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Abstract. This paper deals with the statistical variability of fatigue damage in random loadings 
as caused by the inherent randomness of the loading. It examines the use of a nonparametric 
method based on fractional order statistics as a tool for constructing confidence intervals for the 
quantile of fatigue damage, regardless of the knowledge of the damage probability distribution. 
The approach here discussed relies on a statistical method existing in the literature. After a short 
review of this method, with also an emphasis on possible advantages and limitations, the paper 
presents a numerical benchmark, followed by a practical application to time-histories measured 
on a mountain-bike in off-road tracks. The paper concludes with some critical remarks and an 
outlook. 

1.  Introduction 
The statistical variability of the fatigue damage D(T) of a random loading of length T can be 
characterized by the variance of damage Var[D(T)], which – along with the expected damage E[D(T)] 
– is used to define the coefficient of variation (CoV) Var[D(T)] E[D(T)] as a dimensionless measure 
of uncertainty. 

The interest on the study of the variance (or CoV) of fatigue damage in random loadings dates to the 
sixties, with the pioneering works of Bendat [1] and Crandall et al. [2,3]. They devised analytical 
formulas for calculating the variance Var[D(T)] in the case where the random time-history z(t) is the 
output of a stationary Gaussian linear oscillator. The obtained variance expressions depend upon a few 
statistical properties of the random loading (e.g. variance, mean up-crossing frequency) and the 
oscillator (e.g. damping ratio), other than upon SN parameters.  

After Bendat’s and Crandall et al.’s works, the interest on the damage variance continued in 
subsequent decades, for example in Madsen et al. [4] and, more recently, in the studies [5] and [6,7], 
which extended Bendat’s and Crandall et al.’s solutions to any type of narrowband random loading, 
either Gaussian [4-6] or non-Gaussian [7]. 

All the above variance solutions rely on the knowledge of the statistical properties characterizing the 
random loading, e.g. autocorrelation function or power spectral density. Often, these quantities are not 
known exactly by mathematical expressions and they must be estimated from measured data. This 
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introduces a sampling variability into the computational model of the damage variance, the effect of 
which is not considered by the aforementioned methods. 

This aspect motivated our attempt to develop a different approach in which the statistical variability 
of fatigue damage is estimated by means of confidence intervals, constructed after a direct analysis of 
one or more time-histories [6]. First developed for the case of stationary random loadings, the approach 
has been extended to non-stationary loadings of “switching type” (i.e., formed by a sequence of 
stationary states) [8,9]. The method has been benchmarked, first against numerically simulated time-
histories, and then against more realistic time-histories measured in a mountain-bike in off-road tracks; 
in either case, a quite good accuracy was observed [8,9]. 

It is the purpose of the present article to improve further this approach by abandoning two of its 
hypotheses, in which the confidence interval is: i) constructed for the expected damage E[D(T)] and ii) 
under the assumption of D(T) following a normal distribution, a hypothesis introduced in early studies 
[3, 5,10] but recently called into question [11].  

With the aim to overcome the two previous hypotheses, the method proposed herein makes use of 
nonparametric fractional order statistics to construct confidence intervals for any quantile of damage 
D(T), regardless of the specific form of its probability distribution. The method thus allows for the 
construction of confidence intervals other than the median or the expected value. In this article, 
numerical and experimental examples are used to emphasize advantages and limitations of the proposed 
method.  

It has finally to be noted that, in the following, only the statistical variability coming from the 
randomness of the loading will be considered. It is assumed that the scatter of constant amplitude fatigue 
data is taken into account e.g. by the definition of a characteristic SN line referred to prescribed levels 
of failure probability and confidence (e.g. Pf=2.3% with 95% confidence). 

2.  The uncertainty in fatigue damage 

2.1.  Fatigue damage and its expected value 
Let z(t), 0<t<T, be a random time-history of finite length T. The fatigue damage under Palmgren-Miner 
(PM) rule is: 

  D T =
ni

N(si)

l

i=1

 (1) 

where N(si) is the number of cycles to failure at constant amplitude si, ni is the number of cycles within 
the i-th class with amplitude si, and l is the number of amplitude classes.  

