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Abstract

Among the most promising topics in Cosmological investigation we can
certainly consider the polarization of the Cosmic Microwave Background (CMB)
and the multiwavelenght analysis of extragalactic emissions. On one side, CMB
polarization allows to better constrain the cosmological parameters and to test the
standard model. On the other side, the study of millimeter and submillimeter data
opens the door for investigation of the matter distribution on large scales in order
to understand the formation and evolution of the Large Scale Structure. After a
brief review of the Standard Model and the theory of cosmological perturbation
(first and second chapter), this thesis focuses on the study of the large scale
Cosmic Microwave Background anomalies in polarization (third chapter) and on
the distribution of galaxies within dark matter halos, through the analysis of
millimeter and submillimeter data (fourth chapter).
In the first project described in this thesis we present an assessment of the large-
scale CMB anomalies in polarisation using the two-point correlation function as
a test case. We employ the state of the art of large scale polarisation datasets:
the first based on a Planck 2018 HFI 100 and 143 GHz cross-spectrum analysis,
based on SRoll2 processing, and the second from a map-based approach derived
through a joint treatment of Planck 2018 LFI and WMAP-9yr. We consider
the well-known S1/2 estimator, which measures the distance of the two-point
correlation function from zero at angular scales larger than 60◦, and rely on
realistic simulations for both datasets to assess confidence intervals. By focusing
on the pure polarisation field described by either the Q and U Stokes parameters
or by the local E−modes, we show that the first description is heavily influenced
by the quadrupole (which is poorly constrained in both datasets) while the second
one is more suited for an analysis containing higher multipoles up to ` ∼ 10,
limit above which both datasets become markedly noise dominated. We find that



both datasets exhibit a lack-of-correlation anomaly in local E−modes, similar to
the one observed in temperature, which is better constrained by the less noisy
Planck HFI 100×143 data, where its significance lies at about 99.5%. We perform
our analysis using realizations that are either constrained or non-constrained by
the observed temperature field, and find similar results in the two cases. The
analysis has been carried out with the best datasets currently available at large
angular scales, which are however limited by the still significant amount of noise
in polarisation observations. This issue will be hopefully overcome by the advent
of new data, such as those from LiteBIRD, which are expected to be cosmic
variance limited at all scales. The prospect to perform this analysis in the context
of future experiments is then attractive, in order to shed light on the presence of
the lack-of-power anomaly in CMB polarization.
In the second project presented we developed a tool for data analysis designed
for the millimeter and sub-millimeter wavelength datasets. We fit with a unique
model data from the South Pole Telescope and the Hershel/SPIRE experiment.
Our formalism describes the emission of radio galaxies, the thermal Sunyaev
Zeldovich (tSZ) effect, the kinetic Sunyaev Zeldovich (kSZ) effect and the Cosmic
Infrared Background (CIB) clustered and Poisson contribution. We use a halo
model approach to describe the clustering of dark matter together with a halo
occupation distribution model to parametrize the galaxy power spectrum. We
fit for the so-called clustering parameters, i.e. minimum mass of the hosting
halo and the index regulating the accretion of galaxies in the halo outskirts.
We consider two populations of galaxies: early and late-type populations. The
former experienced the phase of star formation at redshift larger than 1.5 and
now is passively evolving, while the second is star-forming at low redshift. We
use a halo formalism also for the tSZ effect and for its correlation with the CIB
clustering. The key parameter in modelling the tSZ is the hydrostatic mass
bias, which strongly depends on cosmology and contains all the uncertainties we
have in the determination of the SZ clusters mass. Our code has been validated
with two tools already available online and it is flexible in order to fit for next
generation datasets and to vary cosmological parameters. With our analysis we
improved the constraints on the clustering parameters of the late-type population,
confirming that it is hosted in less massive structures with respect to the early-
type one. We find a minimum mass of 1012.5[M�h

−1] and 1011.4[M�h
−1] for the

early and late-type population respectively, when fitting for SPIRE data. We find
a minimum mass of 1012.1[M�h

−1] and 1010.8[M�h
−1] for the early and late-type

population respectively, when fitting for SPT data. For both datasets we find
values of the hydrostatic mass bias, b = 0.57 ± 0.16, higher than those found
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by Planck, although the amplitude of the tSZ power spectrum obtained with
this value of b is in line with the findings of previous SPT analysis. We also
derive a more severe constraint on the amplitude of the kSZ with respect to
previous literature, detecting it at 2σ level, and investigate its degeneracy with
the tSZ-CIB correlation. These results are obtained using the state of the art data
available but our tool will be of great utility in the analysis of future datasets,
such as the Simons Observatory, CMB-Stage 4 and CONCERTO.

− vii −





Contents

Abstract v

Introduction 4

1 The Standard cosmological scenario 10
1.1 The Friedman-Lemaitre-Robertson-Walker Universe . . . . . . . . 10
1.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Short thermal history of Universe . . . . . . . . . . . . . . . . . . 20
1.4 Distance measurement in cosmology . . . . . . . . . . . . . . . . . 22

2 Cosmological perturbations: radiation and matter anisotropies 25
2.1 The radiation field: Cosmic Microwave Background . . . . . . . . 25

2.1.1 Boltzmann equation for photons . . . . . . . . . . . . . . . 26
2.1.2 Anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2.1 Large scale anisotropies . . . . . . . . . . . . . . 29
2.1.2.2 Small scale anisotropies . . . . . . . . . . . . . . 30
2.1.2.3 Free streaming . . . . . . . . . . . . . . . . . . . 31
2.1.2.4 The CMB temperature power spectrum today . . 33
2.1.2.5 Sachs-Wolfe plateau: large scales . . . . . . . . . 35
2.1.2.6 Acoustic peaks: small scales . . . . . . . . . . . . 36
2.1.2.7 Cosmological parameters . . . . . . . . . . . . . . 37

2.1.3 CMB Polarization . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.3.1 CMB Polarization power spectra . . . . . . . . . 41
2.1.3.2 Power spectrum from tensor perturbations . . . . 44

2.2 Large Scale Structure . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.1 Boltzmann equation for cold dark matter . . . . . . . . . . 48



2.2.2 Boltzmann equation for baryons . . . . . . . . . . . . . . . 51
2.2.3 Evolution of dark matter perturbations . . . . . . . . . . . 52
2.2.4 Transfer function . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.5 Growth factor . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Lack-of-correlation anomaly in CMB large scale polarisation
maps 61
3.1 Datasets and methodology . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1.1 Temperature . . . . . . . . . . . . . . . . . . . . 67
3.2.1.2 Polarization . . . . . . . . . . . . . . . . . . . . . 68
3.2.1.3 Two-point correlation functions for E- and B-modes 69

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Probing the baryonic matter distribution through observations
of the millimeter and sub-millimeter sky 81
4.1 The halo model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 The spherical collapse model . . . . . . . . . . . . . . . . . 83
4.1.2 The halo mass function . . . . . . . . . . . . . . . . . . . . 84
4.1.3 Halo bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.4 Halo density profile . . . . . . . . . . . . . . . . . . . . . . 90
4.1.5 Dark matter power spectrum . . . . . . . . . . . . . . . . 93
4.1.6 Galaxy clustering . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Secondary emission . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Unit convention . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.2 Cosmic Infrared Background . . . . . . . . . . . . . . . . . 101

4.2.2.1 Luminosity function for early-type galaxies . . . . 102
4.2.2.2 Luminosity function for late-type galaxies . . . . 104
4.2.2.3 Source counts and emissivity function . . . . . . 105
4.2.2.4 Poisson noise: high frequency modelling . . . . . 109
4.2.2.5 Poisson noise: low frequency modelling . . . . . . 110

4.2.3 Sunyaev Zeldovich Effect . . . . . . . . . . . . . . . . . . . 112
4.2.4 tSZ-CIB correlation . . . . . . . . . . . . . . . . . . . . . . 117
4.2.5 Other contaminants . . . . . . . . . . . . . . . . . . . . . . 119

4.2.5.1 Radio sources . . . . . . . . . . . . . . . . . . . . 119
4.2.5.2 Galactic cirrus emission . . . . . . . . . . . . . . 121

4.3 Constraints on the parameters of the foregrounds . . . . . . . . . 121
4.3.1 SPT-SZ survey: dataset and results . . . . . . . . . . . . . 122

− 2 −



4.3.2 SPT-SZ and Hershel/SPIRE: dataset and results . . . . . 134
4.3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.2.2 SPT-only: results . . . . . . . . . . . . . . . . . . 137
4.3.2.3 SPIRE-only: results . . . . . . . . . . . . . . . . 139

Conclusions 148

Acknowledgment 156
0.1 Appendix: Comparison between pixel and harmonic based STT1/2

estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
0.2 Appendix: calculation of SQQ1/2 and SUU1/2 in terms of power spectrum158
0.3 Tool for analysis of millimeter and sub-millimeter data . . . . . . 159



Introduction

The Standard Model of Cosmology relies on a theory proposed in the ’20 and
called Hot Big Bang. It assumed that Universe was very hot and dense at the be-
ginning and gradually expanded and cooled with time. This theory predicted the
existence of an homogeneus bath of photons permeating Universe in all directions.
This bath was the relic of a primordial era, in which photons and baryons were
in thermal equilibrium. Fourty years later, the discovery of Cosmic Microwave
Background (CMB) was the proof of the reliability of this theory [1]. Since the
measurement of the CMB black body distribution [2], this observable became
one of the milestones of Cosmology. The theory also predicted the presence of
small temperature anisotropies in the CMB photons spatial distribution, derived
from perturbations in the primordial plasma. Also those anisotropies have been
found by [3]. They allowed to constrain the parameters of the Standard Model,
making Cosmology for the first time a precise science. On the other side, CMB
represented a challenge for the Standard Cosmology, as it was homogeneus at
scales larger than expected. This observational evidence brought to an extention
of the Standard model, which has been enriched with a new primordial phase,
called Inflation, able to explain homogeneity on scales larger than the horizon at
CMB formation time. On WMAP data, however, there were other discrepancies
with respect to the Standard model, which are still waiting for an explanation:
they have taken the generic name of CMB anomalies. Their low statistical
significance, between 2 and 3 σ, in addition to a possible instrumental origin,
led the comunity to wonder if anomalies were real features in the microwave
sky. More detailed informations arrived with the Planck satellite data release [4],
which was cosmic variance limited at all angular scales in temperature. For
this reason, Planck observations have been of great utility in improving the
constraints on the cosmological parameters. Nevertheless, also Planck observed



the CMB anomalies, almost at the same statistical significance of WMAP. This
made an instrumental origin unlikely, even if not completely excluded. If we
assume that CMB anomalies are real features in the sky, we can conclude to live
in a mildy rare statistical fluctuation of the Standard Cosmology. The alternative,
and for sure more intriguing, point of view is that, to explain these features,
some modifications of the ΛCDM cosmology are required. As CMB temperature
measurements are already cosmic variance limited at all scales, the information
contained in the large angle tail of the anisotropy power spectrum has already
been exausted. One way to bypass this problem is to extend the analysis to
another observable, possibly correlated with CMB temperature. Luckily, CMB
photons are slightly polarized. Polarization arises from the same primordial
perturbations that originates temperature anisotropies, so the two observables
are correlated. Planck observations can then be used to start the investigation
of large angle anomalies in polarization. Nevertheless, Planck data in polariza-
tion are still really noisy, so, to give a definitive assessment on the presence of
these features in polarization, we have to wait for next generation datasets. In
particular we are waiting for data coming from the LiteBIRD satellite, recently
approved by the JAXA (Japan Aerospace Exploration Agency), whose launch is
expected in the next decade [5].

CMB observations, in addition to the analysis of the rotation curves of the
galaxies, led to the idea that luminous matter was just a small fraction of the
total amount of matter in the Universe. Consequently, the Standard Model has
been extended with the introduction of a new component, of unknown nature,
interacting only gravitationally with the other components of the Universe: the
dark matter. A lot of studies try to understand what dark matter is made of,
but we are still far from an answer. Something we now, in any case, is that
dark matter tends to cluster and form giant structures growing with time. This
knowledge has opened the door to another field of cosmological investigation:
the study of Large Scale Structure. With the support of numerical simulations,
astronomers developed an idea of how dark matter structures form and evolve.
The tool used to describe the clustering of dark matter with redshift is called halo
model. It is an analytical description of the matter distribution in the Universe,
which assumes that all matter resides in separated units, called halos. To describe
the matter distribution through a halo approach, we need three fundamental
quatities: the halo bias, the halo mass function and the halo density profile. First,
to properly relate the distribution of halos to the underlying density field, we have
to consider that they are biased tracer of the background matter distribution,
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and introduce the so-called halo bias. Then, we have to describe the halos spatial
distribution: for this purpose we use functions predicting the numbers of halos
occupying a certain mass bin. These tools are called halo mass functions. To
conclude the picture, we need to parametrize the distribution of matter within
a specific halo, using a halo density profile. All these quantities evolve with
redshift, and can then account for the evolution of dark matter structures. As
we can not detect dark matter, to constrain our halo models we use data from
visible matter, and try to relate the distribution of the astrophysical sources
to that of dark matter. An incredible source of information in this sense is
contained in millimeter and submillimeter data. They combine the CMB with
several other emissions and effects: the Cosmic Infrared Background (CIB), the
Sunyaev Zeldovich effect, the radio sources emission, the galactic cirrus. If we
want to constrain the cosmological parameters, we have to clean maps from all
emissions, or foregrounds, other from CMB primary anisotropies. The proper
modelling of the foregrounds is then necessary in order to avoid the misleading of
the cosmological parameters constraints. However, these emissions are per se full
of information. The extragalactic (or in some case galactic) sources originating
them are located in the potential wells of the dark matter halos and are then the
visible tracers of the dark matter distribution.
The CIB is generated during the star formation phase of galaxies, when the high
energy radiation emitted by the young stars is absorbed and re-emitted by the
dust grains at lower frequencies. Unfortunately, while numerical simulations
allowed a quite good comprehension of the dark halo structures, the relation with
the dusty galaxies located within halos is still a matter of debate. We know that
star formation is influenced by the mass and rotation of the hosting halo, but
the connection beween the dark matter and the galaxy power spectrum remain
unclear. The main models in literature are two: the oldest one [6], and all its
variations [7], try to parametrize in an empirical way the number of galaxies that
occupy an halo (halo occupation distribution) as function of the halo mass. The
emission of those galaxies is then accounted for through the so-called emissivity
function. The second model has been released more recently by [8] and try to
directly relate the halo accretion to the star formation rate. Both models are still
used in literature and, at the moment, none of them is clearly favoured by data.
The CIB is definitely the dominant contribution to millimeter and submillimeter
data power spectrum, but not the only one. The y-type spectral distortion of the
CMB black body distribution, caused by the thermal Sunyaev Zeldovich (tSZ)
effect [9], is a tracer of matter distribution in massive local structures, i.e. the
low redshift halos hosting galaxy clusters. Again, the tSZ effect is described by a
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halo model, with some small difference with respect to the CIB case. First of
all, in this case we do not need to model the galaxy emission, secondly, the halo
density profile is replaced with the electron pressure profile. The CIB and the
tSZ effect are correlated observable, so the modelling of their correlation is also
required: we use for it a halo model and investigate its degeneration with the
kinetic Sunyaev Zeldovich (kSZ) effect. Despite it is a subdominant contribution
in the power spectra, the correct modelling of kSZ effect is fundamental, as it can
give informations about the duration and timing of the Reionization epoch. The
acquisition of data in these frequency ranges and the modelling of the different
foregrounds contribution is one of the most active field in Cosmology nowadays.
The most constraining datasets available have been released by the South Pole
Telescope, in the millimeter, and by the Hershel/SPIRE, in the submillimeter.
However, several experiments are going to be active in the next decade, for
example the Simons Observatory [10], CMB-S4 [11] and CONCERTO [12].
This thesis is organized as follows:

• In the first two chapters we briefly review the basis of the Standard Cosmo-
logical model, with a description of the main energy-matter components,
the phases of the cosmic history and some basic definitions. We then
describe the origin and evolution of cosmological perturbations trough a
simple treatment of the Inflation epoch and a study of the Boltzmann
equations for photons and dark matter. We describe in detail the CMB
power spectrum, both in temperature and polarization.

• In the third chapter we analyse the large scales of CMB power spectrum,
investigating the large angle anomalies. We give the details of the context
in which these features have been detected and studied. Then we describe
the anomaly on which we focus, the so-called lack-of-power in CMB temper-
ature correlation function, explaining why we decide to look for this feature
also in polarization. We describe the dataset and methodology used and
the results we obtain comparing the value of the correlation on simulations
and on data for the Q and U stokes parameters and local E-modes. This
work has been published on JCAP:

- [13] Caterina Chiocchetta, Alessandro Gruppuso, Massimiliano Lattanzi,
Paolo Natoli, Luca Pagano "Lack-of-correlation anomaly in CMB large
scale polarisation maps" ;
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On the same topic, another work, which is not described in this thesis, is
in preparation:
-In preparation "LiteBird E-modes anomalies".

• In the fourth chapter we analyse data from the SPT and SPIRE in order
to constrain the parameters of the model describing the foregrounds con-
tributing to the data power spectrum. We describe in detail the halo model
used for the CIB and the tSZ. We also explain the parametrization chosen
for the kSZ, the radio sources and the galactic cirrus. Then we extensively
discuss the result of the comparison between data and model, both at low
and high frequencies.

The code is available on GitHub https://github.com/paganol/CIB_project.

• In the conclusions we summarize the most important results of our work.
We also give an overview of the experiments and surveys which will be active
in the next decade and will be dedicated, on one side, to the measurements
of CMB polarization, and, on the other side, to the acquisition of new
millimeter data.

https://github.com/paganol/CIB_project




1
The Standard cosmological scenario

Cosmology has become a precise science in less than a hundred years. In the
first chapter of this thesis we briefly review the main achievements of this century
of investigations. We describe the basis of our Standard Cosmological model and
the main phases of the cosmic history. We also outline the origin and evolution
of cosmological perturbations trough a simple treatment of the Inflation epoch.

1.1 The Friedman-Lemaitre-Robertson-Walker Uni-
verse

The Standard Cosmological Scenario [14], [15], [16], [17] is based on the
assumption that Universe is statistically homogeneus and isotropic at zero order.
Such a Universe is described by the metric of Friedman-Lemaitre-Robertson-
Walker (FLRW):

ds2 = −(cdt)2 + a2(t)

[
dx2

1−Kx2
+ x2(dθ2 + sin2θdφ2)

]
, (1.1)

where θ, φ and x are spherical comoving coordinates and a(t) is the scale factor,
which regulates the dynamical evolution of the Universe. The factor K represents
the curvature of the space-like hypersurfaces. The case K = 0 corresponds to a
flat space with no curvature; K = 1 corresponds to a positive curvature, which
implies a closed Universe, and K = −1 to a negative curvature, i.e. an open
space. In the standard scenario the theory of gravity is based on the General
Relativity. The metric enters in the left side of the field equation, which is related



THE STANDARD COSMOLOGICAL SCENARIO

to the geometry of the space-time. On the right side of the field equation we
find instead the energy-momentum tensor. Considering a FLRW metric and a
Universe filled of a perfect fluid, we can find a set of analytical solutions to the
field equations, called Friedmann equations :(

ȧ(t)

a(t)

)2

=
8Gπρ

3
− K

a(t)2
, (1.2)

ä(t)

a(t)
= −4Gπ

3
(ρ+ 3P ). (1.3)

Here ρ and P are the density and pressure of the fluid that dominates the energy-
density content of the Universe at a certain time. Defining the Hubble parameter
as:

H(t) ≡
(
ȧ

a

)
, (1.4)

one can compute the energy content in the case of a flat Universe, called critical
density :

ρc =
3H2

8πG
. (1.5)

To derive the evolution of both a(t), ρ and P , we need a relation between density
and pressure, which is given by the equation of state:

ρ = wP. (1.6)

The value of w depends on the fluid considered: w = 1/3 corresponds to a fluid
of relativistic particles, hereafter denoted with the subscript r. In the case of
massive particles, generically called matter and denoted with the letter m, w = 0

. Observations suggest the presence of a third component filling the Universe,
other than matter and radiation, which is referred to as dark energy and usually
denoted by the letter Λ. It is driving the Universe accelerated expansion at the
present time and it is characterized by negative pressure w ∼ −1 (in the case of
w = −1 it would take the name of Cosmological constant). Observations are also
able to constrain the density parameter of these components, which is defined
with respect to the critical density of the Universe:

Ω0,m = ρ0,m/ρ0,c ∼ 0.27, Ω0,Λ = ρ0,Λ/ρ0,c ∼ 0.73, Ω0,r = ρ0,r/ρ0,c ∼ 10−5.

(1.7)
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The Friedman-Lemaitre-Robertson-Walker Universe

Here Ω0,m, Ω0,r, Ω0,Λ are the desntity parameters of matter, radiation and dark
energy respectively. The picture that emerges is that of a Universe dominated
by the dark energy, in which radiation occupies a small fraction of the energy
density content, while matter constitutes almost one third of it. Until now we
have generically used the term ’matter’ for all the components that have an
equation of state with w = 0. Nevertheless we know that there is a mismatch
between the quantity of visible matter we can derive from observations and the
total amount of matter inferred from gravity. The fraction of matter responsible
for this mismatch is called dark matter and its nature is unkonwn. We only know
that, at least a fraction of it, has to be non-baryonic matter, as deduced from the
constraints placed on the baryonic matter from the primordial Nucleosynthesis.
This process, which will be briefly described in section 1.3, is responsible for
the chemical abundances of the light elements in the Universe. Following these
considerations, we can operate a further division in the energy content of the
Universe, separating the contribution of the baryonic matter from that of dark
matter:

Ω0,DM = ρ0,DM/ρ0,c ∼ 0.23, Ω0,b = ρ0,b/ρ0,c ∼ 0.04. (1.8)

The matter content of the Universe is hence dominated by matter interacting
only gravitationally, with a much smaller contribution coming from ordinary
matter.
To trace the evolution of all the mentioned components through the cosmic
history, we use the continuity equation:

ρ̇ = −3H(ρ+ p). (1.9)

Combining the equation of state (1.6) with the continuity equation (1.9) we can
express the evolution of the energy-density parameter as function of the scale
factor:

ρ ∝ a−3(w+1). (1.10)

Using this relation, we can then rewrite the first Friedmann equation as a relation
between scale factor and time:

ȧ(t)

a(t)
= H0

√
Ωia

−3/2(1+wi)
i , (1.11)

where the subscript i denotes the considered component. We can then resume the
behaviour of the three main constituens of the Universe during time as follows:
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THE STANDARD COSMOLOGICAL SCENARIO

• relativistic matter ρ ∝ a−4 and a ∝ t
1
2 ,

• non relativistic matter: ρ ∝ a−3 and a ∝ t
2
3 ,

• dark energy: ρ = const and a ∝ eHt.

Figure 1.1: Evolution of radiation, matter and dark energy density with
the scale factor.

A picture of the behaviour of these components is given in figure 1.1. It is
clear how, going back in time, Universe becomes denser and hotter. In a finite
time in the past, around 13.78 billion years ago, density diverged: this singularity
is the well known Big Bang. The high temperature, and the consequent high
scattering rate between particles, ensures that primordial Universe was in thermal
equilibrium. Following the so-called Hot Big Bang Model, Universe adiabatically
expanded and cooled during time. This model is validated by observations, that
show an homogeneous and isotropic Universe on large scales.
The scenario just described is a zero order approximation and, if we want
to analyse the structure of Universe on smaller scales, we need to allow for
deviations from this behaviour. One of the main observable of Universe is the
spatial distribution of galaxies. Several surveys have revealed that galaxies are
not distributed randomly, but, as opposite, that Universe has a structure on
large scales. As baryons are a small fraction of the total matter, we can guess
that galaxies are located in the potential wells of dark matter, which likely drive
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The Friedman-Lemaitre-Robertson-Walker Universe

the formation of cosmological structures. This implies that, to understand the
actual distribution of matter in the Universe, we have to allow for deviation
from smoothness. We then need a tool that allows us to study perturbations
around the isotropic background predicted by the Standard Model. A similar
scenario is found when we focus on Cosmic Microwave Background (CMB)
photons. This bath of primordial radiation seems to uniformly permeate all the
Universe. Nevertheless, last decades experiments have shown also in this case the
presence of spatial anisotropies in the photons temperature distribution. These
fluctuations around the mean, present both in the radiation and in the matter
fields, have a common origin in the primordial Universe, but evolved differently
in time, as we will see in the next chapters. The mechanism generating the
primordial perturbations is called Inflation and will be briefly described in the
next section [18], [19], [20], [21], [22].
To conclude, and before moving on, it is usefull to introduce a quantity that
can account for the stretching of the light wavelenghts of photons travelling in a
expanding Universe. The definition of the redshift is fundamental, as basically
all informations we have about Universe are given by observations of photons
emitted by distant sources. We know that there is a relation between the photon
momentum and wavelenght, λ = h/p. From the equation of the geodesic of
a photon travelling in a FLRW Universe, we can derive the relation between
momentum and scale factor, p ∝ a−1, which impies λ ∝ a. If we consider a
photon emitted with wavelenght λe at time te and received at t0 with wavelenght
λ0, we have:

λ0 =
a(t0)

a(te)
λe. (1.12)

As the scale factor increases, also λ increases i.e it is redshifted. Redshift is then
defined as:

z ≡ λ0 − λe
λe

, (1.13)

and the relation between redshift and scale factor turns out to be:

1 + z =
a(t0)

a(te)
. (1.14)
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1.2 Initial conditions

The origin and main features of the CMB will be described in the next
chapter. For the moment we just say that CMB has been a key observable
in our understanding of the Universe [23]. One of the main characteristic of
this radiation is to be homogeneus on very large scales. When this large scale
homogeneity was discovered, it represented at first a problem for the Standard
Model, known as the horizon problem. To understand why, we first introduce the
concept of horizon. There are two main types of horizon: the Hubble radius and
the particle horizon. The Hubble radius is a quantity related to the finite velocity
of light. It contains all regions that light can reach in a Hubble characteristic
time and is defined as:

Rc =
c

H(t)
= cτ(t), (1.15)

where
τh =

1

H(t)
. (1.16)

The Hubble time, τ (t), can be described as the characteristic time of expansion in
a particular epoch. All regions inside the Hubble radius are in causal contact at
a particular time in the expansion history. The particle horizon, instead, contains
all the regions that have been in causal contact since the beginning of time. The
comoving particle horizon is defined as:

dh =

∫ t

0

cdt

a(t′)
(1.17)

It is an integral over time of the Hubble horizon and keeps into account the
past history of the observer. The ratio between the two horizons depends on
the expansion rate of the Universe. When the Hubble radius grows, it gradually
includes and put in causal contact more and more regions of space. The process
is called horizon entering. The most interesting entering event is that of cosmo-
logical perturbations, as they determine the fluctuations of the potential and
density field of matter and radiation.
The CMB formed early in the cosmic history, about 380′000 years after the Big
Bang. After that event, called Recombination, CMB photons decoupled from
matter and their distribution remained freezed to that we observe now. The
comoving Hubble horizon at the CMB formation time is seen today under an
angle of 2◦ in the sky. In this scheme, the high level of homogeneity we observe
on large scales is not possible, as scales larger than the comoving Hubble radius
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at the time of Recombination have never been in causal contact.
The solve this problem we have to consider the possibility that large scales of
perturbations, which weren’t in the Hubble radius at the time of CMB formation,
were instead inside the particle horizon. In other words, these regions have been
in causal contanct in the primordial Universe, for some reason they went out the
Hubble horizon and, now, we are just seeing them re-entering in it. For this
to be possible, the Hubble Horizon must have experienced a fast and dramatic
decrease in the early times, caused by an equally fast and impressive expansion
of the Universe. This process is called Inflation.

Figure 1.2: Expansion of the Universe and consequent decrease of Hubble
horizon. Particles in causal contact in the primordial epoch are pushed out of

the horizon due to Inflation. Picture taken from Dodelson et al. [24].

In figure 1.2 we see the effect of the accelerated expansion on the Hubble
radius. The horizon is depicted as the black thick circle, the small circles are
region of space in causal contact one with the other. The expansion of universe,
represented by the evolution of underlying grid, causes a decrease of the Hubble
horizon and pushes some regions out of it.

In figure 1.3 we see the effect of the Universe accelerated expansion on a
spatial scale of perturbation. During Inflation the Hubble horizon decrease and
the process we assist is that of the Horizon exit. After the end of Inflation,
Hubble Horizon starts to grow again and gradually includes perturbations on
larger scale, which then re-enter the Horizon.
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Figure 1.3: The effect of Inflation on a scale of preturbation. As the
Hubble radius decreases, the perturbation exits the horizon. At later times,
when Inflation is ended and the Hubbble radius starts growing again, the same
scale re-enters the horizon and perturbes the matter-radiation density field.

To understand how these primordial perturbations affected the photons-baryon
fluid at later epochs, we assume a standard description of Inflation, in which
the cause of the acceletared expansion is a scalar field with negative pressure.
Recalling the second Friedmann equation, (1.3), to have an accelerated expansion
we need negative pressure:

ä(t) > 0→ (ρ+ 3P ) < 0→ P < −1

3
ρ. (1.18)

As the energy density ρ is always positive, P has to assume negative values. In
the simplest model of Inflation the scalar field is static and homogeneous and
the component of the energy momentum tensor are:

T 0
0 = −1

2
ψ̇2 − V (ψ) = −ρ (1.19)

T ij =

(
1

2
ψ̇2 − V (ψ)

)
δij = pδij (1.20)

Many models of Inflation assume that the scalar field slowly rolls toward its true
ground state. The kinetic term of this field is close to a constant, so that we can
impose the so called slow-roll condition : 1

2
ψ̇2 � V (ψ). The equation of state for

this fluid is then:
p ≈ −ρ. (1.21)

The Klein Gordon equation in a FLRW metric represents the equation of motion
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of the inflaton field at zero order.

ψ̈ + 3Hψ̇ − ∇
2ψ

a2
= −V ′(ψ). (1.22)

We can neglect the term ∇2ψ
a2

as we assumed that the field is static. The quantistic
perturbations of primordial Universe were gaussian distributed and small with
respect to the background, so we can treat them with linear theory. The perturbed
field can be written as:

ψ(x, t) = ψ(t) + δψ(x, t). (1.23)

The zero order part depend only on time and is responsible for the acceleration
of the Universe expansion. The first order term, instead, induces metric pertur-
bations. We can then wonder what is the behaviour of these fluctuations, both
in the case they remain within the horizon and in the case they exit from it, due
to the expansion driven by the background. The dynamic of perturbations is
again described by the Klein Gordon equation. Now the spatial derivative has
to be taken into account, differently from the zero order case. For simplicity we
assume a massless field, V ′′ = dV 2

d2ψ
= 0, and obtain:

δ̈ψ(x, t) + 3H ˙δψ(x, t)− ∇
2δψ

a2
= 0. (1.24)

Moving to harmonic space we have:

δ̈ψk + 3H ˙δψk −
k2δψk
a2

= 0. (1.25)

The solution to this equation can then be divided in two different regimes:

• Inside horizon: the scale of the perturbation satisfies the condition λ �
H−1 → k

aH
� 1. The equation reduces to:

δ̈ψk −
k2δψk
a2

' 0, (1.26)

which is the equation of an harmonic oscillator with decreasing amplitude.
These perturbations vanish over time.

• Outside horizon: the scale of the perturbation satisfies the condition λ�
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H−1 → k
aH
� 1. The equation reduces to:

δ̈ψk + 3H ˙δψk ' 0. (1.27)

This equation have a decresing solution and a constant one. Perturbations
that exit the horizon are freezed until they re-enter it. For this reason we
say that long wave modes preserve their primordial features.

We want to relate the perturbations of the Inflaton field that re-enters the
horizon and the fluctuations of the matter-radiation field. Let’s start saying that
fluctuations of the inflaton field are connected to metric perturbations, as they
cause different expansion rates in different regions of the Universe. The resulting
temporal shift can be written as:

δt =
−δψ
ψ̇

(1.28)

If we combine equations (1.19), (1.20) and (1.22) with the continuity equation
and impose again the slow roll condition, we have:

1

2
ψ̇2 + V (ψ) = ρ→ δρ = V ′δψ (1.29)

ψ̈ + 3Hψ̇ = −V ′ (1.30)

δρ

ρ̇
=

V ′δψ

−3H(p+ ρ)
=
−3Hψ̇δψ

−3Hψ̇2
=
δψ

ψ̇
(1.31)

Equation (1.31) tells that the perturbations of the primordial scalar field, when
entering the horizon, are turned into fluctuations of the cosmic fluid density field.
They then serve as initial conditions for the growth of structure and anisotropy
in the Universe.
If we write the perturbation in Fourier modes, it can be factorized into distinct
k-modes. Every mode is associated to a gaussian distribution with zero mean
and non-zero variance. The variance is computed as:

〈δψ(k)δψ(k)?〉 = (2π)3Pψ(k)δ3(k − k′) (1.32)

where Pψ(k) is the power spectrum of the scalar perturbations. Considering the
solution of the Klein Gordon equation for super horizon modes and doing some
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calculation, we can obtain a common parametrization of the power spectrum:

Pψ =
50π2

9k3

(
k

H0

)ns−1

δ2
H

(
Ωm

D(a = 1)

)2

(1.33)

In this equation δH is the amplitude of the perturbation at the horizon crossing
and ns is the spectral index of the scalar perturbations. A index equal to unity
would imply a spectrum independent on the wavelenght mode. It is almost the
case, as cosmological observations give n ≈ 0.96. The quantity D(a = 1) is
the so-called growth factor. It is computed at late times, when dark matter
dominates the energy density of Universe, as it will be described in the next
chapter. To conclude, we give a normalized version of the power spectrum, which
is useful to collect all constants in a unique amplitude and highlight the k-mode
dipendence:

∆2
ψ =

k3

2π2
Pψ(k), (1.34)

which becomes:

∆2
ψ = As(k0)

(
k

k0

)ns−1

, (1.35)

where k0 is a chosen pivoting scale.

