Poisson noise framework, the data-fidelity function fB0 (h,x;g) is the generalized
Kullback–Leibler (KL) divergence, expressed as

fB0 (h,x;g) = KL(g;h ∗ x+ b)

=
∑
i

gi ln

(
gi

(h ∗ x+ b)i

)
+(h ∗ x+ b)i − gi,

(4)

where gi lngi = 0 if gi = 0. Furthermore, f 1 and f 2 are the regularization functions of the PSF
and object, respectively. In order to devise a meaningful solution between spurious local min-
ima, simple physical constraints Ch and Cx for the two blocks of variables can be specified, as,
for example, Ch = {h ∈ Rdh : 0⩽ hi,

∑dh
i=1 hi = 1} and Cx = {x ∈ Rdx : 0⩽ xi, i = 1, . . .,dx}.

In any case we have to solve a constrained and non-convex minimization problem. Assum-
ing that f 1 and f 2 are convex functions, since the objective function is convex with respect to
each blocks of variables, keeping the other fixed, a standard approach to the solution of (3) is
the so-called alternating optimization method, also known as non-linear block Gauss-Seidel
or block coordinate descent method ([6, chapter 2]); it consists in solving problem (3) by suc-
cessively minimizing the objective function with respect to each block of variables, over the
corresponding constraint set, by keeping the other fixed. Remarkable convergence results are
in [7] under the assumption that the exact solutions of the two minimization subproblems can
be obtained at any iteration and, above all, in [8] where the stationary of limit points of the
sequence of inexact solutions is stated. This inexact block coordinate descent approach, where
at each iteration a gradient projection step based on an Armijo line-search along the feasible
direction with variable step-size is performed for any block, is very useful in the practical
applications (see for example [9]). In the deterministic framework, many advances have been
made to deal with BD problems in the case of natural images degraded by additive noise, by
introducing novel regularization terms or suitable strategies to improve the alternating schemes
(see, for example [10–13] and references therein).

Recently, deep convolutional neural networks (CNNs) trained on large datasets are used
to predict either the blur or the sharp image directly from the blurred examples (see [14–17]
and reference therein, and the surveys [18, 19]). In [20], the BD problem is addressed by
training two separate generative networks, the first to produce sharp images and the second to
generate blur kernels. Then, the BD problem is formulated as a minimization problem with
respect to the inputs of the two pre-trained networks which provide as output the recovered
image and the blur kernel; employing suitable regularization terms, this problem is solved by
an alternating gradient descent scheme. A further proposal is to train only the network related
to the blur kernel, using an unsupervised technique for training the network for the image. This
technique is very similar to the one proposed in [21] and described in the upcoming sections.
We highlight that these data-driven methods are limited by the capacity of the training datasets
and then they exhibit a lack of generalization when not trained with enough data. Moreover,
in many real applications, it is practically impossible to build a sufficiently large dataset with
both ground truth and degraded data.

In an unsupervised deep learning framework for image restoration, the seminal papers [22,
23] propose a Deep Image Prior (DIP) approach, exploiting the fact that the structure of a deep
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CNN generator is sufficient to capture a large amount of low-level image statistics prior to any
learning, thus inducing an implicit regularization. Specifically, the visual object of interest can
be parameterized as the output of a neural network. Borrowing the DIP approach, it is natural
to parameterized both the estimated image and the blur separately by generative networks,
following theDouble-DIP approach in [24]. These nets are not pre-trained on any datasets; they
are adopted merely to capture the priors of either the image and the blur for the optimization
process, performing a so-called neural blind deconvolution (NBD). Indeed, this strategy is
adopted by [21, 25]; the two approaches differ for the structure of the two nets. In particular in
[25] the two nets are convolutional encoder-decoder networks, while in [21] only the image is
the output of a convolutional U-net and the blur kernel is generated by amore simple two-layers
FC net. This last method is called SelfDeblur and it is able to produce high-quality results for
blur images, but multiple runs can produce outputs with a wide range in quality. This is due
to the randomly initialization of the neural nets, giving rise to a non-deterministic methods.
In [26] the authors improve the method in terms of consistency, by introducing a suitable
initialization of the nets, multiscale processing and regularization. In [27], others techniques
are discussed to address blurred and noisy images, also in presence of kernel with unknown
size.

The contribution of this paper is to tailor the ideas developed in [21, 26, 27] for NBD in
confocal microscopy. In particular, the PSF h and the image x are derived from the parametric
outputs of two generative networksNh(θh) andNx(θx); the problem (3) is reformulated so that
the minimization is performed with respect to the weights θh,θx of the two nets. For modeling
x, an autoencoder with skip connectionsNx can be selected, so that x=Nx(θx) while, for the
more simple blur kernel h, an FC network can be adopted, although the activation functions
are sin functions and not standard ones. The input data of the two nets are random tensors.
Following the suggestion in [9] (see also [1, section 8.3]), in order to reduce the set of possible
solutions of the NBD problem, we introduce a further constraint provided by the knowledge
of the Strehl ratio (SR) of the optical instrument. We recall that the SR is the ratio between the
maximum value of an aberrated PSF versus that of a perfect PSF. This information implies
an upper bound on the PSF, in addition to the lower bound of non-negativity and to the nor-
malization; therefore, with such a constraint, the trivial solution provided by the δ-array as
PSF is not allowed. Suitable regularizations are introduced in the reformulated objective func-
tion. In view of a sharp image restoration, we employ an edge-preserving non-smooth term,
such as a Total Variation-like function. We restate the minimization problem in the form of a
nonconvex-concave min-max problem, similarly to what is described in [28]. For its numer-
ical solution, we develop a tailored version of the alternating proximal gradient descent-ascent
(PGDA) method [29, 30]. In order to drive the method to a meaningful solution, we use an
initialization technique to determine the weights related to suitable starting values for x and h.
Finally, we evaluate the effectiveness of the proposed approach by describing the numerical
results of the NBD of synthetic images and of real images, showing the effect of the additional
upper bound introduced on the blur kernel.

In summary, the contributions we propose in this work are listed below.

• We address the issue of images degraded by Poisson noise in an NBD problem; this is
obtained by introducing the generalized KL divergence as discrepancy function instead of
the standard least-squares data fidelity.

• We propose a further NBD formulation by introducing in the standard one an upper bound
for the blur kernel; this constraint allows to exclude trivial solutions and even to identify
coherent solutions with the optical instrument.
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• We exploit two generative networks, aimed to recover approximations of the blur kernel and
the image; the first is based on the SIREN architecture, instead of a simple FC network; the
second is inspired by the one proposed in [21] and has an additional convolutional layer in
the decoder block.