Equation (1) considers a discrete set of amplitudes si referred to cycles counted in z(t); another set is 
obtained if another time-history z(t) is considered. In the limit of continuously distributed amplitudes, 
classes si become infinitely narrow and the summation approaches an integral [6]: 

 	E D T =E n
1

N s
p(s)ds

∞

0
 (2) 

where E[D(T)]=expected damage, E[n]=expected number of cycles in z(t), p(s)=probability distribution 
of amplitudes. In Eq. (2), the probability distribution p(s) describes the randomness of the amplitudes of 
the cycles counted in z(t). 

The previous formulas are very general as they do not imply any mathematical expression to relate s 
and N(s), nor do they require z(t) being stationary – z(t) can also be nonstationary. Often, it is assumed 
that amplitudes and cycles to failure are related as N(s)=As–k (elementary PM rule), which in a log-log 
diagram is a straight line with slope k and intercept A=sA

k NA, where the reference amplitude sA is 
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computed at NA cycles (for example, NA=2×106 cycles), for a predetermined failure probability. For this 
single-slope SN curve, the fatigue damage in Eq. (1) and (2) writes: 

 	D T =
1

A
ni si

k

l

i=1

          , 	E D T =E n
E sk

A
 (3)

Where E[sk] is the k-th moment of the amplitude distribution p(s). Closed-form expressions can be 
obtained if the expression of p(s) is known; for example, if z(t) is a so-called narrowband loading, p(s) 

is Rayleigh and Eq. (2) yields	E D T = ν0
+T/A 2Var z(t)

k
Γ 1+k/2 , where ν0

+ is the number of 
mean value upcrossings of z(t) [6]. 

When a single-slope SN equation is believed to be too conservative, two-slope SN models are used 
in which a knee point is followed by a less steep line with slope k'=2k–1 or 2k–2 (Haibach model [12]) 
or even by a horizontal line that represents a “endurance (fatigue) limit”. In this case, it is straightforward 
to modify the previous damage formulas accordingly. 

3.  Confidence intervals 
Let us consider a random variable X with cumulative distribution function F(x). Further, assume that θ 
is a parameter of F(x), e.g. it may be the expected value of a normal distribution. A two-sided confidence 
interval (CI) for an unknown parameter	θ is an interval, defined by two end points θl and θu, that is 
expected to enclose the unknown parameter θ a specified percentage of cases after that an experiment is 
repeated under identical conditions. If the specified percentage is 100 1 α %, a CI is defined as [13]: 

 Pr θl<θ<θu = 1 α     for  0<α<1 (4) 

(subscripts l and u mean “lower” and “upper”). The values θl and θu, which are constructed around the 
estimator θ of θ, are called the lower and upper confidence limits, respectively, and the probability 
1 α  is named coverage probability or confidence level.  

Often, the parameter θ of interest is the expected value of a Gaussian probability distribution. In this 
case, the two-sided 100 1 α % CI for μ is [13]: 

 x tα 2⁄ ;n 1
σ

√n
<	μ	<	x	+	tα 2⁄ ;n 1

σ

√n
 (5) 

where tα 2⁄ ;n 1 is the upper 100 α 2⁄  percentage point of the Student t-distribution with n–1 degrees of 

freedom, while x and σ2 are the sample mean and sample variance, respectively. In other engineering 
applications, the parameter θ of interest is a quantile of the probability distribution. In the following, we 
provide an overview of some confidence interval expressions. 

3.1.  Confidence intervals for the expected damage E[D(T)] 
The last result of previous section forms the basis of the confidence interval for the expected damage. 
Let z(t) be a non-stationary “switching” random loading, formed by a finite number of stationary states 
NS. Each stationary state has a total time length Tj, so that	T=∑ Tj

NS
j=1  is the total duration of z(t). Note 

that each state needs not to appear in z(t) only once in its full length Tj, but it can appear a multitude of 
times, each with duration shorter than Tj, provided that its total time length is Tj. It is irrelevant in which 
time order and how many times a state appear in z(t), so at the beginning of the analysis, the states are 
reordered so that they appear only once in their full length Tj [8,9]. 