1.3 Short thermal history of Universe

We have seen that Inflation set the initial conditions for the growth of
structures and anisotropies. Now we will briefly describe the main processes that
occourred in the Universe after Inflation [25].
The baryogenesis happened around 10−12 seconds after the Big Bang, when
temperature was T ∼ 1015K [26], [27]. During the baryogenesis the production of
a small matter-antimatter asymmetry took place. This slight imbalance became
dramatic during time, and now we have a dominant presence of the matter
particles with respect to their anti-matter counterparts. Another remarcable
result of the process which gave rise to baryogenesis (the so-called electroweak
phase transition) is that it led matter to have mass. At the end of this transition
the cosmic plasma was made by leptons and quarks.
Quarks have been confined into hadrons when Universe cooled to temperature of
1012K, during the so-called quantum chromodynamics phase transition. After
this event the only relativistic particles left in the cosmic fluid were photons,
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neutrinos and electrons.
When Universe reached a temperature of 1010K, neutrinos decoupled from
electrons and started to propagate freely, with their temperature scaling as a−1.
We have to wait temperature to drop of another order of magnitude, up to 109K,
to assist at the Big Bang Nucleosinthesis (BBN) [28]. The first element to form
was deuterium:

n+ p ⇐⇒ D + γ (1.36)

Once the production of deuterium was stabilized, also other elements started to
form: Tritium, 3H, and Helium, 3He, 4He, first and, in a second moment, also
Lithium, 7Li, and Berillium, 7Be. When temperature was T ∼ 107K, the BBN
ended and the ordinary matter content (which from now on can be called baryon
content) was basically made by H nuclei (∼ 75%) and 4He. Moreover, there
were traces of other light elements and, of course, electrons and photons.
In this phase there was thermal equilibrium: protons and electrons interacted
through Coulomb scattering, while electrons and photons were tightly coupled
through Compton scattering, as we will see in details in the next chapters. The
Universe energy-density content was dominated by photons, but, as radiation
density diluits faster than matter density with time, at some point matter
became the dominant component. The transition is called equivalence and can
be computed as:

ρeqm
ρeqr

=
ρ0
ma
−3

ρ0
ra
−4

=
ρ0
m

ρ0
r

a =⇒ aeq =
ρ0
r

ρ0
m

=⇒ zeq = 4.3× 104Ω0h
2. (1.37)

Well inside matter domination era, hydrogen was still fully ionized. The fraction
of ionized atoms is governed by Saha equation:

X2
e

1−Xe

=
109

T 3

(
meT

2π

)3/2

e−
BH
T , (1.38)

where Xe is the free electron fraction:

Xe ≡
ne

npnH
(1.39)

and BH ≡ (me +mp −mH) is the binding energy of the hydrogen atom. As long
as T & BH , then Xe ≈ 1, i.e. all hydrogen was ionized. When T dropped below
BH , Xe went to zero and the hydrogen atoms formed. Recombination happened
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when almost 90% of electrons were forming hydrogen atoms. We have then:

Xe(Trec) ∼ 0.1 =⇒ Trec ∼ 3600K. (1.40)

This process occourred at resdhift zrec ' 1320. As already mentioned, before
Recombination photons and electrons were tightly coupled via Compton scattering.
When atoms started to form, the number of free electrons decreased and the
scattering events became less frequent. Photons started to free stream and
decoupled from matter. This epoch is called decoupling and occurred at redshift
z ' 1100, when the scattering rate became lower than the Hubble rate of
expansion. The last moment in which photons interacted with baryons is called
last scattering surface. The temporal separation bewteen Recombination and
Decoupling causes the last scattering surface to have a finite thikness. In anycase,
its size is negligible compared with the cosmic history. We can then consider the
last scattering as a real surface, as well as using both terms, Recombination and
Decopling, to adress the CMB formation epoch.

1.4 Distance measurement in cosmology

The way in which we measure distances in Cosmology depends on the geometry
of Universe. If we assume to live in a FLRW space-time, then the line element
for photons travelling from the source to the observer along the line of sight is:

− c2dt2 + a2(t)

[
dx2

1− kx2

]
= 0, (1.41)

which implies: ∫ t2

t1

cdt

a(t)
=

∫ x

0

dx√
1− kx2

. (1.42)

The integral on the right, over the line of sight, represents the definition of
comoving distance. In this sistem of measure the coordinates follow the expansion
of the Universe and are then fixed: the comoving distance of an object with
respect to the observer is then constant in space and time. The solutions to
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equation (1.42) depend on the value of the curvature parameter k:

d =


k−1/2 arcsin (k1/2x), if k > 0

x, if k = 0

|k|−1/2 arcsinh (|k|1/2x), if k < 0

(1.43)

The comoving distance can be expressed also as function of cosmological parame-
ters involving a integral over redshift:

d0 =

∫ t0

t1

cdt

a(t)
=

∫ z

0

cdz

H(z)
, (1.44)

where the function H(z) gives the redshift evolution of the Hubble constant and
is defined as:

H(z) = H0

√
Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0. (1.45)

Turning the comoving distance into the proper distance involves a simple multi-
plication by the scale factor. We have indeed:

dp = a(t)d. (1.46)

This quantity represents the distance between object and observer computed with
the assumption that they are placed at the same cosmic time. As the Universe
expands, the proper distance increases over time.
From an observational point of view, we see an astrophysical object as a flux of
incoming photons. We can then define a distance measure related to the flux of
the source. The luminosity distance involves the relation between the intrinsic
luminosity of the source and the flux we receive:

d2
L =

L

4πF
. (1.47)

In a expanding Universe with a FLRWmetric, the relation betweeen the luminosity
and comoving distance is:

dL = d(1 + z). (1.48)

Writing the flux in term of its luminosity and the comoving distance, we obtain
then:

F =
L

4πd2(1 + z)2
. (1.49)
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Equation (1.49) clearly shows that the flux from distant sources is reduced by
a factor (1 + z)2 with respect to what we wuold receive in a static Universe.
Luminosity distance has a key role to draw information about the geometry of
the Universe and the expansion rate.
To conclude this list of definitions we consider the case in which we are looking
at extended objects. We can then compute their distance through a comparison
between their proper size, l, and their apparent angular size, θ. The ratio between
these two quantities is called angular diameter distance :

dA =
l

θ
, (1.50)

The relation between dA and the comoving distance is:

dA =
d

(1 + z)
. (1.51)
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Cosmological perturbations: radiation

and matter anisotropies

Here we briefly review the basis of theory we will use in the next chapters,
that are instead dedicated to the two projects we present in this thesis. The first
two sections of the present chapter focus on the origin of the Cosmic Microwave
Background (CMB) anisotropies in temperature and polarization. The study of
CMB anisotropy pattern on large scales is the focus of the project I will present
in Chapter 3. The last section, instead, regards the origin and evolution of Large
Scale Structure in the linear theory. The computation of the linear matter power
spectrum is the starting point for the development of the halo model used to
investigate the clustering properties of dusty galaxies and Sunyaev Zeldovich
clusters, which will be usefull for the analysis I will present in Chapter 4. This
chapter is mainly based on [24], but more specific references are provided in the
corresponding section.

2.1 The radiation field: Cosmic Microwave Back-
ground

The CMB has been a key observable in our understanding of the Universe.
Discovered in the ′60 [1], this radiation has a primordial origin and offers a view on
the Universe when it was almost 380 kyr old. At that time Universe was filled by
a hot plasma of protons and electrons and radiation interacted with free electrons
through Thomson scattering. As the Universe expanded, it cooled enough to
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allow for the formation of hydrogen athoms in a process called Recombination. At
this point radiation and baryons decoupled and photons started travelling freely
through the Universe. Due to the high rate of scattering before Recombination,
photons and baryons were in thermal equilibrium, as it is proved by the specific
intensity of the CMB phothons today which shows a blackbody spectrum:

Iν =
4π}ν3/c2

exp(2π}ν/kbT )− 1
, (2.1)

where } = h/2π, h is the Planck constant and kb is the Boltzmann constant. As
the last scattering surface is located at z ∼ 1100, photons temperature decreased
due to the expansion of the Universe, as ρrad ∝ T 4 ∝ a−4, and it is now around
2.7K. According to the Wien’s law, this temperature implies that the peak of
the intensity distribution is now in the microwaves:

λpeakT = const→ λ ≈ 2mm. (2.2)

As predicted by the Standard Model [29], observations showed that the spatial
distribution of CMB photons is isotropic and homogeneus at zero order, but, if
we increase the resolution of our observations [30], [31], [32], we find a pattern of
small anisotropies around the smooth backgroud. In order to study this pattern
of perturbations we need the Boltzmann equation, a tool able to describe the
distribution of photons in the moment of Recombination, when the cosmic fliud
momentarily came out from a condition of equilibrium [33], [34].

2.1.1 Boltzmann equation for photons

The Boltzmann equation relates the distribution function of the particles of a
fluid to the collisional term, that accounts for the interactions of that particles:

df
dt

= Ĉ(f). (2.3)

Here d represents the total derivative of the distribution of the particles, which
is function of their position and velocity f = f(~x, v), while C represents the
collisional term. In order to compute the Boltzmann equation for photons we
should at first specify the form of the metric, which has to take into account of
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small perturbations around the background:

g00(~x, t) = −1− 2Ψ(~x, t), (2.4a)

g0i(~x, t) = 0, (2.4b)

gij(~x, t) = a2δij(1 + 2Φ(~x, t)). (2.4c)

The functions Ψ and Φ account for small deviations from the FLRW metric. In
their absence we recover a homogeneus, expanding universe, simply described
by the time dependent scale factor a(t). Using this perturbed metric we can
compute the Liouville term (left side of the Boltzmann equation) for photons:

df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
− p∂f

∂p

[
H +

∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
, (2.5)

where p̂i is the angular direction vector of the momentum. Here the first two
terms on the right are related to the standard hydrodynamics and their integrals
represent respectively the continuity and Euler equations. The third term includes
the Hubble expansion rate and describes the photon energy loss during expansion.
The last two terms are related to the potential and describe the effect of photons
escaping from over/underdense regions. To proceed we need to specify the form
of f(~x, t), which is a Bose-Einstein distribution:

f(~x, p, p̂, t) =

[
exp

(
p

T (t)[1 + Θ(~x, p̂, t)]

)]−1

. (2.6)

Here Θ = δT/T is the perturbation around the zero-order temperature, which,
differently from T , depends not only on time but also on momentum and position.
As we consider small perturbations, we can expand equation (2.6) at the first
order and we get:

f ' 1

ep/T − 1
+

(
∂

∂T

[
exp

( p
T

)
− 1
])

TΘ

= f 0 − p∂f
(0)

∂p
Θ,

(2.7)

where we used T∂f (0)/∂T = −p∂f (0)/∂p and, in the last equality of equation
(2.7), we set:

f (0) ≡
[
exp

( p
T

)
− 1
]−1

. (2.8)
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Inserting equation (2.7) into (2.5), we obtain the final expression for the Liouville
term in the case of radiation. At first order we get:

df

dt

∣∣∣
first order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
. (2.9)

We need now to compute the collissional term C. The process we want to describe
is Compton scattering:

γ(~p) + e−(~q)⇔ γ(~p′) + e−(~q′). (2.10)

The collisional operator for this process is:

C[f(p)] =
(2π)4

p

∫
d3q

(2π)32E(q)

∫
d3q′

(2π)32E(q′)∫
d3p′

(2π)32E(p′)
|M|2(δ3(~p+ ~q − ~p′ − ~q′)

δ[E(p) + Ee(q)− E(p′)− Ee(q′)][fe(~q′)f(~p′)− fe(~q)f(~p)],

(2.11)

where the amplitude of the Thomson scattering process is:

|M|2 = 6πσTm
2
e(1 + p̂ · p̂′). (2.12)

Inserting equation (2.7) into (2.11) and doing some math we can get the final
expression for the collisional operator:

C(f(~p)) = −p∂f
(0)

∂p
neσT [Θ0 −Θ(p̂) + p̂ · v̄b], (2.13)

where ne is the electron number density, σT is the Thomson scattering cross
section and vb the peculiar velocity of the cosmic fluid. Here we have also
introduced the quantity Θ0 which is defined as:

Θ0(~x, t) ≡ 1

4π

∫
dΩ′Θ(p̂′, ~x, t) (2.14)

and represents the monopole of the distribution. Collecting together the right
and left side of the Boltzmann equation we obtain:[

∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
= neσT [Θ0 −Θ + p̂ · ~vb]. (2.15)
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Perturbations in the radiation field are small, so, if we Fourier transform all the
variables in equation (2.15), we obtain a set of decoupled equations in which
every Fourier mode evolves independently. The Fourier convention chosen is:

Θ(~x, η) =

∫
d3k

(2π)3
ei
~k·~xΘ̃(~k, η), (2.16)

where η = dt
a(t)

is the conformal time. Using the conformal time as time coordinate
and writing the Boltzmann equation in Fourier space, we obtain:

˙̃Θ + ikµΘ̃− ˙̃Φ + ikµΨ̃ = −τ̇
[
Θ̃0 − Θ̃ + µṽb

]
. (2.17)

Here µ ≡ k̂ · p̂ is the angle between the wavenumber and the photon direction
and τ is the optical depth defined as:

τ(η) ≡
∫ η0

η

dη′neσTa. (2.18)

Equation (2.17) allows to understand how perturbations manifest themselves
in the radiation distribution. The evolution of these perturbations gives the
pattern of anisotropies we see today in the CMB. The evolution of perturbations
followed two distinct phases, temporally separated by the advent of the matter-
radiation decoupling. Before Recombination photons were coupled trought
Compton scattering to baryons and the two components acted as a single fluid.
After Recombination photons were free from interactions with matter and ’free-
streamed’ to us. The decoupling of photons from matter prevented them following
the collapse of matter perturbations due to gravity: their perturbation remained
always small so that it is possible to deal with them through linear theory.

2.1.2 Anisotropies

2.1.2.1 Large scale anisotropies

Combining Boltzmann with Einstein equation and considering the initial
conditions given by Inflation, we find the equation for the observed large scale
anisotropy:

(Θ0 + Ψ)(k, η?) =
1

3
Ψ(k, η?) = −1

6
δ(η?) (2.19)

On the left side of the equation we don’t have only the monopole of the per-
turbation but also the gravitational potential Ψ. This happens because the
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photons we see today had to travel out of the potential they were in at the time
of Recombination. Emerging from the potential wells caused a decrease of energy,
so that the temperature we observe now is that at Recombination, Θ0, plus Ψ.
The last equality on the right is obtained from the relation between the density
perturbation and the gravitational potential, given by the Einstein equations.
This equality shows that the observed anisotropy of an overdense region is going
to be negative. Even if photons in denser regions were hotter at Recombination,
the loss of energy employed in escaping the potential wells more than compensate
for their higher initial temperature. It means that a cold spot in the sky today
corresponds to an overdense region at the decoupling.

2.1.2.2 Small scale anisotropies

Before Recombination photons and baryons were tightly coupled through
Compton scattering and the mean free path of the photons was much smaller than
the horizon of the Universe. In this regime the perturbations had an oscillatory
behaviour due to the competition between gravity, which drives the collapse of
the perturbation, and the radiation pressure, which tends to push the photons
out of the potential wells. Moreover it can be shown that, due to the short free
mean path of photons, only the monopole and the dipole of the perturbation
give visible effects: we are in the so called fluid approximation. The solution to
the Boltzmann equation for the monopole and the dipole of the radiation fluid,
in the case of tight coupling with baryons, are:

Θ0(η) + Φ(η) = [Θ0(0) + Φ(0)] cos(krs)

+
k√
3

∫ η

0

dη′[Φ(η′)−Ψ(η′)] sin[k(rs(η)− rs(η′))],
(2.20)

Θ1(η) =
1√
3

[Θ0(0) + Φ(0)] sin(krs)

− k

3

∫ η

0

dη′[Φ(η′)−Ψ(η′)] cos[k(rs(η)− rs(η′))].
(2.21)

Here the factor
√

3 represents the sound speed of the relativistic fluid, generically
denoted as cs, while rs is the sound horizon, defined as:

rs(η) ≡
∫ η

0

dη′cs(η
′). (2.22)

Let us first focus on equation (2.20): if we consider the limit in which the term
multiplied by the cosine dominates, we have an expression for the frequency of

− 30 −



COSMOLOGICAL PERTURBATIONS: RADIATION AND
MATTER ANISOTROPIES

the oscillations and we can compute the location of the acoustic peaks:

kp = nπ/rs n = 1, 2, ... (2.23)

Equation (2.21) instead gives the solution for the dipole of the perturbation
and it is obtained differentiating equation (2.20). The first term is out of phase
with respect to the behaviour of the monopole and this will have important
implications on the power spectra. The oscillatory behaviour of the perturbations
is affected by the diffusion of photons which tends to damp the anisotropies. The
process is called diffusion damping [35] and it is characterized by a small but
non-negligible quadrupole moment, that has to be combined to the equation of
the monopole and dipole. The damping process affects anisotropies on a scale
of 1/kD ∼ [η/neσTa]1/2, where ne is the electron density and σT , the Thomson
scattering cross section.

2.1.2.3 Free streaming

After Recombination photons free streamed toward us. In order to understand
how the monopole and dipole of the perturbations at the decoupling have evolved
in the photons moments today, Θ`(η0), we have to go back to the Boltzmann
equation for photons, see equation (2.15). We can rewrite it as:

Θ̇ + (ikµ− τ̇)Θ = e−ikµη+τ d

dη
[Θeikµη−τ ] = S̃, (2.24)

where S̃ is the source function, defined as:

S̃ ≡ +Φ̇− ikµΨ− τ̇ [Θ0 + µvb]. (2.25)

Integrating equation (2.24) between a time before Recombination, which we can
assume to be zero with respect to the present epoch, ηini ≈ 0, and the conformal
time today, η0, we obtain:

Θ(k, µ, η0) = Θ(k, µ, ηini)e
ikµ(ηini−η0)e−τ(ηini) +

∫ η0

ηini

dηS̃(η)eikµ(η−η0)−τ(η). (2.26)

With the assumption that the Universe was completely opaque at early times,
τ(ηini)→∞, while it is transparent now, τ(η0) ≡ 0, we get:

Θ(k, µ, η0) =

∫ η0

0

dηS̃(k, µ, η)eikµ(η−η0)−τ(η). (2.27)
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In order to turn equation (2.27) into an expression for each of the Θ`, we want
to rewrite the equation without the µ dependence. We start by multiplying each
side by the Legendre polynomial P`(µ) and integrate over µ. On the right side
we will have: ∫ 1

−1

dµ

2
P`(µ)eikµ(η−η0) =

1

(−i)`
j`[k(η − η0)], (2.28)

where j` is the spherical Bessel function. After this operation we still have a µ
dependence, hidden in the source term. In order to account for this, we performe
a variable change:

µ→ 1

ik

d

dη
. (2.29)

The source term becomes:

S̃(k, η) ' g(η)[Θ0(k, η) + Ψ(k, η)] +
d

dη

(
ivb(k, η)g(η)

k

)
+ e−τ [Ψ̇(k, η)− Φ̇(k, η)].

(2.30)
Here g(η) is the visibility function defined as:

g(η) ≡ −τ̇ e−τ . (2.31)

This function can be interpreted as a probability density, indeed
∫ η0

0
dηg(η) = 1.

It is the probability for a photon to have the last scatter at the conformal time η.
Using the new shape of the source term, equation (2.27) becomes:

Θ(k, η0) =

∫ η0

0

dηS̃(k, η)j`[k(η − η0)]. (2.32)

Rewriting this equation in a more explicit form we obtain:

Θ`(k, η0) =

∫ η0

0

dηg(η)[Θ0(k, η) + Ψ(k, η)]j`[k(η − η0)]

−
∫ η0

0

dηg(η)

(
ivb(k, η)

k

)
d

dη
j`[k(η − η0)]∫ η0

0

dηe−τ [Ψ̇(k, η)− Φ̇(k, η)]j`[k(η − η0)].

(2.33)

To perform the integrals we make the assumption that the visibility function
is tightly peaked around the time of the Recombination. In fact τ was high
in the epochs before last scattering and the exponential e−τ brought g to zero.
After recombination τ̇ dropped, bringing again the visibility function to zero.
Considering the visibility function as a Dirac Delta peacked around η = η? and
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using vb(ν?) = −3iΘ1(η?), equation (2.33) becomes:

Θ`(k, η0) ' [Θ0(k, η?) + Ψ(k, η?)]j`[k(η0 − η?)]

+ 3Θ1(k, η?)

(
j`−1[k(η0 − η)]− (`+ 1)j`−1[k(η0 − η)]

k(η0 − η)]

)
+

∫ η0

0

dηe−τ [Ψ̇(k, η)− Φ̇(k, η)]j`[k(η0 − η)].

(2.34)

Equation (2.34) shows that the anisotropy we see today is given mainly from
three contributions: the first term is related to an effective temperature given
by the monopole of the perturbation plus a the gravitational contribution. It
is called Sachs-Wolfe effect: if the region we observe was denser at the time
of Recombination, we will see a cold spot in the distribution of photons today.
The second term is a Doppler effect, given by the peculiar motion of the cosmic
fluid at the epoch of Recombination. Inside regions with a positive velocity
in our direction, photons had a slight higher frequency: they will seem hotter
with respect to those coming from regions with negative peculiar velocity at last
scattering. The third term is weighted for e−τ , so it contributes to the anisotropy
only after Recombination, when τ . 1. This term, which survives only if the
gravitational potential evolves, is called Integrated Sachs-Wolfe effect and it is
subdominant with respect the other two terms. To understand the impact that a
perturbation with wavenumber k has on an angular scale `−1, let’s consider a
perturbation on small angular scale:

lim
`→∞

j`(x) =
1

`

(x
`

)`−1/2

. (2.35)

In this case the spherical Bessel funtion is small for x < `. The perturbation
Θ`(k, η0) is close to zero for ` > kη0 i.e. small angular scales anisotropies receive
a very little contribution from large wavelenght perturbations. In the same
way, large scales are poorly affected by perturbations with small wavelenght.
To conclude, a perturbation with wavenumber k contributes mainly on angular
scales of the order of ` ∼ kη0.

2.1.2.4 The CMB temperature power spectrum today

When looking at the sky, observers tipically make ’maps’, in which anisotropies
show up as ’hot or cold spots in the sky’. This is because we observe the CMB
at coordinates (x0, η0), so our description of the anisotropy is entirely based on
the direction of the incoming photons. In other words, we receive photons which
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follow a black body spectral distribution, but, depending on the observation
direction, these black bodies are characterized by slightly different temperatures.
We can then write the CMB temperature field as:

T (~x, p̂, η) = T (η)[1 + Θ(~x, p̂, η)]. (2.36)

The anisotropy Θ(~x, p̂, η) can be expanded in terms of spherical harmonics:

Θ(~x, p̂, η) =
∞∑
`=1

∑̀
m=−`

a`m(~x, η)Y`m(p̂). (2.37)

The spherical harmonics, Y`,m, represent a complete set of eigenfunctions for the
expansion on the sphere and all the information contained in the temperature
field T is also contained in the weights a`,m. We can now invert equation (2.37)
by multiplying both side by Y ?

`,m(p̂) and exploiting the orthogonality of spherical
harmonics:

a`,m(~x, η) =

∫
d3k

(2π)3
ei
~k·~x
∫
dΩY ?

`,m(p̂)Θ(~k, p̂, η). (2.38)

The theory doesn’t predict a specific value for the a`,m but just their distribution.
If we assume the inflationary scenario, we expect a random field of quantum
perturbations: the coefficients of the anisotropy expansion are drawn from a
gaussian distribution. The mean of the a`,m is zero but they have some nonzero
variance, called C`:

〈a`,m〉 = 0, 〈a`,ma?`,m〉 = δ`,`′δm,m′C`. (2.39)

When we measure the a`,m we are sampling the distribution from which they are
drawn. In this notation the index ` represents the angular scale we are looking
at, while m represents all the possible configurations of the anisotropy that we
can observe at that scale: for this reason m = l− 1, ..., l+ 1. For a given ` we will
sample the distribution 2`+ 1 times and thus there is an unavoidable uncertainty
in the knowledge of the C`. It is the sample variance, called in this case cosmic
variance : (

∆C`
C`

)
=

√
2

2`+ 1
. (2.40)

Through equation (2.38) we can relate the anisotropy directly to the C`s. In order
to take the expectation value of the a`,ms we need to compute the expectation

− 34 −



COSMOLOGICAL PERTURBATIONS: RADIATION AND
MATTER ANISOTROPIES

value of the anisotropy:

〈Θ(~k, p̂)Θ?(~k′, p̂′)〉 = 〈δ(~k)δ?(~k′)〉Θ(~k, p̂)

δ(~k)

Θ?(~k′, p̂)

δ?(~k′)
, (2.41)

where we have factorized the initial perturbation generated by Inflation, δ, and
the evolution of the perturbation when entering the horizon,

(
Θ
δ

)
. The first factor

on the right is the primordial power spectrum :

〈δ(~k)δ?(~k′)〉 = (2π)3δ3(~k − ~k′)P (k). (2.42)

Expanding the anisotropy in spherical harmonics:

Θ(k, k̂ · p̂) =
∑
`

(−i)`(2`+ 1)P`(k̂ · p̂)Θ`(k), (2.43)

and inserting equation (2.42) in (2.41) we find:

C` =

∫
d3k

(2π)3
P (k)

∑
`′,`′′

(−i)`′(i)`′′(2`′ + 1)(2`′′ + 1)
Θ`′(k)Θ?

`′′(k)

|δ(k)|2

×
∫
dΩP`′(k̂ · p̂)Y ?

`,m(p̂)

∫
dΩ′P`′′(k̂ · p̂′)Y`,m(p̂′).

(2.44)

Using the properties of spherical harmonics [36] and of Legendre polynomials we
get the final relation between anisotropy and power spectrum:

C` =
2

π

∫ ∞
0

dkk2P (k)

∣∣∣∣Θ`(k)

δ(k)

∣∣∣∣2 . (2.45)

2.1.2.5 Sachs-Wolfe plateau: large scales

Large scales were out of the horizon at Recombination. In this case only the
monopole contributes to the anisotropy, which is determined by the "effective
temperature" Θ0 + Ψ at the decoupling. We start from equation (2.19) and
consider that Recombination occours in a matter dominated Universe: the
potential can be written as the potential today modulo the growth factor. We
have then:

Θ0(η?) + Ψ(η?) '
1

3D1(a = 1)
Ψ(η0) = − 1

3D1(a = 1)
Φ(η0). (2.46)
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The quantity D1 is the growth factor, which describes the evolution of matter
perturbations with time and, in equation (2.46), is computed at redshift zero.
The second equality is valid at late time, when we consider Φ = −Ψ. If we write
the potential in terms of the dark matter perturbation, the previous equation
becomes:

Θ0(η?) + Ψ(η?) ' −
ΩmH

2
0

2k2D1(a = 1)
δ(η0). (2.47)

The expression for the effective temperature in equation (2.47) can be plugged
in the monopole term of equation (2.34) in order to obtain the value of the
anisotropy. Once we have computed Θ`, we use equation (2.45) to get the C`:

CSW
` ' πH1−n

0

(
Ωm

D1(a = 1)

)2

δ2
H

∫ ∞
0

dk

k2−n j
2
` [k(η0 − η?)] (2.48)

The superscript SW stands for Sachs-Wolfe [37], the people who first derived
the equation for the large scales effect. Starting from equation (2.48) and doing
some math we obtain:

`(`+ 1)CSW
` =

π

2

(
Ωm

D1(a = 1)

)
δ2
H . (2.49)

At large scales, which means low `s, we expect a plateau when plotting `(`+1)CSW
`

as function of the multipoles. Small deviations from the flat shape are due to
the residual effect of the dipole and, most of all, to the Integrated Sachs-Wolfe
effect, which gains importance as dark energy becomes dominant.

2.1.2.6 Acoustic peaks: small scales

When studying the small-scale anisotropy spectrum, we must consider not
only the effect of the monopole but also the dipole and the Integrated Sachs-
Wolfe effect. The monopole at Recombination Θ0 + Ψ(k, η?) contains most of
the structure of the final anisotropy spectrum. Using equation (2.35) we have
seen that, when the monopole free stream to us, it generates an anisotropy on
angular scales ` ∼ kη0. Going more in details, it can be shown that the peak of
the spherical Bessel function is at slightly lower values than kη0. In addition,
the position of the peak in k-space is at values lower than πη0/rs. Considering
these two corrections the position of the peak results at `p ' 0.75πη0/rs, with
a shift towards larger scales with respect to the behaviour of the monopole at
Recombination. The second relevant feature is that the ’zeroes’ are smoothed:
this is due to the fact that the value of a particular C` is determined not only
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by the mode k = `/η0, but also by many other modes with wavenumber greater
than k, whose contribution turn the zero point into a trough. The second block
of equation (2.34) represents the dipole of the perturbation. Adding this term to
the final spectrum raises the overall anisotropy level and in particular fills the
troughs: an effect originated from the shift in phase between the monopole and
the dipole. The last contribution to consider is that of the ISW effect, which
is related to potential changes and affects in particular the scale of the horizon.
One of its manifestations is called early integrated Sachs-Wolfe effect and is due
to the residual radiation at the epoch of Recombination, when Universe isn’t
purely matter-dominated yet. It can be seen as a boost of the first acoustic peak
in the anisotropy power spectrum.

2.1.2.7 Cosmological parameters

The anisotropy power spectrum depends on cosmological parameters. This
makes it a fundamental probe for precision cosmology. The parameters affecting
the position and separation of the peaks are several and often present strong
degeneracies. To describe the ΛCDM model and to fit it to CMB data we need
to choose six of these parameters and take care to reduce the degeneracy [38].
In Planck 2018 [39] the baseline parameters are the amplitude of primordial
perturbations, the spectral index of primordial scalar perturbations, the baryon
and matter density, the optical depth and the angular size of the sound horizon.
The first two parameters are related to the shape of the power spectrum of
primordial scalar perturbations, defined as:

P (k) = As(k?)

(
k

k?

)ns−1

, (2.50)

where k? is a pivoting scale and it is fixed to k? = 0.05Mpc−1 in Planck analysis.
In the following list we enter a bit the details of the Planck baseline parameters.
Scalar amplitude, As: affects the magnitude of the primordial perturbations and
hence shifts the CMB spectrum up and down;
Spectral index of primordial scalar perturbations, ns: represents the tilt of the
scalar perturbations and indeed it tilts the CMB spectrum, see [21], [19]. The
condition ns = 1 implies that the `(`+ 1)C` has equal power on all scales, while
for ns > 1(ns < 1) it has more power on small (large) scales;
Barion density : variations in baryon density, ωbh2, affect the heights of the peaks.
Here h = H0/(100kms−1Mpc−1) is the reduced Hubble constant. The presence
of baryons increases the deepness of the peaks adding extra force to the potential
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wells of dark matter (baryon loading) and breaks the symmetry between even
and odd peaks.
Matter density : the matter content of the Universe, ωmh2, determines the matter-
radiation equality and therefore which scales enter the horizon before or after
this transition and how they evolve. Lowering the matter density shifts matter-
radiation equality to later times, i.e. closer to Recombination. In this situation
radiation density must be taken into account in the formation of the inhomo-
geneities at the decoupling. The decay of the potential due to the photon pressure
provides a strong driving force for the oscillations. Moreover, since the potential is
no more constant, there is a higher contribution of the early-ISW, which increases
the large scale anisotropies.
Optical depth, τ : it is related to Reionization. The hot radiation produced by the
born of stars is supposed to reionize Universe at a redshift around z ∼ 6. This
casues an increase of the optical depth towards the last scattering surface. The
scales which has entered the horizon before Reionization are suppressed by a
factor e−τ due to the re-scattering of the photons.
Acoustic scale, θ?: changing this parameter has the effect of horizontally shifting
the acoustic peaks. It is defined as θ? ≡ r?/DA, where r? is the comoving sound
horizon at Recombination and DA is the comoving angular diameter distance.
The presence of the angular diameter distance involves another parameter that
has not been mentioned yet: curvature. If Universe was open rather than flat, the
geodesics of photons starting from the last scattering surface wuoldn’t be parallel
but slowly diverge. This cause the first peak to be moved at a smaller angular
scale than in a flat universe, i.e. to a larger `. Indeed, if in a flat Universe the
angular diameter distance is simply η0 − η?, in a open Universe it turns to be:

DA =
a

H0

√
|Ωk|

sin
(√
−ΩkH0χ

)
(2.51)

where χ is the comoving distance. In addition to these parameters we should
also consider the effect of the dark energy density parameter, ΩΛ, which becomes
dominant at reshift z ∼ 0.3. It introduces a late Integrated Sachs-Wolfe effect, as
the gravitational potential stops being time independent. This leads to a boost
of the power of the low−` modes of CMB power spectrum.