• We use pixel-wise weighted regularization terms for the blur kernel and the image in NBD
problem; they are adapted to local patterns. In particular for the image local versions of Total
Variation or ℓ1 function are employed; the presence of regularization terms counterbalances
the random input of the nets and the non-convexity of the problem, by better delimiting the
set of possible solutions.

• We expand the stopping criterion in [27, 31] by adding a further control on the normalized
KL [32].

The paper is organized as follows. Section 2 is devoted to present the problem, the network’s
structure and the choice for the regularization functionals. Section 3 presents the theoretical
framework of the PGDA method employed for the minimization of (3) along its implementa-
tion details in algorithm. The numerical tests are presented in section 4, on both synthetic and
real microscopic images. Section 5 gathers the results achieved in this work and presents some
possible, future research strategies.

1.1. Notation

The symbol ∥ · ∥ denotes the standard Euclidean norm, ∥ · ∥F denotes the Frobenius norm. Bold
letters refer to vectors or tensors (it will be made clear by the context), whilst Greek and Latin
letters refer to scalar. The Euclidean scalar product can be denoted by ⟨·, ·⟩. We recall that the
proximal operator of a convex function F : Rd → R at a vector x ∈ Rd is defined as

proxF(x) = argmin
w∈Rd

F(w)+
1
2
∥w− x∥2. (5)

The proximal operator is well-defined for any convex function [33]. The proximal operator
of the indicator function ιC of a closed and convex set C at a vector x is the standard pro-
jection of x on C, i.e. proxιC(x) = ΠC(x). Furthermore, for any vector w ∈ R2, we define the
shrinkage operator of w with parameter β > 0 as shrinkβ(w) = argmin

x∈R2

β∥x∥+ 1
2∥x−w∥2 =

w
∥w∥ max(0,∥w∥−β). The symbol 1 denotes an array with all entries equal to 1.

2. The NBD problem

In a Bayesian approach, the BD problem can be formulated as the optimization problem (3),
where, in presence of Poisson data, the data-fidelity function is expressed as (4). Motivated by
the DIP idea [22, 23], following [21], in the BD problem the unknown blur kernel h and the
image x can be replaced by the outputs of two generative networksNh(θh) andNx(θx), whose
input data zh and zx are random samples. Combining this approach with the MAP minimiza-
tion (3), the NBD problem can be formulated as

min
θh,θx

fB0 (Nh(θh),Nx(θx);g)+ f1 (Nh(θh))+ f2 (Nx(θx)) ,

s. t. 0⩽Nx(θx)⩽ 1, Nh(θh)⩾ 0,
∑
i

(Nh(θh))i = 1 (6)

5



Inverse Problems 39 (2023) 054003 A Benfenati et al

where f 1 and f 2 are regularization terms for the outputs of the two nets; the constraints in (6) can
be automatically meet, by setting as output layers of the two nets the sigmoid nonlinearity for
Nx and the SoftMax nonlinearity forNh respectively. By denoting the solution of the minimiz-
ation problem as (θ∗

h ,θ
∗
x ), the restored image x∗ can be viewed as the output of the generative

networkNx where the network weights θ
∗
x are a parametrization of x∗, i.e. x∗ =Nx(θ

∗
x ). Simil-

arly, the blur kernel h∗ =Nh(θ
∗
h) and the network weights θ

∗
h are a parametrization of h∗. The

formulation (6) can include the trivial solution provided by the δ-array as PSF. Indeed, when
an iterative method is used to find an reliable approximate solution, numerical experiments
show how crucial it is to determine at which iteration one should stop, given that, in general,
the iterative procedure can lead to the trivial solution. Hence, the numerical experience high-
lights that the sequence of iteratesNh(θ

(k)
h ) tends to collapse to a single point with value 1 and,

consequently, the quality of the recovered images deteriorates. This fact can be observed in
the numerical experiments of section 4, in particular in figures 4–6. Here, for any test problem
of the considered dataset, we observe that the peak values of the PSF sequence exceed the
maximum value of h∗, continuing to increase and collapsing the iterates into one point (see
the behaviour of the PSF peak value with respect the iterations in figures 4(a), 5(a) and 6(a)).
To avoid this drawback, we follow the suggestion in [9], by requiring that the outputs of the
networkNh are bounded from above by a prefixed peak value as well as being constrained by
the non-negativity and normalization to 1. Thus, the problem (6) can be restated as follows:

min
θh,θx

fB0 (ΠCV(Nh(θh)),Nx(θx);g)+ f1 (ΠCV(Nh(θh)))+ f2 (Nx(θx)) ,

s. t. 0⩽Nx(θx)⩽ 1, (7)

with CV = {0⩽ V⩽ H1,
∑

i (V)i = 1}, 0< H< 1. We point out that, while the output of
the net Nx automatically satisfies the box constraints, the output of Nh has to be projected in
the convex set,CV = {0⩽ V⩽ H1,

∑
i (V)i = 1}; this condition requires to be able to com-

pute the projection operator on the set CV and this can be implemented by exploiting efficient
algorithms, such as [34–36]. Unlike what holds for (6), in this case h∗ =ΠCV(Nh(θ

∗
h)). The

peak value H is strictly dependent on the optical instrument; its physical features enable to
define an ideal PSF. The ideal PSF is different from the real PSF and it is possible to estimate
the SR, finding a reliable value for H (see for example [37, 38]).

2.1. The two generative networks

The networks employed in the experimentation are inspired by the architectures used in [21,
26]. The network Nx is a classical U-net, with a depth of 5, i.e. the encoder and the decoder
have five different levels of compression and decompression, respectively. Each block of the
decoder comprehends a convolutional layer, with stride 1, followed by convolutional layer
with stride 2 which halves the spatial dimensions, a batch normalization (BN) Layer, a Leak-
yReLU (with parameter 0.2), then again a convolutional layer with stride 1, a BN layer and a
LeakyReLU layer. The decoder’s blocks have a similar structure: a depth concatenation layer
for the connection between the encoder and the decoder parts, followed by a BN layer, then
a sequence composed by a convolutional layer with stride 1, a BN layer and a LeakyReLU is
repeated twice. Finally, a resize layer is employed for doubling the spatial dimensions. The
seminal paper on DIP [23] points out that the choice of the upsampling method (bilinear,
nearest neighbour or transposed convolution) does not impact on the final performance. The
resize layer is then followed by a BN and by a LeakyReLU. The input of this network is a
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Figure 1. The visual scheme for the U-Net used in the numerical experimentation. The
bottom row explain the structure of the encoder, decoder and skip connection blocks,
respectively. The numbers at the bottom of each block refers to the number of filters
used in the convolutional layers.

random 3D tensor of dimension n× n× 32 (see section 4 for the details of the probability dis-
tribution of such tensor). All the convolutional layers use convolutional filters of dimension
3× 3. See figure 1 for a visual inspection of the Nx structure.