Methods for identifying different states in z(t) (fast Fourier transform, run test) are described in [14]. 
After state identification, each state is further subdivided into NB blocks of equal length TB. For each 
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block, the fatigue damage is finally computed. In summary, state identification and block subdivision 
yield the set of damage values DB,ij(TB), with i=1,2,…,NB and j=1,2,…,NS. Damage DB,ij(TB) refers to 
block i in state j. Under the assumption of D(T) normally distributed, the confidence the confidence 
interval for the expected damage E[D(T)] then is [8,9]: 

 	D T tη,β 2⁄ NB∙σDB,j
2

NS

j=1

	≤	E D T 	≤	D T 	+	tη,β 2⁄ NB∙σDB,j
2

NS

j=1

 (6)

where σDB,j
2  is the sample variance of the damage of blocks for the j-th stationary state, and tη,β 2⁄  is the 

quantile of the Student t-distribution with an equivalent number of degrees of freedom 

	η≅ NB 1 ∑ σDB,j
2NS

j=1

2
∑ σDB,j

2 2NS
j=1 . When the switching time-history z(t) has only one stationary 

state (NS=1), the previous confidence interval expression converges to the solution given in [6] for the 
stationary case. Numerical and experimental results have confirmed the validity of the above confidence 
interval for both stationary and non-stationary random loadings [6,8,9]. 

It has to be emphasized that Eq. (6) relies on the hypothesis of normally distributed damage D(T), 
which can be assumed under the validity of the central limit theorem in the limit T→∞. This hypothesis, 
first introduced in [3], is also mentioned in other studies [5,10], though it was not until the works [5,11] 
that its validity has been scrutinized by numerical simulations. In [5], we read: “the departure from the 
Gaussian distribution is only marginal. These results suggest that the Gaussian hypothesis made in prior 
studies is valid when the CoV is small, which usually indicates that T is long enough for the central limit 
theorem to apply. Fortunately, this is true for the majority of practical situations.” Further investigations 
[11] showed that larger values of Cov (e.g. large k, very narrow spectral bandwidth of random loading) 
lead to larger deviations from gaussianity, with the damage distribution being skewed. In this case, the 
assumption of normally distributed damage is under conservative [11]. 

 

Figure 1. Normal probability plots of fatigue damage for different values of k and number of cycles. 
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It has to be noticed, though, that the numerical example in [11] considered a small number of cycles 
(3200 cycles) that, while accentuating the skewness of damage distribution, appears to be too small for 
any engineering application. On the other hand, the rate of convergence to the normal distribution for 
the damage depends on the number of random variables being summed (i.e. number of counted cycles) 
and to which extent each random variable departs from the normal distribution (i.e. effect of inverse 
slope k). This trend is exemplified in Figure 1, which compares the normal probability papers for 
different combinations of k and number of counted cycles. The graphs refer to 10000 damage values 
computed from samples of independent Rayleigh distributed stress amplitudes (corresponding to 
narrowband loadings); independence among amplitudes neglects the time correlation between adjacent 
cycles, which in fact corresponds to the output of any counting method in which the relative time 
position of cycles is lost. From Figure 1, it is apparent that, for high k, far more cycles are required for 
the damage to become normally distributed. 

3.2.  Confidence intervals for quantile estimates based on normal approximation 

For an assigned probability P, let xP=F
1

P  be the estimator of the Pth quantile xP, where F
1
 denotes 

the inverse of the probability distribution F x  that approximates F(x). A method for constructing CIs 
for quantiles is to assume that xP is normally distributed, with mean xP and variance 	
Var xP =

1

n

P 1 P

f
2

xP

 [15,16], where f x  is the probability density corresponding to F x , and n is the sample 

size. For large sample size (validity of central limit theorem), an approximate CI is: 

 xP z1 α 2⁄ Var xP 	≤	xP	≤	xP	+	z1 α 2⁄ Var xP 	 (7) 

where z1 α 2⁄  is the upper 1 α 2⁄  percentage point of the standard normal random variable. This 
approach is simple as it only requires the knowledge of the estimator variance Var xP , which in turn 
depends on the probability density f x  – in literature, analytical expressions are available for the most 
common probability distributions [15,16]. 