2.1.3 CMB Polarization

The Compton scattering that CMB photons underwent at the epoch of
Recombination is expected to generate polarization. The electric and magnetic
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fields of a photon propagating in the x-direction oscillate in the y-z plane, i.e.
tranverse to the direction of propagation. If the intensity along the two transverse
directions is equal, then the light is unpolarized. Suppose that this photon scatter
off an electron and gets deflected into the z direction: none of the intensity
along the z-axis gets transmitted. As opposite, all of the intensity along the
y-axis is transmitted. The resulting radiation is polarized along the y-axis. In
this configuration Compton scattering can be considered a good mechanism
to produce polarization. Unfortunately, in the early Universe every electron
interacted with several photons coming from different directions. In the case
of isotropic radiation all contributions from different photons are cancelled and
the resulting radiation is still unpolarized: we need some sort of anisotropy to
produce a net effect of polarization for CMB radiation. Polarization can be
described as an headless vector, with a lenght corresponding to its magnitude
and the orientation on the axis along which the intensity is gratest. In the plane
perpendicular to the direction of propagation, we can decompose the intensity
into:

Ii,j =

(
T +Q U

U T −Q

)
,

where T is the temperature while Q and U are the Stokes parameters. In principle
we could include also the fourth Stokes parameter, V, which describes the circular
polarization, but Compton scattering only produces linear polarization so we
can set V = 0. To make quantitative predictions for the polarizations of CMB
photons we have to consider a situation before Recombination, in which many
electrons are coupled to an evolving photons distribution. We have then to write
the Boltzmann equation for the polarization anisotropy, ΘP , and then relate it
to the Stokes parameters Q and U. We start from:

Θ̇P + ikµΘP = −τ̇
[
−ΘP +

1

2
(1− P2(µ)) Π

]
, (2.52)

Π = Θ2 + ΘP2 + ΘP0, (2.53)

where µ ≡ k̂ · n̂, Θ2 is the quadrupole of the temperature field and ΘP0, ΘP2

are the monopole and the quadrupole of the polarization field respectively. In
analogy to the temperature case the solution of equation (2.24) is:

ΘP (n̂, ~k) =

∫ η0

0

dηei
~k·n̂(η−η0)−τ(η)SP (k, µ, η), (2.54)
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where the source term is:

SP (k, µ, η) = −3

4
τ̇(1− µ2)Π. (2.55)

Equation (2.54) can be re-written introducing the visibility function g(η) = −τ̇ e−τ
and writing explicitly the source term:

ΘP (n̂, ~k) =
3

4
(1− µ2)

∫ η0

0

dηei
~k·n̂(η−η0)g(η)Π(k, η). (2.56)

Evaluating the integrand at the time of decoupling, where the visibility function
integrates to unity, we find:

ΘP (n̂, ~k) ' 3Π(k, η?)

4
(1− µ2)ei

~k·n̂(η?−η0). (2.57)

To get the moments ΘP`, we neglect η? with respect to η0, multiply both side of
the equation (2.57) by P`(µ) and integrate over all µ:

Θ`P (k) ' 3Π(k, η?)

4

`2

(kη0)2
j`(kη0). (2.58)

In tight coupled limit the term Π can be expressed in term of the quadrupole,
which is in turn related to the dipole. As Π = 5Θ2/2, equation (2.58) becomes:

Θ`P (k) ' 15Θ2(k, η?)

8

`2

(kη0)2
j`(kη0). (2.59)

In the tightly coupled limit the quadrupole is proportional to the dipole and we
obtain:

Θ`P (k) ' 5kΘ1(k, η?)

6τ̇(η?)

`2

(kη0)2
j`(kη0). (2.60)

From equation (2.59) it is clear that polarization arises in presence of the a
quadrupole moment. As in tight coupled limit the quadrupole is suppressed
in Compton scattering, we expect polarization signal to be lower than the
temperature power spectum. This suppression is of a factor k/τ̇ , as emerges
from equation (2.60). Moreover, from the fact that polarization anisotropy is
proportional to the dipole, we expect it to be out of phase with respect to the
monopole, i.e. to the temperature spectum. To conclude we notice that there is
no analogous of the Integrated Sachs-Wolfe effect: changings in the gravitational
potential has no effect on polarization anisotropies field.
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2.1.3.1 CMB Polarization power spectra

To link the anisotropy computed in equation (2.59) to the polarization power
spectrum that we observe today, we expand also the polarization perturbations
in spherical harmonics, see [40], [15]. Doing this we must keep into account for
the fact that polarization is a tensor. While temperature is invariant under a
right handed rotation in the plane perpendicular to the direction n̂, Q and U
trasform under rotation as:

Q′ = Q cos 2ψ + U sin 2ψ, (2.61)

U ′ = −Q sin 2ψ + U cos 2ψ, (2.62)

where ψ is the rotation angle, ê′1 = cosψê1 + sinψê2 and ê′2 = − sinψê1 + cosψê2.
Using the Q and U Stokes parameters we can then write two quantities that have
a definite value of the spin:

(Q± iU)′(n̂) = e∓2iψ(Q± iU)(n̂). (2.63)

If we expand these two quantities in the spin-weighted basis, we obtain:

(Q+ iU)(n̂) =
∑
`m

a2,`m2Y`m(n̂), (2.64)

(Q− iU)(n̂) =
∑
`m

a−2,`m−2Y`m(n̂), (2.65)

where Q and U are defined at a given direction n with respect to the spherical
coordinate system (êθ, êφ). When computing the power spectrum of polarization
we must take care to the fact that the Stokes parameters are not invariant under
rotations in the plane perpendicular to n. Equation (2.59) is the expression for
the polarization moments from a single plane wave, but in the real Universe
the anisotropy is given by the superposition of many waves. Then, in order
to compute the power spectrum, for each wavevector k and direction on the
sky n̂, one should rotate the Q and U parameters from the k and n̂ basis into
a fixed basis on the sky. To avoid this issue one can use the spin raising and
lowering operator to obtain spin zero quantities, which have the advatage to be
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rotationally invariant. These operators are defined as:

ðsf(θ, φ) = − sins(θ)

[
∂

∂θ
+ i csc(θ)

∂

∂φ

]
sin−s(θ)sf(θ, φ), (2.66)

ð̄sf(θ, φ) = − sin−s(θ)

[
∂

∂θ
− i csc(θ)

∂

∂φ

]
sins(θ)sf(θ, φ) (2.67)

and have the property of raising or lowering the spin-weight of the spin-s function,
(ðsf)′ = e−i(s+1)ψðsf , (ð̄sf)′ = e−i(s−1)ψð̄sf . Using these operators one can
express the quantity sY`m in terms of the spin zeros spherical harmonics Y`m:

sY`m =

[
(`− s)!
(`+ s)!

] 1
2

ðsY`m 0 ≤ s ≤ `, (2.68)

sY`m =

[
(`+ s)!

(`− s)!

] 1
2

(−1)sð̄−sY`m − ` ≤ s ≤ 0. (2.69)

Applying these operators to the polarization field we obtain then:

ð̄2(Q+ iU)(n̂) =
∑
`m

[
(`+ 2)!

(`− 2)!

] 1
2

a2,`mY`m(n̂), (2.70)

ð2(Q− iU)(n̂) =
∑
`m

[
(`+ 2)!

(`− 2)!

] 1
2

a−2,`mY`m(n̂). (2.71)

The expression for the expansion coefficients are:

a2,`m =

∫
dΩ2Y

?
`,m(n̂)(Q+ iU)(n̂)

=

[
(`+ 2)!

(`− 2)!

]− 1
2
∫
dΩY ?

`,m(n̂)ð2(Q+ iU)(n̂),

(2.72)

a−2,`m =

∫
dΩ−2Y

?
`,m(n̂)(Q− iU)(n̂)

=

[
(`+ 2)!

(`− 2)!

]− 1
2
∫
dΩY ?

`,m(n̂)ð2(Q− iU)(n̂).

(2.73)

We can also replace a−2,`m and a2,`m with their linear combination:

aE,`m = −(a2,`m + a−2,`m)/2, (2.74)

aB,`m = i(a2,`m − a−2,`m)/2. (2.75)
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The E and B modes behave differently under parity transformations: while E
remains unchanged, B changes sign. As B shows an opposite parity with respect
to E, the EB cross correlation vanishes and, to characterize the polarization
perturbations, we just need the E and B autospectra. These power spectra can
be defined as rotationally invariant quantities:

CEE
` =

1

2`+ 1

∑
m

〈a?E,`maE,`m〉, (2.76)

CBB
` =

1

2`+ 1

∑
m

〈a?B,`maB,`m〉, (2.77)

in terms of which,

〈a?E,`′m′aE,`m〉 = CEE
` δ`′`δm′m, (2.78)

〈a?B,`′m′aB,`m〉 = CBB
` δ`′`δm′m. (2.79)

We are interested in relating the power spectrum to the perturbation computed in
equation (2.59). The power spectrum is generated by the superposition of many
Fouries modes characterized by a vawevector k. For a given Fourier mode we
choose a coordinate system where k||ẑ and (ê1, ê2) = (êθ, êφ). As the symmetry
is azimutal, only Q Stokes parameter is generated. Its amplitude only depends
on the angle between the photon direction and the wavevector, µ = n̂ · k̂. For a
single mode we have U = 0 and Q = ΘP (n̂, ~k), where the perturbation ΘP (n̂, ~k)

is given by equation (2.56). We have then that ð̄2(Q + iU) = ð2(Q − iU), so
that 2a`m = −2a`m: scalar modes contribute only to the E combination while B
vanishes. Applying the spin raising operator twice on the integral solution for
the polarization anisotropy, we obtain an expression for the perturbation of the
E modes:

ΘE(η0, k, µ) = −3

4

∫ η0

0

dηg(η)Π(k, η)∂2
µ[(1− µ2)2eixµ]

=
3

4

∫ η0

0

dηg(η)Π(k, η)(1 + ∂2
x)

2(x2eixµ),

(2.80)

− 43 −



The radiation field: Cosmic Microwave Background

where µ = ~k · n̂ and x = k(η − η0). To obtain the polarization spectrum today
we use the equation (2.76) for the C` and integrate over all the Fourier modes:

CEE
` =

1

2`+ 1

(`− 2)!

(`+ 2)!

×
∫
d3kPφ(k)

∑
m

∣∣∣∣34
∫
dΩY ?

`m(n̂)

∫ η0

0

dηg(η)Π(k, η)(1 + ∂2
x)

2(x2eixµ)

∣∣∣∣2
= (4π)2 (`− 2)!

(`+ 2)!

∫
k2dkPφ(k)

[
3

4

∫ η0

0

dηg(η)Π(k, η)
j`(x)

x2

]2

,

(2.81)

where Pφ(k) is the initial power spectrum. If we consider:

Θ
(S)
E` (k) =

√
(`− 2)!

(`+ 2)!

3

4

∫ η0

0

dηg(η)Π(k, η)
j`(x)

x2
, (2.82)

we obtain the final equation for the E modes power spectrum, originated by
scalar perturbations:

CEE
` = (4π)2

∫
k2dkPφ(k)[Θ

(S)
E` (k)]2. (2.83)

2.1.3.2 Power spectrum from tensor perturbations

Until now we have focused on scalar perturbations. In this paragraph, instead,
we will briefly describe the contribution to the power spectra given by tensor modes
of perturbation, both for temperature and polarization. Tensor perturbations are
able to produce B-modes, but their contribution is subdominant with respect to
the scalar one and their detection is still an active field of research. In the following
analysis we will employ some mathematical tools we have already seen when
dealing with the Stokes parameters to obtain rotationally invariant quantities.
Let’s start saying that gravity has two independent polarizations, usually denoted
with × and +. It is convenient to work with two linear combinations:

ξ1 = (ξ+ − iξ×)/
√

2, (2.84)

ξ2 = (ξ+ + iξ×)/
√

2, (2.85)
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with ξ1 and ξ2 independent random variables with the following statistical
properties:

〈ξ1?(k1)ξ1(k2)〉 = 〈ξ2?(k1)ξ2(k2)〉 =
Ph(k)

2
δ(k1 − k2), 〈ξ1?(k1)ξ2(k2)〉 = 0.

(2.86)
The perturbations generated by tensor modes, i.e. gravity waves, satisfy the
following Boltzmann equations:

˙̃Θ
(T )
T + ikµΘ̃

(T )
T = −ḣ− τ̇ [Θ̃

(T )
T −K], (2.87)

˙̃Θ
(T )
P + ikµΘ̃

(T )
P = −τ̇ [Θ̃

(T )
P +K], (2.88)

K ≡
[

1

10
Θ̃

(T )
T0

+
1

7
Θ̃

(T )
T2

+
3

70
Θ̃

(T )
T4
− 3

5
Θ̃

(T )
P0

+
6

7
Θ̃

(T )
P2
− 3

70
Θ̃

(T )
P4

]
. (2.89)

The term ḣ, in equation 2.87, is the derivative of the tensor perturbation of the
metric with respect to the conformal time. If we choose the coordinate frame
where k̂||ẑ and (e1, e2) = (eθ, eφ) the tensor perturbations pattern is related to
Θ̃

(T )
T and Θ̃

(T )
P as:

Θ
(T )
T (η, n̂, k) = [(1− µ2)e2iφξ1(k) + (1− µ2)e−2iφξ2(k)]

× Θ̃
(T )
T (η, µ, k),

(2.90)

(Θ
(T )
Q + iΘ

(T )
U )(η, n̂, k) = [(1− µ)2e2iφξ1(k) + (1 + µ)2e−2iφξ2(k)]

× Θ̃
(T )
P (η, µ, k),

(2.91)

(Θ
(T )
Q − iΘ

(T )
U )(η, n̂, k) = [(1 + µ)2e2iφξ1(k) + (1− µ2)e−2iφξ2(k)]

× Θ̃
(T )
P (η, µ, k).

(2.92)

In order to obtain the pattern of anisotropies today we have to integrate along
the line of sight:

Θ
(T )
T (η0, n̂, k) = [(1− µ2)e2iφξ1(k) + (1− µ2)e−2iφξ2(k)]

×
∫ η0

0

dηeixµS
(T )
T (k, η),

(2.93)

(Θ
(T )
Q + iΘ

(T )
U )(η0, n̂, k) = [(1− µ)2e2iφξ1(k) + ((1 + µ)2e−2iφξ2(k)]

×
∫ η0

0

dηeixµS
(T )
P (k, η),

(2.94)
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(Θ
(T )
Q − iΘ

(T )
U )(η0, n̂, k) = [(1 + µ)2e2iφξ1(k) + (1− µ)2e−2iφξ2(k)]

×
∫ η0

0

dηeixµS
(T )
P (k, η),

(2.95)

where

S
(T )
T (k, η) = −ḣe−τ + gK, (2.96)

S
(T )
P (k, η) = −gK. (2.97)

We act twice with the raising and lowering spin operators both on ξ1 and ξ2

and we obtain the expression for the anisotropy for the rotationally invariant
quantities Θ

(T )
T , Θ

(E)
T and Θ

(B)
T . As anticipated, it emerges here that, in the case

of tensor perturbations, also B-modes are generated:

Θ
(T )
T (η0, n̂, k) = [(1− µ2)e2iφξ1(k) + (1− µ2)e−2iφξ2(k)]

∫ η0

0

dηeixµS
(T )
T (k, η),

(2.98)

Θ
(T )
E (η0, n̂, k) = [(1− µ2)e2iφξ1(k) + (1− µ2)e−2iφξ2(k)]Ê

∫ η0

0

dηeixµS
(T )
P (k, η),

(2.99)

Θ
(T )
B (η0, n̂, k) = [(1− µ2)e2iφξ1(k)− (1− µ2)e−2iφξ2(k)]B̂

∫ η0

0

dηeixµS
(T )
P (k, η),

(2.100)

where we have introduced two new operators: Ê(x) = −12 + x2[1− ∂2
x]− 8x∂x

and B̂(x) = 8x+ 2x2∂x. We can then compute the three auto spectra:

C
(T )
T` =

4π

2`+ 1

∫
k2dkPh(k)

∑
m

∣∣∣∣∫ dΩY ?
`m(n̂)

∫ η0

0

dηS
(T )
T (k, η)(1− µ2)e2iφeixµ

∣∣∣∣2
= (4π)2 (`+ 2)!

(`− 2)!

∫
k2dkPh(k)

∣∣∣∣∫ η0

0

dηS
(T )
T (k, η)

j`(x)

x2

∣∣∣∣2 ,
(2.101)

C
(T )
E` = (4π)2

∫
k2dkPh(k)

∣∣∣∣∫ η0

0

dηS
(T )
P (k, η)Ê(x)

j`(x)

x2

∣∣∣∣2 , (2.102)

C
(T )
B` = (4π)2

∫
k2dkPh(k)

∣∣∣∣∫ η0

0

dηS
(T )
P (k, η)B̂(x)

j`(x)

x2

∣∣∣∣2 . (2.103)
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Applying the Ê and B̂ operators we obtain:

C
(T )
X` = (4π)2

∫
k2dkPh(k)[Θ

(T )
X` (k)]2, (2.104)

where X = T,E,B. The quantities Θ
(T )
T` and Θ

(T )
E,B` are given by:

Θ
(T )
T` =

√
(`+ 2)!

(`− 2)!

∫ η0

0

dηS
(T )
T (k, η)

j`(x)

x2
, (2.105)

Θ
(T )
E,B` =

∫ η0

0

dηS
(T )
E,B(k, η)j`(x). (2.106)

Temperature source term is given in equation (2.96), while those of the polariza-
tion modes can be written as:

S
(T )
E (k, η) = g

(
K − K̈

k2
+

2K

x2
− K̇

kx

)
− ġ

(
2K̇

k2
+

4K

kx

)
− 2g̈

K

k2
, (2.107)

S
(T )
B (k, η) = g

(
4K

x
+

2K̇

k

)
+ 2ġ

K

k
. (2.108)

To conclude this section it is worth to note that, until now, we have neglected a
fundamental fact: the CMB anisotropy pattern we observe today is not actually
the distribution emerged from the last scattering surface. CMB photons interact
at some degree with the matter distribution while travelling from Recombination
to the present epoch and these interactions cause distortions of the anisotropies
field. These distortions are called secondary anisotropies and will be extensively
discussed in the following sections. We just mention now one of them, which will
not be investigated later on: gravitational lensing. CMB photons are deflected
from their original path due to the presence of mass between the last scattering
surface and us. This effect is well predicted by the General Relativity and makes
lensing a fundamental tracer of the distribution of matter on large scales. For
what concern the effect of the lensing deflection on the CMB power spectrum,
it changes depending on the observable considered: in the case of temperature
lensing does not generate any additional power, but rather redistributes it from
large scales to smaller ones. The impact on E-modes is similar and it shows
up as a smoothing of the acoustic peaks and trought of the power spectrum.
For what regards the B-modes, instead, the effect is more important: lensing
causes an increase of power due the generation of spurious B-modes from the
distortion of primordial E-modes. This means that, in the presence of lensing,
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we will observe B-modes even if no primordial signal is present [41]. Figure 2.1,
adapted from [42], shows the temperature, E-mode, lensing B-mode and TE
power spectra. Different colours correspond to different experiments, while the
dashed line shows the best-fit ΛCDM model.

Figure 2.1: The upper panel shows temperature, E-mode and lensing
B-mode polarization power spectra, while the lower panel shows the

cross-correlation spectrum between T and E. Different colours correspond to
different experiments, while the dashed line shows the best-fit ΛCDM model
to the Planck temperature, polarization, and lensing data. This figure is

adapted from [42].

2.2 Large Scale Structure

2.2.1 Boltzmann equation for cold dark matter

In the next chapter we will describe how the CMB power spectra, analysed in
details in the previous section, is contamined, on small scale, by the interaction
with the Large Scale Structure (LSS) [43]. In order to understand how matter
is distributed in the Universe, how it clusters and forms structure, we need to
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study the evolution of dark matter perturbations. We use again the Boltzmann
equation formalism, which can be applied to any component of the Universe.
Dark matter distribution differs from that of photons as it does not interact with
the other constituens of the Universe and, therefore, we don’t have to deal with
a collisional term. Moreover, it is a ’cold’ component, which means that it is
non-relativistic: the energy contribution is given not only by the momentum,
as in the photon case, but also by the rest mass. The collsionless Boltzmann
equation for non-relativistic matter is:

∂fdm
∂t

+
p̂i

a

p

E

∂fdm
∂xi

− ∂fdm
∂E

[
da/dt

a

p2

E
+
p2

E

∂Φ

∂t
+
p̂ip

a

∂Ψ

∂xi

]
= 0, (2.109)

where the term p/E is called velocity and E ≡
√
p2 +m2. To compute the first

two moments of dark matter particle distribution we do not need to specify a
distribution function, as in the case of the Bose-Eistein for photons: we directly
take the moments of equation (2.109). In order to obtain the zero order moment
we multiply both sides of equation (2.109) by the phase space volume d3p/(2π)3

and integrate. After some calculation we obtain:

∂ndm
∂t

+
1

a

∂(ndmv
i)

∂xi
+ 3

[
da/dt

a
+
∂Φ

∂t

]
ndm = 0, (2.110)

having defined the dark matter density:

ndm ≡
∫

d3p

(2π)3
fdm, (2.111)

and velocity:

vi ≡ 1

ndm

∫
d3p

(2π)3
fdm

pp̂i

E
. (2.112)

The first two terms represent the standard continuity equation of a fluid, while
the last term arises due to the perturbation of the FLRW metric. From this
equation we can get the evolution of the density background:

∂n
(0)
dm

∂t
+ 3n

(0)
dm

da/dt

a
= 0 → n

(0)
dm ∝ a−3, (2.113)

where we have neglected the terms including velocity and Φ (which are first order)
and considered only the zero order part of the density. To obtain the first order
of this equation we must retain all the term of equation (2.110) and consider first
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order perturbations of the density:

ndm = n
(0)
dm[1 + δ(~x, t)], (2.114)

where the first order piece is n(0)
dmδ = n

(0)
dmδρ/ρ. Considering only the first-order

part of equation (2.110) and dividing by n(0)
dm we obtain:

∂δ

∂t
+

1

a

∂vi

∂xi
+ 3

∂Φ

∂t
= 0. (2.115)

In equation (2.110) we have two variables, the density perturbation δ and the
velocity. To solve for these variables we need another equation, which we obtain
taking the first moment of equation (2.109). We multiply the Boltzmann equation
for dark matter by d3p/(2π)3(p/E)p̂j and integrate. After some computation we
get:

∂(ndmv
j)

∂t
+ 4

da/dt

a
(ndmv

j) +
ndm
a

∂Ψ

∂xj
= 0. (2.116)

This equation has no zero-order part, as all terms are multiplied by first order
terms, velocity or Ψ. Thus we can consider only the density background, setting
ndm → n

(0)
dm, and use n(0)

dm ∝ a−3. We arrive at:

∂vj

∂t
+
da/dt

a
vj +

1

a

∂Ψ

∂xj
= 0 (2.117)

In order to obtain the final expression for the density and velocity we write
equations (2.115) and (2.117) in terms of the conformal time η and operate a
Fourier tranform. Assuming ṽi = (ki/k)ṽ the density equation becomes:

˙̃δ + ikṽ + 3 ˙̃Φ = 0, (2.118)

and the velocity one:
˙̃v +

ȧ

a
ṽ + ikΦ̃ = 0. (2.119)

In this analysis we have neglected all terms of second order in (p/E), which
are those connected to the higher moments of the distributions. This choice is
giustified by the fact that dark matter is cold and the only relevant moments are
the first two.
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2.2.2 Boltzmann equation for baryons

Ordinary matter occupies the cosmic structures generated by dark matter
perturbations. Its emission contaminates the CMB power spectrum and will
be extensively described in the next chapter. In order to undestand how this
contamination is generated, we need to complete the picture of the cosmological
components and describe the Boltzmann equation also for baryons. In Cosmo-
logical language the term baryon refers both to protons and electrons which are
coupled through Coulomb scattering. Moreover electrons interacts with photons
via Compton scattering. As electrons and protons are tightly coupled their
overdensity can be set to a common value, δb. The same is valid for the velocity,
where we consider ~ve = ~vp ≡ ~vb. To derive equations for δb and vb we start from
the unintegrated Boltzmann equations for electrons and protons:

dfe(~x, ~q, t)

dt
= 〈cep〉QQ′q′ + 〈ceγ〉pp′q′ , (2.120)

dfp(~x, ~Q, t)

dt
= 〈cep〉qq′Q′ . (2.121)

We don’t need the explicit form of the collisional term. We just provide some
details of the notation appearing in equations (2.120) and (2.121): the simbol ′

denote the momentum emerging from the scattering. The momentum of photons,
electrons and protons are denoted respectively with ~p, ~q and ~Q. To conclude,
the brackets indicates the integration over all momentum in the subscripts. It
is worth to note that we neglected protons Compton scattering, whose cross
section is negligible with respect to that of electrons for the same process. To
derive an equation for δb we start from (2.120), multiply both sides by the phase
space volume d3q/(2π)3 and integrate. When we perform the integral on the
terms on the right, they vanish. This is due to the fact that the processes we
are considering conserve the electron number density: they do not contribute
to dn/dt, as the total number of electron produced, for example by Compton
scattering, is also lost in the same process. At the end we are left with an equation
for baryon density perturbations which is identical to the one of dark matter:

˙̃δb + ikṽb + 3 ˙̃Φ = 0, (2.122)

where the subscript b indicates the quantities related to the baryons distribution.
To obtain the equation for the velocity we need the first moment of Boltzmann
equation. First we multiply the unintegrated equations by ~q (or ~Q for protons)
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and integrate. Then we add together equations (2.120) and (2.121) obtaining:

mp
∂(nbv

j
b)

∂t
+ 4

da/dt

a
mpnbv

j
b +

mpnb
a

∂Ψ

∂xi
= 〈cep(qj +Qj)〉QQ′qq′ + 〈ceγqj〉pp′q′q.

(2.123)
The first integral on the right vanishes, for the conservation of the momentum,
and we are left only with Compton scattering. Dividing both side by ρb = mpn

(0)
b

we are left with:

∂vjb
∂t

+
da/dt

a
vjb +

1

a

∂Ψ

∂xj
=

1

ρb
〈ceγqj〉pp′q′q. (2.124)

We can write explicitly the collisional term, having already Fourier transformed
it:

〈ceγ~q〉pp′q′q = −〈ceγ~p〉pp′q′q

=
neσT
ρb

∫
d3p

2π2
p4∂f

(0)

∂p

∫ 1

−1

dµ

2
µ[Θ̃0 − Θ̃(µ) + ṽbµ],

(2.125)

where the first equality is given by the conservation of the total momentum ~q+ ~p.
We integrate and obtain the final equation for the baryons velocity:

˙̃vb +
ȧ

a
ṽb + ikΨ̃ = τ̇

4ργ
3ρb

[
3iΘ̃1 + ṽb

]
. (2.126)

2.2.3 Evolution of dark matter perturbations

The seeds of the formation of the LSS reside in the primordial gravitational
instability. Matter tends to accumulate in initially overdense regions, whose
growth is regulated by the competition between gravity and thermal pressure:
while the first grabs more matter into the potential wells, random thermal motions
cause a loss of mass from the overdense regions. As this balancing of forces takes
place within the horizon, the described scenario predicts that perturbations grow
differently outside or inside it. Moreover, the effect of pressure on the evolution of
the perturbations depends on the component that dominates the energy content
of the Universe at the moment in which a specific mode crosses the horizon. For
this reason, we expect a different behaviour of modes that underwent the horizon
crossing before or after the epoch of Equality, when the radiation dominated
Universe became matter dominated. The perturbations growth is driven by the
shape of the potential at different epochs. Our observations are limited to the
distribution of matter at late epochs, so we need to relate the potential today to
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the primordial potential. We write:

Φ(~k, a) = Φp(~k)× [Transfer Function(k)]× [Growth Function(a)] , (2.127)

where Φp is the primordial potential, given by Inflation. The transfer function
describes the evolution of perturbations through the epoch of horizon crossing,
in the case it happened before or soon after the matter-radiation equality. The
growth factor describes the evolution of the potential at late times in a fully
matter dominated Universe. Conventionally the transfer function is normalized
to the value of the potential at late times, in order to be equal to the unity at
present epoch, when the evolution of the potential is driven by the growth factor.
The transfer function is then defined as:

T (k) ≡ Φ(k, alate)

ΦLarge−scale(k, alate)
. (2.128)

The quantity alate denotes an epoch well after the time of equality and ΦLarge−scale

is the potential at such epoch, observed in large scale modes, which are those
that enter the horizon at late times. Also the growth factor, D1, includes a
normalization: it is defined as the potential in a epoch after the transfer function
regime, Φ(a), divided by the potential in a flat matter-dominated scenario,
Φ(alate):

Φ(a)

Φ(alate)
≡ D1(a)

a
(a > alate). (2.129)

The potential Φ can be related to the matter overdensity today through the
Poisson’s equation:

Φ =
4πGρma

2δ

k2
(a > alate). (2.130)

Considering the background matter density ρm = Ωmρc/a
3 and the first Fried-

mann’s equation 4πGρc = (3/2)H2
0 we can rewrite equation (2.130) as:

δ(~k, a) =
k2Φ(~k, a)a

(3/2)ΩmH2
0

(a > alate). (2.131)

We write equation (2.127) expliciting the large scales normalization, that will be
described more in detail in the next section:

Φ(~k, a) =
9

10
Φp(~k)T (k)

D1(a)

a
(a > alate). (2.132)
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Plugging equation (2.132) into (2.131), we obtain a new expression for the matter
overdensity:

δ(~k, a) =
3

5

k2

ΩmH2
0

Φp(~k)T (k)D1(a) (a > alate). (2.133)

As Φp is the inflationary potential, it is drawn from a gaussian distribution, whose
variance is the the primodial power spectrum, PΦ. As we have already seen in
equation (1.33), the inflationary power spectrum can written as:

PΦ =

(
50π2

9k3

)(
k

H0

)n−1

δ2
H

(
Ωm

D1(a = 1)

)2

, (2.134)

where δH represents a primordial field of perturbations. Using (2.134) we can
obtain the equation for the matter spectrum at late times:

P (k, a) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D1(a)

D1(a = 1)

)2

(a > alate). (2.135)

Equation (2.135) shows that, having the potential, we can compute the overdensity
and its power spectrum, which can be compared to the observations of LSS today.
We might also use the adimensional definition of the power spectrum:

∆2(k) ≡ k3P (k)

2π2
. (2.136)

Small ∆ corresponds to small inhomogeneities, while large ∆ indicates that the
evolutions of perturbations has entered in the non-linear regime and equation
(2.135) is no longer a good description of matter power spectrum. The linear
power spectrum is shown in figure 2.2. To understand its shape we need to know
the transfer function and the growth factor to plug in equation(2.127): their
computation will be the focus of the next two sections.
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Figure 2.2: Matter power spectrum computed with CAMB at redshift zero.
The turnover corresponds to the scale that enters the horizon at epoch of
Equality. Scales smaller than this were inside the horizon during radiation
domination and their evolution have been suppressed by the competition

between gravity and radiation pressure.

2.2.4 Transfer function

The evolution of the dark matter overdensity can be obtained from a set of
Boltzmann equations for the five variables Θ0,Θ1, δ, v,Φ:

Θ̇r,0 + kΘr,1 = −Φ̇, (2.137)

Θ̇r,1 −
k

3
Θr,0 = −k

3
Φ, (2.138)

δ̇ + ikv = −3Φ̇, (2.139)

v̇ +
ȧ

a
v = ikΦ, (2.140)

k2Φ + 3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2[ρdmδ + 4ρrΘr,0]. (2.141)

The first two equations give the evolution of the monopole and dipole of the
radiation perturbation. We need only the first two moments as, before Recombi-
nation, the tight coulping between radiation and baryons suppressed all other
moments. After Recombination, instead, potential is fully dominated by matter
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and we can neglect the effect of radiation. The last equation is the time-time
component of Einstein equation and is needed to constrain the gravitational
potential. A solution to this set of equations, valid for every mode, can be
computed numerically. For our purpose it is enough to sketch the solution for Φ

and δ in four example cases:

• super-horizon waves: solving the set of Boltzmann equations in the case of
very large modes, which reside outside the horizon, we obtain the following
expression for the potential:

Φ =
Φ(0)

10

1

y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
, (2.142)

where:
y ≡ a

aeq
=
ρdm
ρr

. (2.143)

At large y, once Universe has become matter-dominated, the y3 term in the
brackets dominates, so that Φ→ (9/10)Φ(0). This means that the potential
drops by a factor 1/10 when Universe passes from radiation domination
to matter domination, even if the mode hasn’t entered the horizon. The
factor 9/10 is exactly the one used to normalize the transfer function to
the large scales value, see equation (2.132).

• horizon-crossing waves during matter domination: the set of equations
needed to solve for the potential in this case are three, as the radiation
equations can be safely neglected. Combining the last three equations in
(2.141), we obtain that the potential for modes entering the horizon in the
matter dominated era is constant. Considering the large scale normalization,
the transfer function results equal to unity for all modes of scale:

k � keq = 0.073Mpc−1Ωmh
2. (2.144)

• horizon-crossing waves before equality: during the radiation era matter is a
subdominant component, and its perturbations simply follow the radiation-
driven potential. To find a solution for the gravitational potential we use
the radiation equations combined with the Einstein equation (first, second
and last line in (2.141)). After some math one can find that:

Φ = 3Φp

(
sin
(
kη/
√

3
)
− (kη/

√
3) cos (kη/

√
3)

(kη/
√

3)3

)
, (2.145)
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where Φp is the inflationary potential. Equation (2.145) tells that, if the
horizon crossing happens during the radiation dominated era, the potential
starts to decay. After the decay it starts oscillating, but the amplitudes
of the oscillations decreases with the second power of the conformal time
Φ ∼ Θ0/η

2. What happens is that, as the radiation perturbations oscillate
in time rather than growing, the potential simply decays for the cosmological
diluition of the background density. During this phase of the cosmic history,
the density perturbation (which can be derived from line three and four of
(2.141), using potential of equation (2.145)) can be written as:

δ(k, η) = AΦp ln(B) + AΦp ln(kη), (2.146)

where A and B are two constants. The solution is then the sum of a constant
plus a logarithmic term. Despite the potential decaying, equation (2.146)
says that the perturbations experience a growth, even if suppressed with
respect to the matter dominated case.