In the original papers [21, 26] the network for recovering of the PSF is a shallow, fully
connected (FC) one: the motivation is based on the fact that the PSF does not have particular
structures that require convolutional filters to be captured; hence a simple FC network is suf-
ficient. The very recent work [27] implements the different architecture SIREN [39], which
uses the sin function as neuronal activation. We follow such strategy since it has been observed
in the numerical experiments and in real world scenarios that SIREN networks can learn high-
frequency components in a better way than DIP [39]. The structure of the SIREN network
employed in this work is depicted in figure 2: an input layer of 200 random components is fol-
lowed by four instances of an FC layer followed by a sin activation layer. The last two layers
are an FC one (in order to retrieve the desired dimension for the PSF) and a SoftMax layer.
The initialization of such network is done following the suggestion depicted in [39].

2.2. Regularization terms

Although the generative nets have high impedance to image noise [40], numerical experience
shows that multiple runs on the same input for the minimization of the objective data-fidelity

7
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Figure 2. SIREN network for the reconstruction of the PSF. K2 is the number of ele-
ments of the PSF.

functionwithout regularization terms produce very different results [26]. This can bemotivated
by the random initialization of the nets, but also by the non-convexity of both the original
problem and the reformulated one, that can admit many solutions. In order to address these
drawbacks and make the approach more consistent, in (3) and, consequently in (6) and (7), two
regularization terms are introduced, as in [26, 27]. For both the terms, we adopt a pixel-wise
weighted regularization (see [41, 42]). To describe the choices made in this paper, we assume
for simplicity to deal with a 2D k× k blur kernel, reshaped as vector of RK, K= k× k, and
n× n image, reshaped as vector of RN, N= n× n. For the blur kernel we consider an adaptive
Tikhonov-like regularization of order 0, which is defined as the sum of a set λ of positive
parameters, locally adapted to the kernel pattern, combined with the terms of the standard
regularization, that is

f1(h) =
1
2

K∑
i=1

λih2i . (8)

Similarly, to devise a restored sharp image, we use a pixel-wise weighted regularization term,
locally adapted to the image pattern, combined with the terms of a standard regularization
function, well-suited to microscopy images, such as the ℓ1 function [43] or the total variation
(TV) [28]. Specifically f 2 can be written as

f2(x) =
N∑
i=1

λ̃iRi(x), (9)

where Ri(x) is defined as follows

Ri(x) = |xi| for ℓ1 regularization, (10)

Ri(x) = ∥Ai x∥ for TV regularization. (11)

Here Ai is the 2D discrete first order difference operator at the pixel i of the vector-reshaped
image x ∈ RN and the matrices Ai ∈ R2×N, i = 1, . . .,N are sub-matrices of a matrix A ∈
R2N×N, A=

(
A⊤

1 , . . . ,A
⊤
N

)⊤
.

Both the selected regularization terms are convex, but the f 2 term is non-smooth. Thus, it
should be inappropriate to use a gradient-like method, to address the problems (6) and (7),
due to the non-existence of the f 2 gradient in neighborhoods with constant values of the image
iterate. Nevertheless, the proximal operator of a suitable reformulation of f 2 can be computed
by a closed formula. Consequently, we propose to address problem (7) by using a suitable
scheme in the framework of alternating PGDA methods.

8
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3. PGDA-like approach

Both the problems (6) and (7) can be restated as min-max problems, by introducing auxili-
ary variables. In particular, we discuss the case of problem (7), pointing out that for (6) the
reformulation is based on the introduction of only one auxiliary variable, the one which deals
with the regularization term f 2. In the case of (7), we have to consider two auxiliary variables,
the first to realize the final projection of the output of Nh on CV and the second to deal with
the regularization term f 2. By considering as f 2 the case of the TV variant (9) and (11), the
auxiliary variables are defined as follows:

V=Nh(θh), Y= ANx(θx). (12)

Taking into account that the constraints onNx(θx) in (7) are automatically meet by the output
of the U-net, the problem can be restated in the following form:

min
θh,V,θx,Y

fB0 (V,Nx(θx);g)+
1
2

K∑
i=0

λiV2
i + ιCV(V)+

∑
i

λ̃i∥Yi∥

s. t. V=Nh(θh), Y= ANx(θx) (13)

where ιCV(V) is the indicator function of the convex set CV = {0⩽ V⩽ H1,
∑

i (V)i =
1}. By introducing penalty terms for the equality constraints, the corresponding augmented
Lagrangian function can be written as

LγV,γY(θh,V,θx,Y,µV,µV) = fB0 (V,Nx(θx);g)+
1
2

K∑
i=0

λiV2
i + ιCV(V)+

∑
i

λ̃i∥Yi∥

+
γV
2
∥V−Nh(θh)∥2 + ⟨µV,V−Nh(θh)⟩

+
γY
2
∥Y−ANx(θx)∥2 + ⟨µV,Y−ANx(θx)⟩ , (14)

where γV and γY are positive penalty parameters and µV, µV are the multipliers of the equal-
ity constraints. By setting P= (θh,V,θx,Y) and µ= (µV,µV), we can bring the numerical
solution of problem (7) to that of the following saddle point problem

min
P

max
µ

LγV,γY(P,µ). (15)

We observe that the augmented Lagrangian function can be subdivided into two terms:

LγV,γY(P,µ) = K(P,µ)+R(P), (16)

where we have

K(P,µ) = fB0 (V,Nx(θx);g)+
1
2

K∑
i=0

λiV2
i

+
γV
2
∥V−Nh(θh)∥2 + ⟨µV,V−Nh(θh)⟩

+
γY
2
∥Y−ANx(θx)∥2 + ⟨µV,Y−ANx(θx)⟩

R(P) =
∑
i

λ̃i∥Yi∥+ ιCV(V). (17)

The function K(P,µV) is smooth; the non-smooth R(P) term is actually a separable function
of V andY; there exists a closed formula to compute the proximal operator of each term ∥Yi∥,

9
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i = 1, . . .,N, whereas the proximity operator of ιCV(V) is the projection on the convex set CV ,
numerically obtainable by means of efficient algorithms, as for example the ones in [34–36].
Thus the saddle point problem (15) can be formulated as

min
P

max
µ

K(P,µ)+R(P),

which is the typical form of the problems addressed by alternating PGDA methods, recently
developed in [29, 30] and already adopted for DIP models in [28]. Upon suitable initialization
of the variables, the kth iteration of PGDA iterative algorithm reads as

P(k+1) = proxαPR(P
(k) −αP∇PK(P(k),µ(k)))

µ(k+1) = µ(k) +αµ∇µK(P(k+1),µ(k+1)), (18)

where αP and αµ are positive learning rates. Due to the separability of the functions K(P,µ)
and R(P), the general scheme (18) can be detailed as follows:

θ
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.