3.3.  Confidence intervals for quantiles based on order statistics 
An alternative approach to construct CIs for quantiles, which is especially useful when F(x) or its 
estimation F x  are not known in advance, is by means of order statistics. Let X1:n≤X2:n≤…≤Xn:n be the 
order statistics from a sample of size n of a random variable X with probability distribution F(x). It is 
well known that [13]: 

 	π q,r,n,P =Pr Xq:n≤xP≤Xr:n =
n
i Pi 1 P n i

r 1

i=q

 ,    q<r (8)

where P=F(xP) is the probability associated to the quantile. Thus, any choice of q and r such that 
	π q,r,n,P 1  provides a 100 1 α % nonparametric CI for the Pth quantile xP. The approach 
followed in practice is to try different combinations of q and r that make π as much close to 1 α  as 
possible. However, if the sample size n is small − as usually happens in practice – the probability π may 
substantially deviate from the prescribed coverage probability 1 α . 

The use of fraction order statistics [17] allows the definition of an exact confidence interval for xP 
for any value of confidence. The first step is to rewrite Eq. (8) as [18]:  

 Pr xl≤xP≤xu =IP n'Pl,	n' 1 Pl IP n'Pu,	n' 1 Pu  (9) 

where 0<Pl<Pu<1, n'=n+1 and IP a,b = ta 1 1 t b 1dt
P

0
I a,b  denotes the incomplete beta function 

ratio (it is the beta cumulative distribution function). The exact 100 1 α % CI for the Pth quantile xP  



51° Conference on Engineering Mechanical Design and Stress Analysis (AIAS2022)
IOP Conf. Series: Materials Science and Engineering 1275  (2023) 012020

IOP Publishing
doi:10.1088/1757-899X/1275/1/012020

6

 
 
 
 
 
 

is defined by xl,	xu = Xn'Pl:n,	Xn'Pu:n  by using fractional order statistics, where the two probabilities Pl  
and Pu  are determined numerically by solving: 

 IP n'Pl,	n' 1 Pl =1 α 2⁄     ,     IP n'Pu,	n' 1 Pu α 2⁄  (10) 

Fractional order statistics is also used to define the estimator of the Pth quantile as xP=Xn'P:n.  
As pointed out in [18], the fractional quantile Xn'P:n represents only a technical device for defining a 

continuum of order statistics and it cannot be calculated from the sample, since n'P may not be integer. 
The same drawback also applies to Xn'Pl:n and Xn'Pu:n. They are then approximated by a linear 
interpolation, as proposed in [18]. Indeed, it has been shown that the distribution of Xn'P:n is well 
approximated by the distribution of the following linear combination of order statistics: 

 xP
int= 1 ε X n'P :n+εX n'P +1:n     ,  

1

n+1
<P<

n

n+1
      (11) 

where ∙  denotes the floor function, and 	ε=n'P n'P , with 0<ε<1. The same linear interpolation in 
Eq. (11) is also used to compute the values xl

int and xu
int, provided that P is replaced by Pl and Pu, 

respectively; this introduces two new interpolation weights εl=n'Pl n'Pl  and εu=n'Pu n'Pu . The 
two latter values define the lower and upper limits of the interval xl

int,	xu
int , which represents the 

approximate 100 1 α % nonparametric CI for the Pth quantile xP. 
An illustrative example is now discussed. Suppose to have an ordered sample Xi:n of size n=10 and 

consider the quantile P=0.75. Since Pn'=0.75×11=8.25, the fractional order statistics gives the quantile 
estimator x0.75=X8.25:10, which clearly does not exist in the ordered sample. The nearest sample values, 
X8:10 and X9:10, are then used to compute the linear interpolation estimator as  xP

int=0.75∙X8:10+0.25∙X9:10, 
weight parameter being 	ε=n'P n'P =8.25 8=0.25. 

A point worth to mention is that the linear interpolation in Eq. (11) is only valid for quantiles P in 
the region between 1/ n+1  and	n/ n+1 , which are the lowest and highest quantiles corresponding to a 
sample size n. Owing to this condition, the lower and upper confidence limits cannot be computed if 
n'Pl =0 and n'Pu =n (see [19]), which is equivalent to the conditions Pl<1/ n+1  and Pu>n/ n+1 . For 

example, assume we want to construct a 99% CI for a sample of size n=50, and for two extreme quantiles 
P=0.1 and P=0.9. According to Eq. (10), for P=0.1 it is Pl=0.019371 and so n'Pl =0 (note that 
Pl=0.019371<1/51=0.0196). Similarly, for P=0.9, it is Pu=0.980629 and n'Pu =50, so the required 
value n'Pu +1=51 exceeds the last available sample value (again, note that 
Pu=0.980629>50/51=0.9804). In both cases, the CI limits do not exist. 