• horizon-crossing waves soon after equality: in this epoch Universe isn’t still
fully matter dominated and there is more radiation than matter. Despite
of this, radiation perturbations do not grow, due to pressure, while matter
perturbations do. At some points dark matter overdensities become larger
than those of radiation and start to evolve together with the potential,
insensitive to the radiation effects. The matter perturbations evolution is
regulated by the Meszaros equation:

δ′′ +
2 + 3y

2y(y + 1)
δ′ − 3

2y(y + 1)
δ = 0, (2.147)

where y is defined as in equation (2.143) and the upperscript ′ denotes the
derivative with respect to y. The solution to equation (2.147) is given by:

δ(k, y) = C1D1(y) + C2D2(y) y � yH , (2.148)

where yH is the scale factor at the time of the horizon entering divided by
the scale factor at equality. The C1 and C2 constants are determined in
order to match the logarthmic solution of the previous case. The solution
for δ(k, y) is now given by the sum of a linearly growing mode, D1 = y+3/2,
and a decaying mode, D2 ∝ y−3/2.

In order to determine the evolution of matter perturbation at all scales we need
to turn the matter overdensity into an expression for the transfer function. On
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large scales we already know that the value of the transfer function is normalized
to unity. Consequently, we just need and expression for T (k) in the small scale
case. The transfer funtion is determined by the behaviour of δ well after the
equality, when only the growing mode affect the evolution of perturbations. The
perturbation can be written as:

δ(~k, a) =
3AΦp(~k)

2
ln

[
4Be−3aeq

aH

]
D1(a) a� aeq, (2.149)

where we use the relation between the perturbation and the potential given by
equation (2.130). The factors A and B originate from the continuity condition
imposed to the coefficient of the growing mode, in order to match the solution
before equality. Replacing the left side of equation (2.133) with the expression
for δ in (2.149), we obtain the transfer function on small scales:

T (k) =
12k2

eq

k2
ln

[
k

8keq

]
k � keq, (2.150)

where we have defined keq ≡ aeqH(aeq). This analytical solution is in good
agreement with more complex fitting function, modelled in order to better spline
the small and large scales behaviour. For our model we will use the CAMB [44] or
in alternative the Eisenstein and Hu [45] fitting functions. A complete expression
for the transfer function includes also the effect of baryons. They represent only
the 4% of the energy content of the Universe, so their effect on the matter transfer
function is small. The presence of baryons causes a smoothing of the peaks on
small scales: their coupling with photons before Recombination prevents them to
contribute to the collapse of matter perturbations, which results to be smaller
with respect to the case in which all matter is dark. Their tight coupling with
photons is still visible as small oscillations of the matter power spectrum, located
around k ' 0.1hMpc−1, which are the imprints of the oscillatory behaviour of
the photon−baryon fluid before Decoupling.

2.2.5 Growth factor

At redshift z . 10 all scales within the horizon evolve identically, as the modes
smoothing due to radiation pressure is now negligible. The transfer function
tends to unity and the evolution of the matter perturbatins starts to be driven by
the growth factor. In order to correctly derive it we have to modify the Meszaros
equation to keep into account the contribution of dark energy at very late times.
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Figure 2.3: Non normalized Eisenstein and Hu fitting function computed
through the HaloMod code [46]

The equation for the perturbations becomes:

δ′′ + ikv

(
d(aHy)−1

dy
− 1

aHy2

)
=

3ΩmH
2
0

2y3a2H2aeq
δ. (2.151)

We are looking for a growing mode, of the order of δ/H, as those modes survive
long within the horizon. We find:

D1(a) ∝ H(a)

∫
da′

(a′H(a′))3
. (2.152)

The proportionality constant is fixed to match the solution for the growth factor
when matter still dominates. At that epoch D1 = a and H = H0Ω

1/2
m a−3/2 so the

final expression for the growth factor is:

D1(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (2.153)

If the Universe was flat and matter dominated, the growth factor wuold be simply
equal to the scale factor. The presence of dark energy instead suppresses the
growth at late times. The conclusion is that, in a Universe dominated by the
cosmological constant, the cosmic structures develop earlier in time, while at
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later times their evolution is suppressed.
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3
Lack-of-correlation anomaly in CMB

large scale polarisation maps

In this chapter it is reported the first project carried out during my Ph.D.
It focuses on CMB large scales, where we have investigated one of the so-called
CMB temperature anomalies by looking for its polarization counterpart.
As we have extensively discussed in the previous chapters, the CMB is one of
the most important cosmological observables and has greatly contributed to
the success of the standard ΛCDM model. Nonetheless, anomalous features
exist in the large-angle CMB anisotropy pattern which are in tension with the
predictions of ΛCDM. Their statistical significance is assessed at the 2 − 3σ

level depending on the particular estimator chosen. Several CMB anomalies
exist [47]. In the following we will focus on the lack-of-correlation anomaly, which
consists of a suppression in the CMB two-point correlation function at large
angular scales with respect to the best-fit ΛCDM model [48–52]. This anomaly
is directly connected to the so-called CMB lack-of-power anomaly, for which the
lack of correlation shows up as a reduction of anisotropy power at large angular
scales [53–57] and to others as well [58–61].

Two independent experiments, WMAP and Planck [62–65], agree well on
these deviations, therefore limiting (but not completely excluding) the possibility
of an instrumental origin. An alternative astrophysical explanation of these
anomalies is the possible presence of residuals of Galactic emission. However,
this explanation seems unlikely given that foreground cleaning at large angular
scales is usually performed on maps and an imperfect subtraction would normally
result into an increase rather than a decrease of power1. A pragmatic approach

1A possible exception is the presence of chance correlations between foreground and the
CMB which appears also unlikely.



is therefore to consider the CMB anomalies as correctly measured features in the
CMB temperature pattern and assess their statistical significance, e.g. correctly
including look-elsewhere effects [66].

If we accept the above point of view, then there are two possible explanations
for these features: either we live in a rare (yet not exceedingly rare) realisation
of a ΛCDM cosmology or we need a modification of ΛCDM to account for them.
Discriminating between these two hypotheses can only happen based on some
acceptable a posteriori probabilities to exceed. Unfortunately, the anomalies
show up at large angular scales where the temperature field is already cosmic
variance limited, so any additional data, while always useful for consistency tests,
are not going to boost statistical significance.

Improvements can however be expected by including the CMB polarisation
pattern, whose measurements are still far from reaching cosmic variance accu-
racy especially at large scales, where the systematic error budget is currently
non negligible2. In the study of CMB anomalies, several analyses that include
polarisation have been performed on the Planck legacy data [68], using various
estimators to quantify statistical significance jointly in temperature and polar-
ization. The most adopted estimator has been proposed in [69] and only uses
temperature to E-mode correlations (TE). It has been extended to incorporate
polarization auto-spectra EE and BB information in [70]. The latter is employed,
among others, by the Planck collaboration in their own analysis [68]. Other
estimators have been proposed: see for instance [71] where a one-dimensional
statistic involving TT, TE, EE angular power spectra is employed.

Incorporating polarization into a joint estimator calls for a choice. On
the one hand, it is desirable to test whether the polarization observations are
consistent with ΛCDM once the temperature observations are given. This can
be accomplished by using constrained realizations of the joint temperature and
polarization fields. On the other hand, it is also useful to test the significance of
anomalies in temperature and polarization leaving both fields free to fluctuate
within the ΛCDM predictions. This implies dealing with unconstrained (i.e. open)
realisations. For instance, authors in [69] work under the first assumption, while
the Planck collaboration [68] assumes the second.

In our work, we analysed the consequences of either assumptions. We employed
two datasets: the first one is based on the cross-spectra between Planck 100 and
143 GHz channels obtained with the SRoll2 processing [72] while the second is
based on the auto-spectra obtained combining the Planck 70 GHz channel with

2The power spectrum of Planck HFI 100×143 is cosmic variance dominated between ` = 3
and ` = 5; see figure 10 of [67].
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the Ka, Q and V bands of WMAP [73]. These two datasets cannot be easily
further combined because a proper combination should happen at map level (as it
has been done for Planck 70 GHz and WMAP) but the Planck 100 and 143 GHz
channels do not allow for this. Therefore we analysed the two datasets separately.
We stress that these datasets have never been employed in the context of CMB
anomalies before. This is an aspect where our analysis is entirely novel.

We focused on the lack of correlation anomaly in polarization by considering
the correlation functions CQQ and CUU , Q and U being the linear polarization
Stokes parameters. We considered also the CEE correlation function as proposed
in [70].

3.1 Datasets and methodology

We considered the most constraining large-scale polarization datasets currently
available, i.e. the cross-spectra between Planck 100 and 143 GHz channels [74]
as presented in [67, 72] (hereafter Planck HFI 100×143) and the auto-spectra
obtained combining the Planck 70 GHz channel [75] with the Ka, Q and V bands
of WMAP [76] as presented in [73] (hereafter Planck LFI+WMAP). Here we
briefly provide some general information useful to understand the procedure
followed in preparing the former datasets. All the maps contained in the two
datasets are mitigated from polarized Galactic foreground emissions (thermal dust
and synchrotron) through a template fitting procedure, see e.g., [77,78]. In the
Planck LFI+WMAP dataset the auto-spectra are computed from the CMB map,
built through an optimal weighting of the four foreground reduced input maps
(i.e. 70 GHz, Ka, Q and V). In temperature both datasets employ the Commander
Planck 2018 CMB solution smoothed trough a Gaussian kernel with FWHM
of 440 arcminutes and downgraded to a HEALpix3 Nside = 16 resolution [79,80].
The polarization maps are instead smoothed assuming a cosine window profile
as suggested in [81, 82], and re-pixelized to the same HEALpix resolution as
temperature. We selected a useful sky fraction of 50% of Planck HFI 100×143
and 54% for Planck LFI+WMAP as suggested respectively in [67] and in [73].
Note that, as detailed above, we have chosen to use the Planck HFI polarization
data in the form of cross-power spectra, as described in [67]. In order to be
consistent, we have adopted the same harmonic based approach also for the other
dataset considered.

3https://healpix.sourceforge.io/
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In order to estimate the angular power spectra from the CMB maps we
employed a Quadratic Maximum Likelihood (hereafter QML) method as presented
in [82–84]. For a given map x = (T, Q, U) the QML provides the estimated
auto angular power spectra as

ĈX
` =

∑
`′,X′

(F−1)X,X
′

``′

[
xtE`′

X′x− Tr(NE`′

X′)
]
, (3.1)

where X and X ′ are one of TT , EE, BB, TE, TB, EB and F ``′

X,X′ is the Fisher
information matrix defined as

F ``′

X,X′ =
1

2
Tr

[
C−1 ∂S

∂CX
`

C−1 ∂S
∂CX′

`

]
, (3.2)

with C ≡ S(C`) + N being the CMB signal (S) plus noise (N) covariance matrix
and C` a fiducial set of CMB angular power spectra. Finally, the E matrix in eq.
(3.1) is given by

E`
X =

1

2
C−1 ∂S

∂CX
`

C−1. (3.3)

Assuming uncorrelated noise between two maps xa and xb, eq. (3.1) can be
easily extended to cross-spectrum estimation which reads

ĈX
` =

∑
`′,X′

(F−1)X,X
′

``′ xtaE
`′

X′xb, (3.4)

having defined

F ``′

X,X′ =
1

2
Tr

[
C−1
a

∂S
∂CX

`

C−1
b

∂S
∂CX′

`

]
, (3.5)

E`
X =

1

2
C−1
a

∂S
∂CX

`

C−1
b , (3.6)

Ca = S(C`) + Na,

Cb = S(C`) + Nb.

For the two aforementioned datasets we also considered a set of 500 noise plus
residual systematics simulations described in the two dedicated papers [67,72].
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Figure 3.1: E-mode angular power spectrum DEE
` ≡ `(`+ 1)CEE

` /2π for
Planck HFI 100×143 GHz (left panel) and Planck LFI+WMAP (right panel).
The orange line is the data power spectrum while blue dots are the mean of
power spectra extracted from 250000 constrained maps. The error bars have
been computed as the standard deviation of the simulations. Note that the

range of values on the y-axis is the same for both panels.

3.2 Analysis

As discussed in the introduction of the chapter we used both constrained and
unconstrained simulations of the temperature and polarization fields. To build
the set of constrained realizations we followed the procedure described in [69]
and generated the polarized spherical harmonic coefficients, aE`m and aB`m, as

aE`m =
CTE
`

CTT
`

aTdata`m + ζ1

√
CEE
` − (CTE

` )2

CTT
`

,

aB`m = ζ2

√
CBB
` , (3.7)

where ζ1 and ζ2 are random Gaussian realizations with zero mean and unit
variance, CXX

` are the spectra corresponding to the Planck best fit ΛCDM model
and aTdata`m are extracted from the observed temperature map, assuming negligible
noise. When building maps from spherical harmonic coefficients, we applied the
same aforementioned window functions. Finally, we combined each of the 500
simulated CMB signal maps with all the 500 noise maps described in the previous
section, forming a set of 250000 signal plus noise (hereafter S+N) realizations. In
figure 3.1 we show the E-mode power spectra of the data maps compared with
mean and standard deviations of the corresponding spectra of our S+N Monte
Carlo. Both Planck HFI 100×143 and Planck LFI+WMAP spectra do not show
any evident outlier when compared to S+N simulations.
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Figure 3.2: Comparison of the integrated signal to noise ratio for the
Planck HFI 100×143 (grey dots) and Planck LFI+WMAP (orange dots)
dataset and for a sample of ideal simulations (green dashed line). Both

datasets show a plateau above `max ' 10, which is consequently chosen as
maximum multipole in the analysis. For Planck HFI 100×143 a rise in trend

is visible at `max > 20, due to the corresponding increase in the E-mode
signal. This effect can be safely ignored in our analysis.

We started computing the signal-to-noise ratio, S/N ,

S

N
=

√√√√`max∑
`=2

(
CEE
`

σ`

)2

, (3.8)

where CEE
` is a fiducial power spectrum, σ` is the standard deviation of the S+N

simulations and `max is the maximum multipole considered in the sum. In Figure
3.2 it is shown S/N as a function of `max for our two datasets and for a cosmic
variance limited full sky survey. As expected, Planck HFI 100×143 has a better
S/N ratio with respect to Planck LFI+WMAP for almost all the `max considered.
The only exception is the quadrupole, where the Planck HFI 100×143 variance
is dominated by residual dipole leakage (see [67,72] for details 4). Both datasets
considered show a plateau above `max ' 10 where the variance of the noise starts
dominating the total variance. This justifies our choice of `max = 10 as maximum
multipole in the following analysis.

4Figure 10 of [72], in particular, shows that, for the lowest multipoles, the dominant
contribution to the total uncertainty is the cosmic variance, except for the quadrupole, where a
still large amount of extra-variance noise is clearly visible.
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3.2.1 Estimators

We focused on an estimator originally suggested by the WMAP team, called
S1/2 [48]. The idea of this estimator is to measure the distance between the
correlation function and zero over a chosen range of angles [51]. We formally
define this estimator in the next subsection.

3.2.1.1 Temperature

As anticipated in the previous chapter CMB temperature fluctuations are
usually expanded in terms of scalar spherical harmonics:

∆T (n̂)

T0

≡ Θ(n̂) =
∑
`m

aT`mY`m(n̂) , (3.9)

and the covariance of the coefficients aT`m defines the anisotropy angular power
spectrum,

〈aT`maT?`′m′〉 = CTT
` δ``′δmm′ , (3.10)

standing the assumption of statistical isotropy and independence of the modes.
The angular power spectrum, CTT

` , and the two-point angular correlation function,
C(θ), are related by the following expression,

C(θ) ≡ 〈Θ (n̂1) Θ (n̂2)〉 =
1

4π

∞∑
`=0

(2`+ 1)CTT
` P` (cos(θ)) , (3.11)

where n̂1 · n̂2 = cos(θ) and P` are the Legendre Polynomials. The S1/2 statistic
in temperature, is defined as

STT1/2 ≡
∫ 1/2

−1

d(cos θ)[CTT (θ)]2 , (3.12)

and is used to quantify the lack of correlation at scales larger than 60◦. Substi-
tuting (3.11) into (3.12) we can rewrite the estimator in terms of the angular
power spectrum,

STT1/2 =
`max∑
`=2

`′max∑
`′=2

(2`+ 1)

4π

(2`′ + 1)

4π
CTT
` I``′C

TT
`′ , (3.13)
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where the matrix I``′ is defined as

I``′(x) ≡
∫ x

−1

P`(x′)P`′(x′)dx′, (3.14)

and evaluated at x = 1/2, with x = cos θ.
Before proceeding with the details of the polarization analysis, it is worth

underlining that the method just described presents some differences with the
pixel-based method applied in Ref. [68] on the Planck Commader temperature
map. In particular, in our work we have shown that the two-point correlation
functions built from harmonic or pixel-space data are equivalent only in the full
sky case. See Appendix 0.1.

3.2.1.2 Polarization

Linear polarization is a spin-2 quantity and can be described by the Stokes
parameters Q and U [85]. In analogy with T we can define the corresponding two-
point angular correlation function as CQQ(θ) = 〈Qr(n̂1)Qr(n̂2)〉 and CUU(θ) =

〈Ur(n̂1)Ur(n̂2)〉. The Stokes parameters appearing in the correlation functions are
defined with respect to a reference frame on the tangent plane with axes parallel
and perpendicular to the great arch connecting n̂1 and n̂2. As in [85] we choose
one point to be the north pole and the other on φ = 0 longitude. This choice
is denoted by the suffix r in the above definitions of the correlations functions,
which will be omitted for the rest of the chapter to simplify the notation. The
coordinate system is hence fixed and the correlation functions depend only on
the separation θ between n̂1 and n̂2. The definition of S1/2 in polarisation is
analogous to the temperature case,

SQQ,UU1/2 ≡
∫ 1/2

−1

d(cos θ)[CQQ,UU (θ)]2, (3.15)

but it is useful again to rewrite it in terms of the angular power spectrum. We
start writing the Q and U correlation funtions in terms of the CEE

` and CBB
`
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computed in (2.79):

CQQ(θ) = −
∑
`

2`+ 1

4π

(
2(`− 2)!

(`+ 2)!

)
[CEE

` G+
`2(cos(θ)) + CBB

` G−`2(cos(θ))],

(3.16a)

CUU(θ) = −
∑
`

2`+ 1

4π

(
2(`− 2)!

(`+ 2)!

)
[CBB

` G+
`2(cos(θ)) + CEE

` G−`2(cos(θ))],

(3.16b)

where

G+
`m(cos θ) = −

(
`−m2

sin2 θ
+
`(`+ 1)

2

)
Pm` (cos θ) + (`+m)

cos θ

sin2 θ
Pml−1(cos θ),

(3.17a)

G−`m(cos θ) =
m

sin2θ

(
(`− 1) cos(θ)Pm` (cos θ)− (`+m)Pml−1(cos θ)

)
, (3.17b)

being the Pm` (cos θ) the associated Legendre polynomials. Plugging eq. (3.16)
into (3.15) we obtain the following expression:

SQQ1/2 =
`max∑
`=2

`′max∑
`′=2

2`+ 1

8π

2`′ + 1

8π(
CEE
` I

(1)
``′ C

EE
`′ + CBB

` I
(3)
``′ C

BB
`′ + CEE

` I
(2)
``′ C

BB
`′ + CEE

` I
(4)
``′ C

BB
`′

)
, (3.18)

where we have followed the notation of [70]. For SUU1/2 matrices I(3)
``′ and I(1)

``′ are
swapped. More details on this calculation as well as the definition of the I(X)

``′

matrices are given in Appendix 0.2.

3.2.1.3 Two-point correlation functions for E- and B-modes

An alternative to Q and U is to express the polarization in terms of local E-
and B-modes. Their use has been suggested by [70] in the context of polarization
correlation functions to complement the information given by Q and U, as we
will show in the next section. The local correlation functions for E and B are
defined as:

CÊÊ(θ) = 〈Ê(n̂1)Ê(n̂2)〉, (3.19a)

CB̂B̂(θ) = 〈B̂(n̂1)B̂(n̂2)〉, (3.19b)
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where the B̂(n̂) and Ê(n̂) functions are expanded as:

Ê(n̂) =
∑
`,m

√
(`+ 2)!

(`− 2)!
aE`,mY`,m(n̂), (3.20a)

B̂(n̂) =
∑
`,m

√
(`+ 2)!

(`− 2)!
aB`,mY`,m(n̂). (3.20b)

The two-point angular correlation functions can be written in terms of the angular
power spectrum, in analogy with temperature:

CÊÊ(θ) =
∑
`

2`+ 1

4π

(`+ 2)!

(`− 2)!
CEE
` P`(cos θ), (3.21a)

CB̂B̂(θ) =
∑
`

2`+ 1

4π

(`+ 2)!

(`− 2)!
CBB
` P`(cos θ), (3.21b)

and the expressions for the estimators SEE1/2 and SBB1/2 are:

SXX1/2 =
`max∑
`=2

`′max∑
`′=2

2`+ 1

4π

(`+ 2)!

(`− 2)!

2`′ + 1

4π

(`′ + 2)!

(`′ − 2)!
CXX
` I`,`′C

XX
`′ , (3.22)

where X can be E or B and I``′ is the same kernel defined in eq. (3.14) above.

3.3 Results

In this section we present results obtained for the correlation functions and
for the distribution of the S1/2 estimators, for the Q, U and local E-modes fields.
For the sake of brevity, we only show plots for constrained simulations, while in
Table 3.1 we report the results for both the constrained and unconstrained case.
We start by discussing our results on the Q, U and local E-modes correlation
functions, which are needed to better highlight the specificity of the SQQ1/2 , S

UU
1/2

and SEE1/2 estimators.
We show in Fig. 3.3 and 3.4 the QQ and UU angular correlation functions

for both the Planck LFI+WMAP and Planck HFI 100×143 datasets, along
with mean values and confidence intervals derived from constrained simulations,
setting `max = 10. In Fig. 3.5 we show instead the correlation function for local

− 70 −



LACK-OF-CORRELATION ANOMALY IN CMB LARGE SCALE
POLARISATION MAPS

E-modes. Note that only in this latter case the different noise levels of the Planck
LFI+WMAP and Planck HFI 100×143 datasets clearly show up in the plots.
Such behaviour can be ascribed to the weights applied to each multipole when
computing the correlation functions out of power spectra. In order to further
clarify this aspect we show in Fig. 3.6 the geometrical weights of CEE

` in the
definition of Q and local E-modes correlation functions, see eq. (3.17a):

WQ(θ) =
∑
`

2`+ 1

4π

(
2(`− 2)!

(`+ 2)!

)
G+
`2(cos(θ)), (3.23a)

WÊ(θ) =
∑
`

2`+ 1

4π

(`+ 2)!

(`− 2)!
P`(cos θ) (3.23b)

Here G+
`2 is defined as in eq. (3.17a). Both quantities entering the definition of

the weights (i.e. the angle θ and the multipole `) are binned and the plots show
the total weight inside each bin. To highlight the contribution of the quadrupole
it is shown without applying any binning. Fig. 3.6 shows how the Q and U

correlation functions are dominated by very low multipoles, in particular by the
quadrupole, while the correlation function of local E-modes is more susceptible
to variations at high multipoles considered here. This has a clear impact on
the variance of the correlation function itself. If the Q correlation function is
computed only from the quadrupole, Planck LFI+WMAP is more sensitive than
Planck HFI 100×143 (see Fig. 3.7), being the latter dominated by residual dipole
leakage, as shown in Fig. 3.2. For all the higher multipoles, instead, Planck HFI
100×143 is clearly more constraining (see Fig. 3.8), partially, but not completely,
compensating the quadrupole behaviour. Analogous results can be obtained for
U Stokes field. The same multipole split for local E modes does not show the
same trend, as the variance of the correlation function remains substantially
unchanged if the quadrupole is excluded. E modes can be defined in terms of
the power spectrum directly as scalar quantities, see equation 19 of [70]. These
non-local E modes behave similarly to the Q and U correlation functions, as
also in this case the geometrical weights applied to the CEE

` mainly insist on the
lowest multipoles, especially the quadropule. For this reason we decided to omit
the non-local E modes case in the our work.

In figures 3.9, 3.10 and 3.11 we plot in light grey the distribution of the
S1/2 estimators for the Q and U fields respectively and for the local E modes,
as defined in eq. (3.18) and (3.22). The red line represents the value of the
estimators on data. In all figures the panel on the left refers to the Planck HFI
100×143 dataset and the one on the right to the Planck LFI+WMAP dataset.
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Figure 3.3: Two point angular QQ correlation function. The orange
dashed line represents data while the blue line is the mean of 250000

constrained simulations. The shaded region represents the 68% and 95% C.L..
The datasets employed are Planck HFI 100×143 on the left and Planck

LFI+WMAP on the right. The analysis has been performed up to ` = 10.
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Figure 3.4: As in Fig. 3.3 above but for the UU correlation function
instead of QQ.
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Figure 3.5: As in Fig. 3.3 above but for the two-point angular correlation
function built from E-modes.
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Figure 3.6: Absolute value of binned geometrical weights applyed to
CEE

` s entering in the definition of the Q Stokes parameter (left panel) and of
the local E-modes (on the right) correlation functions.
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Figure 3.7: Two point angular Q correlation function computed only with
the quadrupole contribution. The shaded region represents the 68% and 95%
C.L. The datasets employed are Planck HFI 100×143 on the left and Planck

LFI+WMAP on the right.
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Figure 3.8: Two point angular Q correlation function computed starting
from the octupole. The shaded region represents the 68% and 95% C.L. The

datasets employed are Planck HFI 100×143 on the left and Planck
LFI+WMAP on the right. The analysis has been performed up to `max = 10.
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Figure 3.9: Empirical distribution for S1/2 values from simulations (grey)
and data (red). The estimator has been computed on Q correlation function.
The maximum multipole used is `max = 10. The left panel is for Planck HFI

100×143 dataset and the right one for Planck LFI+WMAP .
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Figure 3.10: Same as in Figure 3.9 but for U .

Specifically, we computed the integrals in eq. (3.14) and (126), involved in the
computation of I``′ matrices, in the angular range 60◦ − 180◦, coherently with
previous analysis (see [48], [68]). We note that figure 3.5 shows that the expected
correlation function for local E modes in ΛCDM appears to be oscillating around
zero, a behaviour different from what we see in the temperature case. However
this does not forbid the use of the S1/2 estimator for local E-modes, which, of
course, still quantifies the distance of the correlation function from zero.

In Table 3.1 we report the value of S1/2 estimator on data for the analysed
datasets, both with and without the quadrupole contribution. We also show
the percentage of simulations having a value of S1/2 larger than data, the values
reported in brackets refer to the unconstrained simulations case. As previously
discussed, the local E modes estimator does not sizeably depend on the inclusion
of the quadrupole, differently from what happens for Q and U . As the Planck
HFI 100×143 dataset has a higher signal to noise ratio with respect to Planck
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Figure 3.11: Same as in Figure 3.9 but for E-modes.

Sdata1/2 S1/2 > Sdata1/2 S
data`>2

1/2 S`>2
1/2 > S

data`>2

1/2 [%]
[µK4] [%] [µK4] [%]

EE Planck HFI 100×143 1.25 99.5 (99.6) 1.30 99.5 (99.6)
EE Planck LFI+WMAP 82.4 71.6 (72.3) 82.7 71.5 (72.2)

105 × [µK4] [%] 105 × [µK4] [%]
QQ Planck HFI 100×143 9.57 19.6 (31.7) 0.85 48.8 (49.0)
UU Planck HFI 100×143 9.0 34.2 (41.8) 3.21 49.2 (53.3)
QQ Planck LFI+WMAP 5.14 39.4 (50.2) 3.33 25.5 (27.3)
UU Planck LFI+WMAP 1.35 95.0 (95.6) 2.25 75.2 (77.6)

Table 3.1: S1/2 measured on data (second column including the quadrupole
term and fourth column excluding the quadrupole term) and percentage of
simulations with value of the estimator larger than the one found on data

(third column including the quadrupole term and fifth column excluding the
quadrupole term). The values reported in parenthesis refer to unconstrained
simulations. The sensitivity associated to the percentage of simulations with

S1/2 higher than data is ∼ 0.2%.

LFI+WMAP, we rely on it to make an assessment on the significance of the
anomaly for E-modes. The value of the estimator on data is Sdata1/2 = 1.25 µk4

for Planck HFI 100×143, with a lower tail probability of 0.5%, which suggests a
low power in polarization data up to ` = 10. This result might appear surprising
at first, given that in Fig. 3.5 both the ΛCDM expectation for the correlation
function, as computed on simulations, and the one that is actually realized in the
data are consistent with zero. However, the S1/2 estimator actually depends on
the integral of the square of CEE(θ), which somehow quantifies the distance of
the correlation function from zero. We verified that actual (CEE(θ))2 computed
on data lies in the lower tail of the distribution reconstructed from simulations. In

− 75 −



Results

other words, the observed correlation function is much closer to zero (as measured
by S1/2) with respect to most simulations.

As previously noted, the correlation functions for Q and U change significantly
when the quadrupole is excluded from the analysis. The higher variance due to
residual dipole on the quadrupole in the Planck HFI 100×143 dataset suggests
to base our considerations on the Planck LFI+WMAP dataset. The trend of
the latter dataset seems to indicate that the contribution of ` = 2 increase the
power of the low multipoles in the data with respect to simulations. This effect is
highlighted by the decrease of the percentage of simulations with a value of Sdata1/2

higher than data when excluding the quadrupole from the analysis (compare III
and V columns in table 3.1 for the QQ case of Planck LFI+WMAP dataset).
This conclusion holds for both constrained and unconstrained simulations.

To further investigate the contribution of each multipole in determining the
relative power of data with respect to the empirical distributions, we computed the
value of the estimators on constrained simulations and data gradually increasing
the maximum multipole included in the analysis. As expected, the quadrupole
dominates the Q and U results which therefore cannot be taken as representative
of the behaviour of the other low multipoles. On the contrary, the local E-modes
are not very sensitive to the quadrupole and exhibit a decreasing lower tail
probability as a function of `max as shown in Figure 3.12. This is true for the
Planck HFI 100×143 dataset but also for the Planck LFI+WMAP dataset,
pending some scattering which can be ascribed to the lower signal-to-noise of the
latter. For multipoles above ` ∼ 10 both datasets are noise-dominated and any
trend is lost. Taking here the Planck HFI 100×143 dataset as our benchmark,
due to its higher signal-to-noise, we found a lower-tail probability of 0.5%. Note
that, in spite of the fact that, the quadrupole for this dataset exhibits extra
variance, as explained above, yet we have chosen it as our benchmark given the
fairly low sensitivity of the local E-modes S1/2 estimator to the value of the
quadrupole itself.

As a final test, we have studied the joint distribution of the S1/2 estimators in
temperature5 and polarization. In Figure 3.13, we show the distribution in the
(SEE1/2 , S

TT
1/2) plane of Nsims = 500 unconstrained Planck HFI 100×143 simulations

(grey dots), compared to values computed on the actual Planck HFI 100×143
data (red dot). For each simulation the value of the estimator in temperature is

5The STT
1/2 estimator used here is computed in harmonic space, see Eq. (3.13), coherently

with the polarization estimator. A real-space calculation, based on Eq. (3.12), was instead
perfomed in the analysis from the Planck Collaboration [68], considering 71% of the sky. We
have verified through simulations that the two procedures, when applied on the Commander
data, produce statistically consistent results.
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Figure 3.12: Lower tail probability for the local E modes estimator
computed on data w.r.t constrained simulations for both Planck HFI 100×143
(red curve) and Planck LFI+WMAP (grey curve) datasets. The region of

multipoles higher than 11 is excluded from the plot as considered dominated
by noise.

normalized to the empirical mean of the STT1/2 simulations distributions and the
value of the estimator in polarization is normalized to the empirical mean of the
SEE1/2 simulations distributions. The same normalization is applied to data.

Given the relatively small number of simulations available, we have sought to
compress the information encoded in the two-dimensional joint distribution into
a single, one-dimensional estimator. To this purpose, we extended the use of the
S1/2 estimator from one to two dimensions, computing the distance of the points
from zero as in equation 3.24:

SEE,TT1/2 =

√√√√( STT1/2

〈STT1/2〉

)2

+

(
SEE1/2

〈SEE1/2 〉

)2

(3.24)

The resulting distribution is shown in figure 3.14. We repeated an identical
analysis for the Q and U correlation functions. In figure 3.15 we see the scatter
plot in the (SQQ1/2 , S

TT
1/2) plane (left panel) and (SUU1/2 , S

TT
1/2) plane (right panel) for

the 500 Planck HFI 100×143 dataset simulations. In figure 3.16 we show the
distribution for the SQQ,TT1/2 estimator (left panel) and SUU,TT1/2 estimator (right
panel).