Then, the explicit formulation of the above iteration is depicted as follows:

θ
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h = θ

(k)
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(k)
h )(γV(Nh(θ

(k)
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V ) (19a)

V(k+1) =ΠCV
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Y(k+1)
i = shrink

αPλ̃i

(
Y(k)
i −αPγY

(
Y(k)
i −AiNx(θ

(k)
x )
)
−αP(µ

(k)
V )i
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(19d)

µ
(k+1)
V = µ

(k)
V +αµ

(
V(k+1) −Nh(θ

(k+1)
h )

)
(19e)

µ
(k+1)
V = µ

(k)
V +αµ
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Y(k+1) −ANx(θ

(k+1)
x )

)
(19f )

where the operator shrinkage is applied to any sub-vector (Y)i corresponding to AiNx(θx),
i = 1, . . .,N. The steps (19a) and (19c) can be easily obtained by one step of a stochastic

gradient method applied to functions γV
2 ∥V

(k) −Nh(θh)∥2 +
〈
µ

(k)
V ,V(k) −Nh(θh)

〉
and

fB0 (V
(k),Nx(θx);g)+

γY
2 ∥Y

(k) −ANx(θx)∥2 +
〈
µ

(k)
V ,Y(k) −ANx(θx)

〉
with learning rate αP,

respectively; the updating rule (19b) forV can be obtained by applying the algorithm proposed
in [35]; in view of the physical assumptionKH> 1, the projection sub-problem iswell-defined;
the computation of the proximal operator related to the regularization term (9) (with parameter
αP) can be easily obtained in a closed form; the updating rule is well-defined, since f 2 is a con-
vex function. Finally, the last updating rules for the multiplier vectors are ascent steps with
learning rate αµ.

Remark 1. For the selection of parameters λi and λ̃i we follow [28, 41], varying these para-
meters along the iterations, according to the Uniform PENalty principle [43]. In particular, we
set

λ
(k)
i =

1
2K

fB0 (V
(k),Nx(θ

(k)
x );g)

1
2 (V

(k)
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x )∥

. (20)

As a consequence, the pixels where the value of the local components (V(k)
i )2 and

∥AiNx(θ
(k+1)
x )∥ are smaller, have a greater regularization. In the experimentation, we modify

the denominator as 1
2 (V

(k)
i )2 + ρ2 and ∥AiNx(θ

(k+1)
x )+ ρ2∥ respectively, with ρ≪ 1, in order

to avoid the annihilation of the denominators.

Remark 2. When the regularization term (9) and (10) is adopted for the image, the auxiliary
variable Y is defined as the N dimensional vector Y=Nx(θx). Consequently, the formulation
of the problem (13) and the definition of augmented Lagrangian function (14) are accordingly
simplified. The discussion on the implementation of PGDA remains unchanged, by adopting
small modifications in (19c), (19d) and (19f ) (replacement of Awith the identity of orderN and
consistent computation of the proximal operator). Furthermore, the definition of regularization
parameters is

λ̃
(k)
i =

1
2N

fB0 (Nh(θ
(k)
h ),Nx(θ

(k)
x );g)

|Nx(θ
(k+1)
x )i|+ ρ2

, (21)

with ρ≪ 1, to prevent the annihilation of the denominator.

Remark 3. The theoretical properties of the alternating PGDA method are discussed in [29].
With reference to (16), under the assumptions that K(P,µ) is ρ-weakly convex (ρ> 0) and
Lipschitz continuous in P uniformly in the second component, concave with Lipschitz con-
tinuous gradient in µV uniformly in the first component, and R(P) is proper, convex, lower
semicontinous and Lipschitz continuous on its domain, it is stated that an ϵ-stationary point
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[29] can be visited in a finite number of iterations depending on ϵ. The learning rates αP and
αµV

have to satisfy upper bounds involving the unknown Lipschitz parameters. In practice,
sufficiently small values of the two learning rates are fixed a priori.

3.1. Starting vectors

In order to obtain meaningful results by the iterative scheme (19a)–(19f ), a crucial point is to
initialize the weights of the nets Nh and Nx so that the deblurring loop has a suitable start-
ing point (see [26] for more insights and deeper explanation). Thus, x(0) = g, whereas h(0)

is chosen accordingly to the application at hand, for example a Gaussian kernel or via a pre-
set model (see section 4 for more details). To initialize the parameters of the two nets, the
following mean square error problems must be solved

min
θh

∥Nh(θh)−h(0)∥2, (22)

min
θx

∥Nx(θx)− x(0)∥2. (23)

Problems (22) and (23) are quickly solved via the Adammethod: the procedure is stopped upon
reaching the maximum number of iteration Th,Tx for (22) and (23), respectively, or when the
loss function reaches a value at most equal to a percentage (in our experiments, 0.1%) of its
initial values.

3.2. Algorithm details

The whole procedure of the Double Deep Image Prior for Poisson data (DDIPP) is depicted
in algorithm.

Instead of running the algorithm until it reaches the maximum number of iteration T, we
implement the windowed-moving-variance strategy of [27, 31]. Such strategy consists in stor-
ing, at iteration k, the lastW ∈ N recovered images in a queueQ: {Nx(θ

(k−i)
x )}i=0,...,W−1 and

compute their variance. The last p ∈ Nminimum variances are memorized: if these p variances
stagnate, then the procedure is stopped and the output consists in the last achieved recovered
image and its related PSF. The parameter p takes the name of patience. The variance at iteration
k has the following expression

WMV(k) =
1
W

W−1∑
i=0

∥∥∥∥∥∥x(k−i) − 1
W

W−1∑
j=0

x(k−j)

∥∥∥∥∥∥
2

F

, (24)

where x(k) =Nx(θ
(k)
x ). The implementation of this procedure consists in checking that the last

p minimum variances have an absolute difference less than a given tolerance εp.
A further suggestion about the stopping of the DDIPP can be provided from [1, lemma

4.1] (see also [32, 44, 45]), where it is affirmed that, since gi can be viewed as a realization
of a Poisson random variable with expected value (h ∗ x+ b)i, if gi is sufficiently large, the

expected value of 2
(
gi log

(
gi

(h∗x+b)i

)
+(h ∗ x+ b)i− gi

)
is approximately 1. When the cur-

rent values ofV(k) and x(k) are near to the solutions, one can expect that the value of normalized
discrepancy, i.e.

