
A Semantics for Hybrid Probabilistic Logic Programs
with Function Symbols

Damiano Azzolinia,˚, Fabrizio Riguzzib, Evelina Lammaa

aDipartimento di Ingegneria - University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
bDipartimento di Matematica e Informatica - University of Ferrara, Via Saragat 1, I-44122,

Ferrara, Italy

Abstract

Probabilistic Logic Programming (PLP) is a powerful paradigm for the represen-

tation of uncertain relations among objects. Recently, programs with continuous

variables, also called hybrid programs, have been proposed and assigned a se-

mantics. Hybrid programs are capable of representing real world measurements

but unfortunately the semantics proposal was imprecise so the definition did not

assign a probability to all queries. In this paper, we remedy this and formally

define a new semantics for hybrid programs. We prove that the semantics as-

signs a probability to all queries for a large class of programs. We also propose

a concrete syntax for these programs and present several examples.

Keywords: Probabilistic Logic Programming, Hybrid Programs

1. Introduction1

Probabilistic Logic Programming (PLP) [13, 37] has been attracting a grow-2

ing interest for its ability of representing both relationships among entities3

and uncertainty over such relationships. Among the semantics proposed for4

probabilistic logic programs, the distribution semantics [40] gained prominence5

thanks to its intuitiveness and simplicity. The distribution semantics underlies6

many languages such as Probabilistic Horn Abduction [32], PRISM [40], Inde-7

˚Corresponding author
Email addresses: damiano.azzolini@unife.it (Damiano Azzolini),

fabrizio.riguzzi@unife.it (Fabrizio Riguzzi), evelina.lamma@unife.it (Evelina Lamma)

Preprint submitted to Artificial Intelligence November 15, 2023

pendent Choice Logic [33], Logic Programs with Annotated Disjunctions [42],8

ProbLog [14] and CP-logic [43]. All these languages allow a countable number9

of discrete random variables. The semantics was proven well-defined for these10

programs in [36, 37].11

The main limitation of these languages is that they do not allow continu-12

ous random variables and so they cannot properly represent several real world13

scenarios characterized, for instance, by temporal or physical models. However,14

in the last few years, languages that overcome this limitation have appeared:15

Hybrid ProbLog [15], Distributional Clauses (DC) [16], Extended PRISM [19],16

cplint hybrid programs [37], HAL-ProbLog [45] and Probabilistic Constraint17

Logic Programming (PCLP, for short, in the following) [24, 25, 26].18

The semantics that have been proposed for such programs are able to con-19

sider a countable number of continuous random variables. However, none of20

the above proposals prove that the semantics is well-defined for a large class of21

programs.22

In particular, here we consider the semantics of PCLP proposed in [26] that23

is one of the more detailed. The authors define a probability space for such24

programs composed of a sample space, a set of events and a measure. Events are25

the entities that can be assigned a measure value, i.e., a probability. However,26

the authors of [26] didn’t prove that every query can be associated to an event,27

i.e., that every query can be assigned a probability.28

In this paper, we remedy this by providing a new semantics, based on the29

Well-founded Semantics, that, for a large class of programs (for all the programs30

that provide, for every world, a two valued Well-founded model), assigns every31

query to an event and thus to a probability for the PCLP [24, 25, 26] language.32

Moreover, we provide a concrete language called cplint hybrid programs [37]33

for representing PCLP programs in a computer interpretable way. cplint is34

a suite of programs for reasoning and learning with PLP. It also has an online35

interface called cplint on SWISH [1, 38] available at http://cplint.eu.36

The paper is structured as follows. In Sections 2 and 3 we review back-37

ground theory about Well-founded Semantics and probability. The distribu-38

2

http://cplint.eu

tion semantics for programs with function symbols and Probabilistic Constraint39

Logic Programming are introduced respectively in Section 4 and 5. Some moti-40

vating examples can be found in Section 6, where we also illustrate the PCLP41

expressive power. In Sections 7 and 8 we introduce a new semantics for PCLP,42

we prove that it is well-defined and we provide a concrete, running system43

for querying PCLP. Finally, in Section 9 we discuss several related semantics44

proposals (Section 9.1) and existing inference algorithms for hybrid programs45

(Section 9.2). Section 10 concludes the paper.46

2. Logic Programming and Well-founded Semantics47

A normal logic program [23] is a set of normal clauses of the form

hÐ l1, . . . , ln

with pn ě 0q, where h is an atom and each li is a literal. An atom is an expression48

of the form ppt1, . . . , tnq where p is a predicate name and t1, . . . , tn are terms.49

If the terms do not contain variables, the atom is called ground. A literal is50

an atom a or its negation (denoted with „ a). Variables and constants are51

terms and, if f is a function symbol with arity n and t1, . . . , tn are terms, then52

fpt1, . . . , tnq is also a term. In this example, h is called the head of the clause,53

while the conjunctions of literal l1, . . . , ln represents the body. A substitution54

θ “ tX1{t1, . . . , Xn{tnu is a function mapping variables (Xi) to terms (ti), i.e.,55

it replaces all the occurrences of variables Xi in a formula with terms ti, where56

a formula can be a term, atom, literal, clause or program. Given a formula F ,57

the result of the substitution is denoted with Fθ and is called instance of F . A58

substitution θ is grounding for a formula F if Fθ is ground, i.e., Fθ does not59

contain variables.60

The Herbrand universe UP of a program P is the set of all the ground terms61

obtained by the possible combinations of the symbols in the program. Similarly,62

the Herbrand base BP of a program P is the set of all ground atoms constructed63

using the symbols in the program. The grounding of a program is obtained64

3

by replacing the variables of clauses in the program with the terms from the65

Herbrand universe in all possible ways. A two-valued interpretation I Ď BP66

represents the set of true atoms: a is true in I if a P I and a is false in I if67

a R I. Given an interpretation I, a ground atom ppt1, . . . , tnq is true in I if68

ppt1, . . . , tnq P I, a ground clause h1; . . . ;hm Ð b1, . . . , bn, where semicolons69

denote disjunctions, is true in I if at least one of the hi is true when b1, . . . , bn70

are true in I, a clause c is true in I if all of its groundings with terms from UP71

are true in I and a set of clauses C is true in I if @c P C, c is true in I.72

An interpretation I is a model for a set of clauses Σ, denoted with I (Σ,

if Σ is true in I. We call IntP2 the set of two-valued interpretations for a

program P . The set IntP2 forms a complete lattice (see Appendix A for a

definition of lattice) where the partial order ď is defined by the subset relation

Ď. A three-valued interpretation I is a pair xIT , IF y where IT and IF are

subsets of BP and represent respectively the set of true and false atoms. a

is true in I if a P IT and is false in I if a P IF . „ a is true in I if a P

IF and is false in I if a P IT . If a R IT and a R IF , then a assumes the

third truth value, undefined. We also write I (a if a P IT and I („ a if

a P IF . We call IntP3 the set of three-valued interpretations for a program

P . A three-valued interpretation I “ xIT , IF y is consistent if IT X IF “ ∅.

The union of two three-valued interpretations xIT , IF y and xJT , JF y is defined

as xIT , IF y Y xJT , JF y “ xIT Y JT , IF Y JF y. The intersection of two three-

valued interpretations xIT , IF y and xJT , JF y is defined as xIT , IF y X xJT , JF y “

xIT X JT , IF X JF y. In the following, we represent a three-valued interpretation

I “ xIT , IF y as a single set of literals, i.e.,

I “ IT Y t„ a | a P IF u.

The set IntP3 of three-valued interpretations for a program P forms a complete73

lattice where the partial order ď is defined as xIT , IF y ď xJT , JF y if IT Ď JT74

and IF Ď JF . The bottom and top element for IntP2 are respectively ∅ and BP75

while for IntP3 are respectively x∅,∅y and xBP ,BP y.76

Given a three-valued interpretation I “ xIT , IF y, we define the functions77

4

truepIq “ IT , falsepIq “ IF and undef pIq “ BP zpIT Y IF q, that return the set78

of true, false and undefined atoms respectively.79

The Well-founded semantics (WFS) [41] assigns a three-valued model to a80

normal logic program, i.e., it identifies a consistent three-valued interpretation81

as the meaning of the program. The WFS was given in [41] in terms of the82

least fixpoint of an operator that is composed by two sub-operators, one com-83

puting consequences and the other computing unfounded sets. We give here the84

alternative definition of the WFS of [35] that is based on an iterated fixpoint.85

See Appendix B for a brief introduction about fixpoints.86

Definition 1 (OpTruePI and OpFalsePI operators). For a normal logic program87

P , sets Tr and Fa of ground atoms, and a 3-valued interpretation I, we define88

the operators OpTruePI : IntP2 Ñ IntP2 and OpFalsePI : IntP2 Ñ IntP2 as89

OpTruePI pTrq “ ta | a is not true in I and there is a clause bÐ l1, . . . , ln in P90

and a grounding substitution θ such that a “ bθ and, for every 1 ď i ď n,91

either liθ is true in I or liθ P Tr}92

OpFalsePI pFaq “ ta | a is not false in I and for every clause bÐ l1, . . . , ln in P93

and grounding substitution θ such that a “ bθ there is some i p1 ď i ď nq94

such that liθ is false in I or liθ P Fau95

In words, the operator OpTruePI pTrq extends the interpretation I to add96

the new true atoms that can be derived from P knowing I and true atoms Tr ,97

while OpFalsePI pFaq computes new false atoms in P by knowing I and false98

atoms Fa. OpTruePI and OpFalsePI are both monotonic [35], so they both have99

least and greatest fixpoint. An iterated fixpoint operator builds up dynamic100

strata by constructing successive three-valued interpretations as follows.101

Definition 2 (Iterated fixed point). For a normal logic program P , let IFPP :

IntP3 Ñ IntP3 be defined as

IFPP
pIq “ I Y xlfppOpTruePI q, gfppOpFalsePI qy

5

where lfp and gfp denote respectively the least and the greatest fixpoint.102

IFPP is monotonic [35] and thus it has a least fixpoint lfppIFPP
q. The Well-103

Founded Model (WFM) of P , denoted as WFM pP q, is lfppIFPP
q. Let δ be the104

smallest ordinal such that WFM pP q “ IFPP
Ò δ. We refer to δ as the depth of105

P . The stratum of atom a is the least ordinal β such that a P IFPP
Ò β (where106

a may be either in the true or false component of IFPP
Ò β). Undefined atoms107

of the WFM do not belong to any stratum, i.e., they are not added to IFPP
Ò δ108

for any ordinal δ.109

If undef pWFM pP qq “ ∅, then the WFM is called total or two-valued and110

the program is dynamically stratified.111

3. Probability Theory112

In this section, we review some background on probability theory, in partic-113

ular Kolmogorov probability theory, that will be needed in the following. Most114

of the definitions are taken from [10] and [37].115

We define the sample space W as the set composed by the elements that116

are outcomes of the random process we want to model. For instance, if we117

consider the toss of a coin whose outcome could be heads h or tails t, the sam-118

ple space is defined as W coin “ th, tu. If we throw 2 coins, then W 2coins “119

tph, hq, ph, tq, pt, hq, pt, tqu. If the number of coins is infinite then W coins “120

tpo1, o2, . . .q | oi P th, tuu.121

Definition 3 (σ-Algebra). A non-empty set Ω of subsets of W is a σ-algebra122

on the set W iff:123

• W P Ω124

• Ω is closed under complementation: ω P Ωñ ωc “ Ωzω P Ω125

• Ω is closed under countable union: if ωi P Ωñ
Ť

i wi P Ω126

The elements of a σ-algebra Ω are called measurable sets or events, Ω is127

called event space and pW,Ωq is called measurable space. When W is finite,128

6

Ω is usually the powerset of W , but, in general, it is not necessary that every129

subset of W must be present in Ω. For example, to model a coin toss, we can130

consider the set of events Ωcoin “ PpW coinq and thu an event corresponding131

to the outcome heads.132

Definition 4 (Minimal σ-algebra). Let C be an arbitrary non-empty collection133

of subsets of W. The intersection of all σ-algebras containing all the elements of134

C is called the σ-algebra generated by C or the minimal sigma-algebra containing135

C. It is denoted by σpCq. Moreover, σpCq always exists and is unique [10].136

Now we introduce the definition of probability measure:137

Definition 5 (Probability measure). Given a measurable space pW,Ωq, a prob-138

ability measure is a finite set function µ : Ω Ñ R that satisfies the following139

three axioms (called Kolmogorov axioms):140

• a1: µpωq ě 0 @ ω P Ω141

• a2: µpW q “ 1142

• a3: µ is countably additive (or σ-additive): if O = tω1, ω2, . . .u Ď Ω is a143

countable collection of pairwise disjoint sets, then µp
Ť

ωPOq “
ř

i µpωiq144

Axioms a1 and a2 state that we measure the probability of an event with145

a number between 0 and 1. Axiom a3 states that the probability of the union146

of disjoint events is equal to the sum of the probability of every single event.147

pW,Ω, µq is called a probability space.148

For example, if we consider the toss of a coin, pW coin,Ωcoin, µcoinq with149

µcoinp∅q “ 0, µcoinpthuq “ 0.5, µcoinpttuq “ 0.5 and µcoinpth, tuq “ 1 is a150

probability space.151

Definition 6 (Measurable function). Given a probability space pW,Ω, µq and a152

measurable space pS,Σq, a function X : W Ñ S is measurable if X´1pσq “ tw P153

W | Xpwq P σu P Ω, @σ P Σ.154

7

Definition 7 (Random variable). Let pW,Ω, µq be a probability space and pS,Σq155

be a measurable space. A measurable function X : W Ñ S is a random variable.156

The elements of S are called values of X. We indicate with P pX P σq for157

all σ P Σ the probability that a random variable X has value in σ, that is,158

µpX´1pσqq. If S is finite or countable, X is a discrete random variable. If S is159

uncountable, X is a continuous random variable.160

The probability distribution of a discrete random variable is defined as P pX P161

txuq @x P S and it is often abbreviated with P pX “ xq or P pxq. The probability162

density ppXq of a continuous random variable X : pW,Ωq Ñ pR,Bq is defined163

such as P pX P Aq “
ş

A
ppxqdx for any measurable set A P B.164

In the following, we will need to consider the product of measurable spaces.165

166

Definition 8 (Product σ-algebra). Given two measurable spaces pW1,Ω1q and167

pW2,Ω2q, the product σ-algebra Ω1 b Ω2 is defined as Ω1 b Ω2 “ σptω1 ˆ ω2 |168

ω1 P Ω1, ω2 P Ω2uq. The result of Ω1bΩ2 is different from the Cartesian product169

Ω1ˆΩ2 because it is the minimal σ-algebra generated by all the possible couples170

of elements from Ω1 and Ω2. Ω1 b Ω2 is also called a tensor product.171

Theorem 1 (Theorem 6.3.1 from [10]). Given two probability spaces pW1,Ω1, µ1q

and pW2,Ω2, µ2q, there exists a unique probability space pW,Ω, µq such that

W “W1 ˆW2, Ω “ Ω1 b Ω2 and

µpω1 ˆ ω2q “ µ1pω1q ¨ µ2pω2q

for ω1 P Ω1 and ω2 P Ω2. Measure µ is called the product measure of µ1 and

µ2 and is denoted also by µ1 ˆ µ2. Moreover, for any ω P Ω, let’s define its

sections as

ωp1qpw1q “ tw2 | pw1, w2q P ωu ωp2qpw2q “ tw1 | pw1, w2q P ωu.