In the case of local E modes we found that no simulations have values of
SEE,TT1/2 lower than data. Given that the sensitivity associated to our Monte Carlo
is 1/Nsims = 0.002, we can quote this number as an upper limit to the lower tail
probability associated to the SEE,TT1/2 value measured on the data. Instead, for
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Figure 3.13: Joint behaviour of the S1/2 estimator in temperature and
polarization for 500 unconstrained simulations (grey dots) and data (red dot)
of Planck HFI 100×143 dataset. All values of the estimator in temperature
and polarization reported here are normalized to the empirical mean of the

corresponding distribution. The position of data with respect to the
simulations suggests a low combined power of T and E correlation functions.
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Figure 3.14: Distribution of the SEE,TT
1/2 estimator for 500 Planck HFI

100×143 simulations (grey) and data (red vertical line). The upper limit of
the lower tail probability of the estimator computed on simulations with

respect to data is 0.2%.
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Figure 3.15: Joint behaviour of the S1/2 estimator in temperature and
polarization for 500 unconstrained simulations (grey dots) and data (red dot)
of Planck HFI 100×143 dataset. The values on x-axes are those of the SQQ

1/2

estimator on the left and of the SUU
1/2 estimator on the right, while on the

y-axis we see the STT
1/2 estimator in both panels. All values of the estimator in

temperature and polarization reported here are normalized to the empirical
mean of the corresponding distribution.
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Figure 3.16: Distribution of the SQQ,TT
1/2 estimator (left) and SUU,TT

1/2

estimator (right) for 500 Planck HFI 100×143 simulations (grey) and data
(red vertical line). The sensitivity associated to the Montecarlo is 0.2%.
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SQQ,TT1/2 and SUU,TT1/2 estimators, data are well compatible with the simulations
distribution with a lower tail probability of 37% and 30.4% respectively.

In order to summarize the results we underly the peculiarity of the correlation
function on local E-modes with respect to that of the Q and U stokes parameters:
the first is more sensitive to the `max used in the analysis and gives information
on the integrated power of the lower multipoles, the latters are, instead, largely
dominated by the quadrupole. In the first case we showed that including higher
multipoles, up to ` = 10, has the effect of lowering the lower tail probability of
data with respect to simulations in both datasets considered. As opposite, in the
case of the Stokes parameters we did not see any anomalous behaviour in the
S1/2 estimator, except for a mild 2σ anomaly in the case of Planck LFI+WMAP
U correlation function. For the reasons stated above, this result does not change
including higher multipoles in the analysis. This scenario is replicated when
considering the joint estimator of temperature and local E modes on the Planck
HFI 100×143 dataset: the lower tail probability associated to the data is less than
0.002. As opposite, when combining temperature with the Q or U estimators, we
found consistency between data and simulations. The whole picture suggests that
a mild anomalous behaviour of the data with respect to the expectations of the
ΛCDM model emerges when including in the analysis the integrated power of all
the lower multipoles, while the quadrupole is not anomalously low in data. It is
worth noting, however, that both datasets include non negligible uncertainties, in
particular on the quadrupole. In the conclusions of this thesis we will describe how
this issue will be hopefully overcome by the next generation of CMB polarization
data.
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4
Probing the baryonic matter distribution

through observations of the millimeter
and sub-millimeter sky

Millimeter and submillimeter data are a mine of cosmological information.
While CMB is fundamental to constrain cosmological parameters and test the
Standard Model, other emissions can tell us how cosmic structures form and
evolve. In the work presented in this chapter we analysed data from the South Pole
Telescope (SPT) [86], [87] and the Spectral and Photometric Imaging REceiver
(SPIRE), mounted on the Hershel Space Observatory [88], in six frequency bands:
95, 150, 220, 600, 857, 1200 GHz. The dataset will be described in detail in
the following. For the moment, we just mention that the power spectrum we
considered can be modelled as:

Ctot
` = CCMB

` +CtSZ
` +CkSZ

` +CCIBP
` +CCIBC

` +CtSZ−CIB
` +Crad

` +Ccirr
` . (4.1)

From equation (4.1) we see that the total power in data is given by the sum
of several contributions. The CMB spectrum, CCMB

` , is combined with the
secondary anisotropies: the thermal Sunyaev Zeldovich (tSZ) and kinetic Sunyaev
Zeldovich (kSZ) effect, called respectively CtSZ

` and CkSZ
` . Other contributions to

the total power spectrum come from extragalactic emission of radio sources, Crad
` ,

and dusty star forming galaxies (DSFGs). These galaxies generate the Cosmic
Infrared Background (CIB) clustering and poisson effect, denoted in equation
(4.1) as CCIBP

` and CCIBC
` respectively. To conclude, the total power includes a

contribution from galactic sources emission, i.e. galactic cirrus, Ccirr
` . Our aim

was to build a coherent modelling for all foregrounds at all frequencies. The code
we have developed has been widely validated [46,89,90], it is modular and easy



to use. For details see Appendix 0.3. The accurate modelling of every component
of these power spectra has a key role both for the ’foreground cleaning’ of the
CMB maps and for clustering studies. The CMB on small scales provides a lot
of information about the physics of the early Universe, encoded in the positions
and the height of the high order acoustic peaks. Despite these scales are less
affected by cosmic variance, extracting information from them is complicated by
the presence of additional power coming from the other emissions. From this
perspective, all components other than CMB are considered as contaminants,
and are usually called foregrounds. These contaminats can be divided into two
categories: secondary anisotropies and additional power due to astrophysical
emissions. In the first case the CMB anisotropy field is distorted by the interaction
of CMB photons with the galactic plasma. In the second case, the emission of
galactic or extragalactic sources overlaps in some frequency bands with the CMB
and what we observe is the sum of the two emissions. The proper modelling of the
foregrounds then allows to clean CMB maps in order to extract the information
about the early Universe, which is contained in the primary anisotropy. To have
some details on the cosmological results, see [91–94].
Another field in which the accurate modelling of the galactic and extragalactic
emission is of great utility is the one concerning the clustering studies: the
galaxies generating these radiations are tracers of the matter distribution in the
Universe and can then be used to understand the formation and evolution of the
Large Scale Structures (LSS). In this work we decided to use the code for the
second purpose: we fixed the cosmology and fit for the parameters describing the
foregrounds, in order to derive information on the clustering properties of the
CIB galaxies. We can do this as we implemented a physical description of the
CIB emission and the tSZ effect. Differently from many previous work [95,96],
which used for these foregounds a phenomenological parametrization1, we used
an ’halo-model’ approach, which is able to give fundamental information on the
clustering properties of dark matter and galaxies. This chapter will be devoted
to the description of the foregrounds model implemented in our code, as well
as its comparison with data. In the first section we describe the adopted halo
model, in the second we will enter the details of the modelling employed for
each foreground. In the last section we will instead describe the value of the
parameters we obtain through the fit of the model to SPT and SPIRE data.

1The angular dependence is given by a fixed template, both for the tSZ and CIB. The
spectral dependence is parametrized as a gray body, for the CIB, and using equation (4.96),
for the tSZ.
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4.1 The halo model

We have already mentioned that equation (2.135) describes the power spec-
trum of linear perturbations, but, to study the LSS of the Universe, we have to
deal with the non linear behaviour of the matter field. Indeed, the scales on which
non linearities dominates correspond to those of the fundamental blocks of cosmic
structures: halos. In the halo approach [6, 97–101] all matter in the Universe is
contained in virialized structures of dark matter, separated by distances much
larger than their tipical size. In this paradigm all scales smaller than the tipical
size of halos are described by the matter distribution within themselves, and all
scales larger than that size are described by the spatial distribution of the halos.
If this is the case, then the entire non linear density field may be reconstructed
by summing contributions from individual halos.

4.1.1 The spherical collapse model

The spherical collapse model is based on the idea that non-linear objects form
through the spherical collapse of initially tophat density perturbations. These
initial perturbations occupy a Lagrangian region R0 with an initial overdensity
δi. We suppose that initial fluctuations were Gaussian, with an rms on scale R0

much less than unity. If this is the case, we are most likely in the condition in
which |δi| � 1 and the mass in the R0 region is:

M0 =
4πR3

0

3
ρ̄(1 + δi) ≈

4πR3
0

3
ρ̄, (4.2)

where ρ̄ is the comoving background density. As the Universe evolves, also
the size of the region changes. The density within the region is defined as
(R0/R)3 ≡ (1 + δ), where R denotes the comoving size of the region at a given
time. In a flat universe, described by a FLRW metric, the ratio between the size
at redshift z and the initial size of the region considered is given by:

R(z)

R0

=
(1 + z)

5/3|δ0|
1− cos θ

2
, (4.3)

where δ0 denotes the initial density δi extrapolated with linear theory to the
present time. Using:

1

1 + z
=

(
3

4

)2/3
(θ − sin θ)2/3

(5/3)|δ0|
, (4.4)
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we obtain:
R0

R(z)
=

62/3

2

(θ − sin θ)2/3

(1− cos θ)
. (4.5)

The process starts at θ = 0 and undergoes a ’turnaround’ at θ = π, where the
evolving radius starts to decrease with respect to the initial one. At θ = 2π

the ratio tends to infinty as the denominator is zero, and this would cause the
density of the collapsing region to diverge. In practice, though, the collapse stops
before and the halo virializes. The density of the virialized object is computed
assuming that the virial radius is half the turnaround radius. At turnaround
θ = π and from equation (4.5) we get [R0/R(zta)]

3 = (3π/4)2. As Rvir = Rta/2,
the virialized object is 8 times denser than it was at turnaround. Moreover,
in the time between turnaround and collapse, Universe expands by a factor
(acol/ata) = (1 + zta)/(1 + zcol) = 22/3, see equation (4.4). Considering the
equation for the background evolution, ρ ∝ a3, we find then that the zero order
density at turnaround is (22/3)3 = 4 times the background density at time of
virialization. Putting all together we obtain the ratio between the virialized and
background density:

∆vir ≡ (9π2/16)× 8× 4 = 18π2 ∼ 178. (4.6)

The initial overdensity of the halo region at the time of collapse can be obtained
from equation (4.4) setting θ = 2π:

δc(z)

1 + z
=

3

5

(
3π

2

)2/3

. (4.7)

Here δc is the critical overdensity for collapse, extrapolated using linear theory
to the time in which the halo region starts to collapse. At present time, when
z = 0, the critical overdensity for collapse is δc = 1.686. One of the most
important features of the spherical collapse model is that it provides a relation
between the actual overdensity, δ, and the one predicted by linear theory, δ0,
as 1/δ0 ∝ (R0/R)3 ≡ (1 + δ). This relation is valid for all R0 and, given that
M ∝ R3, this means that the critical density for collapse, δc, is the same for all
objects, independent on their mass.

4.1.2 The halo mass function

The halo mass function, dn/dM , gives the comoving number density of bound
objects of mass m at redshift z and it is related to the number of regions, in the
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initial density field, which were dense enough to start the collapse. The halo
aboundance can then be predicted using a function describing the mass fraction
of matter in peaks of a given height [102], which is defined as:

ν ≡ δ2
c

σ2
, (4.8)

where δc is the critical overdensity for collapse at redshift zero. The quantity
σ2(m) is the variance in the initial density fluctuations field, when smoothed
with a tophat filter of scale R = (3m/4πρ̄), extrapolated to the present time
through linear theory:

σ2
lin(m) =

∫
dk

k

k3P lin(k)

2π2
|W (kR)|2. (4.9)

Here Plin is the matter linear power spectrum we have obtained in equation
(2.134), while W (kR) is the spatial filter [103]:

W (x = kR) =

(
3

x3

)
[sin(x)− x cos(x)]. (4.10)

A simple model to relate the halo mass function to the function describing the
number density of the peaks, νf(ν), is provided by the Press and Schetcher
formalism [104,105]:

m2n(m, z)

ρ̄

dm

m
= νf(ν)

dν

ν
. (4.11)

A parametrization of νf(ν) is given by Sheth & Tormen [106].

νf(ν) = A(p)
(
1 + (qν)−p

) ( qν
2π

)1/2

exp(−qν/2), (4.12)

with p = 0.3, A(p) = 0.322 and q = 0.707. The shape of the halo mass function
can be divided in two different regimes: a power law at low masses and an
exponential cut-off at high masses. This is due to the fact that very massive
halos are rare, so that high mass bins are poorly populated. Other than the
Sheth & Tormen mass function the code we developed include an alternative
parametrization elaborated by Tinker [107], which is the one we mainly used in
the fit to data:

dn

d lnM
= −1

2
f(σ, z)

ρ̄

M

d lnσ2

d lnM
. (4.13)
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In this case we have:

f(σ) = A

[(σ
b

)−a
+ 1

]
e−c/σ

2

. (4.14)

The parameter A represents the overall amplitude of the mass function, while
a and b give respectively the amplitude and the slope of the low mass power
law. The parameter c, instead, determinates the cut-off scale at which the halo
abundance exponentially decreases. The parameters are functions of redshift and
density contrast and have been calibrated through simulations and observations,
see for example [108]. The density contrast with respect to the background, ∆,
allows to identify a bound object as a halo. For redshift z = 0 and ∆ = 200 the
parameters of equation (4.14) are:

A0 = 0.186, a0 = 1.47, b0 = 2.57, c0 = 1.19. (4.15)

The redshift evolution of A, a, b and c parameters derives from two contributions:
the first is given by the evolution of the density contrast with z. The value 200 is
an approximation of the number computed in equation (4.6), which is the density
contrast required for collapse. But, to be precise, this quantity depends sligthly
on cosmological parameters and, in particular:

∆ = 200/Ωm(z) (4.16)

So, to obtain the value of A0, a0, b0 and c0 at a given redshift, one has to interpolate
these functions among the values computed by simulations (which usually are
∆ = 200, 400, 800, 1600, 3200). In addition to this, the f(σ) parameteres have an
explicit dependence on redshift, parametrized again by [107]:

A(z) = A0(1 + z)−0.14, (4.17)

a(z) = a0(1 + z)−0.06, (4.18)

b(z) = b0(1 + z)−α, (4.19)

logα(∆) = −
(

0.75

log(∆/75)

)1.2

. (4.20)

In figure 4.1 we show the halo mass function as function of mass for three
different redshift values: z = 0.1, 1.4, 4.5. In the left panel we compare two
different cosmologies, while in the right panel we compare the Tinker model with
the Seth & Tormen one. In both panels the differences between the curves grow
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with redshift.
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Figure 4.1: Halo mass function as function of the halo mass for two
different sets of cosmological parameters (left panel) and modelling (right
panel). The difference is more evident when considering higher redshifts.

The set of cosmological parameters in the left panel of the figure are those
of WMAP9 and Planck15. They have been chosen as they are implemented
both in Astropy [109] and in the HaloMod [46]. The only modification we have
introduced regards the scalar spectral index, which has been set ns = 1 in the
case of WMAP9 cosmology, to highlight its eventual impact on the halo mass
function. For this reason we will refer to this set of parameters as WMAP9?.
The parameter values used are given in table 4.1:

H0 Ωm Ωb ns

Planck15 67.7 0.307 0.0486 0.9593
WMAP9? 69.3 0.286 0.0463 1

Table 4.1: List of the main cosmological parameters corresponding to
WMAP9? and Planck15 cosmology.

4.1.3 Halo bias

In this section we relate the overdensity of halos on large cells to the overdensity
of the mass [110]. We start computing the number density of halos in dense
regions. Imagine to divide the space in cells of comoving volume V . Different
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cells may contain different amount of mass, depending on their inner density. We
write the relation between mass and density expliciting the mass overdensity δ:

M

V
≡ ρ̄(1 + δ). (4.21)

We write the overdensity of halos in such cells as:

δh(m, z1|M,V, z0) =
N(m, z1|M,V, z0)

dn(m,z1)
dm

V
− 1. (4.22)

In this equation dn(m, z1)/dm is the halo mass function computed in the previous
section and calculated at some given value of mass and redshift: (m, z1). The
function N(m, z1|M,V, z0), instead, represents the average number of halos of
mass m, which collapsed at redshift z1 and occupy cells of size V and mass M at
present redshift z0. We need to find an expression for it. As a halo is a region
which, at some redshift, was sufficiently overdense that it collapsed, the halo
number in a cell is equal to the number density of overdense region times the
comoving volume of the cell. We can then write:

N(m, z1|M,V, z0) =
dn(m, z1|M,V, z0)

dm
V (1 + δ), (4.23)

where dn(m, z1|M,V, z0)/dm gives the average number of halos in the mass and
redshift bins (m, z1), conditioned to the fact that those halos have to occupy a
cell of mass M and volume V at present time, i.e conditioned to an environment
with a precise density. To compute the average number density appearing in
equation (4.23) we consider that the halo mass function depends on the critical
overdensity for collapse at the time chosen: δc(z1). Denser cells, i.e. those
which favour the formation of halos, have densities closer to the critical one.
Then, a good approximation to compute dn(m, z1|M,V, z0)/dm is obtained by
replacing δc(z) in the computation of the dn/dm with δc(z1) − δ0(δ, z0). In
this case the peaks height needed to reach the collapse phase is lower and the
formation of bound objects is easier. The quantity δ0(δ, z0) denotes the initial
overdensity, extrapolated using linear theory, that a region must have had so to
have overdensity δ at z0. We cannot simply use δ as it has been derived with
non linear theory from initial condition, differently from δc, which instead has
been extrapolated using linear theory 2. Following this argument we can give an

2For clarity we summarize the different definition of the overdensity:

• δ: mass overdensity;
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estimate of the density of halos of mass m, virialized at z1, and occupying the
cell identified by the values M , V and z0:

m2dn(m, z1|M,V, z0)/dm

ρ̄

dm

m
= ν10f(ν10)

dν10

ν10

, (4.24)

where
ν10 =

[δc(z1)− δ0(δ, z0)]2

σ2(m)− σ2(M)
, (4.25)

and f(ν) can be given by equation (4.14) or (4.12). The very large scale limit of
equation (4.24) is given by the conditions V →∞,M →∞. It returns back the
halo mass function dn(m, z1)/dm as σ2(M)→ 0 and |δ| → 0. On the other hand,
the very small scale limit, given by the conditions V → 0, δ → ∞, δ0 → δc(z0),
is related to halo evolution. A small region containing a mass M , indeed, can
be considered itself a halo of mass M . Thus, the number of subclusters of
mass m obtained computing N(m, z1|M,V = 0, z0) is the mass function of the
halo progenitors, which eventually have merged to form the present halo. In
the large scale limit the rms density fluctuation in the cells is much smaller
than unity. This means that δ � 1 most likely. Also in this case, similarly
to the extreme limit seen before, M � m, where m is the typical mass of a
halo. This causes σ(M)� σ(m) and again σ(M)→ 0. For more details on this
treatment see [111,112]. We can write the conditional average number density as
an expansion around the unconditioned one (obtained in the extreme large scale
case):

n(m, z1|M,V, z0) ≈ n(n, z1)− δ0(δ, z0)

(
∂(dn(m, z1)/dm)

∂δc

)
δc(z1)

, (4.26)

which, in terms of overdensity, becomes:

δh(m, z1|M,V, z0) ≈ δ − (1 + δ)δ0(δ, z0)

(
∂ ln (dn(m, z1)/dm)

∂δc

)
δc(z1)

. (4.27)

• δh: halo overdensity;

• δc: critical overdensity for collapse, derived from linear theory;

• δ0: initial overdensity, derived from linear theory.
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Focusing on the lowest order of expansion and plugging in equation (4.27) the
expression of the halo mass funtion, we obtain:

δh(m, z1|M,V, z0) ≈ δ

(
1 +

qν − 1

δc(z1)
+

2p/δc(z1)

1 + (qν)p

)
= b(m, z1)δ, (4.28)

if the f(ν) function is a Seth & Tormen [106]. In the case of Tinker modelling
instead [113]:

b(m, z1) = 1− A νa

νa + δac
+Bνb + Cνc, (4.29)

where, for a ∆ = 200 halo, we have:

A = 1.04, a = 0.132, B = 0.183, b = 1.5, C = 0.262, c = 2.4. (4.30)

Equation (4.28) states that the relation between the overdensity of the halos
and that of the mass field in very large cell is linear [114]. The constant of
proportionality, called halo bias and denoted with b(m, z1), depends on the
masses of the haloes and the redshift they virialized. The result above also leads
to:

n(m|δ) ≈ [1 + b(m)δ]n(m). (4.31)

As b(m)� 1 for the most massive haloes, they occupy the densest cells. It is also
known that densest regions are more clustered than those of average density. This
means that most massive objects are more clustered and that the environment
has a great effect on the inner structure of the halo. In figure 4.2 we show the
halo bias as function of the halo mass obtained with our code. On the left panel
we compare two different set of cosmological parameters, see Table 4.1, while on
the right panel we compare the Tinker and Seth & Tormen modelling.

4.1.4 Halo density profile

The inner structure of a halo, described by its radial density profile, is related
to the time of formation and to the initial density distribution of the region
which collapsed. The theory predicts that dark matter collapses first in small
mass haloes, which eventually merge together and form larger haloes. Low mass
halos are significantly denser than more massive systems, a correlation that
reflects the higher collapse redshift of small halos. The characteristic density
of an equilibrium halo is proportional to the density of the Universe at the
time it was assembled. This means that early forming structures tends to be
more concentrated than late time structures, which tend to be larger and less

− 90 −



PROBING THE BARYONIC MATTER DISTRIBUTION
THROUGH OBSERVATIONS OF THE MILLIMETER AND

SUB-MILLIMETER SKY

106 108 1010 1012 1014 1016

M [M h 1]

100

101

102

103

bi
as

WMAP9*
  Planck15

z =0.1
z =1.4
z =4.5

106 108 1010 1012 1014 1016

M [M h 1]

100

101

102

103

bi
as

ST
 Tinker

z =0.1
z =1.4
z =4.5

Figure 4.2: Halo bias as function of the halo mass for two different sets of
cosmological parameters (left panel) and modelling (right panel). Using

different cosmologies has a minor impact on the halo bias with respect to the
choice of the model. As in the case of the halo mass function, the difference

between Tinker and Seth & Tormen modelling increases with redshift.

concentrated. To describe the density profile of an halo as function of its radius
we use a Navarro-Frenk-White (NFW) profile [115]:

ρ(r|m) =
ρs

(r/rs)α(1 + r/rs)β
, (4.32)

with (α, β) = (1, 2). The quantity rs is a scale radius, while ρs is the density at
that scale radius. We define the halo mass as:

m ≡
∫ rvir

0

dr4πr2ρ(r|m). (4.33)

For a NFW profile, the integral in equation (4.33) becomes:

m = 4πρsr
3
s

[
ln(1 + c)− c

1 + c

]
. (4.34)

Here c ≡ rvir/rs is the concentration parameter. We note that the integral for the
mass in equation (4.33) has been truncated to the virial radius. This is necessary
as the NFW profile falls as r−3 at large radii, and the integral mass diverges
logarithmically. Truncating the profile at the virial radius ensures convergence
and a corrispondance between the mass computed from the density profile and
that obtained from the halo mass function. In order to compute the concentration
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parameters we rely on the result of simulations, which shows that concentrations
of haloes of the same mass are described by a log-normal distribution:

p(c|m, z)dc =
d ln c√
2πσ2

c

exp

{
− ln2[c/c̄(m, z)]

2σ2
ln c

}
, (4.35)

The mean concentration, c̄(m, z), depends on halo mass and redshift. The width
of the distribution, σ2

c , does not, even if recent papers show it is influenced by
the large scale environment in which the halo forms [116]. For a NFW profile the
mean concentration parameter is given by the parametrization of [117]:

c̄(m, z) =
9

1 + z

[
m

m?(z)

]−0.13

and σln c ≈ 0.25, (4.36)

where m?(z) is a characteristic mass scale at which ν(m, z) = 1. Different
shapes for the concentration profile can be found in [118–124] . Equation (4.36)
quantifies what stated at the beginning: there is an inverse proportionality
between concentration and mass i.e. increasing the mass of the halo implies a
decrese of its concentration. Actually, in the following calculations we will not
need directly the density profile but rather its Fourier transform:

u(k|m) =

∫
d3xρ(x|m) exp{−ik · x}∫

d3xρ(x|m)
. (4.37)

For spherically simmetric profiles truncated at the virial radius, equation (4.37)
becomes:

u(k,m) =

∫ rvir

0

dr4πr2 sin kr

kr

ρ(r|m)

m
. (4.38)

Expliciting ρ in equation (4.38) for the NFW profile we obtain:

u(k,m) =
1

ln (1 + c)− c
1+c

(
sin(krs)[Si([1 + c]krs)− Si(krs)]−

sin(ckrs)

(1 + c)krs

+ cos(krs)[Ci([1 + c]krs)− Ci(krs)]
)
,

(4.39)

where the integrals denoted as Si and Ci are:

Ci(x) = −
∫ ∞
x

cos(t)

t
dt, Si(x) =

∫ x

0

sin(t)

t
dt. (4.40)
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The Fourier transform of the density profile is a function of halo concentration.
Pratically the concentration used to compute the u(k,m) is the mean of the
distribution given in equation (4.36), which depends only on halo mass. In figure
4.3 it is shown the Fourier transform of the Navarro-Frenk-White profile truncated
at the virial radius. The three curves represents three different halo masses (left
panel) or redshifts (right panel).
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Figure 4.3: Fourier transform of the Navarro-Frenk-White profile
truncated at the virial radius. On the left panel the three curves represent
three different halo masses. All of them have been computed at a redshift
z = 1.4 assuming a Planck15 cosmology. On the right panel the three curves
represents three different redshifts. The mass of the halo in this case is fixed

to M = 1012[M�h
−1].

4.1.5 Dark matter power spectrum

The halo model predicts that all mass is bound up into halos, whose population
is determined by the mass function and the density profile described in the
previous sections. If this is the case, the density at position x is given by
summing up the contribution of each halo:

ρ(x) =
∑
i

ρ(x− xi|mi) ≡
∑
i

miu(x− xi|mi)

=
∑
i

∫
dmd3x′δ(m−mi)δ

3(x′ − xi)mu(x− x′|m),
(4.41)

where ρ parametrizes the density profile as function of the halo mass and the
distance from the center of the halo, which is denoted with x. The second equality
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replaces the density profile with its normalized version, u, which is obtained as ρ
divided by the total mass contained in the profile, so that we have:∫

d3x′u(x− x′|m) = 1. (4.42)

We also define the number density of the halos of mass m to be:

〈
∑
i

δ(m−mi)δ
3(x′ − xi)〉 ≡

dn

dm
, (4.43)

where 〈...〉 denotes the ensamble average. The mean density can be computed as:

ρ̄ = 〈ρ(x)〉 = 〈
∑
i

miu(x− xi|mi)〉 =

∫
dm

dn

dm
m

∫
d3x′u(x− xi|mi)

=

∫
dm

dn

dm
m.

(4.44)

Here the ensamble average has been replaced by an average over the halo mass
function dn/dm and the density profile. In order to know the spatial distribution
of dark matter we use the power spectrum. Turning to Fourier space, indeed,
allows us to replace complicated convolutions with simple multiplications be-
tween the halo profiles. The dark matter power spectrum is the sum over two
contributions [99]:

P (k) = P 1h(k) + P 2h(k), (4.45)

where the term denoted as 1h describes the case in which the regions considered
reside in the same halo, and the term denoted as 2h represents the case in which
the two contributions are from different halos. The one-halo term is computed
as:

P 1h(k) =

∫
dm

dn

dm

(
m

ρ̄

)2

|u(k,m)|2, (4.46)

while the two-halo term is:

P 2h(k) =

∫
dm1

(
dn

dm

)
1

(
m1

ρ̄

)
|u(k,m1)|×∫

dm2

(
dn

dm

)
2

(
m2

ρ̄

)
|u(k,m2)|Phh(k|m1,m2).

(4.47)

The function u(k|m) is the Fourier transform of the halo density profile and
Phh(k|m1,m2) represents the power spectrum of halos of mass m1 and m2. Fol-
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lowing the results of the previous section on the bias relating the background
and the clustered structure overdensities, we can write:

Phh(k|m1,m2) ≈
2∏
i=1

b(mi)P
lin(k). (4.48)

In equation (4.48) we have used the linear power spectrum P lin as the two-halo
term dominates on very large scales. The factors proportional to m in equations
(4.47) are related to the average number of dark matter particles at a given
halo mass, as 〈Ndm|m ∝ m〉. For the one halo term, equation (4.46), we use
instead 〈(Ndm(Ndm − 1))/2|m ∝ m2〉. The (Ndm − 1) factor is needed to exclude
self combinations, and the multiplication by 1/2 avoids the double counting of
particles pairs contribution. These considerations are valid in the limit in which
the number of dark matter particles in a halo follows a Poisson distribution.

4.1.6 Galaxy clustering

The halo model predicts that baryonic gas can cool and form stars only if it
resides in virialized dark matter halos potential wells. More massive halos are
expected to host higher numbers of galaxies while smallest haloes may not contain
galaxies, but, in any case, all galaxies are expected to be embedded in dark halos.
The properties of the galaxy populations are determined by environmental factors,
such as the cooling rate and the star formation rate, which themselves depend
on the mass and angular momentum of the hosting halo. Extending the halo
model framework to luminous matter allows to determine how many galaxies
form within an halo and how these galaxies are distributed around the halo
center [125]. If we assume that, similarly to dark matter, also the number of
galaxies follows a poisson distribution, we can modify equations (4.46) and (4.47)
and obtain:

P 1h
gal(k) =

∫
dm

dn

dm

〈Ngal(Ngal − 1)|m〉
n̄2
gal

|ugal(k,m)|p, (4.49)

P 2h
gal(k) ≈ P lin(k)

[∫
dm

dn

dm
b(m)

〈Ngal|m〉
n̄gal

|ugal(k,m)|
]2

. (4.50)

Also in this case the sum of the two contributions gives the total power spectrum:

Pgal(k) = P 1h
gal(k) + P 2h

gal(k). (4.51)
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In figure 4.4 it is shown the galaxy power spectrum at redshift z = 0.1, divided
in the 1h and 2h contributions:
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Figure 4.4: Galaxy power spectrum at redshift z = 0.1 assuming a
Planck15 cosmology. The dotted line represents the 2h term, which

dominates at large scales (small k), while the dashed line is the 1h term,
dominant at small scales (large k). The sum of these two contribution gives

the total power spectrum (solid line).

In equations (4.49) and (4.50) n̄gal denotes the mean number of galaxies:

n̄gal =

∫
dm

dn

dm
〈Ngal|m〉. (4.52)

On large scales, where the two halo term dominates and |ugal(k,m)| → 1, the
galaxy power spectrum becomes:

Pgal(k) ≈ b2
galP

lin(k), (4.53)

where
bgal =

∫
dm

dn(m)

dm
b(m)

〈Ngal|m〉
n̄gal

(4.54)

is the mean galaxy bias. The term ugal(k,m) denotes the Fourier transform of
the density run of galaxies around the halo center. Though in principle it differs
from udm(k,m), a common appproximation is to set it to be the same of the
dark matter case. To choose the value of the power p of the density profile we
have to introduce a formalism which will be used later: it predicts that the first
galaxy that forms within an halo resides in its center. After the generation of
the central one, all other galaxies that eventually fill the halo are called satellites.
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Only satellites galaxies are then associated to the density profile of the halo. As
a consequences, pairs of galaxies of the central-satellite type are multiplied by
ugal(k,m), while pairs of galaxies of the satellite-satellite type are multiplied by
ugal(k,m)2. We can start from the above consideration to derive the weight to the
mass function appearing in equation (4.49). Such weight must be proportional
to: ∑

Ngal>1

p(Ngal|m)

[
(Ngal − 1)ugal(k|m) +

(Ngal − 1)(Ngal − 2)

2
ugal(k|m)2

]
,

(4.55)
where p(Ngal|m) is the probability that a halo of mass m contains Ngal galaxies,
and the sum starts from 2, as at least a pair is needed to give a contribution to
the one-halo term. The first term in parenthesis represents the central-satellite
pairs while the sencond term gives the satellite-satellite pairs. Performing the
sum over Ngal we obtain:

[〈Ngal − 1|m〉+ p(0|m)]
[
ugal(k,m)− ugal(k,m)2

]
+〈(Ngal(Ngal − 1))/2|m〉ugal(k,m)p,

(4.56)

with p = 1 or 2. In the limit of very small halos, which likely don’t contain
galaxies, the leading term in the sum above is p(2|m)ugal(k|m). In this limit we
can write:

〈Ngal(Ngal − 1)|m〉 ≡
∑

Ngal(Ngal − 1)p(Ngal|m) ≈ 2p(2|m). (4.57)

The leading order term can be well approximated by:

p(2|m) ≈ 〈Ngal(Ngal − 1)/2|m〉. (4.58)

Similarly, in the limit of large number of galaxies per halo, we can set p(0|m)� 1.
The expression (4.56) becomes:

〈Ngal − 1|m〉
[
ugal(k,m)− ugal(k,m)2

]
+ 〈(Ngal(Ngal − 1))/2|m〉ugal(k,m)p.