D(k) =
2
N
fB0 (V

(k),x(k);g), (25)
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decreases and tends to fluctuate around 1. As remarked in [1], the use of the normalized dis-
crepancy is strictly related to the assumption that the data satisfy Poisson statistics and that the
blur kernel provides is a good approximation of the blur process. However, it seems reason-
able to assume that the region in which an approximate solution is found is the one for which
D(k)< S, with S of the order of the unity, for example S= 2. The stopping test based on the
windowed-moving-variance strategy can be performed only when the normalized discrepancy
is less than S. As shown in the following numerical experiments, this strategy enables us to
avoid to prematurely stop the method: indeed, it may happen that in the early iterations the
recovered images are actually not completely reliable but at the same time their differences
are minimal. This leads the criterion (24) to be satisfied, but the reconstruction is still far away
from a reliable solution.

Remark. Two technical observations about the actual implementation of the proposed pro-
cedure are reported below.

(i) Algorithm requires a gradient step for the update of the networks’ parameters. The numer-
ical experience showed that such simple step is not sufficient to achieve reliable results in
a reasonable amount of time, hence we resort to use the Adam algorithm for updating the
nets’ parameters in algorithm.

(ii) The numerical experience showed that updating Y(k+1) using Nx(θ
(k+1)
x ) instead of

Nx(θ
(k)
x ) induces an appreciable speed-up.

4. Numerical experiments

This section is devoted to assess the performance of the proposed procedure on synthetic
images and on real microscopy images. Our code has been implemented in MatLab® R2022b,
using the Deep Learning and Image Processing toolboxes. The code is available online at
https://github.com/AleBenfe/DDIPP. The settings for algorithm and its simplified version for
model (6) are detailed in the following paragraphs; we remark that the steplengths αP and αµ

are set to small values in order to ensure the convergence of PGDA, without a special tun-
ing to decrease the number of iterations; furthermore, in all cases, we set Th = Tx = 200 and
the maximum number T of iteration is 1000. The random inputs of the networks, namely zx
for Nx and zh for Nh, are initially drawn from a uniform distribution in [0,1] and in [−1,1]
respectively; at each iteration zx is perturbed with Gaussian noise with zero mean and vari-
ance equal to 0.001 whilst zh is left unperturbed, according to the strategy depicted in [21,
26]. The patience p is set to 20 and the queue length W is 10, εp = 10−3 and S= 2. The reg-
ularization parameters for the blur kernel and the image are adaptively updated as in (20),
(21). Following the strategy depicted in [27], the size of the recovered PSF is overestimated,
depending on the image size, even if, in case of synthetic data, the true PSF has been gener-
ated with a lower number of pixels. For synthetic data, we employ the peak signal-to-noise
ratio (PSNR) between the recovered data and the ground truths x∗,h∗ as a figure of merit,
as well as the structural similarity index measure (SSIM) of the reconstructed image with
respect to x∗.
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Algorithm 1. DDIPP: Double DIP for Poisson noise

Set the parameters αP,αµ,γV, γY; set rmin =+∞ and choose εp and S.
Choose the length W of the queueQ and the patience p; choose Th,Tx,T
InitialiseNx solving (23) with a max number of iterations equal to Tx
InitialiseNh solving (22) with a max number of iterations equal to Th
for t= 1,2, . . . ,T do

Update θ(k+1)
h as in (19a)

Update V(k+1) as in (19b)
Update θ(k+1)

x as in (19c)
StoreNx(θ

(k+1)
x ) in the queueQ

if |Q|⩾W then
Compute the WMV of the last W elements inQ
x̂=Nx(θ

(k+1)
x )

ĥ= V(k+1)

if WMV<min{rmin} then
rmin←↩WMV

end if
if
∑

diff(rmin)< εp(p− 1) and D(k)< S then
Output x̂, ĥ

end if
end if
Set λ̄i as in (20)
Update Y(k+1) as in (19d), employing θ(k+1)

x

Update µ(k+1)
V as in (19e)

Update µ(k+1)
V as in (19f )

end for

In the following, all the images are displayed in the range [0,1], whereas the renderings of
the blur kernel show the scale on the right.

4.1. Synthetic dataset

The first experimentation is carried on the following dataset, where each blurred image is
perturbed with Poisson noise via the MatLab® function imnoise:

• rice: this image belongs to the MatLab® Image Processing Toolbox. It is a 256× 256
image with pixel values in [0,255]; the blur operator consists in a Gaussian kernel with size
17× 17 and standard deviation equal to 1.7; the peak value of the PSF is 0.055; furthermore,
PSNR(g) = 22.67, SSIM(g) = 0.51.

• micro: the original image is a phantom of size 128× 128 described in [46]; the PSF consists
in a Gaussian blur with standard deviation equal to

√
5 and peak value 0.032; furthermore,

PSNR(g) = 24.51, SSIM(g) = 0.84.
• synth001: this is a synthetic simulation of real-world microscopy images; the procedure
employed for the generation of such image is explained in [47] and the code is available at
https://github.com/AleBenfe/upU-net_Perlin. The PSF used for blurring these images is
obtained via the software available at http://bigwww.epfl.ch/algorithms/psfgenerator/ (see
[48–50] for more technical details). A 3D PSF (with size 64× 64× 11) is generated
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Figure 3. (a): ground truth image of rice test problem. (b) PSF of rice test prob-
lem (peak value 0.055). (c) noisy blurred image g for rice test problem. (d): ground
truth image of micro test problem. (e) PSF of micro test problem (peak value 0.032).
(f) noisy blurred image g for micro test problem. (g): ground truth image of synth001
test problem. (h) PSF of synth001 test problem (peak value 0.134). (i) noisy blurred
image g for synth001 test problem.

using the Born and Wolf 3D model: then the central frame is normalized to 1 and
used as blur operator; the peak value of PSF is 0.134; furthermore, PSNR(g) = 21.96,
SSIM(g) = 0.52.

Figure 3 provides a visual inspection of the dataset.

4.1.1. Comparison between the models (6) and (7). In the first experiment we compare
the model (6) with the novel reformulation in (7), in order to check the effectiveness of the
additional constraint on the output of Nh. For both the models, the regularization terms (8)
and (9),(11) are used for the PSF and the image respectively. In the following, we denote this
choice with the suffix ℓ2 −TV.