Then, both ωp1qpw1q and ωp2qpw2q are measurable according to pW2,Ω2, µ2q and172

pW1,Ω1, µ1q respectively, i.e., ω
p1qpw1q P Ω2 and ωp2qpw2q P Ω1. µ2pω

p1qpw1qq173

8

and µ1pω
p2qpw2qq are well-defined real functions, the first on W1 and the second174

on W2.175

Measure µ “ µ1 ˆ µ2 for every ω P Ω also satisfies

µpωq “

ż

W2

µ1pω
p2qpw2qqdµ2 “

ż

W1

µ2pω
p1qpw1qqdµ1.

4. The Distribution Semantics for Programs with Function Symbols176

Probabilistic Logic Programming (PLP) extends logic programming with177

the possibility of expressing uncertain relations. Several PLP languages has178

been proposed during the years. The language we propose is based on ProbLog179

syntax and semantics. In this section we present the distribution semantics180

for ProbLog programs with function symbols. Let us consider first ProbLog181

programs without function symbols.182

A probabilistic logic program P is composed by a set of clauses (or rules) R

and a set of probabilistic facts F which are of the form

Π :: f

where Π is a probability and f is an atom. If f is not ground, the fact stands183

for a set of facts, one for each grounding.184

Let us consider an example.185

Example 1 (Graph). Consider a probabilistic graph where the edges have a186

probability of existing.187

F1 “ 1{3 :: edgepa, bq.

F2 “ 1{2 :: edgepb, cq.

F3 “ 1{4 :: edgepa, cq.

pathpX,Xq.

pathpX,Y q Ð edgepX,Zq, pathpZ, Y q.

188

This program has three ground probabilistic facts, each corresponding to one189

edge, and two clauses. With this program we can compute the probability of the190

existence of a path between two nodes, for example, by asking for the probability191

of pathpa, cq being true.192

9

In order to give a semantics to ProbLog programs without function sym-

bols, let us introduce some terminology. An atomic choice indicates whether a

grounding fθ of a probabilistic fact Π :: f is selected or not and is represented

with the triple pf, θ, kq where k P t0, 1u. k “ 1 means that the fact is selected,

k “ 0 that it is not. A set of atomic choices is consistent if only one alternative

is selected for a grounding of a probabilistic fact, i.e., it does not contain atomic

choices such as pf, θ, jq and pf, θ, kq with j ‰ k. Finally, we define a composite

choice κ as a consistent set of atomic choices. Given a composite choice κ we

can define its probability as

P pκq “
ź

pfi,θ,1qPκ

Πi

ź

pfi,θ,0qPκ

1´Πi.

A selection σ (also called total composite choice) contains one atomic choice193

for every grounding of every probabilistic fact. A selection σ identifies a world194

wσ, i.e., a logic program containing the rules R and atoms corresponding to195

each atomic choice pf, θ, 1q of σ. The way to assign a probability to composite196

choices applies also to selections, so we have a way of assigning a probability to197

worlds.198

Since there are no function symbols, the Herbrand universe is finite and so is199

the set of groundings of probabilistic facts. Therefore, the set of worlds is finite,200

and each world is determined by a finite number of choices. P pσq as defined201

above is a probability distribution over the worlds.202

We want to assign a probability to ground atoms. We assume that each203

world has a total well-founded model, i.e., each ground atom is either true or204

false in the world, but it cannot be undefined. We call programs satisfying this205

property sound.206

Given a ground atom q and a world w we can thus define the conditional207

probability P pq | wq as 1 if w (q and 0 otherwise.208

The probability of q can be computed by summing out the worlds from the209

joint distribution of the query and the worlds:210

P pqq “
ÿ

w

P pq, wq “
ÿ

w

P pq | wqP pwq “
ÿ

w(q

P pwq. (1)

10

211

Example 2 (Graph, continued). The program of Example 1 has three ground212

probabilistic facts so it has 23 “ 8 worlds. The query pathpa, cq is true in 5 of213

them and its probability is214

P ppathpa, cqq “ 1{3 ¨ 1{2 ¨ 3{4` 2{3 ¨ 1{2 ¨ 1{4` 2{3 ¨ 1{2 ¨ 1{4

` 1{3 ¨ 1{2 ¨ 1{4` 1{3 ¨ 1{2 ¨ 1{4

“ 0.375

If the program contains function symbols, the Herbrand universe is countable215

and the set of groundings of probabilistic facts is countable as well. The set of216

worlds in this case is uncountable, as will be shown later by Theorem 5, and the217

probability of each world is 0, as it is given by an infinite product of numbers218

all bounded away from 1. Therefore, the semantics cannot be given as above.219

Let us consider an example with function symbols.220

Example 3 (Game of dice). Consider the game of dice proposed in [42]: the221

player repeatedly throws a six-sided die. The game stops when the outcome is222

six. If we consider a game played with a three sided die, where the game stops223

when the outcome is three, a possible ProbLog encoding could be:224

F1 “ 1{3 :: onepXq.

F2 “ 1{2 :: twopXq.

onp0, 1q Ð onep0q.

onp0, 2q Ð„ onep0q, twop0q.

onp0, 3q Ð„ onep0q,„ twop0q.

onpspXq, 1q Ð onpX, q,„ onpX, 3q, onepspXqq.

onpspXq, 2q Ð onpX, q,„ onpX, 3q,„ onepspXqq, twopspXqq.

onpspXq, 3q Ð onpX, q,„ onpX, 3q,„ onepspXqq,„ twopspXqq.

225

If we add the clauses226

at least once 1Ð onp , 1q.

never 1Ð„ at least once 1.
227

we can ask for the probability that the die landed at least once on face 1 and that228

the die never landed on face 1.229

11

Let us introduce some more definitions. With WP we denote the set of all230

worlds of a probabilistic logic program P . The set of worlds ωκ compatible with231

a composite choice κ is ωκ “ twσ P WP | κ Ď σu. Therefore, a composite232

choice identifies a set of worlds. For programs with function symbols, ωκ may233

be uncountable so it is not guaranteed that
ř

wPωκ
P pwq can be defined, since234

P pwq “ 0. However, P pκq is still well-defined. Let us call µpκq “ P pκq.235

Given a set of composite choices K, the set of worlds ωK compatible with236

K is defined as ωK “
Ť

κPK ωκ. Two sets K1 and K2 of composite choices are237

equivalent if ωK1 “ ωK2 , that is, if they correspond to the same set of worlds. If238

the union of two composite choices κ1 and κ2 is not consistent, then κ1 and κ2239

are incompatible. We define pairwise incompatible a set K of composite choices240

if @κ1 P K,@κ2 P K, κ1 ‰ κ2 implies that κ1 and κ2 are incompatible.241

Obtaining pairwise incompatible sets of composite choices (for both proba-242

bilistic logic programs with finite and infinite number of worlds) is a crucial prob-243

lem, since the probability of a pairwise incompatible set K of composite choices244

for programs without function symbols can be defined as P pKq “
ř

κPK P pκq,245

which can be easily computed. P pKq is still well-defined for programs with246

function symbols if K is countable. Let us call it µ so µpKq “ P pKq.247

We can assign probabilities to a general set K of composite choices by con-248

structing a pairwise incompatible equivalent set through the technique of split-249

ting. In detail, if fθ is an instantiated fact and κ is a composite choice that250

does not contain an atomic choice pf, θ, kq for any k, the split of κ on fθ can be251

defined as the set of composite choices Sκ,fθ “ tκYtpf, θ, 0qu, κYtpf, θ, 1quu. In252

this way, κ and Sκ,fθ identify the same set of possible worlds, i.e., ωκ “ ωSκ,fθ
,253

and Sκ,fθ is pairwise incompatible. It turns out that, given a set of composite254

choices, by repeatedly applying splitting it is possible to obtain an equivalent255

mutually incompatible set of composite choices [34].256

Theorem 2 (Existence of a pairwise incompatible set of composite choices [34]).257

Given a finite set K of composite choices, there exists a finite set K 1 of pairwise258

incompatible composite choices equivalent to K.259

12

Theorem 3 (Equivalence of the probability of two equivalent pairwise incom-260

patible finite set of finite composite choices [31]). If K1 and K2 are both pairwise261

incompatible finite sets of finite composite choices such that they are equivalent,262

then P pK1q “ P pK2q.263

Given a finite pairwise incompatible setK 1 of composite choices equivalent to264

K, a measure for a probabilistic logic program P is defined as µP pωKq “ µpK 1q.265

We say that a composite choice κ is an explanation for a query q if @w P266

ωκ : w (q. Moreover, a set K of composite choices is covering with respect to267

a query q if every world in which q is true belongs to ωK .268

Example 4 (Pairwise incompatible covering set of explanations for Example 3).

In Example 3, the query at least once 1 has the pairwise incompatible covering

set of explanations

K` “ tκ`
0 , κ

`
1 , . . .u

with269

κ`
0 “ tpf1, tX{0u, 1qu

κ`
1 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 1qu

. . .

κ`
i “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, . . . , pf1, tX{s

i´1p0qu, 0q,

pf2, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 1qu

. . .

So K` is countable and infinite. The query never 1 has the pairwise incompat-

ible covering set of explanations

K´ “ tκ´
0 , κ

´
1 , . . .u

13

with270

κ´
0 “ tpf1, tX{0u, 0q, pf2, tX{0u, 0qu

κ´
1 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 0q,

pf2, tX{sp0qu, 0qu

. . .

κ´
i “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, . . . , pf1, tX{s

i´1p0qu, 0q,

pf2, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 0q, pf2, tX{s
ip0qu, 0qu

. . .

For a probabilistic logic program P and a ground atom q, we define the271

function Q : WP Ñ t0, 1u as272

Qpwq “

$

&

%

1 if w (q

0 otherwise
(2)

Given a probabilistic logic program P , we call ΩP the set of sets of worlds273

identified by countable sets of countable composite choices, i.e., ΩP “ tωK | K274

is a countable set of countable composite choicesu.275

Lemma 1 (σ-algebra of a Program, Lemma 2 of [37]). ΩP is a σ-algebra over276

WP .277

We can define a probability measure µP as follows: µP : ΩP Ñ r0, 1s. Given278

K “ tκ1, κ2, . . .u (K may be also infinite, i.e., it may contain an infinite number279

of κi), consider the sequence tKn | n ě 1u where Kn “ tκ1, . . . , κnu. Kn is an280

increasing sequence and so limnÑ8 Kn exists and is equal to
Ť8

n“1 Kn “ K [10].281

Consider the sequence tK 1
n | n ě 1u constructed as follows: K 1

1 “ tκ1u and K 1
n282

is obtained by the union of K 1
n´1 with the splitting of each element of K 1

n´1283

with κn. It is possible to prove by induction that K 1
n is pairwise incompatible284

and equivalent to Kn.285

Since µpκq “ 0 for infinite composite choices, we can compute µpK 1
nq for286

each K 1
n. Consider limnÑ8 µpK 1

nq, then the following lemma holds:287

14

Lemma 2 (Existence of the limit of the measure of countable union of countable288

composite choices, Lemma 3 from [37]). limnÑ8 µpK 1
nq exists.289

We can now introduce the definition of the probability space of a program.290

Theorem 4 (Probability space of a program, Theorem 8 from [37]). Given a

set of composite choices K “ tκ1, κ2, . . .u and a pairwise incompatible set of

composite choices K 1
n equivalent to tκ1, . . . , κnu, the triple xWP ,ΩP , µP y with

µP pωKq “ lim
nÑ8

µpK 1
nq

is a probability space.291

Given a probabilistic logic program P and a ground atom q with a countable292

set K of explanations that is covering with respect to q, Equation 2 represents293

a random variable, since tw | w PWP ^ w (qu “ ωK P ΩP .294

For brevity, we indicate P pQ “ 1q with P pqq and we say that q is well-defined295

according to the distribution semantics. If the probability of all ground atoms296

in the grounding of a probabilistic logic program P is well-defined, then P is297

well-defined.298

Example 5 (Probability of the query for Example 3). From Example 4, the299

explanations in K` are pairwise incompatible, so the probability of the query300

at least once 1 can be computed as301

P pat least once 1q “
1

3
`

1

3
¨

ˆ

2

3
¨
1

2

˙

`
1

3
¨

ˆ

2

3
¨
1

2

˙2

“
1

3
`

1

3
¨

ˆ

1

3

˙

`
1

3
¨

ˆ

1

3

˙2

` . . .