(4.59)
For Poisson counts 〈n(n+1)〉 = 〈n2〉, so the last term of equation (4.59) dominates
the sum. This implies that, both in the limit of large or low occupation number,
the leading term of the weights is proportional to 〈(Ngal(Ngal − 1))|m〉, as it is
found in equation (4.49). Following [126] we can elaborate more on the expression
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of the weight just computed. As anticipated we assume:

〈Ngal|m〉 = 〈(Ncent +Nsat)|m〉. (4.60)

Then we have:

〈Ngal(Ngal − 1)〉 = 〈(Ncen(Ncen − 1))〉+ 2〈NcenNsat〉+ 〈Nsat(Nsat − 1)〉. (4.61)

Having just one central galaxy, the first term on the right of equation (4.61) is
null and, assuming a Poissonian distribution for Nsat, we obtain:

〈Ngal(Ngal − 1)〉 = 2〈NcenNsat〉+ 〈Nsat〉2. (4.62)

Equation (4.49) becomes:

P 1h
gal(k) =

∫
dm

dn

dm

2〈NcenNsat〉|ugal(k,m)|+ 〈Nsat〉2|ugal(k,m)|2

n̄2
gal

. (4.63)

An approximate shape for 〈Ngal〉 can be obtained considering that galaxies are
made by baryons. Baryonic matter is a fixed fraction of the mass of the dark
matter of the hosting halo. We can then assume 〈Ngal|m〉 ∝ mα. Considering
〈Ngal〉 as a function of the halo mass, we can place a further constraint on its
form: one might expect that there is a minimum halo mass below which galaxies
cannot be found, which corresponds to a truncation of the 〈Ngal〉 function. This
is due to the energy feedback from supernovae: these stars are generated during
an initial burst of star formation whithin the halo and their explosions may be
sufficient to expel the baryons from the shallower potential wells of low mass
halos. In our code we implemented two functional forms for the halo occupation
distribution (HOD). Both of them rely on the assumptions we have just described.
The simplest one is that of Zehavi et al. [127] and reads:{

Ncen = 1 if M > Mmin,

0 otherwise,
(4.64)

and Nsat =
(

M
Msat

)α
if M > max(Mmin,Msat),

0 otherwise.
(4.65)

The number of central galaxies, Ncent, is described by a simple step function,
which becomes equal to unity if the halo is massive enough to host a galaxy,
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i.e. M > Mmin. As expected, the number of satellites is given by a power law.
The quantity Msat is the minimum mass required to an halo to host a satellite
galaxy, in addition to the central one. The condition on the right ensures that
the halo starts to host satellites only after having placed a galaxy in its center.
The second model we coded is based on Tinker & Wetzel [128]. The central
galaxy is parametrized as:

〈Ncent〉M =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
. (4.66)

This parametrization allows for a smooth transition between halos that are too
small to contain galaxies and halos that are massive enough to host at least the
central galaxy at their center. In this case, Mmin is defined as the halo mass
at which a galaxy has a 50% probability of containing a central galaxy. The
parameter σlogM represents the scatter in the logarithm of galaxy baryonic mass
at fixed halo mass. This quantity regulates how rapid the transition is between
having zero and one central galaxy. The satellite occupation function, instead, is
parametrized as follows:

〈Nsat〉M =
1

2

[
1 + erf

(
logM − log 2Mmin

σlogM

)](
M

Msat

)α
. (4.67)

In the halos that are more massive than the minimum mass scale the number
of satellite galaxies grows with a power law. The factor Msat is the same that
we find in equation (4.65). The cut-off has the same functional form as 〈Ncen〉M ,
but with a transition mass twice the one of the central galaxy. This is needed to
prevent halos with a low probability of containing a central galaxy from hosting
satellites. In figure 4.5 we show the halo occupation distribution of galaxies, as
function of the halo mass, obtained with our code. Tinker & Wetzel and Zehavi
HODs [127, 128] are represented on the left and right panel respectively. The
main difference between the two parametrizations consists in the cut of the HOD
function at low masses, which is smoothed in the Tinker model and sharp in
the Zehavi one. To have furter details on the HOD modelling, see [126, 129–131].
In figure 4.6 we show the one and two halo term of the galaxy power spectrum
obtained with our code. The two halo term dominates at large scales, while the
one halo term is prominent at smaller scales. On the left panel we compare two
different sets of cosmological parameters, see Table 4.1. On the right panel we
compare the galaxy power spectrum obtained using two different formalism for
the halo mass function and the halo bias: Tinker (solid line) and Seth & Tormen
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(dash-dotted line). In both cases we used a NFW model for the halo density
profile and a Tinker & Wetzel parametrization for the HOD.
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Figure 4.5: Halo occupation distributions computed with Tinker & Wetzel
modelling (left panel) and Zehavi modelling (right panel). Both panel show
the contribution of the central galaxy (blue) and the satellites (orange). The
sum of these two contributions gives the total number of galaxies in the halo,

Ngal (green).
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Figure 4.6: One and two halo terms for three different redshift values. On
the left panel we compare WMAP9? and Planck15 cosmology. On the right
panel we compare the galaxy power spectrum obtained using two different
formalism for the halo mass function and bias: Tinker (solid line) and Seth &
Tormen (dash-dotted line). The difference between the two model seems to
increase with redshift (purple line) and is more evident on the one halo term.
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4.2 Secondary emission

In the previous section we described the distribution of galaxies within the
dark matter structures. Now we will describe the emission of these galaxies, that
generates the infrared background we observe at submillimeter wavelenghts. We
will also use the main blocks which enter in the computation of the halos power
spectrum to compute the halo model for the SZ effect. Moreover, considering the
fact that CIB and SZ are tracer of the same underlying matter distribution, we
will model their correlation always in the context of the halo model formalism.
To conclude we will describe the empirical model used for the CIB poisson term
at low frequencies, for the radio sources and for the galactic cirrus emission.

4.2.1 Unit convention

Usually, data at lower frequencies (95, 150, 220 GHz) are given in CMB units,
while data at higher frequencies (600, 857, 1200 GHz) are in Jansky. For this
reason, before starting with the description of the model, it is useful to focus on
the unit of measure. For convention, the flux density unity is the Jansky, which
is defined as:

Jy = 10−26Wm−2Hz (4.68)

and obtained by integrating over the solid angle of the source. For extended
sources, the surface brightess is described in Jy per unit solid angle, Jysr−1,
and the spectrum is given in unit of Jy2sr−1. Nevertheless, in some cases the
flux is given in CMB unit, which reports a signal as a deviation from the CMB
blackbody, δTCMB. To convert from Jysr−1 into δTCMB µk, as a function of
frequency we use:

δTν =

(
δBν

δT

) ∣∣∣∣∣
TCMB

, (4.69)

where
δBν

δT

∣∣∣∣∣
TCMB

=
2k

c2

(
kTCMB

h

)2
x2ex

(ex − 1)2
. (4.70)

4.2.2 Cosmic Infrared Background

The Cosmic Infrared Background (CIB) emission [132–134] originates from
galaxies experiencing an active phase of star formation. The radiation, emitted
at high frequencies by young and hot stars, is absorbed by dust and re-emitted
at lower frequencies.
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While the evolution of dark matter halos within the ΛCDM paradigm is quite
well understood thanks to N-body simulations, the connection between the dark
matter halo and the visible objects is not clear, especially in the sub-millimeter
wavelenghts. The formalism we used in this project for the dusty galaxies has
been originally created by Granato et al. [135] and then further developed by Cai
et al. [136], hereafter C13. This model has been chosen as it provides a good fit to
the multi−wavelength data (from the mid−IR to millimeter waves) on luminosity
functions and number of counts at different redshifts. In our work we just use
the final product of the C13 work, i.e. the luminosity functions, necessary for
the computation of the CIB power spectrum. Nevertheless, for completeness,
in the following sub-sections we briefly describe the Cai et al. formalism, see
also [137–139].
The starting point of the model is the observed difference in stellar populations
belonging to early-type and late-type galaxies. Early-type galaxies are massive
spheroids, composed of relatively old stellar populations, characterized by a
formation redshift z & 1− 1.5 [140]. In their early stage of formation the early-
type galaxies were highly starforming and dust obscured. Their star formation
phase has been quenced by AGNs feedback and lasted around 5− 7× 108 yr. As
opposite, late-type denotes spiral or irregular galaxies. They formed at redshift
z < 1.5 and are charcterized by younger stellar populations. Their star formation
phase is regulated by supernovae feedback and can continue for few Gyr. We
expect that galaxies co-evolve with the active nuclei at their centers. Since we
do not have a physical model for the evolution of late type galaxies and AGN,
Granato et al developed a hybrid approach, combining a physical model for the
spheroidal galaxies and the early evolution of the AGNs with a phenomenological
model for the late type galaxies and the low redshift AGNs evolution.

4.2.2.1 Luminosity function for early-type galaxies

In C13 modelling, the bolometric luminosity function (LF) of proto-spheroids
can be obtained convolving the halo formation rate, dnST (Mvir)/d lnM/dt, with
the galaxy luminosity distribution. At redshift higher than 1.5 the halo formation
rate can be computed as the positive term of cosmic time derivative of the halo
mass function, dn/d lnM , which is written using the Seth & Tormen parametriza-
tion. The authors rewrite the analytical expression of the halo mass function
accounting for a redshift evolution of the critical density for collapse:

dNST =
dnST (Mvir, z)

d lnM
dMvir =

ρ̄m,0
M2

vir

fST (ν)
d ln ν

d lnMvir

dMvir. (4.71)
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Here again ρ̄m,0 is the present-day Universe mean comoving matter density and
ν ≡ (δc(z)/σ(Mvir))

2 is the peak height. The redshift evolution of the critical
overdensity for collapse is given by:

δc(z) =
δ0(z)D(0)

D(z)
, (4.72)

with
δ0(z) ' 1.686[1 + 0.0123 log Ωm(z)], (4.73)

as in [141]. The linear growth factor can be approximated following [142,143] as:

D(z) =
5Ωm(z)

2(1 + z)

[
1

70
+

209

140
Ωm(z)− 1

140
Ω2
m(z) + Ω4/7

m (z)

]−1

. (4.74)

Also the mass variance of the perturbation field, σ(Mvir), is given as an analytical
approximation [144,145]:

σ(Mvir) =
0.8

0.84
[14.110393− 1.1605397x− 0.0022104939x2

+ 0.001331746x3 − 2.1049631× 10−6x4],
(4.75)

with x ≡ logMvir/M�. Authors in C13 then write the expression for fν :

fST (ν) = A(1 + (aν)−p)
(aν

2

)1/2 e−aν/2

π1/2
, (4.76)

where A = 0.322, p = 0.3 and a = 0.707. The halo formation rate can be
computed as the time derivative of the halo mass function:

dNST (Mvir, z)

dt
= NST (Mvir, z)

d ln fST (ν)

dt

' NST (Mvir, z)

[
aν

2
+

p

1 + (aν)p

]
d ln ν

dz

∣∣∣∣dzdt
∣∣∣∣, (4.77)

with dz/dt = −H0(1+z)
√

ΩΛ,0 + Ωm,0(1 + z)3. The second block needed to build
the luminosity function is the galaxy luminosity distribution computed at redshift
z, inside a halo of mass Mvir and virialized at redshift zvir, P (logL, z,Mvir, zvir).
The total luminosity of a galaxy is the sum of the stellar component and the
active nucleus. For each component, the model assumes a log-normal luminosity
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distribution:

P (logL| log L̄)d logL =
exp
{
− log2(L/L̄)/2σ2

}
√

2πσ2
d logL, (4.78)

where σ is the dispersion around the mean luminosity, L̄, and it assumes different
values for the stellar and AGN components. The distribution of the total
luminosity, Ltot = L? + LAGN , is then:

P (logLtot| log L̄?, log L̄AGN )d logL = d logLtot

×
∫ logLtot

−∞

dx

2πσ?σAGN

Ltot
Ltot − 10x

exp
{
−(x− log L̄?)

2/2σ2
?

}
× exp

{
−[log(Ltot − 10x)− log L̄AGN ]2/2σAGN

}
.

(4.79)

Combining the two ingredients in equations (4.77), (4.79) C13 authors compute
the comoving differential luminosity function, i.e., the number density of galaxies
per unit luminosity interval at a given redshift. It is given by:

Φ(logL, z) =

∫ Mmax
vir

Mmin
vir

dMvir

∫ zmaxvir

z

dzvir

∣∣∣∣dtvirdzvir

∣∣∣∣dNST

dtvir
(Mvir, zvir)

× P (logL, z;Mvir, zvir).

(4.80)

A reasonable virialization redshift is zminvir = 1.5, as, after that epoch, the proto-
spheroidal galaxies evolve toward the passive phase and their bolometric LF
rapidly declines. More massive is the halo, faster is the decline, as the timescale
of star formation is shorter in massive structures.

4.2.2.2 Luminosity function for late-type galaxies

As we don’t have a theoretical model for the evolution of the low redshift
galaxies, we consider an empirical parametrization of the luminosity function.
In C13 authors adopt two late type galaxy sub-populations: "warm" starbust
galaxies and "cold" late-type galaxies. For both these sub-populations they adopt
the functional form suggested by [146]:

Φ(logLIR, z)d logLIR = Φ?

(
LIR
L?

)1−α

× exp

[
− log2(1 + LIR/L

?)

2σ2

]
d logLIR,

(4.81)
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where α is the low-luminosity slope and σ is the dispersion of each population,
while Φ? and L? are the characteristic density and luminosity. The values used
for these parameters are reported in table 1 of C13.
In order to compute the monochromatic LF the authors make use of the spectral
energy distribution (SED). For the stellar component they have:

L̄?,ν ≡ νf?(ν)L̄?,IR, (4.82)

where IR stands for infrared: the region of the spectrum in which we observe
the emission connected to the star formation. In [137] it is shown that the
submillimeter data coming from proto-spheroidal galaxies can be reproduced
using a single SED. The reason for this is that the IR-emission coming from high
redshifts is almost entirely generated by dust in molecular clouds, heated by the
newly formed stars. This is not true for low z galaxies, in which there are other
contributions to account for, as the cirrus emission. Although the contribution
of contaminants affects the infrared emission in low redshift galaxies, the SED
templates used to compute the luminosity function are just two: one for the cold
and one for the warm population. We report figure 4 and 6 of C13 (Fig. 4.7 and
4.8 respectively) to show the SED template used, both for early and late type
populations, and the luminosity function of all galaxies and AGN populations
that contribute to the infrared emission.

4.2.2.3 Source counts and emissivity function

The luminosity function is used when computing the surface density of sources
per unit flux density and redshift interval:

d3N(Sν , z)

dSνdzdΩ
=

Φ(logLν′ , z)

Lν′ ln 10

dLν′

dSν

dV

dzdΩ
, (4.83)

where ν ′ = ν(1 + z), and the flux Sν can be calculated through the use of the
luminosity distance DL as:

Sν =
(1 + z)Lν′

4πD2
L(z)

. (4.84)

The comoving volume per unit solid angle, in equation (4.83), can be computed
as:

d2V

dzdΩ
=

c

H0

(1 + z)2D2
A(z)√

ΩΛ + (1 + z)3Ωm

, (4.85)

where DA is the angular diameter distance. The cosmological and astrophysical
information we are looking for is encoded in the power spectrum of the CIB inten-
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Figure 4.7: SEDs template described in C13 for proto-spheroidal galaxies
(solid orange), warm late-type (dashed blue) and cold late-type poulations
(dotted red). The three SEDs are normalized to the same total IR luminosity

log(LIR/L�) = 1.

sity fluctuations. A key quantity involved in CIB power spectrum computation
is the emissivity function, i.e. the redshift distribution of the cumulative flux
density of sources below the detection limit, Sν,lim. It is defined as:

d2Sν
dzdΩ

=

∫ Sν,lim

0

d3N(Sν , z)

dSνdzdΩ
SνdSν . (4.86)

In figure 4.9 we show the emissivity function at six different frequencies, as
function of redshift, both for early-type galaxies (solid line) and late-type galaxies
(dashed line). See more details on the emissivity function computation in [147].
In order to model the infrared emission we can write its power spectrum as the
sum of two components [148]:

CCIB
`,ν,ν′ = Cclust

`,ν,ν′ + Cshot
`,ν,ν′ . (4.87)

The quantity Cshot
`,ν,ν′ is called the shot noise term, and quantifies the contribution

of the distribution of the sources below the detection limit, which is assumed to
be poissonian. The quantity Cclust

`,ν,ν′ is, instead, the contribution coming from the
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Figure 4.8: Comparison between IR LF model and data, as shown in C13.
The legend reports all the stellar and AGN populations that are taken into
account. The stellar contribution is always dominant, apart for the very

bright end tail. While at low redshift data are well described with the use of
the cold and warm late-type populations, increasing with redshift the

proto-spheroidal contribution becomes dominant.

clustering of those sources.
The clustering term is related to the overdensities in the background that trace
the dark matter distribution. It can then be described using the formalism of
the halo model that we have presented in detail in the previous section. That
formalism tells us how galaxies occupy the dark matter halos, while the emissivity
function, equation (4.86), describes how those galaxies emit. The combination of
these two fundamental blocks allows the computation of the clustering term of
the CIB power spectrum:

Cclust
`,ν,ν′ =

∫
dz

χ2

dz

dχ

dSν
dz

dSν′

dz
Pgal(k = `/χ, z). (4.88)
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Figure 4.9: Emissivity function at six different frequencies, as function of
redshift. Low frequencies bands (95, 150, 220 GHz) are covered by the South
Pole Telescope experiment (SPT), while high frequencies (600, 857, 1200

GHz) are the nominal bands of the SPIRE experiment. Early type galaxies
(solid line) have their peak of star formation around z ∼ 2.5. After redshift
z ∼ 1 this population undergoes a phase of passive evolution, as can be seen
from the truncation of their infrared emissivity. The late-type population

(dashed line), instead, has its active phase of star formation at lower redshift
and shows its peak of emission at redshift z ∼ 1.

In this notation χ is the comoving distance and dSν
dz

is the emissivity function,
where we have neglected the dependence on the solid angle for simplicity. The
term Pgal denotes the galaxy-galaxy power spectrum, as computed in equation
(4.51). In the Pgal term, which includes both the one and the two halo terms, we
used the Limber approximation [149,150], and projected the three dimensional
galaxy power spectrum to compute the angular one.
In figure 4.10 it is shown the CIB clustering power spectrum, computed with our
code, at 150 (left panel) and 1200 GHz (right panel). Late-type (LP) population
is in orange, while the early-type (EP) is in blue.
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Figure 4.10: CIB clustering power spectrum at 150 (left) and 1200 GHz
(right). Late-type (LP) population is in orange, while the early-type (EP) is
in blue. The hosting halo minimum mass is M = 1012M�h

−1 for the EP
population and M = 1011M�h

−1 for the LP one, as these galaxies usually
occupy less massive structures, with respect to the proto-spheroids. In both
panels we see the two halo term (dashed line), the one halo term (dash-dotted
line) and the total power spectra (green solid line). The two halo term is

dominant at larger scales, while the one halo term becomes more relevant at
smaller scales. While the early type emission dominates the power spectrum
at low frequencies, at higher frequencies we observe the near Universe, so the

late-type contribution becomes more relevant.

The power spectrum of the poisson (shot) noise term is instead independent
on the angular scale and can be computed as:

Cshot
`,ν =

∫ Slim

0

S2
ν

dN

dSν
(Sν)dSν , (4.89)

where Slim is the flux density level above which sources are detected and conse-
quently masked. The term dN/dSν in equation (4.89) represents the differential
number counts. i.e. the number of galaxies per unit interval of flux density, at
an observed frequency ν, and per unit solid angle:

dN

dSνdΩ
(Sν) =

∫ zmax

zmin

dz
Φ(logLν′ , z)

Lν′ ln 10

dLν′

dSν

d2V

dzdΩ
. (4.90)

4.2.2.4 Poisson noise: high frequency modelling

We use two different procedures to determine the level of the shot noise at
SPIRE frequencies. The first one is based on previous analysis, which simply fit
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for the value of the shot noise within a flat prior [151]. The second procedure is
designed to relate the value of the shot noise directly to the measured numbers
of counts. It uses resolved data from [152–155] and model them as the sum of
two functions: a Schechter function, dominating the faint flux densities, and a
power law to describe the bright flux densities. The sum of these two functions
is fitted to data in each of the three SPIRE frequency bands and the shot noise
is computed as a byproduct. The fit to data is performed with a MCMC, as
implemented in [156], and returns a distribution of values of the shot noise. The
mean and standard deviation of those distributions has been computed3 and we
use them to impose a gaussian prior on level of the Poisson noise. The values of
the mean and standard deviation of the shot noise distributions are reported in
Table 4.2.

Frequency Poisson noise
[GHz] [Jy2sr−1]
600 2479 ± 75
857 6205 ± 133
1200 9833 ± 172

Table 4.2: Mean and standard deviation of the shot noise distributions
derived from the fit to number counts. To fit for CIB data at Hershel/SPIRE
frequencies we impose a gaussian prior centered in the mean value and large

three times the standard deviation.

In figure 4.11 we show the fit to number counts obtained with the sum of a
Schechter function and a power law.

4.2.2.5 Poisson noise: low frequency modelling

Except for the brightest flux densities, at the South Pole Telescope working
frequencies (95, 150, 220 GHz) we do not have enough constraints on the number
counts. Therefore, in order to model the poissonian term of the CIB emission,
we use an empirical modelling, i.e. a flat angular template and a modified black
body spectral dependence. At these frequencies, the poisson term of the CIB
power specturm can be written as:

DP
`,ν,ν′ = DP

3000ενν′
ηνην′

η0η0

(
`

3000

)2

, (4.91)

3Mattia Negrello, private comunication.
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Figure 4.11: Fit to the number of counts from three different datasets.
The bright flux densities are described with a power law, while the faint flux

densities with a Schechter function.

where DP
3000 is the amplitude of the power spectrum at ` = 3000 and frequency

ν0. The CIB poisson emission in equation 4.91 is written in flux units, despite
the result is in µK2. This is possible through the use of the quantity ε, which
converts between the power at the normalization frequency, ν0, and the power in
a cross spectrum ν × ν ′, providing the result in CMB temperature units. It is
defined as:

εν,ν′ ≡
dB
dT
|ν0 dBdT |ν0

dB
dT
|ν dBdT |ν′

, (4.92)

where B is the CMB black-body specific intensity, evaluated at TCMB, while
ν and ν ′ are the effective frequencies of the experiment under analysis. The
quantity dB/dT is defined in equation 4.70, while ην describes how the CIB
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brigtness scales with frequencies and is parametrized with a modified black body:

ην = νβBν(T ). (4.93)

Here Bν(T ) is again the black-body spectrum for temperature T , while β is
the effective dust emissivity index. We followed the choice of George et al [96],
hereafter G15, and fixed the temperature of the dust at 20K, while we let the
spectral index to vary within a flat prior, β ∈ [0.5, 3.5].

4.2.3 Sunyaev Zeldovich Effect

The Sunyaev-Zeldovich effect [9] arises when CMB photons are scattered by
high energy electrons in intracluster gas. The high temperature, ∼ 108 K, of
the gas in clusters ensures it is ionized and free electrons interact with CMB
photons through inverse Compton scattering. The energy transfer involved in the
process causes a distortion of the black body distribution: photons are moved
from the Rayleigh-Jeans part of the CMB spectrum to the Wien region, though
preserving the total amount of photons. It is possible to compute the decrease of
intensity in the Rayleigh-Jeans tail, which depends on the physical properties of
the cluster [157]:

∆T (x) = ∆Tthermal(x, y) + ∆Tkinetic(x, τ, vp), (4.94)

with x = hν/kTcmb. The first term in equation (4.94) is the thermal distortion
of the CMB intensity spectrum, while the second term arises when the electrons
have high kinetic energy due to bulk motions and, in particular, present a net
peculiar velocity along the line of sight. Figure 4.12 shows the spectral distortion
of the CMB radiation due to the SZ effect.

Thermal Sunyaev Zeldovich
The tSZ distortion can be written as:

∆Tthermal(x, y)

TCMB

= yg(x). (4.95)

The quantity g(x) is the thermal distortion spectral shape:

g(x) =

(
x
ex + 1

ex − 1
− 4

)
, (4.96)
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Figure 4.12: Spectral distortion of the CMB spectrum due to the SZ
effect. The thick solid line is the tSZ and the dashed line is the kSZ. For

reference the 2.7 K thermal spectrum for the CMB intensity, scaled by 0.0005,
is shown by the dotted line. Figure taken from [158].

while y is its amplitude, given by the Compton parameter:

y =
σT
mec2

∫
dlnekTe. (4.97)

Here me and ne are the mass and number density of the electron, while σT is
the Thomson scattering cross section. The integral is computed along the line
of sight, dl. From equation (4.97) we can also deduce one of the main property
of the tSZ effect: its surface brightness is redshift indipendent. This makes it
useful not only for cosmological analysis, but also for high redshift clusters study.
Decomposing a SZ map in spherical harmonics, Y`,m, we obtain:

y(n) =
∑
`,m

y`,mY`,m(n). (4.98)

The adimensional angular power spectrum of the Compton parameter map is
then [159]:

CtSZ
` =

1

2`+ 1

∑
m

y`,my
?
`,m. (4.99)

From the large scale structure point of view, the tSZ effect is described with
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a halo model formalism, similarly to the CIB. The clusters originating the tSZ
effect are usually located at redshift less than 1.5, in very massive and clustered
structures. For this reason, the density contrast required to identify an halo
hosting a SZ-cluster is 500ρc. Note that it was 200ρc for CIB, as the level of
clustering needed to host star-forming galaxies is expected to be lower. The
general formalism for the thermal SZ halo model can be found in [6, 160–165].
The one and two halo terms take the form:

Cyy−1h
` =

∫
dV

dz
dz

∫
dM

dN

dM
ỹ`(M, z)2, (4.100)

Cyy−2h
` =

∫
dV

dz
dzPlin(k = `/χ, z)[∫

dM
dN

dM
b(M)ỹ`(M, z)

]2

.

(4.101)

Here dV/dz is the comoving volume element defined in equation (4.85) and Plin
is the linear matter power spectrum. The halo mass function, dN/dM , and the
halo bias, b(M), are computed with Tinker et al. [166] parametrization. Following
this reference, in the case of the bias, we need to replace the constants inside
equation (4.29) with a new set of parameters:

A = 1.0 + 0.24y exp
[
−(4/y)4

]
,

a = 0.44y − 0.88,

B = 0.183,

b = 1.5,

C = 0.019 + 0.107y + 0.19 exp
[
−(4/y)4

]
,

c = 2.4,

(4.102)

with y ≡ log10 ∆. The Fourier transform of the halo density profile, used for
galaxy clustering, is replaced with the Fourier transform of the 3D Compton
parameter [167]:

ỹ`(M, z) =
σT
mec2

4πr500

`2
500

CP0

∫
dxx2 sin(`x/`500)

`x/`500

Pe(x). (4.103)

Here x ≡ r/r500 and `500 ≡ DA/r500, where the subscript denotes the density
contrast within that radius. The quantity Pe is the electron pressure profile,
for which we use a standard generalized Navarro-Frenk-White parametrization
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[115,168]:
Pe(x) = (c500x)−γ [1 + (c500x)α](γ−β)/α , (4.104)

with P0, α, β, γ fixed to a constant. We use the best fit values computed in [169]
and reported in Table 4.3.

P0 c500 γ α β
6.41 1.81 0.31 1.33 4.13

Table 4.3: Electron pressure profile parameters.

The parameter C is, instead, a function of the halo mass:

C = 1.65

(
h

0.7

)2(
H

H0

) 8
3

[
(h/0.7)M̃500c

3× 1014M�

] 2
3

+0.12

. (4.105)

The mass used in equation (4.105), M̃500c, is called hydrostatic mass and do not
necessarily concide with the true mass. It can contain a bias due to non-thermal
pressure, observational effects, and other uncertainties in the cluster pressure
modelling. We then introduce the bias parameter B, which relates the true and
hydrostatic mass: M̃500c = M500c/B. Accordingly with Planck notation [170], we
actually use the parameter b, which relates to the bias as:

B = (1− b)−1. (4.106)

As `500 ∝ 1/r500 and r500 ∝M
1/3
500 , the bias does not only affect the power spectrum

normalization but also the angular dependence. The total tSZ adimensional
power spectrum is then given by:

Cyy
` = Cyy−1h

` + Cyy−2h
` , (4.107)

which can be converted in the tSZ power spectrum, expressed in CMB units,
multiplying by the CMB temperature and spectral dependence reported in
equation (4.96):

CtSZ
`,ν,ν′ = T 2

CMBg(ν)g(ν ′)Cyy
` (4.108)

In figure 4.13 it is shown the Compton parameter power spectrum. The one halo
term is in blue, while the subdominant two halo term in orange.

Kinetic Sunyaev Zeldovic
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Figure 4.13: Compton parameter power spectrum. Unlike the CIB, the
tSZ power is dominated by the one halo term (blue) at all scales, while the
two halo term (orange) is more than an order of magnitude lower, due to the

scarcity of high massive tSZ clusters.

The kinetic distortion in the last term of equation (4.94) has no spectral depen-
dence. It is given by:

∆Tkinetic(x, τ, vp) = −βτ. (4.109)

The amplitude of this effect is regulated by β = vp/c and τ . The first is the
average line-of-sight streaming velocity of the gas, defined with a positive sign
if the gas is approaching the observer. The second is the Thomson scattering
optical depth:

τ = σT

∫
d`ne. (4.110)

Usually the kSZ is modelled through the use of an angular template multiplied
by a free amplitude. We used the template of G15, which split the kSZ into
two contributions: the "homogeneous kSZ" and the "patchy kSZ". The first one
arises after the Reionization epoch, in a fully ionized Universe [171]. The second
component, instead, comes from the peculiar motion of the partially ionized
gas during Reionization [172]. The template power spectrum for homogeneus
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Reionization is obtained by means of hydrodynamical simulations, including
cooling and star formation. It has been computed through measurements of the
power spectrum of gas fluctuations in simulations over a chosen range of redshifts.
The approximate scaling of this template with cosmological parameters is given
by:

DkSZ ∝
(

h

0.71

)1.7 ( σ8

0.80

)4.7
(

Ωb

0.044

)2.1

×
(

Ωm

0.264

)−0.4 ( ns
0.96

)−0.2

.

(4.111)

The dependence on cosmological parameters does not affect our analysis, as the
template we used has been precomputed at fixed cosmology and rescaled to one
at ` = 3000. The patchy kSZ is also derived from simulations: once identified,
the ionized regions forming during the Reionization epoch are correlated with
the density and velocity fields to determine the kSZ power spectrum. The kSZ
amplitude resulting from these simulations depends mainly on the midpoint
and total duration of Reionization. As opposite, the shape of the patchy kSZ
power spectrum is quite robust with respect to changes in duration and timing
of Reionization. The dependence of patchy kSZ on cosmological parameters is
the same of homogeneus kSZ, see equation (4.111).
The template we used assumes that reionization starts at z = 11 and ends at
z = 8. As anticipated, the amplitude of the template is normalized to 1µk2 at
` = 3000 and then left as a free parameter in the fit to data:

DkSZ
` = akSZD

kSZ
0,` , (4.112)

where akSZ is the fitted amplitude and DkSZ
0,` is the normalized template.

4.2.4 tSZ-CIB correlation

The unresolved clusters, contributing to the SZ effect, and the dusty sources,
emitting the CIB, are both tracers of the dark matter distribution within halos,
although showing different dependence on the halo properties. For this reason we
expect to find a certain degree of correlation between these two observables [173].
Addison et al. [174], hereafter A12, have modelled this correlation and found
values between 10% and 50%, depending on the multipole and the separation
between the two frequency used in the computation of the cross-spectrum. The
uncertainty on the amount of tSZ-CIB correlation is dominated by the lack of
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precise knowledge about the mass of the halos hosting the CIB sources and
their redshift ditribution. As the tSZ-CIB power does not vary significantly
with frequencies in the SPT bands, it is somewhat degenerate with the kSZ. An
imprecise modelling of the correlation between CIB and tSZ would then give
wrong contraints on the kSZ. In our code we used a halo model to describe the
tSZ-CIB correlation. The one halo term provides the correlation between the
CIB sources and the tSZ within the same halo. The two halo term, instead, arises
due to the correlation between a dusty galaxies in one halo and a tSZ clusters in
another halo. As for the tSZ, the two halo term is subdominant, but still not
negligible. Consider the scenario in which a massive halo, contributing to the
tSZ, has no star formation happening within it. This implies no CIB sources and
consequently no tSZ-CIB correlation from the one halo term. Still, there can be
a contribution from the two halo term, arising from some overlap in the redshift
distribution between dusty galaxies and the tSZ halos. We write our formalism
in order to be coherent with A12 notation and we introduce the mean source
flux density 〈Sν(M, z)〉. In general this quantity depends on redshift and mass.
We followed A12 and C13 and neglect the dependence of the flux density on the
mass of the source, considering only the redshift dependence. Starting from the
emissivity we can obtain an expression for 〈Sν(z)〉:

dSν(z)

dz
= sν(z)

dV

dz
, (4.113)

where
sν(z) =

∫
dM

dN

dM
Swν (z)〈Ngal〉 = Swν (z)ngal. (4.114)

Equation (4.113) becomes:

dSν(z)

dz
= Swν (z)ngal

dV

dz
. (4.115)

We can then derive a number-counts weighted emissivity:

Swν (z) =
dSν(z)
dz

ngal
dV
dz

=

∫
dN
dSνdz

SνdSν

ngal
dV
dz

. (4.116)
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The halo terms parameterization then becomes:

CtSZ×CIB−1h
`,ν,ν′ = TCMB

∫
dV

dz
dz (g(ν)Swν′ + g(ν ′)Swν )∫

dM
dN

dM500

ỹ`(M500, z)ugal〈Ngal〉,
(4.117)

CtSZ×CIB−2h
`,ν,ν′ = TCMB

∫
dV

dz
dzPlin(k = `/χ, z) (g(ν)Swν′ + g(ν ′)Swν )[∫

dM
dN

dM500

bSZ500(M500)ỹ`(M500, z)

]
[∫

dM
dN

dM
b(M)ugal〈Ngal〉

]
.