15
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Figure 4. rice test problem—The panels on the left show the behaviour of PGDA
method for the model (6) `2−TV (αP = 5× 10−5,αµ = 5× 10−4,γY = 1): (a) PSNR
of x(k) and h(k), normalized discrepancy D(k) and peak value of h(k), (c)–(d) recon-
structions of the image and the PSF at the iteration 200, (g)–(h) reconstructions of the
image and the PSF at the iteration T = 1000. The panels on the right show the behaviour
of PGDA method for the model (7) `2−TV: (αP = 10−6,αµ = 10−5,γY = 1,γV =

10−3): (b) PSNR of x(k) and h(k), normalized discrepancyD(k) and peak value of h(k),
(e)–(f) reconstructions of the image and the PSF at the iteration K= 60, (i)–(j) recon-
structions of the image and the PSF at the iteration T = 1000.

In both cases, the numerical solution is addressed with the alternating PGDA method: in
the latter we used the implementation of algorithm, while in the former a tailored version of
this algorithm for the model (6). In figures 4–6 we show for both the models the behaviour
of the PSNR of the PSF and of the image, i.e. PSNR(h(k)) and PSNR(x(k)), the images and
the blur kernels recovered at the iteration K where the stopping criterion is satisfied (or at an
intermediate iteration where it is not satisfied), and at the last iteration T.

In table 1 we report for the three test problems some figures of merit of the recovered
images and PSFs for both models (6) and (7) ℓ2 −TV. For test problems rice and synth001,
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Figure 5. micro test problem—The panels on the left show the behaviour of PGDA
method for the model (6) `2−TV (αP = 5× 10−5,αµ = 5× 10−4,γY = 1): (a) PSNR
of x(k) and h(k), normalized discrepancy D(k) and peak value of h(k), (c)–(d) recon-
structions of the image and the PSF at the iteration K= 860, (g)–(h) reconstructions
of the image and the PSF at the iteration T = 1000. The panels on the right show the
behaviour of PGDA method for the model (7) `2−TV: (αP = 10−6,αµ = 10−5,γY =

1,γV = 10−3): (b) PSNR of x(k) and h(k), normalized discrepancyD(k) and peak value
of h(k), (e)–(f) reconstructions of the image and the PSF at the iteration K= 400,
(i)–(j) reconstructions of the image and the PSF at the iteration T = 1000.

the stopping criterion of PGDA is not satisfied in the case of model (6). Consequently, for
rice and synth001 the results related to the iteration 200 and 240, respectively, are reported.

From the table 1 and the previous figures, we can drawn these remarks:

• the plots of the behaviour of PSNRs show the convergent trend of the method PGDA,
although this convergence is very slow due to the small value of the steplengths; for the
model (7) the differences between the recovered images at the iteration K and at the itera-
tion T are visually unappreciable, showing that the stopping criterion seems effective;
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Figure 6. synth001 test problem—The panels on the left show the behaviour of PGDA
method for the model (6) `2−TV (αP = 5× 10−5,αµ = 5× 10−4,γY = 1): (a) PSNR
of x(k) and h(k), normalized discrepancy D(k) and peak value of h(k), (c)–(d) recon-
structions of the image and the PSF at the iteration 240, (g)–(h) reconstructions of the
image and the PSF at the iteration T = 1000. The panels on the right show the behaviour
of PGDA method for the model (7) `2−TV: (αP = 10−6,αµ = 10−5,γY = 1,γV =

10−3): (b) PSNR of x(k) and h(k), normalized discrepancyD(k) and peak value of h(k),
(e)–(f) reconstructions of the image and the PSF at the iteration K= 70, (i)–(l) recon-
structions of the image and the PSF at the iteration T = 1000.

• regarding model (6), we observe that the PSNR of h(k) reaches an high peak and then
decreases in a very fast manner; in general, the peak does not correspond to a value of the
recovered image satisfying the stopping criterion, although at this iteration the normalized
discrepancy is close to 1 and the PSF peak value is near to the true upper bound of h∗; the
additional constraint of the PSF imposed in (7) seems to avoid this drawback; indeed, the
stopping criterion provides more reliable results, above all on the reconstruction of the PSF.
Furthermore, the reconstructions of the images obtained by solving (6) present several arti-
facts, for example in rice we observe an undesired high contrast and in both micro and
synth001 some halos are present.

18
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Table 1. Figures of merit for the results obtained for the models (6) and (7) `2−TV. K
denotes the iteration for which the stopping criterion is satisfied, k is an iteration inter-
mediate which exhibits suitable results, although the stopping criterion is not satisfied,
T is the iteration corresponding to the maximum number of steps.

Model Iters. PSNR(x(k)) PSNR(h(k)) SSIM(x(k))

rice

(6) k= 200 19.81 61.81 0.59
T = 1000 24.26 42.54 0.64

(7) K= 60 24.26 62.85 0.65
T = 1000 24.30 60.18 0.66

micro

(6) K= 860 21.77 49.70 0.84
T = 1000 22.09 49.30 0.84

(7) K= 400 25.32 60.49 0.90
T = 1000 25.76 59.16 0.91

synth001

(6) k= 240 22.82 56.77 0.83
T = 1000 22.61 43.07 0.82

(7) K= 70 22.60 53.86 0.87
T = 1000 22.65 56.09 0.86

Table 2. Figures of merit for the results obtained for the model (7) `2− `1.

Iters PSNR(x(k)) PSNR(h(k)) SSIM(x(k))

rice

K= 120 24.39 63.37 0.66
T = 1000 24.43 59.76 0.66

micro

K= 600 25.17 59.12 0.90
T = 1000 25.23 58.21 0.90

synth001

K= 60 22.62 53.82 0.87
T = 1000 22.65 56.40 0.86

4.1.2. DDIPP with different regularization terms on the image. In figure 7 we show the res-
ults obtained by DDIPP equipped with the regularization (8) for the blur and the ℓ1-like for
the image (equations (9) and (10)), i.e. ℓ2 − ℓ1. These results are obtained with the same set-
tings used for the model (7) ℓ2 −TV. For completeness, in table 2, we report the merit figures
obtained for the three test problems. From the comparison of figures 4–6 with figure 7, we
observe that model (7) provides very similar results when it is combined with the TV-like or
the ℓ1-like regularization terms for the image. This is confirmed from the comparison of merit
figures in tables 1 and 2.
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Figure 7. Results obtained for the model (7) `2− `1. The first row shows the results for
the problem rice: (a), (b) image and PSF at the iteration K= 120; (c), (d) image and
PSF at the iteration T = 1000. The second row shows the results for the problem micro:
(e), (f) image and PSF at the iteration K= 600; (g), (h) image and PSF at the iteration
T = 1000. The third row shows the results for the problem synth001: (i), (l) image and
PSF at the iteration K= 60; (m), (n) image and PSF at the iteration T = 1000.