“
1

3
¨

1

1´ 1
3

“
1

3
¨
3

2
“

1

2

since the sum represents a geometric series and
ř8

n“0 k ¨ q
n “ k ¨ 1

1´q .302

Analogously, for the query never 1, the explanations in K´ are pairwise303

15

incompatible, so the probability of never 1 can be computed as304

P pnever 1q “
2

3
¨
1

2
`

2

3
¨
1

2
¨

ˆ

2

3
¨
1

2

˙

`

2

3
¨
1

2
¨

ˆ

2

3
¨
1

2

˙2

` . . .

“
1

3
`

1

3
¨

ˆ

1

3

˙

`
1

3
¨

ˆ

1

3

˙2

` . . .

“
1

3
¨

1

1´ 1
3

“
1

3
¨
3

2
“

1

2

As expected, P pnever 1q “ 1´ P pat least once 1q.305

In [36, 37] it was proved that any query to a sound ProbLog program can306

be assigned a probability so that the program is well-defined. In this paper, we307

want to do the same for PCLP.308

5. Probabilistic Constraint Logic Programming (PCLP)309

In this section, we introduce the basic concepts described in [26].310

A program P in PCLP is composed by a set of rules (R) and a countable311

set of random variables (X). The rules define the truth value of the atoms in312

the Herbrand base of the program given the values of the random variables.313

Let X “ tX1,X2, . . .u be the countable set of random variables. Each random314

variable Xi has an associated range Rangei that can be discrete, R or Rn.315

The sample space of a set X is defined as WX “ Range1 ˆ Range2 ˆ316

Each random variable Xi is associated to a probability space pRangei,Ωi, µiq.317

The measure space pWX,Ωq is the product of measure spaces pRangei,Ωiq, so318

it is an infinite-dimensional product measure space [10]. It is possible to build319

a probability space for any finite subset of X as a product probability space.320

Theorem 6.4.1 from [10] states that these finite dimensional probability spaces321

can be extended to an infinite dimensional probability space (WX,ΩX, µX).322

A constraint φ is a function φ : WX Ñ ttrue, falseu, i.e., a function from323

X1 “ x1, X2 “ x2, . . ., to ttrue, falseu, where xi P Rangei. Given a sam-324

ple space WX, and a constraint φ, we can define the constraint solution space325

16

CSSpφq as the subset of the sample space WX where the constraint φ holds:326

CSSpφq “ tx PWX | φpxqu.327

We indicate with satisfiablepωXq the set of all constraints that are satisfiable328

given a valuation wX of the random variables in X.329

We can now define a probabilistic constraint logic theory.330

Definition 9 (Probabilistic Constraint Logic Theory). A probabilistic con-331

straint logic theory P is a tuple pX,WX,ΩX, µX, Constr,R, F q where:332

• X is a countable set of random variables tX1, X2, . . .u. Each random vari-333

able Xi has a non-empty range Rangei;334

• WX “ Range1 ˆ Range2 ˆ . . . “
Ś

iPX Rangei is the sample space of the335

random variables X;336

• ΩX is the event space;337

• µX is a probability measure, i.e., pWX,ΩX, µXq is a probability space;338

• Constr is a set of constraints closed under conjunction, disjunction and339

negation such that @φ P Constr, CSSpφq P ΩX, i.e., such that CSSpφq is340

measurable for all φ;341

• R is a set of rules with logical constraints, i.e., rules of the form:342

hÐ l1, . . . , ln, xφ1pXqy, . . . , xφmpXqy, where li is a literal for i “ 1, . . . , n,343

φj P Constr; xφjpXqy is called constraint atom for j “ 1, . . . ,m.344

Each atom in the Herbrand base BP of R is a Boolean random variable.

There is a countable number of them. The sample space WR is defined as

WR “
ź

aPBP

ttrue, falseu.

The authors of [26] define the event space of the logic part of the theory as

ΩR “PpWRq

because they say that the sample space WR is countable. However, this is not345

true and can be proved with Cantor’s diagonal argument: it is not possible to346

17

put in a one-to-one correspondence the elements of WR with the set of natural347

numbers N.348

Theorem 5 (From [36, 37]). WR is uncountable.349

Proof. If the program contains at least one function symbol and one constant,350

the Herbrand base BP is countable. We can thus represent each element of WR351

as a countable sequence of Boolean values. Equivalently, we can represent it352

with a countable sequence of bits b1, b2, b3, . . .353

Suppose WR is countable. Then it is possible to write its element in a list

such as

b1,1, b1,2, b1,3, . . .

b2,1, b2,2, b2,3, . . .

b3,1, b3,2, b3,3, . . .

. . .

Since WR is countable, the list should contain all of its elements.354

Now, pick element ␣b1,1,␣b2,2,␣b3,3, . . . This element belongs to WR be-355

cause it is a countable sequence of Booleans. However, it is not in the list,356

because it differs from the first element in the first bit, from the second element357

in the second bit, and so on. So it differs from each element of the list. This is358

against the hypothesis that the list contains all elements of WR. Thus, WR is359

not countable.360

The sample space of the entire theory is

WP “WX ˆWR

and the event space of the entire theory is

ΩP “ ΩX b ΩR.

The probability measure µX is extended to a probability measure of the en-361

tire theory µP by observing that knowing which constraints are true uniquely362

determines the truth value of all atoms in the entire theory.363

18

An element wX of the sample space WX uniquely determines which con-364

straints are true: we assume that the logic theory R Y satisfiablepwXq has a365

unique well-founded model which we denote by WFM pwXq.366

The probability measure on the entire theory P ’s event space is defined as

µP pωq “ µXptwX | pwX, wRq P ω,WFM pwXq |ù wRuq.

The probability of a query q is defined as

P pqq “ µP ptpwX, wRq PWP | wR |ù quq.

The authors of [26] (pp. 11-12) say:367

We further know that the event defined by the equation above is an368

element of the event space ΩP , since we do not put any restrictions369

on values of random variables and the event space concerning the370

logic atoms is defined as the powerset of the sample space [. . .] thus371

each subset of the sample space is in the event space.372

Since the event space of the logic atoms cannot be defined as the powerset of373

the sample space, the fact that tpwX, wRq PWP | wR |ù qu is measurable is not374

obvious and must be proved.375

6. PCLP Examples376

In this section, we show some examples of PCLP. Discrete and continuous

random variables are described by their distribution with facts of the form

Variable „ distribution

where variable names start with an uppercase character and are bold. For

example,

Time comp „ expp1q

represents a continuous random variable Time comp that follows an exponen-377

tial distribution with parameter 1. Moreover, the body of rules can contains378

19

special atoms enclosed in square brackets x y, encoding constraints among ran-379

dom variables.380

The following two examples are taken from [26]. The first one describes381

the development of fire on a ship, while the second models the behavior of a382

consumer.383

Example 6 (Fire on a ship [26]). Suppose a fire breaks out in a compartment384

of a ship. After 0.75 minutes also the next compartment will be on fire. After385

1.25 minutes the fire will breach the hull. With this information, we know for386

sure that if the fire is under control within 0.75 minutes the ship is saved. This387

can be represented as:388

savedÐ xTime comp1 ă 0.75y389

In detail, the previous line says that the value of the continuous random variable390

Time comp1 should be less than 0.75 in order to saved to be true.391

The second compartment is more fragile than the first one, and the fire must be392

extinguished within 0.625 minutes. However, to reach the second compartment,393

the fire in the first one must be under control. This means that both fires must394

be extinguished in 0.75 + 0.625 = 1.375 minutes. In the second compartment395

four people can work simultaneously, since it is not as isolated as the first one.396

This means that the fire will be extinguished four times faster. We can encode397

this situation with:398

savedÐ xTime comp1 ă 1.25y,

xTime comp1 ` 0.25 ¨Time comp2 ă 1.375y
399

We also suppose that both time durations to extinguish the fire are exponentially400

distributed:401

Time comp1 „ expp1q402

Time comp2 „ expp1q403

Given these time constraints and these distributions, we want to know the prob-404

ability that the ship is saved, i.e., P(saved).405

Example 7 (Fruit selling [26]). We want to compute the likelihood of a con-406

sumer buying a certain fruit. The price of the fruit depends on its yield, which407

is modeled with a Gaussian distribution. For apples and bananas, we have:408

20

Yieldpappleq „ gaussianp12000.0, 1000.0q

Yieldpbananaq „ gaussianp10000.0, 1500.0q
409

The government may or may not support the market, this is modeled with dis-410

crete random variables:411

Supportpappleq „ t0.3 : yes, 0.7 : nou

Supportpbananaq „ t0.5 : yes, 0.5 : nou
412

The basic price is computed on the basis of the yield with a linear function:413

basic pricepappleq Ð

xBasic pricepappleq “ 250´ 0.007ˆYieldpappleqy

basic pricepbananaq Ð

xBasic pricepbananaq “ 200´ 0.006ˆYieldpbananaqy

414

Constraints of the form xVariable “ Expressiony are special as they give a415

name to an expression involving random variables that can be reused afterwards416

in other constraints. In fact, we do not have to specify a density for Variable417

as its density is completely determined by that of the variables in Expression.418

The actual price is computed from the basic price by raising it by a fixed419

amount in case of government support:420

pricepFruitq Ð basic pricepFruitq,

xPricepFruitq “ Basic pricepFruitq ` 50y, xSupportpFruitq “ yesy

pricepFruitq Ð basic pricepFruitq,

xPricepFruitq “ Basic pricepFruitqy, xSupportpFruitq “ noy

421

Note that variable Fruit is not bold, since it is a logical variable, and not a422

random variable.423

A customer buys a certain fruit provided that its price is below a maximum:424

buypFruitq Ð pricepFruitq, xPricepFruitq ďMax pricepFruitqy425

The maximum price follows a gamma distribution:426

Max pricepappleq „ Γp10.0, 18.0q

Max pricepbananaq „ Γp12.0, 10.0q
427

We can now ask for the probability of the customer of buying a certain fruit,428

P(buy(apple)) or P(buy(banana)).429

The previous two examples illustrate the expressive power of PCLP. How-430

ever, they do not contain function symbols, so the set of random variables is431

21

finite. A semantics for such programs was given in [16]. The following two ex-432

amples use integers that are representable only by using function symbols (for433

example, 0 for 0, sp0q for 1, spsp0qq for 2, . . .).434

Example 8 (Gambling). Consider a gambling game that involves spinning a435

roulette wheel and drawing a card from a deck. The player repeatedly spins the436

wheel and draws a card. The card is reinserted in the deck after each play. The437

player records the position of the axis of the wheel when it stops, i.e., the angle438

it creates with the geographic east. If the player draws a red card the game ends,439

otherwise he keeps playing. The angle of the wheel and the color of the card440

define four available prizes. In particular, prize a if the card is black and the441

angle is less than π, prize b if the card is black and the angle is greater than π,442

prize c if the card is red and the angle is less than π and prize d otherwise. The443

angle of the wheel can be described with an uniform distribution in r0, 2πq and444

the color of the card with a Bernoulli distribution with P predq “ P pblackq “ 0.5.445

Cardp q „ tred : 0.5, black : 0.5u

Anglep q „ uniformp0, 2πq

prizep0, aq Ð xCardp0q “ blacky, xAnglep0q ă πy

prizep0, bq Ð xCardp0q “ blacky, xAnglep0q ě πy

prizep0, cq Ð xCardp0q “ redy, xAnglep0q ă πy

prizep0, dq Ð xCardp0q “ redy, xAnglep0q ě πy

prizepspXq, aq Ð prizepXq, xCardpXq “ blacky,

xCardpspXqq “ blacky, xAnglepspXqq ă πy

prizepspXq, bq Ð prizepXq, xCardpXq “ blacky,

xCardpspXqq “ blacky, xAnglepspXqq ě πy

prizepspXq, cq Ð prizepXq, xCardpXq “ blacky,

xCardpspXqq “ redy, xAnglepspXqq ă πy

prizepspXq, dq Ð prizepXq, xCardpXq “ blacky,

xCardpspXqq “ redy, xAnglepspXqq ě πy

at least once prize aÐ prizepX, aq

never prize aÐ„ at least once prize a

446

We can ask for the probability that the player wins at least one time prize a with447

22

P pat least once prize aq. Similarly, we can ask the probability that the player448

never wins price a with P pnever prize aq.449

Example 9 (Hybrid Hidden Markov Model). A Hybrid Hidden Markov Model450

(Hybrid HMM) combines a Hidden Markov Model (HMM, with discrete states)451

and a Kalman Filter (with continuous states). At every integer time point t,452

the system is in a state rSptq,Typeptqs which is composed of a discrete random453

variable Typeptq, taking values in ta, bu, and a continuous variable Sptq tak-454

ing values in R. At time t it emits one value Vptq “ Sptq `Obs errptq, where455

Obs errptq is an error that follows a probability distribution that does not depend456

on time but depends on Typeptq, a or b. At time t1 “ t` 1, the systems tran-457

sitions to a new state rSpt1q,Typept1qs, with Spt1q “ Sptq `Trans errptq where458