(4.118)

The quantities denoted with the subscript ′500′ are computed using a density
contrast of 500ρcrit, as explained in the SZ modelling treatment. In order to
compute the bias bSZ we are using equation (4.102). In the model described, the
functions involved in the computation of SZ and CIB are also used to obtain
their correlation. Previous studies, such as Dunkley et al. [95] and G15, used a
template approach for the tSZ-CIB correlation. Their parametrization requires
the introduction of a correlation coefficient, ξG, which is the same on all angular
scales. In addition to being more physically motivated with respect to G15
approach, our model does not need the introduction of new parameters and
can eventually account for the scale dependence of the tSZ-CIB correlation. In
figure 4.14 we show the tSZ-CIB correlation power spectrum at 150 GHz. As
the massive clusters that cause the tSZ effect are located at low redshift, the
correlation with CIB is higher for the late-type population (orange) with respect
to the early-type one (blue).

4.2.5 Other contaminants

4.2.5.1 Radio sources

We included in the model a poisson term for the radio sources [175, 176]
below the detection limit, as in G15. The flux density threshold has been set
at ∼ 6.4 mJy at 150 GHz, because, in SPT maps, all sources brighter than this
flux density, and with spectral index consistent with a synchrotron emission, are
identified as radio galaxies and masked. The Poisson term for radio emission is
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Figure 4.14: tSZ-CIB correlation power spectrum at 150 GHz. As in the
CIB case the early-type population (orange) is computed assuming

Mmin = 1012M�h
−1, while for the late-type population (blue) we assumed

Mmin = 1011M�h
−1. As the massive clusters thats cause the tSZ effect are

located at low redshift, the correlation with CIB is higher for the late-type
population. Massive clusters are rare and for this reason the one halo term
(dash-dotted line) is the dominant contribution, especially for the late-type

population.

then:

Dr
`,ν,ν′ = Dr

3000εν,ν′

(
νν ′

ν2
0

)αr ( `

3000

)2

. (4.119)

The quantity Dr
3000 is the amplitude of the power spectrum at ` = 3000 and

frequency ν0, while αr is the effective spectral index of the radio source population.
The unit conversion factor, εν,ν′ , is computed in equation (4.92). We neglected the
clustering of the radio galaxies, as it is expected to be well below the uncertainty
on the clustered CIB signal at SPT frequencies [177]. We did not even consider
the correlation between radio sources and tSZ signal. Indeed, [178, 179] have
shown that the number of radio sources with significant flux density in the mm
range of the spectrum and correlated with galaxy clusters is expected to be low,
well under the tSZ-CIB correlation amplitude.
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4.2.5.2 Galactic cirrus emission

Galactic cirrus is the less relevant foreground term we included in the model
[180]. We tested two different parametrizations for this emission. The first can
be found in [95] and reads:

Dcir
`,ν,ν′ = Dcir

3000,ν,ν′

(
`

3000

)−1.2

(4.120)

The amplitude can both be varyed or fixed to the measured value at ` = 3000:
0.16, 0.21, 2.19 µK2 at 95, 150, 220 GHz. These values represent the autospectra
powers, and the cross-frequency amplitudes are the geometric means of these
parameters.
The second modelling is taken by G15 and Fixsen et al. [133]. The authors model
the cirrus similarly to the Poisson noise of the CIB:

Dcir
`,ν,ν′ = Dcir

3000ενν′
ηνην′

η0η0

(
`

3000

)αcir
(4.121)

The quantity Dr
3000 is the amplitude of the power spectrum at ` = 3000 and

frequency ν0. Again the unit conversion ενν′ is given by equation (4.92), while
ην is the modified black body defined as in equation (4.93). The temperature
of the cirrus dust is fixed at T = 29K and the spectral index at β = 0.69. The
angular template has the same index as the former modelling, αcir = −1.2. The
amplitude of the galactic cirrus can in principle be varied, but we decided to fix
it to G15 best fit and set Dcir

3000 = 0.65.

4.3 Constraints on the parameters of the fore-
grounds

In this section we use the model detailed above to describe data at millimeter
and sub-millimeter wavelenghts. We have chosen to investigate two datasets: the
first includes data from the SPT and has been released by G15. The SPT nominal
frequencies are 95, 150, 200 GHz. The second dataset is comprehensive of both
the SPT and Hershel/SPIRE bandpowers, with the SPIRE working frequencies
assuming the nominal values of 600, 750, 1200 GHz. This dataset has been
released by Viero et al. in 2019 and, from now on, will be denoted as V19. The
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high frequencies give reliable contraints on the clustering parameters of both early
and late type star forming galaxies. Moreover they allow a deep study of the shot
noise term both from power spectra analysis and from galaxy number counts.
Also the low frequencies can be used to study the clustering parameters of the
CIB sources, mainly for the early type population. Moreover they are necessary
to constrain the parameters describing the tSZ, the kSZ and the radio sources.
The G15 dataset has been chosen in order to ensure the possibility to have a direct
comparison between the results of our model with those obtained by the authors
in G15 analysis. On this dataset, which have a well-behaving covariance matrix,
we could explore the degeneracies among the parameters of the model. The
baseline is made by seven parameters: the hydrostatic mass bias, b, the clustering
parameters of the early type population, Log10(MEP

min) and αEP , the amplitude
and spectral index of the poisson noise, Ap and β, the amplitude of the kSZ
and of the radio sources, AkSZ and Ar. After an investigation on the degeneracy
between the kSZ and the tSZ-CIB correlation, we added two parameters to the fit:
Log10(MLP

min) and αLP . This allows to improve the modelling of the local sources,
those more correlated with the SZ effect. The V19 dataset had never been used
for model fitting before our analysis. In the work presented here we performed
a study only of the SPT and SPIRE portion separately, while leaving the joint
study for a future work. The SPT part of this dataset is derived on the same
maps of the G15 dataset and serves as test to confirm the conclusions drawn in
the G15 case. The added information comes from the SPIRE frequencies. In this
case the baseline model includes the clustering parameters of both populations
(Log10(MEP

min), αEP , Log10(MLP
min), αLP ) and the level of the shot noise for the

three SPIRE autospectra (PN600×600, PN857×857, PN1200×1200).

4.3.1 SPT-SZ survey: dataset and results

The South Pole Telescope is a 10 meter diameter telescope operating at the
Amundsen-Scott South Pole station in Antarctica [87]. The telescope is designed
for conducting large-area millimeter surveys of faint emissions, as required to map
primary and secondary anisotropies in the CMB. As already mentioned, the first
analysis we present is on the dataset released by G15. Here we briefly describe the
dataset, but we refer to the aforementioned paper for all the details. The dataset
used comes from the 2540 deg2 of sky observed with the SPT-SZ camera from 2008
to 2011. The SPT-SZ camera consists of 960 horn-coupled spiderweb bolometer.
Its field of view was divided into 19 contiguous sub-patches, called fields, for
observations. Seventeen of the 19 fields were observed to an approximate depth
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of 18 µK-armcin at 150 GHz. The noise levels at 95 and 220 GHz, instead, vary
significantly between the years of observation. For details on the telescope, the
receiver, the detectors see [181–184]. A complete overview of the time-ordered
data (TOD), filtering and map-making procedure can be found instead in [92].
The SPT beams are measured using a combination of bright point sources in each
field, Venus and Jupiter. The main lobes of the SPT beam at 95, 150, 220 GHz
have 1.7′, 1.2′ and 1.0′ gaussian FWHM. The observation-to-observation relative
calibration of the TOD are determined from the measurements of a galactic
HII, RCW38, several time per days. The absolute calibration is determined by
comparing the SPT power spectrum and the Planck CMB power spectrum per
each frequency [185]. The comparison is performed in `-bins over the multipole
range ` ∈ [670, 1170], chosen as dominated by the primary CMB power at these
observation frequencies. The pseudo-C` method [186–188] has been used to
estimate the power specturm from the Fourier transform of the maps. The
whole analysis is performed in flat sky approximation, replacing the spherical
harmonics transform with the Fourier transform. The MASTER algorithm [186]
has been employed to account for beam, apodization, filtering and limited sky
fraction. In addition to the autospectra computed by the use of MASTER, also
the cross-spectra are estimated in order to eliminate the noise bias. The cross
spectra are obtained from the combination of maps at two different frequencies
in Fourier space. The maps used are smoothed at the edges through a window
function and depurated by point sources with flux density higher than ∼ 6.4 mJy
at 150 GHz by means of proper masking. They are also weighted by an array
including the theoretical power spectrum from simulations and the noise power.
The obtained C` are averaged within the bins to obtain the cross band powers,
details in [91,94]. The covariance matrix includes instrumental noise variance and
sample variance, which is estimated from signal-only simulations. The authors
mention that the off-diagonals blocks in the estimated covariances can be large
compared to the true covariance. For this reason they compute analytically the
off-diagonals blocks from the diagonal elements, following Appendix A of [91].
The covariance containing the sample variance and the instrumental noise is then
added to the beam and calibration covariance, to obtain a full description of the
uncertainties. The nominal frequencies at which SPT operates are 95, 150 and
220 GHz, but the effective band center can vary with the source spectrum. A
radio-like source spectrum (α = −0.5) have band centers of 95.3, 150.5 and 214.0

GHz. For a dust-like source spectrum (α = 3.5), which characterizes CIB and
cirrus emission, the effective frequencies are 97.9, 154.1 and 219.6 GHz. When
considering a tSZ power spectrum we have 97.6, 153.1 and 218.1 GHz. In the
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modelling of some of these foregrounds we need a normalization frequencies. We
always use the central band of each of the different components, except for the
cirrus modelling, where the normalization frequency is ν0 = 219.6 GHz.
In the following we present the model fit to data. We vary the parameters of
the foregrounds, while keeeping the cosmology fixed to the best fit parameters
obtained by G15: H0 = 68.15, Ωm = 0.30 and ns = 0.9611. This choice is made
in order to allow a direct comparison with the results of G15. We sampled the
parameters distributions using the Monte Carlo engine, available in the package
Cobaya [189]. The convergence is assessed through a generalized version of the
Gelman-Rubin statistic denoted as R-1, see [190].

Before starting to comment the results, we underly that our modelling is the
same of G15 for the radio source emission, the CIB poisson term and the kSZ,
while we used the halo model for the CIB clustering, the tSZ and the correlation
between the two 4. For the tSZ effect we fit for the hydrostatic mass bias. For
what concern the CIB, we fixed the clustering parameters of the late-type pop-
ulation, as done in C13, to the values of Log10(MLP

min) = 10.8M�h
−1, αLP = 1,

scaleLP ≡ MLP
sat /M

LP
min = 20, σLP = 0.1. We also fixed two of the early-type

population HOD parameters: scaleEP ≡MEP
sat /M

EP
min = 20, σEP = 0.1, in order

to reduce the degeneracies in the determination of the one halo term. We instead
vary the minimum mass Mmin and α for the early-type population. We also fit
for the amplitude and spectral index of the CIB poisson noise, AP and βP , the
amplitude of the radio galaxy emission, Ar, and of the kSZ, AkSZ . We fixed
the radio sources spectral index to the best fit value of G15, αr = −0.945, and
impose on the amplitude a gaussian prior of 1.28 ± 0.19 µK2, based on [191]
source counts model. In figure 4.15 we see the posterior distributions of the
parameters, while in table 4.4 we report the mean and standard deviation of
these distributions.

For the poisson term of the CIB, G15 found Dp
3000 = 9.16 ± 0.36 µK2 and

βp = 1.505 ± 0.077, which are values well in agreement with our result. The
quoted amplitude of the radio sources was 1.06± 0.17 µK2, again in agreement
with our results. If we compute the amplitude of the clustering of the CIB at
` = 3000 and ν = 150 GHz, we get Dc

3000 ∼ 3.65 µK2, which is within the error
4In G15 the parameters of the model are: the amplitude of the CIB clustering term, DCIBc

3000 ,
the effective dust emissivity index (for the clustering term), βc, the amplitude of the CIB
poisson term, DCIBp

3000 , the effective dust emissivity index (for the poisson term), βp, the effective
dust temperature, Td, the amplitude of the tSZ, DtSZ

3000, the amplitude of the kSZ, DkSZ
3000, the

amplitude of the radio sources, Dr
3000, the radio sources spectral index, αr

3000, the amplitude of
the galactic cirrus, Dcirr

3000, the amplitude of the tSZ-CIBc correlation, ξG.
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Figure 4.15: Distributions of the parameter posteriors. We put a gaussian
prior only on the amplitude of the radio sources power spectrum, while all

other parameters are just varyed within a flat prior.

of the G15 value, who gave Dc
3000 ∼ 3.46 ± 0.54 µK2. The tSZ amplitude at

` = 3000 can be computed from the halo model, introducing hydrostatic mass
bias found in our fit. We obtain DtSZ

3000 ∼ 2.55 µK2, while G15 quoted a higher
value: DtSZ

3000 = 4.38+0.83
−1.04 µK

2. This first fit shows some issue that it is useful to
comment in order to understand the degeneracies between the parameters of the
model and to explore the physics behind them. The first is that the value of the
kSZ is higher than predicted by previous analysis and, more important, the null
hypothesis is excluded at more than five sigma. This is really unlikely, as all
previous analysis on these maps found an upper limit on the kinetic term [95,192].
The high value of the kSZ causes a suppression of the power in the tSZ, which
then shows the aforementioned discrepancy with respect to G15. Moreover, the
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parameter priors result
b [0.05, 0.95] 0.60±0.016

Log10(MEP
min/M�h

−1) [11, 12.8] 12.01±0.2
αEP [0.2, 3.5] 2.4±0.47

AP [µK2] [0.2, 16] 9.14±0.88
βP [0, 6] 1.62±0.07

Ar [µK2] 1.28±0.19 1.11±0.08
AkSZ [µK2] [0, 13] 3.44±0.7

Table 4.4: Mean and standard deviation of the parameters distributions.
In this case R− 1 = 0.01. We also apply to the chains a burn in equal to 0.4.
The value of αEP for the early type population is higher then predicted by
semi-analytical model. Moreover, differently from the results of previous

studies on the same dataset, the amplitude of the kSZ excludes the null value
at more than five sigma.

value of αEP found is well above the prediction of semi-analytic models, α ≤ 1

(see [193,194]).
The unrealistic value of the kSZ effect can be adressed starting from the consid-
erations of A12 and [192]: the uncertainty in the modelling of the tSZ-CIB can
significantly mislead the constraints on the kSZ. We use the Equation 28 of A12
to compute the so-called correlation parameter:

ξ` =
CtSZ×CIBc
`,ν1,ν2√

CtSZ
`,ν1,ν1

CCIBc
`,ν2,ν2

+
√
CtSZ
`,ν2,ν2

CCIBc
`,ν1,ν1

. (4.122)

Here CtSZ
`,ν2,ν2

is the absolute value of the tSZ power spectrum, ` = 3000 and
ν1 = ν2 = 150 GHz. In G15 the amplitude of the tSZ-CIBc correlation is
computed inverting equation 4.122. In the baseline model of G15 the correlation
parameter is varyed within uniform prior and it is unique at all angular scales:
we will denote it as ξG in the following. Using the values of table 4.4, we obtain
ξ3000 = −0.46. This value is almost twice the degree of correlation expected for
that frequency and multipole, which is ξ` ∼ 0.2. In order to verify if the wrong
value of the kSZ is a consequence of a degeneration with the tSZ-CIB correlation,
we first performed a diagnostic test, fitting for an additional parameter γ directly
mutiplied to the correlation power spectrum. If the prediction of A12 are correct,
we should see a deviation from one of the correlation parameter. The result is
shown in figure 4.16.
We obtained a mean value of the correlation parameter around γ = 0.36. With
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Figure 4.16: Distributions of the parameter posteriors. To test the impact
of the tSZ-CIB correlation on the kSZ constraints we fit also for the γ

parameter.

this configuration the tSZ effect slightly increase: b = 0.56± 0.18, which means
an amplitude of DtSZ

3000 ∼ 3.6 µK2, now compatible with the G15 result. We
also correct the kinetic term: DkSZ

3000 < 2.3 µK2 at 95% C.L., compatile with
G15 baseline model results, DkSZ

3000 < 5.4 µK2, for the same confidence level. In
our modelling, the halo approach employed to describe the tSZ and the CIB
should prevent from the use of the γ parameter: the value of the correlation is
determined by the mass bias, b, and, most of all, by the clustering parameters
of the CIB. We have already mentioned that the tSZ-CIB correlation power is
higher at low redshift, where the massive SZ clusters are located. This observable
is then dominated by the late-type population of star forming galaxies. We then
decided to fit also for Log10(MLP

min) and αLP , while keeping scaleLP = 20 and
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σLP = 0.1. In figure 4.17 we see the posterior distributions of the parameters,
while their mean and standard deviation are reported in table 4.5.

0.55 0.60
b

1
2
3
4

A k
SZ

0.8

1.0

1.2

A r

1.4
1.5
1.6
1.7

P

9

10

A P

0.2

0.6

1.0

LP

10

11

Lo
g 1

0(
M

LP m
in

)

2.5

3.0

EP

11.6

12.0

12.4

Lo
g 1

0(
M

EP m
in

)

11.5 12.0
Log10(MEP

min)
2.5 3.0

EP

10 11
Log10(MLP

min)
0.2 0.6 1.0

LP

9 10
AP

1.4 1.6
P

0.8 1.0 1.2
Ar

2 4
AkSZ

Figure 4.17: Distributions of the parameter posteriors. We put a gaussian
prior only on the amplitude of the radio sources power spectrum, while all
other parameters are just varyed within a flat range. We included in the fit

also the minimum mass and α of the late-type population.

In this case, the value of the mass bias is b = 0.57± 0.016 and the resulting
amplitude of the tSZ is compatible with what found by G15. We detected the
kSZ at 95% C.L. and found DkSZ

3000 = 1.9+2.6
−1.0 µK

2. This result is within the upper
limit found by G15 and in line with what obtained by Reichartd et al. 2020.
In [195] the authors performed a measurement of the secondary CMB anisotropies
combining the G15 maps and the low-noise 500 deg2 SPTpol survey and found
DkSZ

3000 = 3.0 ± 1.0 µK2 at 3σ. In our work, the combination of an improved
modelling of the CIB late type population and the implementation of an halo
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parameter priors result
b [0.05, 0.95] 0.57±0.016

Log10(MEP
min/M�h

−1) [11, 12.8] 12.07±0.15
αEP [0.2, 3.5] 2.8±0.2

Log10(MLP
min/M�h

−1) 10.8±0.3 10.8±0.3
αLP 0.5±0.3 < 0.88 (95%C.L.)

AP [µK2] [0.2, 16] 9.53±0.3
βP [0, 6] 1.59±0.07

Ar [µK2] 1.28±0.19 1.0±0.08
AkSZ [µK2] [0, 13] 1.9+2.6

−1.0

Table 4.5: Mean and standard deviation of the parameters distributions.
For the kSZ amplitude we report the 68% C.L.. Again we apply to the chains

a burn in equal to 0.4 and R− 1 = 0.007. We fit also for the clustering
parameter of the late-type population: for the minimum mass we obtain a

value similar to what predicted by C13, while we found just an upper limit on
the index of the power law regulating the satellite galaxy accretion. Varying
the clustering parameters of the late-type population, we found a upper limit

for the kSZ effect, coherently with G15.

model for the tSZ-CIB correlation allow to boost the constraints on the kSZ
already on G15 bandpowers. To conclude, the value of the correlation is now
lower, approaching the prediction of previous literature: ξ150×150

3000 = −0.29. The
halo model successfully reproduces current limit on the kSZ effect without the use
of a correlation parameter, replaced by a physically motivated description of the
late-type population of low redshift star forming galaxies. We have also shown
that data prefer a suppression of the one halo term for the late-type population
and are oriented to lower values of α, with respect to those used in literature.

In figure 4.18 we show the comparison between data and the model obtained
with the parameters quoted in table 4.5. We also plot the contribution given by
every foreground. In particular the curves represent: the radio galaxy emission
(green solid line), the tSZ and kSZ effect (solid and dashed blue line respec-
tively), the CIB poisson and clustering emission (solid and dashed orange lines
respectively) and the correlation between the tSZ effect and the CIB clustering
(pink dashed line). To conclude, the CMB is represented by the red line and the
galactic cirrus are in yellow. For sake of clarity we do not show the decomposition
of the CIB clustering into the two populations or dividing the one and two halo
terms and just show the total contribution of this foreground. The chi-square of
this model is 99.9 for 77 degrees of freedom. It corresponds to a reduced χ2 = 1.3

and p− value = 0.04: the model is in agreement with data around 2σ.
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Figure 4.18: Comparison between data and the model obtained with the
parameters in table 4.5. The curves represent: the radio galaxy emission
(green solid line), the tSZ and kSZ effect (solid and dashed blue line

respectively), the CIB poisson and clustering emission (solid and dashed
orange lines respectively) and the correlation between the tSZ effect and the
CIB clustering (pink dashed line). The model has a reduced χ2 = 1.3 and

p− value = 0.04: it is in agreement with data at ≈ 2σ.

To conclude the investigation of the degenerations that affect the kSZ effect, we
decided to place a gaussian prior on the hydrostatic mass bias, which determines
the amplitude of the tSZ. The value that b should assume is still debated:
numerical simulations give b ∼ 0.2. On the other hand, the value used to alleviate
the inconsistency with the constraints derived from the analysis based on primary
CMB anisotropies is b ∼ 0.4 [196]. We have chosen to center the prior on this
second value, imposing b = 0.4±0.05, as it is given by analysis similar to what we
are doing here. We show the distribution of the parameters posterior in 4.19.The
mean and standard deviation of the parameters distributions are listed in table
4.6.

The value of the hydrostatic mass bias obtained from the fit is in tension with
the prior, around three sigma. Nevertheless it returns an amplitude of the tSZ
power spectrum in line with G15, DtSZ

3000 ∼ 3.6 µK2. We again detected the kSZ
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Figure 4.19: Distributions of the parameter posteriors. We imposed a
prior on the b parameter, i.e. on the amplitude of the tSZ power spectrum, in

order to break the degeneracy with the kSZ.

effect at 95% C.L. and found DkSZ
3000 = 1.4+2.0

−0.5.
The chi-square of this model is 99.6 for 76 degrees of freedom. It corresponds to
a reduced χ2 = 1.3 and p− value = 0.036: the model is in agreement with data
between 2 and 3σ.

We have anticipated that the value of αEP is in strong disagreement with
the value given by semi-analytical models, ≈ 1. It is also far from the results
of previous studies: C13 obtained α = 1.55 ± 0.05, while Xia et al. [197] α =

1.81 ± 0.04. We underly that these values are obtained on high frequencies
datasets (250, 350, 500 µm) and thus they are not fully comparable with the
present case, but still they strengthen the evidence of a tension between the value
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parameter priors result
b 0.40±0.05 0.56±0.014

Log10(MEP
min/M�h

−1) [11, 12.8] 12.07±0.14
αEP [0.2, 3.5] 2.8±0.2

Log10(MLP
min/M�h

−1) 10.8±0.3 10.8±0.3
αLP 0.5±0.3 < 0.79 (95%C.L.)

AP [µK2] [0.2, 16] 9.62±0.35
βP [0, 6] 1.56±0.06

Ar [µK2] 1.28±0.19 1.0±0.08
AkSZ [µK2] [0, 13] 1.4+2.0

−0.5

Table 4.6: Mean and standard deviation of the parameters distributions.
For the kSZ amplitude we report the 68% C.L.. Again we apply to the chains
a burn in equal to 0.4 and R− 1 = 0.007. The value of b is high with respect
to the prior, suggesting that data strongly requires a lower value of the tSZ,
with respect to what found in [196]. The resulting amplitude of the tSZ

power spectrum is in line with the results of G15. Imposing a prior on b, we
tightened a bit the upper limit on the kinetic SZ amplitude, with respect ot

the case reported in 4.5.

we found and what expected.
A possible explanation can be found in the choice we made when implementing
the dependence of the clustering on luminosity [7,198]. Indeed, we can think that
more luminous galaxies should contribute more to the total power spectrum with
respect to faint galaxies. This assumption affects the number of satellites needed
to reproduce the radiation coming from halos, which is regulated by α. In our
model, we included the dependence of clustering on luminosity through the split
of the late and early-type populations, assuming different clustering properties
for the massive proto-spheroids and the smaller local galaxies. To understand
if we can correct for the high values of αEP without a deep modification of the
model, we imposed a gaussian prior on the index of the satellite accretion power
law, based on the results of C13 at higher frequencies, α = 1.55± 0.3. We show
the result in figure 4.20.

The effect of decresing α has an impact on the Poisson level, which decreases
to Dp

3000 ∼ 7.4 ± 1.5 µK2 and enlarges its error bars. This is expected as the
poisson noise and the one halo term of the CIB clustering are degenerate at small
scales. As we mentioned while presenting the modelling, at these frequencies the
numbers of counts can not give strong constraint on the value of the Poisson
noise, so, in principle, the value we obtain from the distribution in figure 4.20
can not be excluded. Nevertheless, the problem arises when considering the
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Figure 4.20: Distributions of the parameter posteriors. We imposed a
gaussian prior on αEP parameter, centered on the value found by C13 at
SPIRE frequencies. This prior has an impact on the values of the CIB

poisson noise, highliting the degeneracy between the shot noise and the one
halo contribution of the clustering term, especially at small scales.

comparison to data: figure 4.21 represents the model obtained for the parameters
corresponding to the mean of the distributions shown in figure 4.20, compared to
data. The legend of the plot is the same of figure 4.18.

From this plot it is visually clear that the model underestimates the data for
the 150 × 220 and 220 × 220 autospectra. This is validated from the increase
of the chi-square, up to 162, which exclude the model at several sigma. The
result suggests that, in this framework, and related to this specific dataset,
there is no short way to lower the value of αEP without spoiling the accordance
between model and data. The conclusion we draw is that a more sophisticated
implementation of the dependence of clustering on luminosity is required for this
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Figure 4.21: Comparison between data and the model obtained from the
mean of the posterior distribution of the parameters shown in 4.20. The plot
legend is the same of figure 4.18. The model underestimates data for the

150× 220 and 220× 220 autospectra. The model shows a p− value < 0.001
and is consequently rejected.

dataset.

4.3.2 SPT-SZ and Hershel/SPIRE: dataset and results

As anticipated, the second dataset we used has been released by Viero et al
in 2019 [199](V19). It combines millimeter data observed with the SPT at 95,
150, 220 GHz and submillimeter data imaged with the SPIRE instrument on
the Herschel Space Observatory [200]. SPIRE works at higher frequencies with
respect to the SPT, and in particular at 600, 857, 1200 GHz. The spectra are
obtained from observations covering roughly 100 deg2 of the sky: 102 deg2 are
used for SPT-only bandpowers, 90 deg2 for the SPIRE-only bandpowers, while
86 deg2 are dedicated to the cross-frequencies bandpowers, denoted from now as
SPT×SPIRE. In all cases the power spectra are extracted using a pseudo−C`
method, as we will see a bit more in detail in the next subsection.
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4.3.2.1 Dataset

The field used to derive SPT bandpowers is approximately 10◦× 10◦ centered
at 23h30m, −55d00m and was observed in 2008 and 2010. The data and the
power spectrum analysis are identical to the G15 case, described before. The
only difference lies in the absolute calibration, which is determined by comparing
the SPT maps to Planck maps over the same footprint. The uncertainty in the
SPT calibration at 95, 150, 220 GHz are 0.43%, 0.34%, 0.84%. The beam and
calibrations uncertainties are included as a correlation matrix in the data release.
SPIRE maps are obtained at the nominal frequencies of 600, 857, 1200 GHz [201].
They are derived from observations designed to target the large scales. The full
observation consists of twelve 10× 13 degrees scans, half in a direction and half
in the perpendicular one. The full 100 deg2 map is built from a mosaic of these
12 scans. Data are reduced with standard ESA software and the costum software
package, SMAP [7,202]. Maps are made using and iterative map-maker, which
is designed to separate large scale noise from signal and includes an updated
calibration procedure with respect to previous studies [201,203]. The absolute
calibration uncertainty is 5% and, similarly for the SPT case, is accounted for
in the beam and calibration correlation matrix. Two sets of maps with different
pixel size are obtained: the one at high resolution, with pixels 15′′, is used for
the SPIRE-only analysis. The set of coarser maps, with pixels 30′′, is used for
the SPT×SPIRE map-making, in order to match the lower resolution provided
by the SPT.
The SPIRE maps noise leves are 5.6, 4.0, 2.8 mJy arcmin, and the instrument
effective beams are 36.6′′, 25.2′′, 18.1′′ FWHM at 600, 857, 1200 GHz. Maps
are converted from Jybeam−1 to Jysr−1, by dividing by the effective beam areas.
SPIRE beams are measured with Neptune, which is a point source to SPIRE. As
the effective beam is sensitive to the source spectrum through the band pass, the
effective solid angle have to be color corrected [204,205]. Following the SPIRE
Observers Manual 5, the authors of V19 found that the effective solid angles are
3.878, 1.873, and 1.080× 108 sr at 600, 857, 1200 GHz. At SPIRE frequencies
the signal is dominated by the CIB emission: differently from the SPT case, in
which we needed to know the effective frequencies for every component, in this
case we just need the effective frequencies for a dust like source. The effective
band centers for the SPIRE are then 546.0, 796.0 and 1092.4 GHz.
In order to compute the bandpowers, a cross-spectrum-based pseudo-C` method
has been used both for the SPT-only, SPIRE-only and SPT×SPIRE cases. In

5http://herschel.esac.esa.int/Docs/SPIRE/html/spireom.html
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the SPT-only case the bandpowers have been obtained following the procedure
of G15, that we have briefly described in the previous section. The SPIRE-
only bandpowers are obtained as in [7]: the power spectrum is estimated from
the cross-correlation of jack-knife map-pairs, exploiting the fact that noise is
mostly uncorrelated between frequencies. Actually the uncorrelated white noise
dominates at kθ & 0.2 arcmin−1, while at larger angular scales maps are affected
by the correlated 1/f noise. To minimize this contamination, the map-pairs are
constructed by dividing the timestreams in half by time. This ensures that maps
are derived from observations taken at time intervals corresponding to very large
scales.
The one dimensional power spectrum results then from the azimuthal average of
the two dimensional power spectrum of the map-pairs in k−space. The procedure
for SPT×SPIRE is similar to the SPIRE-only case. The only minor difference is
that full coadded maps for each experiment are used in this case, as the noise in
SPT and SPIRE maps are uncorrelated.
The spectra obtained from the maps have to be corrected for the transfer function,
masking and instrumental beam. A unique mask has been construct for each
cross-frequency spectrum, which has values of unity only in the region in which
the two maps overlap and zero outside. The mask is used to cover sources with
flux densities greater than 300 mJy at 1200 GHz and local extended sources for
the SPIRE maps and sources with flux densities greater than 6.4 mJy at 150

GHz for SPT maps. The filtering procedure is applyed during map making to
correct for the 1/f noise. It has an higher impact on the SPT power spectrum
which suffers more from large scales atmospheric noise. To correct for the effect
of filtering and for the beam, transfer functions are computed on simulated
maps, made with the same map-making pipelines applyed on mock data. The
covariance matrix is estimated as in G15 in the case of SPT-only band powers.
The covariance estimator changes when also SPIRE data are included. Firstly,
many realizations of the sky signal and noise terms are generated through a
Monte Carlo simulation. These realizations are analysed with the same pipeline
of real data and the ensemble of the estimated binned power spectra obtained
is used to measure the covarianche matrix, see equation 1 of V19. The sky
realizations include both Gaussian fields (CMB, tSZ, kSZ, radio galaxies) and
non-Gaussian field (CIB) [153]. The presence of non-Gaussian field led to the
appearance of substantial off-diagonal terms in the covariance matrix. The
covariance matrix obtained from these simulations contains the signal and noise
uncertainties. To obtain the total uncertainty we have to combine the beam and
calibration correlation matrix to the model bandpowers and then add it to the
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covariance matrix. We mention here that we have opted for a simplified analysis,
using a block diagonal version of the covariance matrix. This choice is due to the
substantial off-diagonal terms present in the SPIRE part of the covariance matrix,
which tend to bias the computation of the best fit model. In this sense, we
partially followed the path of [151] in their analysis on the SPIRE dataset. The
authors assumed gaussian uncorrelated error bars for measurement uncertainties,
i.e. a diagonal covariance matrix. In the following we present the model fit to
data. In this thesis we describe the results for the SPT and SPIRE block of the
dataset separately, while leaving the global fit for a future work. We varied the
parameters of the foregrounds, while keeeping the cosmology fixed to the Planck
2018 best fit parameters: H0 = 67.7, Ωm = 0.31 and ns = 0.9667. We sampled
the parameters distributions using the Polychord engine, available in the Cobaya
package. Polychord is a nested sampler, tailored for high dimensional parameter
space. In order to sample the parameter space, Polychord draws from the prior
range a certain number of live points. At each iteration the point with the lowest
likelihood is replaced by a new live point, uniformly drawn from the prior, with
the constraint that its likelihood is larger than that of the discarded point. The
convergence is reached when the evidence of the live points is a fraction, 10−2, of
the total evidence.

4.3.2.2 SPT-only: results

We have isolated the bandpowers corresponding to the SPT frequencies in
the V19 dataset and the associated portion of the covariance matrix. We directly
include the clustering parameters of the late-type population in the fit, relying
on the conclusions drawn in the case of the G15 dataset. At first we impose only
one prior, on the amplitude of the radio sources. However, we obtained high
values of the kSZ effect, which caused a strong decrease of the amplitude of the
tSZ, with values of the hydrodynamical mass bias larger than 0.7. To investigate
this issue we compared the bandpowers for the auto and cross spectra of the G15
and V19 datasets and found that the latter presents an eccess of power in the
95× 220 GHz. In figure 4.22 we show the comparison between the two datasests
for that cross frequency. The blue triangles, representing the G15 bandpowers,
have lower values with respect to the orange squares, corresponding instead to
the V19 data, especially at ` > 3000.