4.1.3. Behaviour for different noise levels. For data corrupted by Poisson noise, the noise
level depends on the values of any pixel of the object [1, section 3.4]. For example, for the
rice object, with pixel values in the interval [0,255], a synthetic detected image is the one
in figure 3(c); if the object is rescaled by a factor 10 or 0.5, the noise free image has the
same morphology but the noisy blurred images are very different, as it can viewed by com-
paring figure 3(c) with figures 8(a) and (d) corresponding to the object rescaled by 10 and 0.5
respectively. The merit figures for the test problem rescaled by 10 are PSNR(g) = 23.08 and
SSIM(g) = 0.63, whereas they are PSNR(g) = 21.73 and SSIM(g) = 0.44 when the object
is rescaled by 0.5. The numerical results obtained for the model (7) ℓ2 −TV are reported in
figures 8(b) and (c) for the object rescaled by 10 and in figures 8(e) and (f) for the one rescaled
by 0.5. For the former case, the stopping criterion is satisfied at the iteration K= 400 and the
merit figures are PSNR(x(K)) = 23.19, PSNR(h(K)) = 61.76 and SSIM(x(k)) = 0.65; for the
latter case, the stopping criterion is satisfied at the iteration K= 90 and the merit figures at this
iteration are PSNR(x(K)) = 24.16, PSNR(h(K)) = 63.39 and SSIM(x(K)) = 0.64. The numer-
ical results allow to observe that the model (7) appears robust with respect to the different
noise levels. In particular, the reconstruction of the PSF appears to be sufficiently accurate in
all the numerical tests. A similar behaviour has been observed in the other test problems.
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Figure 8. Results for different noise levels—In the upper panel: (a) g for the test problem
rice when the object is rescaled by a factor 10; (b), (c) recovered image and PSF for the
model (7) `2−TV at the iteration K= 400. In the lower panel: (d) g for the test problem
rice when the object is rescaled by a factor 0.5; (e), (f) recovered image and PSF for
the model (7) `2−TV at the iteration K= 90.

4.1.4. Comparison between DDIPP, SelfDeblur, improved SelfDeblur [26] and algorithm 3 in
[20]. A further experiment is aimed to compare the results obtained by DDIPP with the
ones achieved via other approaches. To the best of our knowledge, no method for NBD bases
its model on the KL generalized divergence. Furthermore, most of the approaches use pre-
trained networks. Therefore it seems difficult to identify methods with which to carry out a
comparison. Based on these reasons, we consider the two methods which inspired DDIPP,
namely SelfDeblur [21] and its improved version proposed in [26], referred to in this work
as ImpSD. As regards SelfDeblur, we use the code available at https://github.com/csdwren/
SelfDeblur and running it on Google Colab. On the other hand, since the code for ImpSD is not
available online, the method has been implemented in MatLab®, by replicating the networks
of SelfDeblur. The procedure in [26], while preserving the basic approach of SelfDeblur, adds
regularization terms and suggests the initialization of the nets, as depicted in section 3.1. In
the code, the MatLab® implementation of the functionals employed in the formulation (Least
square, SSIM, TV) are used. In particular, the objective functional is modified among the
iterations: following [26], the first 2000 iterations employ the Least Square loss together with
the ℓ2 regularization on the PSF, then it switches to the SSIM functional coupled with the TV
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on the image. The regularization parameters are chosen as in [26]: 0.01 and 0.1 for TV and ℓ2,
respectively.

Another recent proposal is the third algorithm in [20], denoted in the following as ASA3.
Indeed, the authors in [20] primarily use a different approach: the two networks Nh and Nx

are pre-trained generative networks, and the procedure updates the inputs zh and zx of the
networks and not their weights. One must have a-priori information on the type of images
and on the blur type, together with large relative datasets, in order to have properly trained
networks. Then, to overcome the issue of having a large image dataset for the training of Nx,
the authors propose to update also the weights of this network, together with its input and with
zh. The functional employed in this setting is

F(zh,zx,θx) = ∥g−Nh(zh;θh) ∗Nx(zx;θx)∥2 +βK∥zh∥2 +βXTV(Nx(zx;θx)). (26)

With an abuse of notation, in (26) we explicit the dependence of the nets on the random inputs
zh and zx. In our experimentation, in order to implement the ASA3 method, the network Nh

has been trained for generate Gaussian PSFs; this network presents a different architecture
with respect to the one used in [20] since the structure of the PSF is less articulate than the
motion blurs used in [20]. Since the code for ASA3 in [20] is not available online, we re-
coded it entirely in MatLab®. For clearness, we report the details of ASA3 in algorithm. In
the numerical experiment, as in [20], we set different steplengths for the descent step: namely
η = 10−3 for updating the nets’ inputs and η = 10−4 for updating the weights. Moreover, we
set βK = 10−2 and βX = 10−3. The number of iterations is set to T = 5000 and Tx = 500.

Algorithm 2. ASA3 [20]

Set η, draw zh ∼N (0,1),zx ∼N (0,1). Choose Tx,T.
InitialiseNx solving (23) with a max number of iterations equal to Tx
for t= 1,2, . . . ,T do
z(k+1)
h ← z(k)h − η∇zhF(z

(k)
h ,z(k)x ,θ

(k)
x )

z(k+1)
x ← z(k)x − η∇zxF(z

(k)
h ,z(k)x ,θ

(k)
x )

θ
(k+1)
x ← θ

(k)
x − η∇θxF(z

(k)
h ,z(k)x ,θ

(k)
x )

end for

Figure 9 and table 3 present the results of SelfDeblur, ImpSD and ASA3 carried on the
syntetic database; bearing in mind figures 4–6 and table 1 (see also figure 7 and table 2), it
is possible to make a comparison between the results of DDIPP and the ones obtained by the
aforementionedmethods. As noted in [27, section 3.1.2], the cropping procedure in SelfDeblur
produces artifacts andmisplacements in the final reconstruction. Indeed, unlike SelfDeblur, the
proposed DDIPP strategy considers a larger size of just the PSF and not of the image, since
the boundary conditions are encompassed in the convolutional filters. ImpSD instead provides
slightly better results, in terms of placement, but several details are missing; in particular, the
image synth001 suffers from several artifacts. Finally, the algorithm ASA3 seems to recover
reliable image and PSF at an intermediate iteration. Indeed, figure 9 shows the results of ASA3
at the iteration K where we observe the highest PSNR value of the image x(K) over 5000
iterations, but for real applications, where the ground truth is not known, this is not generally
possible. In some cases, the recovered image has a high PSNR, despite having artifacts (see
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Figure 9. Results of the comparison for the synthetic database—In the first row rice:
(a) recovered image via SelfDeblur, (b) recovered images via ImpSD; (c) recovered
image via ASA3. In the second row micro: (d) recovered image via SelfDeblur, (e)
recovered images via ImpSD; (f) recovered image via ASA3. In the third row synth001:
(g) recovered image via SelfDeblur, (h) recovered images via ImpSD; (i) recovered
image via ASA3.