Trans errptq is also an error that follows a probability distribution that does459

not depend on time but depends on Typeptq. Typept1q depends on Typeptq.460

The state at time 0 is described by random variable Init. Here, all the random461

variables except Init are indexed by the integer time.462

23

ok Ð kfp2q, xVp2q ą 2y

kfpNq Ð xSp0q “ Inity, xTypep0q “ TypeInity, kf partp0, Nq

kf partpI,Nq Ð I ă N,NextI is I ` 1,

transpI,NextIq, emitpIq,

kf partpNextI,Nq

kf partpN,Nq Ð N ‰ 0

transpI,NextIq Ð

xTypepIq “ ay, xSpNextIq “ SpIq `Trans err apIqy,

xTypepNextIq “ Type apNextIqy

transpI,NextIq Ð

xTypepIq “ by, xSpNextIq “ SpIq `Trans err bpIqy

xTypepNextIq “ Type bpNextIqy

emitpS, I, V q Ð

xTypepIq “ ay, xVpIq “ SpIq `Obs err apIqy

emitpS, I, V q Ð

xTypepIq “ by, xVpIq “ SpIq `Obs err bpIqy

Init „ gaussianp0, 1q

Trans err ap q „ gaussianp0, 2q

Trans err bp q „ gaussianp0, 4q

Obs err ap q „ gaussianp0, 1q

Obs err bp q „ gaussianp0, 3q

TypeInit „ ta : 0.4, b : 0.6u

Type apIq „ ta : 0.3, b : 0.7u

Type bpIq „ ta : 0.7, b : 0.3u

463

7. A New Semantics for Probabilistic Constraint Logic Programming464

This section represents the core of our work. Here we provide a new seman-

tics for PCLP and prove that it is well-defined, i.e., each query can be assigned

a probability. In giving a new semantics for PCLP, we consider discrete and

continuous random variables separately. Discrete random variables are encoded

24

using probabilistic facts as in ProbLog. With Boolean probabilistic facts it is

possible to encode any discrete random variable: if the variable V has n values

v1, . . . , vn, we can use n ´ 1 ProbLog probabilistic facts fi and encode that

V “ vi for i “ 1, . . . , n´ 1 with the conjunction

„ f1, . . . ,„ fi´1, fi

and V “ vn with the conjunction

„ f1, . . . ,„ fn´1

with the probability πi of fact fi given by

πi “
Πi

śi´1
j“1p1´ πjq

where Πi is the probability of value vi of variable V .465

We consider that a program P in PCLP is composed by a set of rules R, a466

set of Boolean probabilistic facts F and a countable set of continuous random467

variables X. The rules define the truth value of the atoms in the Herbrand base468

of the program given the values of the random variables. Let X “ tX1,X2, . . .u469

be the countable set of continuous random variables. Each random variable Xi470

has an associated range Rangei that can be R or Rn.471

The sample space for the continuous variables is defined as WX “ Range1ˆ472

Range2ˆ. . . As shown in Section 5, the probability spaces of individual variables473

generate an infinite dimensional probability space pWX,ΩX, µXq.474

We can now define a Probabilistic Constraint Logic Theory.475

Definition 10 (Probabilistic constraint logic theory). A probabilistic constraint476

logic theory P is a tuple pX,WX,ΩX, µX, Constr,R, F q where:477

• X is a countable set of continuous random variables tX1,X2, . . .u. Each478

random variable Xi has a non-empty range Rangei;479

• WX “ Range1 ˆRange2 ˆ . . . is the sample space;480

• ΩX is the event space;481

25

• µX is a probability measure, i.e., pWX,ΩX, µXq is a probability space;482

• Constr is a set of constraints closed under conjunction, disjunction and483

negation such that @φ P Constr, CSSpφq P ΩX, i.e., such that CSSpφq is484

measurable for all φ;485

• R is a set of rules with logical constraints of the form:486

h Ð l1, . . . , ln, xφ1pXqy, . . . , xφmpXqy where li is a literal for i “ 1, . . . , n,487

φj P Constr and xφjpXqy is called constraint atom for j “ 1, . . . ,m;488

• F is a set of probabilistic facts.489

Note that our definition differs from Definition 9 since we define X as the490

set containing continuous random variables only. Moreover, we also introduce491

a set of discrete probabilistic facts F . That is, we consider separately discrete492

and continuous random variables. The probabilistic facts of a program form493

a countable set of Boolean random variables Y “ tY1,Y2, . . .u with sample494

space WY “ tpy1, y2, . . .q | yi P t0, 1u, i P 1, 2, . . .u. The event space ΩY is the495

σ-algebra of set of worlds identified by countable set of countable composite496

choices. A composite choice κ “ tpf1, θ1, y1q, pf2, θ2, y2q, . . .u can be interpreted497

as the assignments Y1 “ y1, Y2 “ y2, . . . if the random variable Y1 is associated to498

f1θ1, Y2 to f2θ2 and so on. The sample space for the entire program is defined as499

WP “WXˆWY and the event space ΩP is the σ-algebra generated by the tensor500

product of ΩX and ΩY: ΩP “ ΩX b ΩY “ σptωX ˆ ωY | ωX P ΩX, ωY P ΩYuq.501

We indicate with satisfiablepwXq the set of all constraints that are satisfiable502

given a valuation wX of the random variables in X. We say that a world satisfies503

a constraint if the values of the continuous variables in the world satisfy the504

constraint.505

Given a sample w “ pwX, wYq from WP , a ground normal logic program Pw506

is defined by:507

• the grounding of the rules whose constraints belong to satisfiablepwXq,508

with the constraints removed from the body of the rules;509

26

• the probabilistic facts that are associated to random variables Yi whose510

value is 1.511

We define the well-founded model WFM pwq of w PWP as the well-founded512

model of Pw, WFM pPwq, and we require that it is two-valued. We call sound513

the programs that satisfy this constraint for each sample w from WP .514

An explanation for an atom (a query) q of a PCLP program is a set of worlds515

ωi such that the query is true in every element of the set, i.e., @w P ωi : w |ù q.516

A covering set of explanation is such that every world in which the query is true517

belongs to the set. A set ω “
Ť

j ωj is pairwise incompatible if ωj X ωk “ ∅ for518

j ‰ k. The probability of a query can be defined as the measure of a covering519

set of explanations, P pqq “ µptw | w |ù quq where, from Theorem 1, µpwq is the520

product of measures µpwXq and µpwYq.521

In the following examples we show how to compute the probability of a522

query.523

Example 10 (Pairwise incompatible covering set of explanations for Exam-

ple 8). For Example 8, the extraction of a black card can be represented with

F1 “ blackp q : 0.5. Then, pf1, θ, 1q means that the card is black and pf1, θ, 0q

means that the card is not black (red). Let us use random variable Yi to repre-

sent blackpsip0qq, with value yi “ 1 meaning that in round i a black card was

picked. The query at least once prize a has the mutually disjoint covering set

of explanations

ω` “ ω`
0 Y ω`

1 Y . . .

27

with524

ω`
0 “ tpw1, w2q | w1 “ px1, x2, . . .q, w2 “ py1, y2, . . .q,

x1 P r0, πs, y1 “ 1u

ω`
1 “ tpw1, w2q | w1 “ px1, x2, . . .q, w2 “ py1, y2, . . .q,

x1 P rπ, 2πs, y1 “ 1, x2 P r0, πs, y2 “ 1u

. . .

Similarly, the query never prize a has the pairwise incompatible covering set of

explanations

ω´ “ ω´
0 Y ω´

1 Y ω´
2 Y ω´

3 Y . . .

with525

ω´
0 “ tpw1, w2q | w1 “ px1, x2, . . .q, w2 “ py1, y2, . . .q,

x1 P r0, πs, y1 “ 0u

ω´
1 “ tpw1, w2q | w1 “ px1, x2, . . .q, w2 “ py1, y2, . . .q,

x1 P rπ, 2πs, y1 “ 0u

ω´
2 “ tpw1, w2q | w1 “ px1, x2, . . .q, w2 “ py1, y2, . . .q,

x1 P rπ, 2πs, y1 “ 1, x2 P r0, πs, y2 “ 0u

ω´
3 “ ttpw1, w2q | w1 “ px1, x2, . . .q, w2 “ py1, y2, . . .q,

x1 P rπ, 2πs, y1 “ 1, x2 P rπ, 2πs, y2 “ 0u

. . .

Example 11 (Probability of the query for Example 8). For example, consider

sets ω`
0 and ω´

0 from Example 10. From Theorem 1,

µpω`
0 q “

ż

W1

µ2pω
p1qpw1qqdµ1 “

ż

W1

µ2ptw2 | pw1, w2q P ωuqdµ1

28

and so526

µpω`
0 q “

ż π

0

µ2ptpy1, y2, . . .q | y1 “ 1uqdµ1

“

ż π

0

1

2
¨
1

2π
dx1 “

1

2
¨
1

2
“

1

4

since, for the discrete variables, µ2ptpy1, y2, . . .q | y1 “ 0uq “ µ2ptpy1, y2, . . .q |527

y1 “ 1uq “ 1{2 and µ1 is the Lebesgue measure of the set r0, πs. Similarly,528

µpω´
0 q “

ż π

0

µ2ptpy1, y2, . . .q | y1 “ 0uqdµ1

“

ż π

0

1

2
¨
1

2π
dx1 “

1

2
¨
1

2
“

1

4
.

From Example 10, the sets ω`
i are pairwise incompatible so measure of ω` can529

be computed by summing the measures of ω`
i . Thus, iteratively applying the530

previous computations, the probability of the query at least once prize a can be531

computed as:532

P pat least once prize aq “
1

4
`

1

4
¨
1

4
`

1

4
¨

ˆ

1

4
¨
1

4

˙

` . . .

“
1

4
`

1

4
¨

ˆ

1

4

˙

`
1

4
¨

ˆ

1

4

˙2

` . . .

“
1

4
¨

1

1´ 1
4

“
1

4
¨
4

3
“

1

3

since the sum represents a geometric series. Similarly, for the query never prize a,533

the sets forming ω´ are pairwise incompatible, so its probability can be computed534

as535

P pnever prize aq “

ˆ

1

4
`

1

4

˙

`

ˆ

1

4
`

1

4

˙

¨
1

4
`

ˆ

1

4
`

1

4

˙

¨

ˆ

1

4
¨
1

4

˙

` . . .

“
1

2
`

1

2
¨

ˆ

1

4

˙

`
1

2
¨

ˆ

1

4

˙2

` . . .

“
1

2
¨

1

1´ 1
4

“
1

2
¨
4

3
“

2

3

As expected, P pnever prize aq “ 1´ P pat least once prize aq.536

29

Example 12 (Pairwise incompatible covering set of explanations for Exam-537

ple 9). Consider Example 9. The discrete state variable can be represented with538

F1 “ typep q : P . Then, pf1, θ, 0q means that the filter is of type a and pf1, θ, 1q539

means that the filter is of type b. A covering set of explanations for the query540

ok is:541

ω “ ω0 Y ω1 Y ω2 Y ω3

with542

ω0 “ tpw1, w2q |

w1 “ pInit, T rans err ap0q, T rans err ap1q, Obs err ap1q, . . .q,

w2 “ pTypeInit, Typep1q, . . .q,

Init` Trans err ap0q ` Trans err ap1q `Obs err ap1q ą 2,

T ypeInit “ 0, T ypep1q “ 0u

ω1 “ tpw1, w2q |

w1 “ pInit, T rans err ap0q, T rans err bp1q, Obs err bp1q, . . .q,

w2 “ pTypeInit, Typep1q, . . .q,

Init` Trans err ap0q ` Trans err bp1q `Obs err bp1q ą 2,

T ypeInit “ 0, T ypep1q “ 1u

ω2 “ tpw1, w2q |

w1 “ pInit, T rans err bp0q, T rans err ap1q, Obs err ap1q, . . .q,

w2 “ pTypeInit, Typep1q, . . .q,

Init` Trans err bp0q ` Trans err ap1q `Obs err ap1q ą 2,

T ypeInit “ 1, T ypep1q “ 0u

ω3 “ tpw1, w2q |

w1 “ pInit, T rans err bp0q, T rans err bp1q, Obs err bp1q, . . .q,

w2 “ pTypeInit, Typep1q, . . .q,

Init` Trans err bp0q ` Trans err bp1q `Obs err bp1q ą 2,

30

TypeInit “ 1, T ypep1q “ 1u

Example 13 (Probability of the query for Example 9). Consider the set ω0

from Example 12. Let us denote discrete random variables Typepiq with yi. So,

TypeInit = y0 and Typep1q = y1. From Theorem 1,

µpω0q “

ż

W1

µ2pω
p1qpw1qqdµ1 “

ż

W1

µ2ptw2 | pw1, w2q P ωuqdµ1.

In this example, continuous random variables are independent and normally543

distributed. Recall that, if X „ gaussianpµX , σ2
Xq, Y „ gaussianpµY , σ

2
Y q544

and Z “ X ` Y , then Z „ gaussianpµX ` µY , σ
2
X ` σ2

Y q. We indicate with545

N px, µ, σ2q the Gaussian pdf with mean µ and variance σ2. We have:546

µpω0q “

ż 2

´8

µ2ptpy1, y2, . . .q | y1 “ 0, y2 “ 0uqdµ1

“

ż 2

´8

0.4 ¨ 0.3 ¨N px, 0, 1` 2` 2` 1qdx “ 0.12 ¨ 0.207 “ 0.0248.

The computation is similar for ω1, ω2 and ω3. The probability of ω can be

computed as:

P pωq “ µpω0q ` µpω1q ` µpω2q ` µpω3q “ 0.25.

We now want to show that every sound program is well-defined, i.e., each547

query can be assigned a probability. In the following part of the section we548

consider only ground programs. This is not a restriction since they may be the549

result of the grounding of a program also with function symbols, and so they550

can be countably infinite.551

Definition 11 (Parameterized two-valued interpretations). Given a ground552

probabilistic constraint logic program P with Herbrand base BP , a parameter-553

ized positive two-valued interpretation Tr is a set of pairs pa, ωaq with a P BP554

and ωa P ΩP . Similarly, a parameterized negative two-valued interpretation Fa555

is a set of pairs pa, ω„aq with a P atoms and ω„a P ΩP .556

Parameterized two-valued interpretations form a complete lattice where the

partial order is defined as I ď J if @pa, ωaq P I, pa, θaq P J : ωa Ď θa. For a

31

set T of parameterized two-valued interpretations, the least upper bound and

greatest lower bound always exist and are respectively

lubpT q “ tpa,
ď

IPT,pa,ωaqPI

ωaq | a P BP u

and

glbpT q “ tpa,
č

IPT,pa,ωaqPI

ωaq | a P BP u.

The top element J is

tpa,WX ˆWYq | a P BP u

and the bottom element K is

tpa,∅q | a P BP u.