These conditions restrict the admissible combinations of sample size, confidence and quantile levels. 
As an example,  Table 1 lists the minimum sample size  required for some combinations of quantile 
and confidence levels. For P=0.75 and α=0.05 (confidence 95%), a minimum sample size of 13 is 
needed, but this threshold almost triples if the quantile level becomes 0.90, the confidence being kept 
unchanged. The table therefore emphasizes how a simultaneous large quantile level and confidence 
require an equally large sample size. 

 
Table 1. Minimum sample size n for several combinations of quantile and confidence  

  Quantile level, P  

1 α  P=0.5 P=0.75 P=0.90 

0.90 5 11 29 

0.95 6 13 36 

0.99 8 19 50 
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A possibility to partly overcome the above limitations is to use the extrapolation formula proposed 
in [20], which extends the definition in Eq. (10) to extreme quantiles: 

 xP P =

X1:n+ X2:n X1:n ln n'P    						        ,           0	<	P	≤	 1

n+1

1 ε X n'P :n+εX n'P +1:n                      ,           1

n+1
	<	P		< n

n+1

Xn:n+ Xn:n Xn 1:n ln n' 1 P  			,							     n

n+1
	≤	P	<	1

 (12)

where the second expression in Eq. (12) is the linear interpolation introduced previously. For a random 
variable with values X>0, and sufficiently near zero, the first expression modifies as εX1:n [20].  

4.  Numerical examples 
The accuracy of the nonparametric confidence interval described in Sec. 3.3 has already been checked 
in [18] for the median and third quartile, by considering five different standardized probability 
distributions (uniform, normal, Cauchy, exponential, Gumbel). The method was proved to yield 
coverage probabilities very close to the prescribed nominal value of 95%.  

Here, the aim is to perform another simulation study that considers a higher quantile (P=0.90) and 
also relatively “small” sample sizes for which Pu>n/ n+1 , a condition that requires the use of the 
extrapolation formula in Eq. (12). In the present numerical study, 100000 pseudo-random samples are 
generated from four standardized probability distributions (uniform, normal, exponential, Gumbel); for 
each sample, the CI for the quantile xP of the distribution is constructed by the method in Sec. 3.3. The 
coverage probability is estimated by counting the percentage fraction of confidence intervals that 
enclose the true quantile xP, and it is finally compared with the required nominal value 95%. Note that 
for the considered combination of quantile level (P=0.90) and confidence (95%), the limit sample size 
is n=36; for smaller values, the extrapolation in Eq. (12) must be invoked. The comparison of results is 
summarized shown in Figure 2. 

 

 

Figure 2. Coverage probability as a function of sample size for different probability distributions. 
Quantile P=0.90, nominal confidence 95%. 

 
The figure emphasizes that, for a sample size n larger than the limit value 36 (i.e. extrapolation 

formula not used), the coverage probability is close to the nominal value 0.95, with a slightly increasing 
trend against n (a tendency already observed in [15]), towards a horizontal asymptote for very large n 
(result not shown in Figure 2). By contrast, the coverage probability diminishes as n becomes lower than 
36, a condition in which Pu≫n/ n+1  and the upper confidence limit is approximated by the 
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extrapolation formula Eq. (12). The figure nevertheless shows that it is possible to use a sample size 
smaller than that dictated by the condition Pu<n/ n+1 , if a small loss of confidence is accepted. 

5.  Case study: Mountain-bike data 
This section considers a set of time-histories recorded in a mountain-bike on off-road tracks. The aim is 
not that of evaluating the safety of the bicycle, but to show an engineering application of the statistical 
methods described in the previous Sections. 

The mountain-bike is a 2010 Scott Sportster P6, with a frame in 6061 aluminum alloy and a Unicrown 
front fork in carbon steel. Two Rigida Cyber 10 size 700C wheels are coupled with 70037c S207 semi-
slick tires. Handlebar and saddle are from Scott Sports; transmission, chain, and crankset are from 
Shimano, Inc. 