micro), in other cases it remains noisy (see rice, synth001). At the iterationK, the recovered
blur kernels also appear reliable, although slightly asymmetrical. However, after the iteration
K, we observe a subsequent degradation to the point form. Finally, we observe that DDIPP in
general provides a better PSF reconstruction.
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Table 3. Figures of merit for the results obtained with SelfDeblur (5000 iterations),
ImpSD (5000 iterations) andASA3, For the ASA3methodwe report the results obtained
at the iteration K which provides the maximum PSNR of the image within 5000
iterations.

Algorithm Iters PSNR(x(k)) PSNR(h(k)) SSIM(x(k))

rice

SelfDeblur T = 5000 6.45 17.67 0.01
ImpSD T = 5000 14.54 60.70 0.41
ASA3 K= 400 17.30 64.98 0.42

micro

SelfDeblur T = 5000 9.34 29.12 0.20
ImpSD T = 5000 16.24 55.53 .71
ASA3 K= 300 26.48 65.03 .88

synth001

SelfDeblur T = 5000 5.41 26.54 0.08
ImpSD T = 5000 15.15 53.12 0.30
ASA3 K= 150 22.74 55.45 0.66

4.2. Real dataset

This section is devoted to apply the proposed DDIPP to real-world microscopic images. Such
images are the scanning of a 3D volume, with dimension 64× 64× 4.1 µm: this volume is
then recorded in an array with dimension 512× 512× 10 voxels. The radius of the spherical
particles is 1.5 µm and they are suspended in a∼70%− 30% glycerol/water mixture (viscosity
of approximately 0.017 Pa s). The microscope employed for acquiring this dataset is a Zeiss
LSM 700 with a 100 × NA 1.4 oil immersion objective (Zeiss Plan-APOCHROMAT). The
architectures forNx andNh take as input just 2D images, not 3D volumes: hence we consider
one frame of the 3D volume at time. This dataset contains several hundreds of images, but
due to hardware limitation we consider only 3 of them, shown in figure 10. On the base of the
technical documentation of the instrument, the parameter H that imposes the upper bound on
the peak of the PSF is approximately estimated as 0.2.

The three problems employed DDIPP for the model (7) ℓ2 −TV and ℓ2 − ℓ1. The results
are carried out with αP = 10−6,αµ = 10−5,γY = 1,γV = 10−3; the other parameters are as
specified at the beginning of section 4. The results are depicted in figures 11 and 12 in the
case of ℓ2 −TV and ℓ2 − ℓ1 respectively. In both the figures, the recovered images and related
PSFs are reported. The image and PSF referring to the first test problem (first column) are
obtained at the maximum number T = 1000 of iterations for both cases; the results related
to the second and third test problems (second and third columns respectively) are obtained
at the iterations satisfying the stopping criterion, i.e. K= 570 and K= 680, respectively, for
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Figure 10. Detected microscopic images; their size is 512× 512.

Figure 11. Real data : results for the model (7) `2−TV; in particular (a),(d): recovered
image and PSF for the detected image in figure 10(a) at the iteration 1000; (b),(e):
recovered image and PSF for the detected image in figure 10(b) at the iteration K= 570;
(c), (f): and PSF for the detected image in figure 10(c) at the iteration K= 680.
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Figure 12. Real data : results for the model (7) `2− `1; in particular (a), (d): recovered
image and PSF for the detected image in figure 10(a) at the iteration 1000; (b), (e):
recovered image and PSF for the detected image in figure 10(b) at the iteration 1000;
(c), (f): recovered image and PSF for the detected image in figure 10(c) at the iteration
1000.

the model (7) ℓ2 −TV and at the maximum number T = 1000 of iterations for the model (7)
ℓ2 − ℓ1. We remark that, although the value of the maximum number of iterations has been
reached, the stopping criterion based on the condition (24) has been satisfied in all cases but
the value of the normalized discrepancy (25) has remained greater than 2 (but less than 3).

It is clear that, as anticipated from the experiments on synthetic data, the contrast is
improved, the particles are more enhanced with respect to the background, both in the more
diffuse regions and in the darker ones. Furthermore, as expected, the recovered PSF is very
similar in all cases, with a peak value between 0.12 and 0.15. No substantial differences are
noticed between the use of ℓ2 −TV and ℓ2 − ℓ1; in the case of some balls not very distinct from
the background in the detected image, the reconstruction with ℓ1 seems to recover slightly bet-
ter their position (see figures 11(c) and 12(c)).

The importance of the right choice for the functional to minimize and the role of the regular-
izers are again evident from the results achieved by SelfDeblur, ImpSD and ASA3 after 5000
iterations, depicted in figure 13. In general, the behaviour of ImpSD seems to be just denoising
and not deblurring, since the recover of the PSF is the Dirac’s delta and only perceivable effect
is the one by the TV.
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Figure 13. Recovered images for the detected data in figures 10(a)–(c) achieved after
5000 iterations via SelfDeblur (first column), via ImpSD (second column) and via ASA3
(third column).

5. Conclusion

We developed a novel procedure, named DDIPP, for a BD approach, based on PGDA-like
algorithm, for the recovering of microscopy images affected by Poisson noise. We adopted a
double Deep Image Prior strategy, both on the image and on the PSF, where the loss function
comprehends the KL functional, for handling of Poisson noise, and two adaptive regularization
terms: a squared ℓ2 norm on the PSF and a TV or a ℓ1 norm on the image. Furthermore technical
information on the estimated peak of the blur kernel is exploited to avoid trivial solutions. The
numerical experience on synthetic and real images showed early promising results: the contrast
on final images is improved and the object of interest, in this case the spherical beads, are well
recovered.
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Future work foresees the improvement of the model, by including other typical features of
the image formation system, as for example, the flux preservation. A further possible research
direction is to test different and more performing architectures for the networks and to deepen
the analysis about suitable early stopping criteria. Another crucial point is to achieve a more
efficient implementation of the code, in order to consider 3D images, as the one used in
section 4.2 and therefore to obtain the estimation of more realistic PSFs in 3 dimensions.
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https://github.com/AleBenfe/DDIPP.
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