Definition 12 (Parameterized three-valued interpretations). Given a ground557

probabilistic constraint logic program P with Herbrand base BP , a parameterized558

three-valued interpretation I is a set of triples pa, ωa, ω„aq with a P BP , ωa P ΩP559

and ω„a P ΩP . A parameterized three-valued interpretation I is consistent if560

@pa, ωa, ω„aq P I : ωa X ω„a “ ∅.561

Parameterized three-valued interpretations form a complete lattice where the

partial order is defined as I ď J if @pa, ωa, ω„aq P I, pa, θa, θ„aq P J : ωa Ď θa

and ω„a Ď θ„a. For a set T of parameterized three-valued interpretations, the

least upper bound and greatest lower bound always exist and are respectively

lubpT q “ tpa,
ď

IPT,pa,ωa,ω„aqPI

ωa,
ď

IPT,pa,ωa,ω„aqPI,

ω„aq | a P BP u

and

glbpT q “ tpa,
č

IPT,pa,ωa,ω„aqPI

ωa,
č

IPT,pa,ωa,ω„aqPI

ω„aq | a P BP u.

The top element J is

tpa,WX ˆWY,WX ˆWYq | a P BP u

and the bottom element K is

tpa,∅,∅q | a P BP u.

32

Definition 13 (OpTruePP
I pTrq and OpFalsePP

I pFaq). For a ground probabilis-

tic constraint logic program P with rules R and facts F , a parameterized two-

valued positive interpretation Tr with pairs pa, θaq, a parameterized two-valued

negative interpretation Fa with pairs pa, θ„aq and a parameterized three-valued

interpretation I with triplets pa, ωa, ω„aq, we define OpTruePP
I pTrq “ tpa, γaq |

a P BP u where

γa “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

WX ˆ ωttpa,∅,1quu if a P F
Ť

aÐb1,...,bn,„c1,...,cm,φ1,...,φlPRppθb1 Y ωb1q X . . .

Xpθbn Y ωbnq X ω„c1 X . . .X ω„cm

XCSSpφ1q ˆWY X . . .X CSSpφlq ˆWYq

if a P BP zF

and OpFalsePP
I pFaq “ tpa, γ„aq | a P BP u where

γ„a “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

WX ˆ ωttpa,∅,0quu if a P F
Ş

aÐb1,...,bn,„c1,...,cm,φ1,...,φlPRppθ„b1 X ω„b1q Y . . .

Ypθ„bn X ω„bnq Y ωc1 Y . . .Y ωcm

YpWXzCSSpφ1qq ˆWY Y . . .Y pWXzCSSpφlqq ˆWY

if a P BP zF

Proposition 1 (Monotonicity of OpTruePP
I and OpFalsePP

I). OpTruePP
I and562

OpFalsePP
I are monotonic.563

Proof. Here we only consider OpTruePP
I , since the proof for OpFalsePP

I can

be constructed in a similar way. We have to prove that if Tr1 ď Tr2 then

OpTruePP
I pTr1q ď OpTruePP

I pTr2q. By definition, Tr1 ď Tr2 means that

@pa, ωaq P Tr1, pa, θaq P Tr2 : ωa Ď θa.

Let pa, ω1
aq be the elements of OpTruePP

I pTr1q and pa, θ1
aq the elements of564

OpTruePP
I pTr2q. To prove the monotonicity, we have to prove that ω1

a Ď θ1
a565

If a P F then ω1
a “ θ1

a “WXˆωttpa,∅,1quu. If a P BP zF , then ω1
a and θ1

a have566

the same structure. Since @b P BP : ωb Ď θb, then ω1
a Ď θ1

a.567

568

OpTruePP
I and OpFalsePP

I are monotonic so they both have a least fixpoint569

and a greatest fixpoint.570

33

Definition 14 (Iterated fixed point for probabilistic constraint logic programs).571

For a ground probabilistic constraint logic program P , and a parameterized three-572

valued interpretation I, let IFPCPP
pIq be defined as573

IFPCPP
pIq “ tpa, ωa, ω„aq | pa, ωaq P lfppOpTruePP

I q,

pa, ω„aq P gfppOpFalsePP
I qu.

Proposition 2 (Monotonicity of IFPCPP). IFPCPP is monotonic.574

Proof. As above, we have to prove that, if I1 ď I2, then IFPCPP
pI1q ď

IFPCPP
pI2q. By definition, I1 ď I2 means that

@pa, ωa, ω„aq P I1, pa, θa, θ„aq P I2 : ωa Ď θa, ω„a Ď θ„a.

Let pa, ω1
a, ω

1
„aq be the elements of IFPCPP

pI1q and pa, θ1
a, θ

1
„aq the elements of575

IFPCPP
pI2q. We have to prove that ω1

a Ď θ1
a and ω1

„a Ď θ1
„a. This is a direct576

consequence of the monotonicity of OpTruePP
I and OpFalsePP

I in I, which can577

be proved as in Proposition 1.578

The monotonicity property ensures that IFPCPP has a least fixpoint. Let us579

identify lfppIFPCPP q with WFMPpP q. We call depth of P the smallest ordinal580

δ such that IFPCPP Ò δ “WFMPpP q.581

Now we prove that OpTruePP
I and OpFalsePP

I are sound.582

Lemma 3 (Soundness ofOpTruePP
I). For a ground probabilistic constraint logic

program P with probabilistic facts F , rules R, and a parameterized three-valued

interpretation I, denote with θαa the set associated to atom a in OpTruePP
I Ò α.

For every atom a, world w and iteration α, the following holds:

w P θαa ÑWFM pw | Iq (a

where w | I is obtained by adding to w the atoms a for which pa, ωa, ω„aq P I and583

w P ωa, and by removing all the rules with a in the head for which pa, ωa, ω„aq P584

I and w P ω„a.585

34

Proof. We prove the lemma by transfinite induction (see Appendix B for its586

definition): we assume that the thesis is true for all ordinals β ă α and we prove587

it for α. We need to consider two cases: α is a successor ordinal and α is a limit588

ordinal. Consider α a successor ordinal. If a P F then the statement is easily589

verified. If a R F consider w P θαa where590

θαa “
ď

aÐb1,...,bn,„c1,...,cm,φ1,...,φlPR

ppθα´1
b1

Y ωb1q X . . .

X pθα´1
bn

Y ωbnq X ω„c1 X . . .X ω„cm

X CSSpφ1q ˆWX X . . .X CSSpφlq ˆWXq.

This means that there is a rule aÐ b1, . . . , bn,„ c1, . . . , cm, φ1, . . . , φl P R such591

that w P θα´1
bi

Y ωbi for i “ 1, . . . , n, w P ω„cj for j “ 1 . . . ,m and w |ù φk for592

k “ 1, . . . , l. By the inductive assumption and because of how w | I is built,593

WFM pw | Iq (bi, WFM pw | Iq („ cj and w (φk so WFM pw | Iq (a.594

Consider now α a limit ordinal. Then,

θαa “ lubptθβa | β ă αuq “
ď

βăα

θβa .

If w P θαa then there must exist a β ă α such that w P θβa . By the inductive595

assumption the hypothesis holds.596

Lemma 4 (Soundness of OpFalsePP
I). For a ground probabilistic constraint

logic program P with probabilistic facts F and rules R, and a parameterized

three-valued interpretation I, denote with θα„a the set associated with atom a in

the operator OpFalsePP
I Ó α. For every atom a, world w and iteration α, the

following holds:

w P θα„a ÑWFM pw | Iq („ a

where w | I is built as in Lemma 3.597

Proof. Similar to the proof of Lemma 3.598

We now introduce two lemmas needed to prove the soundness of IFPCPP .599

35

Lemma 5 (Partial evaluation, Lemma 6 from [37]). For a ground normal600

logic program P and a three-valued interpretation I “ xIT , IF y such that I ď601

WFM pP q, define P ||I as the program obtained from P by adding all atoms602

a P IT and by removing all rules with atoms a P IF in the head. Then603

WFM pP q “WFM pP ||Iq.604

Lemma 6 (Model equivalence). Given a ground probabilistic constraint logic

program P , for every world w and iteration α, the following holds:

WFM pwq “WFM pw | IFPCPP Ò αq.

Proof. Let pa, ωα
a , ω

α
„aq be the elements of IFPCPP Ò α. Consider a three-valued605

interpretation Iα “ xIT , IF y with IT “ ta | w P ωα
a u and IF “ ta | w P ωα

„au.606

Then, @a P IT , WFM pwq (a and @a P IF , WFM pwq („ a. Therefore607

Iα ďWFM pwq.608

Since w | IFPCPP Ò α “ w||Iα, by Lemma 5

WFM pwq “WFM pw||Iαq “WFM pw | IFPCPP Ò αq.

609

Now we can prove the soundness and completeness of IFPCPP .610

Lemma 7 (Soundness of IFPCPP). For a ground probabilistic constraint logic611

program P with probabilistic facts F and rules R, denote with ωα
a and ωα

„a the612

formulas associated with atom a in IFPCPP Ò α. For every atom a, world w613

and iteration α, the following holds:614

w P ωα
a ÑWFM pwq (a (3)

w P ωα
„a ÑWFM pwq („ a (4)

Proof. The proof is a consequence of Lemma 6: w P ωα
a means that a is a fact615

in w | IFPCPP Ò α. Thus, WFM pw | IFPCPP Ò αq (a and WFM pwq (a.616

Similarly, w P ωα
„a means that there are no rules for a in w | IFPCPP Ò α,617

so WFM pw | IFPCPP Ò αq („ a and WFM pwq („ a.618

619

36

Lemma 8 (Completeness of IFPCPP). For a ground probabilistic constraint620

logic program P with probabilistic facts F and rules R, let ωα
a and ωα

„a be the621

sets associated with atom a in IFPCPP Ò α. For every atom a, world w and622

iteration α, we have:623

a P IFPw
Ò αÑ w P ωα

a

„ a P IFPw
Ò αÑ w P ωα

„a

Proof. We prove it by double transfinite induction. If α is a successor ordinal,624

assume that625

a P IFPw
Ò pα´ 1q Ñ w P ωα´1

a

„ a P IFPw
Ò pα´ 1q Ñ w P ωα´1

„a

Let us perform transfinite induction on the iterations of OpTruewIFPwÒpα´1q and626

OpFalsewIFPwÒpα´1q. Consider a successor ordinal δ and assume that627

a P OpTruewIFPwÒpα´1q Ò pδ ´ 1q Ñ w P ωδ´1
a

„ a P OpFalsewIFPwÒpα´1q Ó pδ ´ 1q Ñ w P θδ´1
„a

where pa, ωδ´1
a q are the elements of OpTruep

IFPCPP Òα´1
Ò pδ ´ 1q and pa, θδ´1

„a q628

are the elements of OpFalsep
IFPCPP Òα´1

Ó pδ ´ 1q. We now prove that629

a P OpTruewIFPwÒpα´1q Ò δ Ñ w P ωδ
a

„ a P OpFalsewIFPwÒpα´1q Ó δ Ñ w P θδ„a

Consider an atom a. If a P F , the previous statement can be easily proved.

Otherwise, a P OpTruewIFPwÒpα´1q Ò δ means that there is a rule a Ð b1, . . . ,

bn,„ c1, . . . , cm, φ1, . . . , φl such that for all i “ 1, . . . , n,

bi P OpTruewIFPwÒpα´1q Ò pδ ´ 1q _ bi P IFP
w
Ò pα´ 1q

for all j “ 1, . . . ,m, „ cj P IFP
w
Ò pα´1q and for all k “ 1, . . . , l, φkpwq “ true.630

For the inductive hypothesis, @i : w P ωδ´1
bi

_ w P ωα´1
bi

and @j : w P ωα´1
„cj so631

w P ωδ
a. The proof is similar for „ a.632

37

Consider now δ a limit ordinal, so ωδ
a “

Ť

µăδ ω
µ
a and θδ„a “

Ş

µăδ θ
µ
„a. If

a P OpTruewIFPwÒpα´1q Ò δ, then there exists a µ ă δ such that

a P OpTruewIFPwÒpα´1q Ò µ.

For the inductive hypothesis, w P ωδ
a.633

If „ a P OpFalsewIFPwÒpα´1q Ó δ, then, for all µ ă δ,

„ a P OpFalsewIFPwÒpα´1q Ó µ.

For the inductive hypothesis, w P θδa.634

Consider now α a limit ordinal. Then ωα
a “

Ť

βăα ωβ
a and ωα

„a “
Ť

βăα ωβ
„a.635

If a P IFPw
Ò α, then there exists a β ă α such that a P IFPw

Ò β. For the636

inductive hypothesis w P ωβ
a so w P ωα

a . The proof is similar for „ a.637

Now we can prove that IFPCPP is sound and complete.638

Theorem 6 (Soundness and completeness of IFPCPP). For a sound ground639

probabilistic constraint logic program P , let ωα
a and ωα

„a be the formulas associ-640

ated with atom a in IFPCPP Ò α. For every atom a and world w there is an641

iteration α0 such that for all α ą α0 we have:642

w P ωα
a ØWFM pwq (a (5)

w P ωα
„a ØWFM pwq („ a (6)

Proof. TheÑ direction of equations 5 and 6 is proven in Lemma 7. In the other643

direction, WFM pwq (a implies that there exists a α0 such that @α : α ě α0 Ñ644

IFPw Ò α (a. For Lemma 8, w P ωα
a . Similarly, WFM pwq („ a implies that645

there exists a α0 such that @α : α ě α0 Ñ IFPw
Ò α („ a. As before, for646

Lemma 8, w P ωα
„a.647

Now we can prove that every query for every sound program is well-defined.648

649

Theorem 7 (Well-definedness of the distribution semantics). For a sound650

ground probabilistic constraint logic program P , for all ground atoms a, µP ptw |651

w PWP , w (auq is well-defined.652

38

Proof. Let ωδ
a and ωδ

„a be the sets associated with atom a in IFPCPP Ò δ where653

δ denotes the depth of the program. Since IFPCPP is sound and complete,654

tw | w PWP , w (au “ ωδ
a.655

Each iteration of OpTruePP
IFPCPPÒβ and OpFalsePP

IFPCPPÒβ for all β gen-656

erates sets belonging to ΩP , since the set of rules is countable. So µP ptw | w P657