The loadings acting on the bicycle front fork were measured by two strain gages, placed 
symmetrically on the left tube and connected in half-bridge configuration; the system was calibrated in 
laboratory static loading tests. Strain gage are from HBM, model LY Linear strain gauge with one 
measuring grid (only one direction). Time-histories were recorded by a Dewesoft data acquisition 
system (model Minitaurs Dewe-101 with 8 channels). This model has an industrial power computer 
built directly into the unit. Sampling frequency was 1000 Hz. A filter was set up with cut-off frequency 
of 300 Hz, which was above the maximum frequency of interest. The data acquisition system was fixed 
at the inclined tube of the main “triangle” frame of the bicycle: the rechargeable supply battery was 
allocated behind the seat, on a welded support [21].  

The bicycle speed was monitored by a speedometer (Marwi Group, model Union 8 Cycling 
Computer), formed by a sensor and magnet fixed on a wheel rod. When fully equipped, the mountain-
bike weighed about 12.2 kg. 

 

    

Figure 3. Mountain-bike with strain gages and onboard acquisition system, and example of measured 
time-history subdivided into segments of 30 seconds. 

 
A total of n=40 time-histories was measured and used in the subsequent analysis. Each time-history 

is first subdivided into 10 segments of 30 seconds each. The fatigue damage is computed for each 
segment, by assuming an SN curve N(s)=As–k, with A=1 and k=3 and 5. Therefore, 10 damage values 
were obtained from each time-history; their maximum was finally computed. In summary, the initial set 
of measured time-histories returned a sample of 40 maxima of damage Dmax,i, i=1,…,40, which 
represents the random sample Xi used to construct the nonparametric confidence interval of quantile 
described in Sec. 3.3. Subsets with n=10, 20, 30 damage values were also considered to study the 
behavior of the confidence interval computed from smaller samples.  

Figure 4(a) compares the 95% confidence intervals for 0.90 quantile, obtained for different sample 
sizes. Damage values are normalized to the sample mean. Black circles () represent the sample damage 
values, the star () is the quantile estimator, while the vertical lines are the quantile confidence intervals. 
For a sample size n<36 (limit value), the extrapolation formula Eq. (12) is used (confidence intervals 
are red colored). Note that the nonparametric confidence interval needs not to be symmetric around the 
quantile estimator. For n=40, it is Pu<n/ n+1  and therefore the upper limit of CI falls below the last 
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sample value in the ordered statistics. Instead, for sample size <36, the confidence interval has an 
increasing width, while its upper limit exceeds the last samples value (also by a large amount for small 

) and falls in the region of validity of the extrapolation formula.  
 

        
 

Figure 4. Confidence intervals of the 0.90 quantile, in the case of (a) fixed confidence 95% and 
different sample size, or (b) fixed sample size n=40 and different confidence.  

 
Figure 4(b) replots the same results of Figure 4(a), where CIs are now shown as a function of the 

confidence level. It can be seen that the extrapolation formula is used only for confidence levels higher 
than 0.90; in this case, the upper confidence limit exceeds the highest value in the ordered statistics. 

6.  Conclusions 
The paper studied the applicability of a nonparametric method based on fractional order statistics − and 
developed in two literature papers [18,20] − as a tool for estimating the confidence interval of quantiles 
of fatigue damage computed in random loadings. After a brief theoretical summary of the method, a 
numerical study and an experimental case study have been examined, the results of which allow for the 
following considerations: 

 the nonparametric method has the undoubtful advantage of making no prior assumption on the 
probability distribution of fatigue damage, contrary to our previous method that hypothesized a 
normally distributed damage to construct the confidence interval; 

 in the original formulation of the nonparametric method [18], there is a constraint in the 
admissible combinations of sample size n, quantile level P and confidence 1 α , which is 
dictated by the limit quantile levels, 1/ n+1  and	n/ n+1 , established by sample size n; 

 in a subsequent formulation [20], an approximated extrapolation formula allows the previous 
constraint to be overcome, which however occurs – as shown by our simulation results – at the 
expense of a loss in confidence, which becomes more pronounced if the sample size decreases 
far below the “limit” value; 

 in order for the extrapolation formula not to be applied, a large sample size   must be used. 
However, for very high quantiles (e.g. >0.99) and confidence levels (e.g. 95%), the required n 
may be so large that the method could become impractical (indeed, n represents the number of 
time-histories from which the sample of damage values are computed). For very high quantile 
levels (e.g. >0.99), the use of the extreme value theory may be more appropriate [22]. 
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