WP , w (auq is well-defined.658

In addition, if the program is sound, for all atoms a, ωδ
a “ pωδ

„aq
c holds,659

where δ is the depth of the program. Otherwise, there would exists a world w660

such that w R ωδ
a and w R ωδ

„a. But w has a two-valued well-founded model, so661

either WFM pwq (a or WFM pwq („ a. In the first case w P ωδ
a and in the662

latter w P ωδ
„a, against the hypothesis.663

8. A Concrete Syntax for PCLP664

In this section, we present cplint hybrid programs [37] that provide a con-665

crete syntax for PCLP.666

In cplint hybrid programs, logical variables are partitioned into two dis-667

joint sets: those that can assume terms as values and those that can assume668

continuous values. Let us call the first term variables and the latter continuous669

variables.670

Continuous random variables are encoded with probabilistic facts of the form

A : Density

where A is an atom with a continuous variable V ar as argument and Density is

a special atom identifying a probability density on variable V ar. For example,

ppXq : gaussianpX, 0, 1q

indicates that X in atom ppXq is a continuous variable that follows a Gaussian671

distribution with mean 0 and variance 1. Each predicate p{n has a signature672

that specifies which arguments hold continuous values. Only these arguments673

can contain continuous variables. Continuous values (and variables) can appear674

39

inside a term build on function symbol f{n. Each function symbol f{n also has675

a signature that specifies which arguments hold continuous values. Again only676

these arguments can contain continuous variables.677

ProbLog probabilistic facts of the form p :: f can also be encoded as f : p678

for uniformity with Logic Programs with Annotated Disjunctions [42] and CP-679

Logic [43].680

Atoms in clauses and probabilistic facts can have both term and continuous681

variables. However, we impose the constraint that in every world of the program,682

the values taken by term variables in a ground atom for a predicate p{n that683

is true in the world, uniquely determine the values taken by the continuous684

variables.685

Continuous variables are introduced by probabilistic facts for continuous686

random variables and by the special predicate “:“ {2 that is used to define a687

new variable based on a formula involving existing continuous variables. Con-688

straints are represented by Prolog comparison predicates. The semantics assigns689

a probability of being true to any ground atom not having continuous values690

as arguments. Atoms with continuous values have probability 0 as the proba-691

bility that a continuous random variable takes a specific value is 0. Inference692

in cplint hybrid programs can be performed using MCINTYRE [2, 38], an693

algorithm based on Monte Carlo inference. See 9.2 for more details.694

Let us see some examples of cplint hybrid programs.695

Example 14 (Gambling in cplint hybrid programs). Example 8 can be ex-696

pressed in cplint hybrid programs as1:697

1The example is available in cplint on SWISH at link http://cplint.eu/e/gambling.pl

40

http://cplint.eu/e/gambling.pl

blackp q : 0.5.

anglep , Aq : uniformpA, 0, 2piq.

prizep0, aq Ð blackp0q, anglep0, Aq, A ă pi.

prizep0, bq Ð blackp0q, anglep0, Aq, A ą“ pi.

prizep0, cq Ð„ blackp0q, anglep0, Aq, A ă pi.

prizep0, dq Ð„ blackp0q, anglep0, Aq, A ą“ pi.

prizepspXq, aq Ð prizepX, q, blackpXq,

blackpspXqq, anglepspXq, Aq, A ă pi.

prizepspXq, bq Ð prizepX, q, blackpXq,

blackpspXqq, anglepspXq, Aq, A ą“ pi.

prizepspXq, cq Ð prizepX, q, blackpXq,

„ blackpspXqq, anglepspXq, Aq, A ă pi.

prizepspXq, dq Ð prizepX, q, blackpXq,

„ blackpspXqq, anglepspXq, Aq, A ą“ pi.

at least one prize aÐ prizep , aq.

never prize aÐ„ at least once prize a.

698

Example 15 (Hybrid Hidden Markov Model (Hybrid HMM) in cplint hybrid699

programs). The Hybrid HMM of example 9 can be expressed in cplint hybrid700

programs as 2:701

2http://cplint.eu/e/hhmm.pl

41

http://cplint.eu/e/hhmm.pl

initpSq : gaussianpS, 0, 1q.

trans err ap , Eq : gaussianpE, 0, 2q.

trans err bp , Eq : gaussianpE, 0, 4q.

obs err ap , Eq : gaussianpE, 0, 1q.

obs err bp , Eq : gaussianpE, 0, 3q.

typep0, aq : 0.4; typep0, bq : 0.6.

typepI, aq : 0.3; typepI, bq : 0.7Ð I ą 0, P revI is I ´ 1, typepPrevI, aq.

typepI, aq : 0.7; typepI, bq : 0.3Ð I ą 0, P revI is I ´ 1, typepPrevI, bq.

ok Ð kfp2, r , As, q, A ą 2.

kfpN,O,LSq Ð

initpSq, kf partp0, N, S,O, LSq.

kf partpI,N, S, rV |ROs, rS|LSsq Ð

I ă N,NextI is I ` 1,

transpS, I,NextSq, emitpNextS, I, V q,

kf partpNextI,N,NextS,RO,LSq.

kf partpN,N, S, rs, rsq.

transpS, I,NextSq Ð

typepI, aq, trans err apI, TEq, NextS “:“ TE ` S.

transpS, I,NextSq Ð

typepI, bq, trans err bpI, TEq, NextS “:“ TE ` S.

emitpS, I, V q Ð

typepI, aq, obs err apI,OEq, V “:“ S `OE.

emitpS, I, V q Ð

typepI, bq, obs err bpI,OEq, V “:“ S `OE.

702

Here, variables A, S, NextS, V , TE and OE are continuous, variables RO and703

LS are lists of continuous variables and PrevI, I, NextI and N are term vari-704

ables. The probabilistic facts for trans err a{2, trans err b{2 and obs err a{2705

and obs err b{2 define a countable set of continuous random variables, one for706

each term instantiating their first argument.707

Example 16 (Fruit selling in cplint hybrid programs). Example 7 can be708

42

expressed in cplint hybrid programs as 3:709

yieldpapple, Y q : gaussianpY, 12000.0, 1000.0q.

yieldpbanana, Y q : gaussianpY, 10000.0, 1500.0q.

supportpappleq : 0.3.

supportpbananaq : 0.5.

basic pricepapple,Bq Ð yieldpapple, Y q, B “:“ 250´ 0.007ˆ Y.

basic pricepbanana,Bq Ð yieldpbanana, Y q, B “:“ 200´ 0.006ˆ Y.

pricepFruit, P q Ð basic pricepFruit, Bq, supportpFruitq, P “:“ B ` 50.

pricepFruit, Bq Ð basic pricepFruit, Bq,„ supportpFruitq.

buypFruitq Ð pricepFruit, P q,max pricepFruit,Mq, P ďM.

max pricepapple,Mq : gammapM, 10.0, 18.0q.

max pricepbanana,Mq : gammapM, 12.0, 10.0q.

710

Here, variables Y , B, P and M are continuous variables, while Fruit is a term711

variable.712

Example 17 (Gaussian mixture - cplint). A Gaussian mixture model is a713

way to generate values of a continuous random variable: a discrete random714

variable is sampled and, depending on the sampled value, a different Gaussian715

distribution is selected for sampling the value of the continuous variable.716

A Gaussian mixture model with two components can be expressed in cplint717

hybrid programs as 4:718

h : 0.6

headsÐ h.

tailsÐ„ h.

gpXq : gaussianpX, 0, 1q.

hpXq : gaussianpX, 5, 2q.

mixpXq Ð heads, gpXq.

mixpXq Ð tails, hpXq.

mixÐ mixpXq, X ą 2.

719

3http://cplint.eu/e/fruit.swinb
4http://cplint.eu/e/gaussian_mixture.pl

43

http://cplint.eu/e/fruit.swinb
http://cplint.eu/e/gaussian_mixture.pl

The argument X of mixpXq follows a distribution that is a mixture of two720

Gaussians, one with mean 0 and variance 1 with probability 0.6 and one with721

mean 5 and variance 2 with probability 0.4. We can then ask for the probability722

of mix.723

Here, predicates g{1, h{1 and mix{1 have a single argument which can hold724

continuous variable. Since there are no term variables, each atom for these725

predicates in a world univocally determines its argument. For predicate mix{1726

this is not obvious as there are two clauses for it. However, the two clauses have727

mutually exclusive bodies, i.e., in each world only one of them is true.728

cplint hybrid programs can be translated into PCLP by removing the con-729

tinuous variables from the arguments of predicates and by replacing constraints730

with their PCLP form.731

Term variables that can take integer values can appear as parameters in732

constraints for the continuous variables.733

Example 18 (Gaussian mixture and constraints, from [19]). Consider a factory734

with two machines, a and b. Each machine produces a widget with a continuous735

feature. A widget is produced by machine a with probability 0.3 and by machine736

b with probability 0.7. If the widget is produced by machine a, the feature is737

distributed as a Gaussian with mean 2.0 and variance 1.0. If the widget is738

produced by machine b, the feature is distributed as a Gaussian with mean 3.0739

and variance 1.0. The widget then is processed by a third machine that adds a740

random quantity to the feature. The quantity is distributed as a Gaussian with741

mean 0.5 and variance 1.5. This can be encoded by in cplint hybrid programs742

as 5:743

5http://cplint.eu/e/widget.pl

44

http://cplint.eu/e/widget.pl

machinepaq : 0.3.

machinepbq Ð„ machinepaq.

stpa, Zq : gaussianpZ, 2.0, 1.0q.

stpb, Zq : gaussianpZ, 3.0, 1.0q.

ptpY q : gaussianpY, 0.5, 1.5q.

widgetpXq Ð machinepMq, stpM,Zq, ptpY q, X “:“ Y ` Z.

ok widgetÐ widgetpXq, X ą 1.0.

744

We can then ask the probability of ok widget.745

Here, X, Z and Y are continuous variables and M is a term variable. Since746

X is a continuous variable, in every world there should be a single value for747

X that makes widgetpXq true. Predicate widget{1 has a single clause but the748

clause has two groundings, one for M “ a and one for M “ b, so in principle749

there could be two values for X in true groundings of widgetpXq. However,750

the two groundings of the rule have mutually exclusive bodies, as in each world751

either machinepaq is true or machinepbq is true but not both.752

The following example shows that the parameters of the distribution atoms753

can also be taken from the probabilistic atoms.754

Example 19 (Estimation of the mean of a Gaussian - cplint). The program6
755

meanpMq : gaussianpM, 1.0, 5.0q.

valuep ,M,Xq : gaussianpX,M, 2.0q.

valuepI,Xq Ð meanpMq, valuepI,M,Xq.

756

states that, for an index I, the continuous variable X is sampled from a Gaussian757

whose variance is 2.0 and whose mean M is sampled from a Gaussian with mean758

1.0 and variance 5.0.759

This program can be used to estimate the mean of a Gaussian by querying760

meanpMq given observations for atom valuepI,Xq for different values of I.761

Here, the first argument of value{3 can hold a term variable while its second762

and third argument can hold a continuous variable. The second argument is763

used as a parameter in the probability density of the third argument. It is not764

6http://cplint.eu/e/gauss_mean_est.pl

45

http://cplint.eu/e/gauss_mean_est.pl

immediate to see how this program can be translated into a PCLP. In fact, PCLP765

does not allow specifying the parameters of continuous distributions with values766

computed by the program. However, we can see continuous variables M and X767

as specified by a joint density. Since a Gaussian density with a Gaussian mean768

is still a Gaussian, the joint density will be a multivariate Gaussian.769

9. Related Work770

In the following section, we review both existing semantics proposals and771

existing inference algorithms for hybrid programs.772

9.1. Semantics773

There are other languages that support the definition of hybrid programs,774

i.e., programs that allow both discrete and continuous random variables.775

Hybrid ProbLog [15] extends ProbLog with continuous probabilistic facts of776

the form pX,ϕq :: f , where X is a logical variable, called continuous variable,777

that appears in atom f . ϕ is an atom used to specify the continuous distribution778

(only Gaussian distributions are allowed). A Hybrid ProbLog program P is779

composed by a set of definite rules R and a set of probabilistic facts F both780

discrete Fd (as in ProbLog) and continuous Fc, such that F “ Fd Y Fc. The781

language offers a set of predefined predicates to impose constraints on continuous782

variables. Consider a continuous variable V and two numeric constants n1 and783

n2. The predefined predicates are: belowpV, n1q and abovepV, n2q, that succeed784

if V is respectively less than and greater than n2, and inintervalpn1, n2q, that785

succeeds if n1 ď V ď n2.786

The set of continuous variables in Hybrid ProbLog is finite since the seman-787

tics only allows a finite set of continuous probabilistic facts and no function788

symbols. We indicate the set of continuous variables as X “ tX1, . . . ,Xnu. This789

set is defined by the set of atoms for probabilistic facts F “ tf1, . . . , fnu where790

each fi is ground except for variable Xi. Each continuous variable Xi has an791

associated probability density pipXiq. An assignment x “ tx1, . . . , xnu to X792

46

defines a substitution θx “ tX1{x1, . . .Xn{xnu and a set of ground facts Fθx.793

A world wσ,x is defined as wσ,x “ R Y tfθ | pf, θ, 1q P σu Y Fθx where σ is a794

selection for discrete facts and x is an assignment to continuous variables.795

Since all continuous variables are independent, the probability density of an

assignment ppxq can be computed as ppxq “
śn

i“1 pipxiq. Moreover, ppxq is a

joint probability density over X and thus ppxq and P pσq define a joint probability

density over the worlds:

ppwσ,xq “ ppxq
ź

pfi,θ,1qPσ

Πi

ź

pfi,θ,0qPσ

1´Πi

where Πi is the probability associated to the discrete fact fi.796

Finally, if we consider a ground atom q which is not an atom of a continuous

probabilistic fact and the set SP of all selections over discrete probabilistic facts,

P pqq is defined as in the distribution semantics for discrete programs:

P pqq “
ÿ

σPSP

ż

xPRn:wσ,x(q

ppwσ,xq dx.

A key feature is that, if the set tpσ, xq | σ P SP , x P Rn : wσ,x (qu is measurable,797

then the probability is well-defined.798

Moreover, for each instance σ, the set tx | x P Rn : wσ,x (qu can be

considered as a n-dimensional interval of the form I “
Śn

i“1rai, bis on Rn,

where ´8 and `8 are allowed for ai and bi respectively [15]. The probability

that X P I is then given by

P pX P Iq “

ż b1

a1

. . .

ż bn

an

ppxq dx.

One limitation of Hybrid ProbLog is that it does not allow function symbols799

and does not allow continuous variables in expressions involving other continu-800

ous variables.801

Hybrid programs can also be expressed using Distributional Clauses (DC) [16].802

DC are definite clauses of the form h „ DÐ b1, . . . , bn where D is a term used803

to specify the probability distribution (continuous or discrete) and can be non-804

ground (i.e., it can be related to conditions in the body). Each ground instance805

47

of a distributional clause, call it Ciθ, defines a random variable hθ with distri-806

bution Dθ if pb1, . . . , bnqθ holds. As for Hybrid ProbLog, also in DC there is a807

set of predicates, call it rel preds, used to compare the outcome of a random808

variable (indicated with »{1) with constants or other random variables.809

A DC program P is composed by a set of definite clauses R and a set of810

Distributional Clauses C. The setRYF , where F is the set of true ground atoms811

for the predicates in rel preds for each random variable in the program, defines a812

world. Furthermore, a valid DC program must satisfy several conditions related813

to the grounding of variables.814

The semantics of DC programs can be described with a stochastic extension815

of the TP operator [23], STP . A function ReadTablep¨q is also needed to816

evaluate probabilistic facts and to store sampled values for the random variables.817

If this function is applied to a probabilistic fact it returns the truth values of the818

fact according to the values of the random variables as arguments, by computing819

them or by looking into the table.820

Given a valid DC program P and a set of ground facts I, the STP operator821

is defined as [16]:822

STPpIq “ th | hÐ b1 . . . , bn P groundpPq ^ @bi : pbi P I_

pbi “ relpt1, t2q^

ptj “ »hñ ph „ Dq P Iq ^ReadTablepbiq “ trueqqu.

One limitation is that negation is not allowed in the body of a clause. The823

previous definition was further refined to [30]:824

STPpIq “ th “ v | h „ D Ð b1, . . . , bn P groundpPq ^ @bi :

pbi P I _ bi “ relpt1, t2q ^ t1 “ v1 P I ^ t2 “ v2 P I^

relpv1, v2q ^ v is sampled from DquY

th | hÐ b1, . . . , bn P groundpPq ^ h ‰ pr „ Dq ^ @bi :

pbi P I _ bi “ relpt1, t2q ^ t1 “ v1 P I^

t2 “ v2 P I ^ relpv1, v2qqu

48

where rel P t“,ă,ď,ą,ěu. In word, for each DC clause, when the body is true825

in I, we sample a value v from the specified distribution for the random variable826

in the head and add head “ v to the interpretation. For deterministic clauses,827

when the body is true, new ground atoms are added to the interpretation.828

Computing the least fixpoint of the STP operator returns a model of an instance829

of the program. The STP operator is stochastic, so it defines a sampling process,830

and, consequently, a probability density over truth values of queries. However,831

DC programs do not admit negation in the body of rules.832

Another proposal based on the DC semantics is HAL-ProbLog [45]. With833

this language, continuous random variables are represented with clauses of the834

form D :: tÐ l1, . . . , ln. Negative literals are also allowed in the body of clauses.835

For a grounding substitution θ, if l1θ, . . . , lnθ are true, tθ represents a continu-836

ous random variable that follows the distribution Dθ. Two built-in predicates837

allow the management of continuous random variables: valS{2, that unifies the838

random variable as the first argument with a logical variable in the second argu-839

ment representing its value, and conS{1, that represents a constraint imposed840

on logical variables. Rules with identical head must have mutually exclusive841

bodies. This feature prevents the definition of a random variable following two842

different distributions, since only one of the distribution is allowed by the mu-843

tual exclusivity of the bodies. In detail, valSpv, V q allows the logic variable844

V to unify with values for v, where v is a continuous variable that follows a845

certain distribution. Variable V then appears in predicate conS{1, also called846

Iverson predicate, where it is constrained by an algebraic condition. For ex-847

ample, valSpv, V q, conSpV ą 10q constrain the value of the continuous random848

variable v to be greater than 10. The semantics of HAL-ProbLog extends those849

of DC but does not allow function symbols.850

Extended PRISM [19] also allows the definition of continuous variables. The851

authors extended the PRISM language [40] to include continuous random vari-852

ables with Gamma or Gaussian distributions, specified with the directive set sw.853

So, for instance, set swpp, normpMean, V arianceqq states that the outcomes of854

the random process p follows a Gaussian distribution with the specified param-855

49

eters. Moreover, it is possible to define linear equality constraints over the reals.856

The authors also propose an exact inference algorithm that symbolically reasons857

over the constraints on the random variables, exploiting the restrictions on the858

allowed continuous distributions and constraints.859

The semantics of Extended PRISM is based on an extension of the distri-860

bution semantics for programs containing only discrete variables using the least861

model semantics of constraint logic programs [20]. In this way, the probability862

space is extended to a probability space of the entire program starting from the863

one defined for msw. The sample space of a single random variable is defined864

as R and it is extended to the product of the sample spaces for a set of random865

variables. For continuous random variables, the probability space for N random866

variables is defined as the Borel σ-algebra over RN and the Lebesgue measure867

is used as probability measure. Also in this language, negations are not allowed868

in the body.869

9.2. Inference870

Inference for PCLP can be performed exactly or approximately. The main871

issue in exact inference for PCLP (and hybrid programs in general) is that872

it is impossible to enumerate all the explanations for a query since there is873

an uncountable number of them. Thus, exact inference algorithms for non-874

hybrid programs cannot be directly used. There are several possible solutions875

to perform inference in these domains.876

Traditionally, inference methods for discrete probabilistic logic programs

are based on knowledge compilation (KC) [11] and weighted model counting

(WMC) [9]. With these two techniques, the logic program is transformed into

a propositional knowledge base and then a weight is associated to each model

according to the probabilities specified in the program. The KC steps usually

transforms a PLP into a more compact representation such as ordered binary

decision diagram (OBDD) or sentential decision diagram (SDD) [44]. Starting

from this compact representation, the model counting is performed as follows:

given a propositional logical theory ∆, a set of literals L and a weight function

50

w : LÑ Rn,

WMC p∆, wq “
ÿ

M |ù∆

ź

lPM

wplq.

To handle a mixture of discrete and continuous random variables, WMC877

has been extended to weighted model integration (WMI) [7]. WMI allows to878

constrain the values of continuous variable by means of linear formulas. In the879

following definition we suppose that constraint are expressed as linear formulas880

over the reals, i.e., formulas of Satisfiability Modulo Theories of Linear Real881

Arithmetic (SMT(LRA)) [4].882

Following the original definition of [7], given a SMT theory ∆ over boolean883

variables B, relational variables X , literals L and a weight function w from884

literals to expressions over the set of relational variables, a weighted model885

integral can be defined. This formulation can theoretically be extended to other886

types of SMT theories, removing the linearity constraint. However, one of the887

problem of this approach is the presence of the integral, that usually can be888

solved exactly only if the integrand function is simple. Several solutions are889

currently available to solve WMI tasks: to speed up inference, in [8] the authors890

propose a technique called Component Caching. In [28] the authors proposed a891

formulation that can exploit predicate abstraction, a method commonly used in892

SMT. An approximate solution method, based on hashing can be found in [6].893

In [22] the authors proposed an algorithm able to exploit factorizability in WMI894

by using an extended version of decision diagrams [21, 39]. One limitation of this895

solution is that weight functions must be piecewise polynomial. In [45, 46] the896

authors embed knowledge compilation and exact symbolic inference into WMI.897

However, WMI can only be applied to program without function symbols. For898

WMC, programs with function symbols are considered in [5]. For an extensive899

overview of WMI, see [29]. An alternative inference method, not based on WMI,900

is presented in [18, 19], where the authors overcome the enumeration problem901

by representing derivations in a symbolic way.902

cplint hybrid programs can be queried using MCINTYRE [1, 2, 38]. The

algorithm is based on Monte Carlo inference and program transformation. For

51

example, a clause of the form

hpX,Y q : gaussianpY, 0, 1q

is transformed into

hpX,Y q Ð sample gaussp I, rXs, 0, 1, Y q

where the predicate sample gauss{5 samples from a Gaussian distribution with,903

in this example, mean 0 and variance 1 and stores the result in Y . A sample904

from the program is taken by asking the query to the transformed program.905

MCINTYRE can be applied also to hybrid programs with function symbols. In906

fact, the infinite computations, those that are associated to an infinite composite907

choice, have probability 0 of being selected. Therefore sampling terminates.908

Conditional approximate inference in MCINTYRE can be performed using909

rejection sampling or MCMC methods such as Metropolis Hastings or Gibbs910

sampling [2, 3]. MCMC methods are particularly useful when direct sampling911

from a joint distribution is not feasible, due to the complexity of the distribution912

itself. In Gibbs sampling, each variable is initialized with a random value. Then,913

for a fixed number of iterations (or until convergence), a sample for each random914

variable is taken given all the other variables. There are also other variants of915

Gibbs sampling, such as blocked Gibbs sampling, where two or more variables916

are grouped together, and the samples are computed from their joint distribution917

and not from each one individually.918

Another MCMC algorithm is Metropolis Hastings: it queries the evidence919

and, if the evidence succeeds, it samples the query. If the query is successful,920

it is accepted with a probability depending on the number of samples taken921

in the previous and current sampling processes. The final probability is then922

computed as the number of successes over the number of samples.923

MCMC algorithms have some limitations: usually the first few samples must924

be discarded, since they do not represent the real distribution, and they may re-925

quire some time to converge. Moreover, for PCLP, evidence must be on ground926

atoms that do not contain continuous values as arguments, otherwise the prob-927

52

ability of the evidence is 0. In case the evidence is on atoms with continuous928

values, the conditional probability of the evidence given the query can be de-929

fined in a different way [30] and other algorithms, such as likelihood weighting930

(LW), can be used. The basic idea behind LW is to assign a weight to each931

sample given the evidence and then compute the probability of the query as the932

sum of the weights of the samples where the query is true divided by the total933

sum of the weights of the samples. One issue of this algorithm is that weights934

of the samples may quickly go to 0. A possible solution is to use particle fil-935

tering [30] in which the individual samples are periodically resampled to reset936

their weights.937

Approximate inference on hybrid programs with iterative interval splitting938

was proposed in [27]. The authors propose the Iterative Model Counting al-939

gorithm, which constructs a tree on the variable’s domain. Each node of the940

tree, called Hybrid Probability Tree (HPT), is associated with a propositional941

formula and a range for each random variable. At each level, the range is split942

into two parts and each child node gets the previous propositional formula con-943

ditioned on the split made. The next node to expand, the variables and the944

relative partitions are selected by heuristics. Then, the probability of the event945

represented by the root of the tree is computed using a standard algorithm to946

compute a probability interval from a binary decision diagram.947

10. Conclusions948

In this paper, we have presented a new approach for defining the semantics949

of hybrid programs, i.e., programs with both discrete and continuous random950

variables. Our approach assigns a probability value to every query for programs951

containing negations and function symbols provided they are sound, i.e., each952

world must have a total well-founded model. Moreover, we have presented a953

syntax for representing hybrid programs in practice in the cplint7 framework954

7http://cplint.eu

53

http://cplint.eu

that also includes algorithms for performing inference in these programs using955

Monte-Carlo. In the future we plan to develop exact inference algorithms for956

hybrid programs exploiting weighted model integration, also for programs with957

function symbols.958

References959

References960

[1] M. Alberti, G. Cota, F. Riguzzi, and R. Zese. Probabilistic logical infer-961

ence on the web. In G. Adorni, S. Cagnoni, M. Gori, and M. Maratea,962

editors, AI*IA 2016: Advances in Artificial Intelligence, 21st Congress963

of the Italian Association for Artificial Intelligence, Pisa, volume 10037964

of LNCS, pages 351–363. Springer International Publishing, 2016. doi:965

10.1007/978-3-319-49130-1 26.966

[2] M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, and R. Zese. cplint on SWISH:967

Probabilistic logical inference with a web browser. Intelligenza Artificiale,968

11(1):47–64, 2017. doi: 10.3233/IA-170105.969

[3] D. Azzolini, F. Riguzzi, E. Lamma, and F. Masotti. A comparison of970

MCMC sampling for probabilistic logic programming. In M. Alviano,971

G. Greco, and F. Scarcello, editors, Proceedings of the 18th Conference of972

the Italian Association for Artificial Intelligence (AI*IA2019), Rende, Italy973

19-22 November 2019, volume 11946 of Lecture Notes in Computer Science,974

Heidelberg, Germany, 2019. Springer. doi: 10.1007/978-3-030-35166-3 2.975

[4] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of976

Model Checking, pages 305–343. Springer, 2018.977

[5] V. Belle. Weighted model counting with function symbols. In G. Eli-978

dan, K. Kersting, and A. T. Ihler, editors, Proceedings of the Thirty-979

Third Conference on Uncertainty in Artificial Intelligence, UAI 2017,980

Sydney, Australia, August 11-15, 2017. AUAI Press, 2017. URL http:981

//auai.org/uai2017/proceedings/papers/132.pdf.982

54

http://auai.org/uai2017/proceedings/papers/132.pdf
http://auai.org/uai2017/proceedings/papers/132.pdf
http://auai.org/uai2017/proceedings/papers/132.pdf

[6] V. Belle, G. V. den Broeck, and A. Passerini. Hashing-based approximate983

probabilistic inference in hybrid domains. In M. Meila and T. Heskes, edi-984

tors, 31st International Conference on Uncertainty in Artificial Intelligence985

(UAI 2015), pages 141–150. AUAI Press, 2015.986

[7] V. Belle, A. Passerini, and G. V. den Broeck. Probabilistic inference987

in hybrid domains by weighted model integration. In Q. Yang and988

M. Wooldridge, editors, 24th International Joint Conference on Artificial989

Intelligence (IJCAI 2015), pages 2770–2776. AAAI Press, 2015.990

[8] V. Belle, G. V. den Broeck, and A. Passerini. Component caching in hy-991

brid domains with piecewise polynomial densities. In D. Schuurmans and992

M. P. Wellman, editors, 30th National Conference on Artificial Intelligence993

(AAAI 2015), pages 3369–3375. AAAI Press, 2016.994

[9] M. Chavira and A. Darwiche. On probabilistic inference by weighted model995

counting. Artificial Intelligence, 172(6-7):772–799, 2008.996

[10] Y. S. Chow and H. Teicher. Probability Theory: Independence, Interchange-997

ability, Martingales. Springer Texts in Statistics. Springer, 2012.998

[11] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of999

Artificial Intelligence Research, 17:229–264, 2002. doi: 10.1613/jair.989.1000

[12] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-1001

bridge University Press, 2 edition, 2002. doi: 10.1017/CBO9780511809088.1002

[13] L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts.1003

Machine Learning, 100(1):5–47, 2015. doi: 10.1007/s10994-015-5494-z.1004

[14] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog1005

and its application in link discovery. In M. M. Veloso, editor, 20th Interna-1006

tional Joint Conference on Artificial Intelligence (IJCAI 2007), volume 7,1007

pages 2462–2467. AAAI Press/IJCAI, 2007.1008

55

[15] B. Gutmann, M. Jaeger, and L. De Raedt. Extending problog with contin-1009

uous distributions. In P. Frasconi and F. A. Lisi, editors, 20th International1010

Conference on Inductive Logic Programming (ILP 2010), volume 6489 of1011

LNCS, pages 76–91. Springer, 2011. doi: 10.1007/978-3-642-21295-6 12.1012

[16] B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt.1013

The magic of logical inference in probabilistic programming. Theory and1014

Practice of Logic Programming, 11(4-5):663–680, 2011.1015

[17] P. Hitzler and A. Seda. Mathematical Aspects of Logic Programming Se-1016

mantics. Chapman & Hall/CRC Studies in Informatics Series. CRC Press,1017

2016.1018

[18] M. A. Islam. Inference and learning in probabilistic logic programs with1019

continuous random variables. PhD thesis, State University of New York at1020

Stony Brook, 2012.1021

[19] M. A. Islam, C. Ramakrishnan, and I. Ramakrishnan. Inference in prob-1022

abilistic logic programs with continuous random variables. Theory and1023

Practice of Logic Programming, 12:505–523, 2012. ISSN 1475-3081. doi:1024

10.1017/S1471068412000154.1025

[20] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of1026

constraint logic programs. Journal of Logic Programming, 37(1-3):1–46,1027

1998. doi: 10.1016/S0743-1066(98)10002-X.1028

[21] S. Kolb, M. Mladenov, S. Sanner, V. Belle, and K. Kersting. Efficient1029

symbolic integration for probabilistic inference. In J. Lang, editor, 27th In-1030

ternational Joint Conference on Artificial Intelligence (IJCAI 2018), pages1031

5031–5037. AAAI Press/IJCAI, 2018.1032

[22] S. Kolb, P. Zuidberg Dos Martires, and L. De Raedt. How to exploit struc-1033

ture while solving weighted model integration problems. In A. Globerson1034

and R. Silva, editors, 35th International Conference on Uncertainty in Ar-1035

tificial Intelligence (UAI 2019), page 262. AUAI Press, 2019.1036

56

[23] J. W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer,1037

1987. ISBN 3-540-18199-7.1038

[24] S. Michels. Hybrid Probabilistic Logics: Theoretical Aspects, Algorithms1039

and Experiments. PhD thesis, Radboud University Nijmegen, 2016.1040

[25] S. Michels, A. Hommersom, P. J. F. Lucas, M. Velikova, and P. W. M.1041

Koopman. Inference for a new probabilistic constraint logic. In F. Rossi,1042

editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference1043

on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 2540–1044

2546. AAAI Press/IJCAI, 2013.1045

[26] S. Michels, A. Hommersom, P. J. F. Lucas, and M. Velikova. A new1046

probabilistic constraint logic programming language based on a gener-1047

alised distribution semantics. Artificial Intelligence, 228:1–44, 2015. doi:1048

10.1016/j.artint.2015.06.008.1049

[27] S. Michels, A. Hommersom, and P. J. F. Lucas. Approximate probabilistic1050

inference with bounded error for hybrid probabilistic logic programming. In1051

S. Kambhampati, editor, 25th International Joint Conference on Artificial1052

Intelligence (IJCAI 2016), pages 3616–3622. AAAI Press/IJCAI, 2016.1053

[28] P. Morettin, A. Passerini, and R. Sebastiani. Efficient weighted model inte-1054

gration via SMT-based predicate abstraction. In C. Sierra, editor, 26th In-1055

ternational Joint Conference on Artificial Intelligence (IJCAI 2017), pages1056

720–728. IJCAI, 2017. doi: 10.24963/ijcai.2017/100.1057

[29] P. Morettin, A. Passerini, and R. Sebastiani. Advanced SMT techniques1058

for weighted model integration. Artificial Intelligence, 275:1–27, 2019.1059

[30] D. Nitti, T. De Laet, and L. De Raedt. Probabilistic logic programming for1060

hybrid relational domains. Machine Learning, 103(3):407–449, 2016. ISSN1061

1573-0565. doi: 10.1007/s10994-016-5558-8.1062

[31] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial1063

Intelligence, 64(1):81–129, 1993.1064

57

[32] D. Poole. Logic programming, abduction and probability - a top-down1065

anytime algorithm for estimating prior and posterior probabilities. New1066

Generation Computing, 11(3):377–400, 1993.1067

[33] D. Poole. The Independent Choice Logic for modelling multiple agents1068

under uncertainty. Artificial Intelligence, 94:7–56, 1997.1069

[34] D. Poole. Abducing through negation as failure: Stable models within1070

the independent choice logic. Journal of Logic Programming, 44(1–3):5–35,1071

2000. doi: 10.1016/S0743-1066(99)00071-0.1072

[35] T. C. Przymusinski. Every logic program has a natural stratification and an1073

iterated least fixed point model. In Proceedings of the 8th ACM SIGACT-1074

SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-1075

1989), pages 11–21. ACM Press, 1989.1076

[36] F. Riguzzi. The distribution semantics for normal programs with function1077

symbols. International Journal of Approximate Reasoning, 77:1–19, 2016.1078

doi: 10.1016/j.ijar.2016.05.005.1079

[37] F. Riguzzi. Foundations of Probabilistic Logic Programming: Languages,1080

semantics, inference and learning. River Publishers, Gistrup, Denmark,1081

2018.1082

[38] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. Probabilistic1083

logic programming on the web. Software: Practice and Experience, 46(10):1084

1381–1396, 10 2016. doi: 10.1002/spe.2386.1085

[39] S. Sanner, K. V. Delgado, and L. N. de Barros. Symbolic dynamic1086

programming for discrete and continuous state mdps. In Proceedings of1087

the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,1088

UAI’11, pages 643–652, Arlington, Virginia, USA, 2011. AUAI Press. ISBN1089

9780974903972.1090

[40] T. Sato. A statistical learning method for logic programs with distribution1091

semantics. In L. Sterling, editor, Logic Programming, Proceedings of the1092

58

Twelfth International Conference on Logic Programming, Tokyo, Japan,1093

June 13-16, 1995, pages 715–729. MIT Press, 1995. doi: 10.7551/mitpress/1094

4298.003.0069.1095

[41] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics1096

for general logic programs. Journal of the ACM, 38(3):620–650, 1991.1097

[42] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with an-1098

notated disjunctions. In B. Demoen and V. Lifschitz, editors, 20th Inter-1099

national Conference on Logic Programming (ICLP 2004), volume 3131 of1100

LNCS, pages 431–445. Springer, 2004. doi: 10.1007/978-3-540-27775-0 30.1101

[43] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of1102

causal probabilistic events and its relation to logic programming. Theory1103

and Practice of Logic Programming, 9(3):245–308, 2009. doi: 10.1017/1104

S1471068409003767.1105

[44] J. Vlasselaer, J. Renkens, G. Van den Broeck, and L. De Raedt. Compil-1106

ing probabilistic logic programs into sentential decision diagrams. In 1st1107

International Workshop on Probabilistic Logic Programming (PLP 2014),1108

pages 1–10, 2014.1109

[45] P. Zuidberg Dos Martires, A. Dries, and L. De Raedt. Knowledge com-1110

pilation with continuous random variables and its application in hybrid1111

probabilistic logic programming. CoRR, abs/1807.00614, 2018.1112

[46] P. Zuidberg Dos Martires, A. Dries, and L. De Raedt. Exact and approx-1113

imate weighted model integration with probability density functions using1114

knowledge compilation. In Proceedings of the Thirty-Third AAAI Confer-1115

ence on Artificial Intelligence (AAAI-19), pages 7825–7833. AAAI Press,1116

2019. doi: 10.1609/aaai.v33i01.33017825.1117

59

Appendix A. Set Theory1118

A one-to-one function f : A Ñ B is such that if fpaq “ fpbq, then a “ b,1119

i.e., no element of B is the image of more than one element of A. A set A is1120

equipotent with a set B if there exists a one-to-one function from A to B. A set1121

A is denumerable if it is equipotent to the set of natural numbers N. A set A1122

is countable if there exists a one-to-one correspondence between the elements of1123

A and the elements of some subset B of the set of natural numbers. Otherwise,1124

A is termed uncountable. If A is countable and B “ t1, 2, . . . , nu, then A is1125

called finite with n elements. ∅ (empty set) is considered a finite set with 01126

elements. We define powerset of any set A, indicated with PpAq, the set of all1127

subsets including the empty set. For any reference space S and subset A of S,1128

we denote with Ac the complement of A, i.e., SzA, the set of all elements of S1129

that do not belong to A.1130

An order on a set A is a binary relation ď that is reflexive, antisymmetric1131

and transitive. If a set A has an order relation ď, it is termed a partially ordered1132

set, sometimes abbreviated with ordered set. A partial order ď on a set A is1133

called a total order if @a, b P A, a ě b or b ě a. In this case, A is called1134

totally ordered. The upper bound of a subset A of some ordered set B is an1135

element b P B such that @a P A, a ď b. If b ď b1 for all upper bounds b1, then1136

b is the least upper bound (lub). The definitions for lower bound and greatest1137

lower bound (glb) are similar. If glb and lub exist, they are unique. A partially1138

ordered set pA,ďq is a complete lattice if glb and lub exist for every subset S of1139

A. A complete lattice A always has a top element J such that @a P A, a ď J1140

and a bottom element K such that @a P A, K ď a. A function f : A Ñ B1141

between two partially order set A and B is called monotonic if, @a, b P A, a ď b1142

implies that fpaq ď fpbq. For an in-depth treatment of this topic see [12].1143

Appendix B. Ordinal Numbers, Mappings and Fixpoints1144

We denote the set of ordinal numbers with Ω. Ordinal numbers extend the1145

definition of natural numbers. The elements of Ω are called ordinals and are1146

60

represented with lower case Greek letters. Ω is well-ordered, i.e., is a totally1147

ordered set and every subset of it has a smallest element. The smallest element1148

of Ω is 0. Given two ordinals α and β, we say that α is a predecessor of β, or1149

equivalently β is a successor of α, if α ă β. If α is the largest ordinal smaller1150

than β, α is termed immediate predecessor. The immediate successor of α is1151

the smallest ordinal larger than α, denoted as α ` 1. Every ordinal has an1152

immediate successor called successor ordinal. Ordinals that have predecessors1153

but no immediate predecessor are called limit ordinals. So, ordinal numbers can1154

be limit ordinals or successor ordinals.1155

The first elements of Ω are the naturals 0, 1, 2, . . . After all the natural num-1156

bers comes ω, the first infinite ordinal. Successors of ω are ω ` 1, ω ` 2 and1157

so on. The generalization of the concept of sequence for ordinal number is the1158

so-called transfinite sequence. The technique of induction for ordinal numbers1159

is called transfinite induction: this states that, if a property P pαq is defined for1160

all ordinals α, to prove that it is true for all ordinals we need to assume that1161

P pβq is true @β ă α and then prove that P pαq is true. Transfinite induction1162

proofs are usually structured in three steps: prove that P p0q is true and prove1163

P pαq for α both successor and limit ordinal.1164

Consider a lattice A. A mapping is a function f : A Ñ A. It is monotonic1165

if fpxq ď fpyq, @x, y P A, x ď y. If a P A and fpaq “ a, then a is a fixpoint.1166

The least fixpoint is the smallest fixpoint. The greatest fixpoint can be defined1167

analogously.1168

We define increasing ordinal powers of a monotonic mapping f as f Ò 0 “ K,1169

f Ò pα ` 1q “ fpfpαqq if α is a successor ordinal and f Ò α “ lubptf Ò β | β ă1170

αuq if α is a limit ordinal. Similarly, decreasing ordinal powers are defined as1171

f Ó 0 “ J, f Ó α “ fpfpα ´ 1qq if α is a successor ordinal and f Ó α “1172

glbptf Ó β | β ă αuq if α is a limit ordinal. If A is a complete lattice and1173

f a monotonic mapping, then the set of fixpoints of f in A is also a lattice1174

(Knaster-Tarski theorem [17]). Moreover, f has a least fixpoint (lfp(A)) and a1175

greatest fixpoint (gfp(A)). See [17] for a complete analysis of the topic.1176

61

	Introduction
	Logic Programming and Well-founded Semantics
	Probability Theory
	The Distribution Semantics for Programs with Function Symbols
	Probabilistic Constraint Logic Programming (PCLP)
	PCLP Examples
	A New Semantics for Probabilistic Constraint Logic Programming
	A Concrete Syntax for PCLP
	Related Work
	Semantics
	Inference

	Conclusions
	Set Theory
	Ordinal Numbers, Mappings and Fixpoints