The two datasets are obtained with the same procedure on the same maps,
so we attributed the difference in the bandpowers to the variation of the sky
fraction. The cross spectrum of the 95 × 220 GHz is dominated by the CIB
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Figure 4.22: Comparison between G15 and V19 datasets for the 95× 220
GHz cross-frequency. G15 bandpowers (blue triangles) have lower values with

respect to V19 data (orange squares).

emission (in particular from the poisson term) and by the radio sources. The
parameters determining the amplitude of both these components are mainly
constrained from the fit to the 220× 220 GHz auto-spectrum, for the CIB, and
to the 95× 95 GHz frequency channel, for the radio sources. The only remaining
degree of freedom to vary, in order to fit the high power in data, is the amplitude
of the kSZ, which is then pushed to unrealistically high values. Because of the
degeneration between the amplitude of the kSZ and the mass bias, the increase
of AkSZ causes the reduction of the amplitude of the tSZ, with the large values of
the bias mentioned before. To cure this issue, we imposed a gaussian prior on the
value of the mass bias, centered in the value ontained by the Planck analysis, as
we did in the last test performed on the G15 dataset. The posterior distribution
for the parameters of the model are shown in figure 4.23. The mean and standard
deviation of the distributions are reported in table 4.7.

The values of the minimum mass for both the galaxy populations and the
upper limit derived for the αLP are compatible with those obtained in the analysis
of G15 dataset. Interestingly, the value of the αEP is now compatible with the
value found by Cai13, probably as a consequence of the degradation of the
constraint on the Poisson noise. The value of the mass bias is ∼ 2 − 3σ away
from the center of the prior, confirming that this dataset strongly requires a lower
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Figure 4.23: Distributions of the parameter posteriors. We imposed a
gaussian prior on the b parameter, b = 0.4± 0.05, in order to cure the effect of
suppression of the tSZ caused by the eccess of power in data at 95× 220 GHz.

value of the tSZ with respect to that inferred by Planck analysis. The constraint
on the amplitude of the kSZ degradates with respect to G15 and we attribute
this worsening to the difference in the cross-spectra bandpowers, explained before.
The value found, DkSZ

3000 = 3.2+4.5
−1.6, is, however, compatible with [195] results. In

figure 4.24 we show the comparison between data and the model obtained with
the parameters quoted in table 4.7. We also plot the contribution given by the
single foreground.

The chi-square of this model is 92.6 for 78 degrees of freedom. It corresponds
to a reduced χ2 = 1.18 and p − value = 0.12: the model is in agreement with
data between 1 and 2σ.

4.3.2.3 SPIRE-only: results

At SPIRE frequencies the only foregrounds that contribute to the signal are
the CIB (both clustering and poissonian terms) and the galactic cirrus. This
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parameter priors result
b 0.40±0.05 0.53±0.03

Log10(MEP
min/M�h

−1) [11, 12.8] 12.19±0.5
αEP [0.2, 3.5] 1.5±0.3

Log10(MLP
min/M�h

−1) 10.8±0.3 10.8±0.3
αLP 0.5±0.3 < 0.93 (95%C.L.)

AP [µK2] [0.2, 16] < 9.1 (95%C.L.)
βP [0, 6] 2.0±0.3

Ar [µK2] 1.28±0.19 1.1±0.2
AkSZ [µK2] [0, 13] 3.2+4.5

−1.6

Table 4.7: Mean and standard deviation of the parameters distributions.
For the kSZ amplitude we report the 68% C.L.. The run has converged i.e.
the posterior mass contained in the live points is equal to the 1% of the total
evidence. Again we apply to the chains a burn in equal to 0.4. The value of b
is high with respect to the prior, suggesting that data strongly requires a

lower value of the tSZ, with respect to what found in [196]. With respect to
G15 dataset, the constraints on both AP and AkSZ degradate, while the value

of αEP is now compatible with previous literature.

dataset is already cleaned from the presence of the cirrus so we can fit only
for the CIB. We vary both the early and late type population minimum mass
and α parameters. Similarly to what we have done for the low frequencies, the
satellite mass is derived multiplying the minimum mass by a factor 20, as in
Xia et al. [197] (hereafter X12). We also fit the value of the shot noise for the
auto-spectra of the three frequencies, denoted in the following triangle plots as
PNν×ν′ . In the first run we decided to vary all parameters without gaussian
priors. The result is in figure 4.25, while the mean and standard deviation of the
parameters distributions are reported in table 4.8.

For the minimum mass of the halos hosting the early type population,
C13 finds Log10(MEP

min/M�) = 12.15 ± 0.04, which in our units translate into
Log10(MEP

min/M�h
−1) ∼ 12.0, while X12 gives as result Log10(MEP

min/M�) =

12.24 ± 0.06 i.e. Log10(MEP
min/M�h

−1)1 ∼ 12.1. Our value seems to be higher,
but it is still within the range of value present in literature. Manyar et al. [151]
indeed attribute to the typical dark matter halo, hosting DSFGs at z = 2, a mass
of Log10(MEP

min/M�) = 12.77+0.128
−0.125, while Planck collaboration [206], with a slight

different model, gives value between 1011.5 to 1012.5 M�h
−1. The value of αEP

given by C13 and X12 are respectively αEP = 1.55± 0.05 and αEP = 1.81± 0.04.
In this case we found a lower value, which is, however, in line with the prediction
of the semi-analytical models [7]. For what concern the clustering parameters
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Figure 4.24: Comparison between data and the model obtained with the
parameters in table 4.7. The plot legend is the same of figure 4.18. The
errorbars are the diagonal elements of the matrix given by the sum of the
covariance matrix plus the correlation matrix multiplied by the theory
bandpowers. The covariance matrix contains the uncertainties related to
signal and noise, while the correlation matrix accounts for beam and

calibration errors.

of the low redshift population, in literature they are usually fixed at a mass of
Log10(MLP

min/M�) = 11 and αLP = 1. In our fit we constrained the clustering
parameters of the late type population for the first time. The value of the
minimum mass we found is ten times lower than that of the early-type population.
This validates the prediction that the early-type galaxies are hosted in more
massive structures than the late-type ones.
The values of the shot noise, reported in table 4.8, differ from the values computed
by fitting the number of counts and listed in table 4.2. In all cases the value
obtained by the fit of the counts is higher that that given by the fit of the power
spectra, but with some differences among the frequencies. In particular, we
observe that, for the 1220 GHz frequency, the values obtained through the two
procedures are compatible at 1σ. For the two lower frequencies, instead, the
values differs more than 2σ. The explanation of this behaviour can be traced
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Figure 4.25: Posterior distributions for the clustering and shot noise
parameters in SPIRE-only analysis. All parameters in this fit have been

varyed within uniform priors.

back to resolution effects: Bethermin et al. [207] analyse the impact of resolution
effects at SPIRE wavelenghts by means of simulations. They have shown that the
number counts measured by Hershel between 5 and 50 mJy are biased towards
high values by a factor of ∼ 2, which is indeed what we found, in particular at
600 GHz. In figure 4.26 we show the SPIRE-only spectra of the V19 dataset,
along with the model computed with the values reported in table 4.8. The solid
black curve is the total power, computed as the sum of clustering and poisson
terms. The black dotted line is the scale independent poisson term, while the
blue dotted line is the clustering. The clustering is computed as the sum of the
late-type (green) and early-type (orange) populations. For both populations
the plot shows the 2 halo term (solid line) and the 1 halo term (dash-dotted line).

The model well reproduces the data except in the case of the 1200 × 1200

GHz auto-spectrum and the 600× 857 GHz cross-spectrum, for which we observe
an excess of power in the model with respect to data at small scales. The total
reduced chi-square is χ2 = 1.3, with a p-value of 0.01. The model is consistent
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parameter priors result
Log10(MEP

min/M�h
−1) [11, 12.8] 12.57±0.16

αEP [0.2, 3.5] 1.07±0.3
Log10(MLP

min/M�h
−1) [10.5, 12.5] 11.5±0.4

αLP [0.2, 3.5] 1.24±0.06
PN600×600 [300, 2779] 1098±261
PN857×857 [2000, 6605] 4235±496
PN1200×1200 [5000, 13000] 8934±724

Table 4.8: Mean and standard deviation of the parameters distributions.
The run has converged i.e. the posterior mass contained in the live points is
equal to the 1% of the total evidence. Again we apply to the chains a burn in
equal to 0.4. Both clustering and shot noise parameters in this fit have been

varyed within uniform priors.

with data between 2 and 3σ, similarly to what found by [148] with a similar
modelling. The high value of the chi-square is mainly due to the presence of
substantial off-diagonal terms in the covariance matrix, as can be seen by the
high degree of correlation in data at small scales.
In order to better explore the descrepancy between the level of the shot noise
computed through the fit of the number of counts and the value obtained with
the power spectra analysis, we repeated the fit imposing a Gaussian prior on the
Poisson levels, centered in the values given by the number of counts, see Table
4.2, and large three times the value of sigma obtained with the same procedure.
The resulting distributions are shown in figure 4.27.

The dashed vertical line in the subplots representing the marginal distributions
of the poisson noise levels are the values derived from the number counts fit. In
the case of the 1200 × 1200 GHz spectrum the distribution matches the value
given by the number counts. For the two lower frequencies the distributions are
still compatible with the center value of the prior between 1 and 2σ, but have
their peaks at lower values. This behaviour mimics what seen in the case in
which the shot noise could vary freely, though mitigated by the presence of the
prior. The mean and standard deviation of these distributions are listed in table
4.9.

Focusing on the clustering parameters we observe that the value of α is now
higher than 2, i.e. not consistent with previous literature and with semi-analytical
model predictions. At the same time, the value of the minimum mass for the late
type population increases to the value of ≈ 1012M�. A qualitative explanation
comes with the following consideration: in a halo of ≈ 1012.5M� and a scale
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Figure 4.26: SPIRE-only spectra of the V19 dataset, along with the model
computed with the values corresponding to the mean of the parameters

distributions. The solid black curve is the total power, computed as the sum
of clustering and poisson terms. The black dotted line is the scale

independent poisson term, while the blue dotted line is the clustering. The
clustering is computed as the sum of the late-type (green) and early-type
(orange) populations. For both populations the plot shows the 2 halo term

(solid line) and the 1 halo term (dash-dotted line).

factor of 20, an increase of α causes a decrease of the one halo term. As we are
constraining the shot noise to higher values, in particular at low frequencies, an
artificial dump of the clustering at small scales is required: this causes α to reach
values higher than two. At this point at 1200 GHz we are left with some power
missing and this is accounted for with an increase of the minimum mass of the
late-type population. In figure 4.28 we show the SPIRE-only spectra of the V19
dataset, along with the model computed with the values reported in table 4.9.
The legend is the same of figure 4.26.

The effect of the prior on the value of the shot noise can be appreciated by
comparing the top left panel of figure 4.26 and 4.28, which correspond to the
autospectra of 600 GHz. In the first case the shot noise term is lower and the
one halo term of the early-type population dominates, in the second case the
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Figure 4.27: Parameters distributions for the clustering and poisson terms
of the CIB emission in the only-SPIRE portion of the V19 dataset. The

dashed vertical line in the subplots representing the marginal distributions of
the poisson noise levels are the value derived from the number counts fit.

situation is reversed, with a higher shot noise term and a negligible one halo term
for the high redshift galaxies. The consequence of this can be seen by comparing
instead the bottom right panels of the two figures, i.e. the auto-spectra of the
1200 GHz. To match the large scale data bandpowers we need more power in the
model, which is obtained with an increase of the late-type two halo term (solid
green line), through an increase of the hosting halo minimum mass.
Apart from the variations in the parameters value, from figure 4.28 one can see
that the fit worsen visibly, in particular for the two higher frequencies. The total
reduced chi-square is χ2 = 1.4, with a p-value lower than 0.002. The conclusion
that we can draw is that the present clustering model is not able to reproduce the
power spectrum data in presence of constraints on the poisson term. A possible
future development of the project is to implement the dependence of clustering
on luminosity in a more sophisticated way than what we have done here with
the separation of the two galaxy populations, see for example [7].
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parameter priors result
Log10(MEP

min/M�h
−1) [11, 12.8] 12.50±0.14

αEP [0.2, 3.5] 2.16±0.39
Log10(MLP

min/M�h
−1) [10.5, 12.5] 11.98±0.24

αLP [0.2, 3.5] 1.35±0.55
PN600×600 2479±150 2265±124
PN857×857 6205±250 5991±215
PN1200×1200 9833±400 9882±346

Table 4.9: Mean and standard deviation of the parameters distributions.
The run has converged i.e. the posterior mass contained in the live points is
equal to the 1% of the total evidence. Again we apply to the chains a burn in
equal to 0.4. Clustering parameters in this fit have been varyed within flat
priors, while on shot noise parameters we have imposed a gaussian prior

derived by the source-counts analysis.
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Figure 4.28: SPIRE-only spectra of the V19 dataset, along with the model
computed with the values corresponding to the mean of the parameters

distributions. The plot legend is the same of figure 4.26. Imposing a gaussian
prior on the shot noise level causes an excess of power in the model with

respect to data, especially at 1200 GHz.
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To conclude this paragraph we outline some of the main results: we built a
code able to fit data in a large range of frequencies through a physically motivated
description of the main foregrounds emitting in millimeter and submillimeter
wavelenghts. Data at millimeter wavelenghts (G15 dataset and the SPT portion of
V19 dataset) are used to constrain the tSZ and kSZ, the radio sources amplitude
and the CIB emission. First we underly that the SPT portion of the V19 dataset,
which is obtained with the same procedure and on the same maps of G15, presents
an excess of power in the 95×220 GHz cross-spectrum, probably due to a reduced
sky fraction. Despite this, the two datasets gave similar results. We found that
the kSZ is strongly degenerate with both the tSZ and its correlation with the CIB.
Despite data at these frequencies hardly constrain the clustering parameters of
the local population of starforming galaxies, a proper modelling of the late type
population of the CIB is necessary to avoid misleading the constraints on the kSZ.
For the hydrostatic mass bias we found, in both datasets, higher values than those
released by Planck analysis, still, the tSZ amplitude obtained with such values is
compatible with previous analysis on SPT data, i.e. G15. The V19 dataset is
already cleaned from galactic cirrus. Consequently, at SPIRE frequencies, the
only contribution to the total power spectrum comes from the CIB. In this case
we succesfully constrained the clustering parameters for both early and late type
population, confirming that the first is hosted in halos almost ten time more
massive than the latter. We also confirmed that there is a discrepancy between
the value of the poisson noise computed from power spectrum analysis and that
obtained from the galaxy number counts. This is true in particular at 600 GHz,
where the number counts measured by Hershel are biased towards high values
between 5 and 50 mJy. Beyond the results described here, our code can be used
to fit for cosmological parameters and, moreover, it will be of great utility in the
analysis of future datasets, as we will describe while drawing the conclusions of
this thesis.
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In this thesis we have explored the two extremes of the Cosmic Microwave
Background (CMB) angular power spectrum. We employed the large scales of
CMB polarization correlation function to investigate the concordance of low-`
CMB measurements with our cosmological model. We used, instead, small scales
of millimeter and submillimeter data, focusing on temperature anisotropies, to
investigate the distribution of matter in the Universe.
In the first two chapters we briefly reviewed the theory of our standard cosmology,
describing the components of the Universe, the main phases of the cosmic
history and the origin and evolution of the matter and radiation cosmological
perturbations.
In chapter three we extended the study of the lack-of-power anomaly to the CMB
polarization field, analysing the most constraining large-scale datasets currently
available, which are the Planck LFI+WMAP dataset [73] and the Planck HFI
100×143 dataset [72]. Adopting a frequentist approach, we assumed Planck
2018 + SRoll2 cosmological fiducial model [67] and in particular a specific value
for reionization optical depth τ = 0.0591, which is an important choice for the
angular scales probed. The value of τ used is also compatible with that obtained
by [73] when using the WMAP+LFI dataset in polarization, together with the
Commander 2018 solution in temperature. We employed the S1/2 estimator [70],
which is based on the two-point correlation function of Q and U , see eq. (3.18),
and of the local E-modes, see eq. (3.22). We computed such estimators on both
data and realistic simulations, which contain signal, noise and residual systematic
effects, and compared empirical distributions from simulations with data results.
We employed fully polarised signal, considering both Planck CMB temperature
constrained and unconstrained simulations, and limit most of the analysis to
`max = 10, a multipole above which both datasets are fully noise-dominated. We
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calculated the correlation function for Q and U and showed that it is largely
dominated by the quadrupole. This clearly impacts the results obtained, which
show negligible variation when the maximum multipole included in the analysis
is varied.

For both datasets considered, we did not see any anomalous behaviour, except
for a mild 2σ anomaly in the case of Planck LFI+WMAP U correlation function.
This suggests that the power in the very low multipoles, in particular in the
quadrupole, is not anomalously low in data. It is worth noting however, that
both datasets include non negligible uncertainties at ` = 2, mostly of systematic
origin for Planck HFI 100×143 and mostly statistical for Planck LFI+WMAP.
These uncertainties likely affect the constraining power of a possible polarisation
anomaly.

On the other hand the estimator involving local E-modes behaves differently
being more sensitive to the `max used in the analysis, and thus giving information
on the integrated power of the lower multipoles. In Figure 3.12 we showed that
the lower tail probability for the two datasets follows the same descending trend
and in particular the Planck HFI 100×143 seems to suggest a low power in data
with respect to the simulations considered.

The behaviour of the S1/2 estimators on Q, U and local E-modes in the case
of unconstrained simulations appears to be similar to what described for the
constrained case. In particular the lower tail probability for `max = 10 of the
Planck HFI 100×143 dataset is 0.4%, indicating again a low power of data with
respect to simulations.

These results suggest that the large-angle CMB polarisation data behave in a
similar way to temperature, exhibiting a mild low power anomaly, presumably
originating not only from the quadrupole but rather than from the combined
behaviour of all the multipoles ` ≤ 10.

This conclusion is strengthened by the joint behaviour of the S1/2 estimators in
temperature and polarization, investigated through 500 unconstrained simulations
of the Planck HFI 100×143 dataset. For the joint estimator of temperature
and local E modes, the lower tail probability associated to the data is < 0.2%.
When combining temperature with the Q or U estimators, instead, we found
consistency between data and simulations. This confirms that the hint of an
anomalous behaviour of the data with respect to the expectations of the ΛCDM
model emerges when including in the analysis the integrated power of all the
lower multipoles through the use of local E modes estimators.

The analysis has been carried out with the best datasets currently available
at large angular scales, which are however limited by the still significant amount
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of noise in polarisation observations. This issue will be hopefully overcome by the
advent of new data, such as those from LiteBIRD [5,208], which are expected to be
cosmic variance limited at all scales. LiteBIRD is a satellite-mission proposed by
the japanese space agency JAXA, which is expected to be launched in the middle
of the 2020s. Unlike Planck, whose target were the temperature anisotropies,
LiteBIRD is optimize for polarization. It is designed to measure the anisotropies
over the full sky in the multipole range 2 ≤ ` ≤ 200. The mission will last three
years, during which LiteBIRD will map the sky in 15 microwave frequency bands,
from 34 to 448 GHz. The satellite will use a Low Frequency Telescope (LFT)
and an High Frequency Telescope (HFT). Each telescope is equipped with a
half-wave plate system for polarization signal modulation and a focal plane filled
with polarization-sensitive TES bolometers. We have tried to predict the impact
of the advent of LiteBIRD data on our analysis. Through a rough estimate of the
noise level from the three most sensitive LiteBIRD bands, we expect to increase
of five times the constraining power of our test, in the case of polarization E
modes, see Fig. 4.29. The perspectives for shedding light on this subject are thus
high.

In the fourth and last chapter we presented a extended analysis of the millime-
ter and submillimeter data power spectrum relased by the South Pole Telescope
(SPT) and the Hershel/SPIRE. We used two different datasets, the first has been
published by George et al. in 2015, G15, and includes only the SPT frequencies,
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while the second has been released by Viero et al. in 2019, V19, and combines
together both SPT and SPIRE frequency bands. As we outlined in the chapter,
the SPT part of the two datasets has been built through the same pipeline, with
some minor variations in the calibration procedure. The main difference is the sky
fraction, which goes from 2540 of G15 to 102 deg2 of V19. We also described the
way in which SPIRE×SPIRE and SPT×SPIRE bandpowers of V19 are obtained,
along with the covariance matrix. For this dataset, the computation of the total
uncertainty required the inclusion of a beam and calibration correlation matrix,
multiplied by the theory bandpowers. We specified that the high off-diagonal
terms in the total matrix bias the result of the fit, so we decided to consider only
the block-diagonal portion of the covariance plus beam-calibration matrix.
Data at millimeter and submillimeter wavelenghts combine the CMB, the ther-
mal Sunyaev Zeldovich (tSZ) and kinetic Sunyaev Zeldovich (kSZ) effect, the
Cosmic Infrared Backgorund (CIB), the radio sources and cirrus emission. Such
a richness of observables implies a variety of possible investigations we can do on
that power spectra. To constrain cosmological parameters we have to clean data
from all emissions and effects, also known as foregrounds, other from the CMB
primary anisotropy. The proper modelling of the foregrounds is then essential for
cosmological studies. Looking from another perspective, however, these emissions
are not just contaminants to remove, but an additional source of information,
mainly from an astrophysiscal point of view. The sources that generate these
radiations are galaxies or clusters, located inside dark matter halos. They are
then tracers of the large scale matter distribution of the Universe and can be
used to study the evolution of cosmic structures. The CIB traces the distribution
of dark matter structures hosting the so-called dusty star forming galaxies, up to
the mid-far Universe. The SZ effect, instead, sheds light on the distribution of
massive galaxy clusters located in the near Universe. In our work we adopted
this perspective and investigated the information contained in the foregrounds
emission, while keeping the cosmology fixed.
We built a model able to fit for both millimeter and submillimeter data. We
adopted an hybrid approach, implementing both an phenomenological modelling
for the radio sources and the kSZ effect and a physically motivated model for
the tSZ, the CIB and their correlation. In particular the modelling of the CIB
clustering term employ a halo model based on the Tinker parametrization for the
mass function, the bias and the halo occupation distribution. The model includes
two populations of star forming galaxies: one at low redshift, called early-type
population and one in the local universe, named late-type population. For the
poisson noise, we used the model described in G15 at SPT frequencies, while
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we fit for the shot noise level at each frequency when considering the SPIRE
bandpowers. In the chapter we described in detail the model used and the result
of its comparison to data. For what concern the V19 dataset, in this thesis we
described the results for the SPT and SPIRE portion of the dataset separately,
while leaving the global fit for a future work.
Focusing on the G15 dataset we improved the constraints on the kSZ obtained
by previous analysis, detecting it at the 2σ level, DkSZ

3000 = 1.9+2.6
−1.0 µK

2. We
confirmed what found by A12 about the degeneration between the amplitude of
the kSZ and the tSZ-CIB correlation. In particular, we showed that the proper
modelling of dusty sources at low redshift is required in order to avoid misleading
the constraints on the kSZ amplitude. For the poisson noise term and the radio
sources, our results are compatible with literature, while data seem to prefer a
high value of the hydrostatic mass bias, b = 0.57± 0.16, with respect to Planck
analysis [196]. In any case, the amplitude of the tSZ obtained with this value of
the mass bias is compatible with that obtained by G15. We found a minimum
mass of 1012.1[M�h

−1] and 1010.8[M�h
−1] for the early and late-type population

respectively, confirming that the early-type population is hosted in more massive
halos. For what concern the index of the power law that regulates the galaxies
accretion within the halo, α, we found that data prefer values higher than two in
the case of the early-type population. These values are in disagreement with pre-
vious literature and with the prediction of semi-analytical models. We attribute
this discrepancy to the lack of a sophisticated implementation of the dipendence
of clustering on luminosity in our model.
The SPT portion of the V19 dataset shows an excess of power in the 95×1200
cross frequency, which causes a degradation of the constraints on the parameters,
in particular on the amplitude of the kSZ. Despite this, the values of the parame-
ters obtained for G15 dataset and V19 SPT×SPT bandpowers are compatible
and confirms the conclusions previously outlined.
V19 dataset is already cleaned from galactic cirrus. Consequently, at SPIRE
frequencies, the only contribution to the total power spectrum comes from the
CIB. The fit to data confirms the results found at millimeter wavelenghts: in
particular, the early-type galaxies are hosted in giant halos, ten time more mas-
sive than those occupied by the late-type population. We found a minimum
mass of 1012.5[M�h

−1] for the early-type population and, for the first time, we
constrained the mass of the late-type population at these frequencies to the value
of 1011.4[M�h

−1]. Moreover, also the Poisson term has revealed some interesting
informations. The values of the shot noise resulting from the power spectra fit are
strongly in disagreement with the those obtained from the galaxy number counts.
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The explanation of this behaviour can be traced back to resolution effects: [207]
claims that the number counts measured by Hershel are biased towards high
values by a factor of almost two between 5 and 50 mJy. This is approximately
the factor we found, in particular at 600 GHz.

The results displayed are obtained using the state of the art dataset available.
However, our code has been widely validated [46], it is modular and easy to use,
so it will be of great utility in the analysis of future datasets. Several projects
have already been planned to start over the next decade. Among them, let us
mention the Simons Observatory, CMB-Stage 4 and CONCERTO.

The Simons Observatory (SO) is a new CMB ground-based experiment, and it
is expected to start observations in the early 2020s. SO is located in the Atacama
Desert (in Chile), sharing the site with other ground-based experiments, such as
ACT, CLASS and the planned CMB-Stage 4.

The SO collaboration is building a Large Aperture Telescope (LAT) with a
6-meter primary and three 0.5-meter refracting Small Aperture Telescopes (SATs).
The initial plan is to deploy a total of around 60 000 detectors, approximately
evenly split between the LAT and the set of SATs. The plan for sky coverage is to
observe ∼ 40% of the sky with the LAT, and ∼ 10% with the SATs. This amount
of detectors represents a record, as it is about more than an order of magnitude
over the size of current microwave detector arrays. With this equipment, SO will
observe the sky in six frequency bands: 27, 39, 93, 145, 225 and 280 GHz [10].
SO has the capability to explore the small angular scales, ranging from an arcmin
to tens of degrees. This will allow us to shed light on the phenomena affecting
the damping tail (high-` region) of the CMB power spectra both in temperature
and in polarization.

CMB-Stage 4 (CMB-S4) is another CMB ground-based experiment, covering
more than 50% of the sky, over the frequency range ∼ 20 − 280 GHz [209].
CMB-S4 collaboration targets to deploy ∼ 500 000 detectors, so more than an
order of magnitude over the SO number. Again, these detectors will be almost
equally split among LAT and SATs, and they will be located in both the Atacama
Desert and the South Pole.
Small telescopes have the role of setting the most sensitive constraints on the
degree scale, i.e. on the recombination peak of polarization power spectra. Large
telescope, instead, will have primary apertures in the 2− 10m diameter range, in
order to achieve angular scales between 1− 4 arcminutes: CMB-S4 will provide
us measurements of CMB power spectra up lmax ∼ 5000 [210].

CONCERTO, which saw its first light in April 2021, is one of the instruments
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on the Atacama Pathfinder Experiment (APEX), operated by ESO and located
in the 5100-metre high Chanjantor plateau in the Chilean Andes. It is a spec-
trometer operating at frequencies between infrared and radio waves (specifically,
between 130 and 310 GHz). This is the window into which the radiation is emitted
by ionised carbon atoms, one of the most valuable tracers of star formation in
the early cosmic ages. With a resolution of 30 arcsec and a field of view of some
degrees, CONCERTO can perform both imaging and spectroscopy. It uses a
very innovative tecnique, called intensity mapping [211], which measures signal
fluctuations produced by the combined emission of the galaxy populations on
large regions of the sky in a wide frequency (i.e. redshift) band. This tecnique is
designed to increase sensitivity to faint sources. CONCERTO intensity mapping
will measure the 3−D fluctuations of the [CII] line at redshifts more than 4.5.
CONCERTO is specifically designed to study the epoch of formation of the
first generation of stars, i.e the Reionization epoch [212–214]. This target is of
extreme importance, as one of the main uncertainties we have in the interpreta-
tion of the millimeter and submillimeter data is related to the emission of the
dusty sources. Moreover it will allow a deep investigation of the kSZ, as the
constraints we obtained with our model depend also on the kSZ angular tem-
plate and, thus, on the model adopted for the duration and timing of Reionization.

To conclude, we underly that the analysis we have presented in this thesis is
perfectly coherent with the main fields of investigation which will be active in
Cosmology in the near future. Our effort is aimed to build and optimize a tool
that will be useful in the context of new data to analyse, while making a point
on what we know or don’t know to now on the millimeter and submillieter data
interpretation.
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0.1 Appendix: Comparison between pixel and har-
monic based STT1/2 estimator

The two-point correlation functions built in harmonic space and pixel space are
equivalent only in the full sky case. When a mask is applied, the two estimators
are different: in particular the “masked” harmonic-based estimator recovers the
function obtained in the full sky case whereas the “masked” pixel-based estimator
deviates from the full sky case. When we propagate this to the lack-of-correlation
estimator used, we find that the STT1/2 estimator built with the pixel-based C(θ) is
systematically lower than that built with the harmonic-based C(θ). In figure 30
we see the scatter plot of 500 simulations: on the y-axis and x-axis we have the
pixel-based and harmonic-based STT1/2 estimator respectively. On the left panel we
display the comparison for an ideal full sky no-noise analysis, while on the right
we compute the STT1/2 for simulations based on the Planck Commander solution,
with an fsky = 86% in temperature. In the ideal case, all simulations accumulate
along the diagonal, in the masked case instead there is a bias between the two
methods, as the estimator computed in real space gives sistematically lower values
than the other. This difference has to be taken into account when comparing
pixel and harmonic based estimators.
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Figure 30: Scatter plot for 500 simulations. On the y-axis and x-axis we
have the pixel-based and harmonic-based STT

1/2 estimates respectively,
obtained for the same realization. We can qualitatively note that while in the
ideal case (left panel) all simulations lie near the diagonal, in the masked case
(left panel) there is a bias for the pixel-based estimator that shows lower

magnitude with respect to the harmonic-based one.

0.2 Appendix: calculation of SQQ1/2 and SUU1/2 in terms
of power spectrum

Writing SQQ1/2 and SUU1/2 in terms of power spectrum is useful to ease computation.
To obtain an analytic expression of these estimators we express the G±` (cos(θ))

functions in terms of the reduced Wigner matrices. We define

D+
` =

4(`− 2)!

(`+ 2)!
G+
`2(cos θ); (123a)

D−` =
4(`− 2)!

(`+ 2)!
G−`2(cos θ), (123b)

and rewrite the SQQ1/2 statistic in terms of the power spectrum in the following
way

SQQ1/2 ≡
∫ 1/2

−1

d(cos θ)[CQQ(θ)]2

=
`max∑
`=2

2`+ 1

8π

2`′ + 1

8π

∫ 1/2

−1

d(cos θ)[D+
` C

EE
` +D−` C
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` ][D+

`′C
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`′ +D−`′C
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`′ ].

(124)
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Going further in the calculation we obtain:

SQQ1/2 =
`max∑
`=2

2`+ 1

8π

2`′ + 1

8π

(
CEE
` CEE

`′ I
(1)
``′ +CBB

` CBB
`′ I

(3)
``′ +CEE
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`′ I

(2)
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` CEE
`′ I

(4)
``′

)
,

(125)

where the I(X)
``′ matrices are defined as:

I
(1)
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−1

d(cos θ)D+
` D

+
`′ I

(3)
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d(cos θ)D+
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−
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+
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(126)

We write now D±` in terms of the reduced Wigner rotation matrices, d`2,±2:

D±` (cos θ) ≡ [d`2,2(θ)± d`2,−2(θ)] (127)

and define

I±±``′ ≡
∫ 1/2

−1

dx d`2,±2(x)d`
′

2,±2(x), (128)

with x = cos(θ). The final expression for the I(X)
``′ matrices is then given by

I
(1)
``′ = I++

``′ + I+−
``′ + I−+

``′ + I−−``′ ;

I
(2)
``′ = I++

``′ − I
+−
``′ + I−+

``′ − I
−−
``′ ;

I
(3)
``′ = I++

``′ − I
+−
``′ − I

−+
``′ + I−−``′ ;

I
(4)
``′ = I++

``′ + I+−
``′ − I

−+
``′ − I

−−
``′ .

(129)

The matrices I±±``′ can be calculated from the relation between Wigner matrices
and Clebsch-Gordan coefficients [215], as shown in Appendix A of [70].

0.3 Tool for analysis of millimeter and sub-millimeter
data

The code developed is modular and organized to separate the computation
of the spectral and angular dependence of the theory power spectrum of each
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foreground. This allows to increase the flexibility of the code and makes debugging
easier. For what concern the halo model (in particular for the CIB) a specific
portion of the whole code is devoted to the matter power spectrum calculation,
while another computes the halo occupation distributions, necessary to model
the galaxy power spectrum. This choice derives from the fact that, considering a
given set of cosmological parameters, the matter power spectrum is fixed, while
the clustering parameters are varied to perform the fit. In detail, the code is
made of four main blocks:

• spectral-dependence : allows the computation of the frequency dependence
of each foreground together with the conversion factors from µK2 to Jy2.
Within this block, one can load and interpolate a precomputed emissivity
function;

• HODS : calculate the halo occupation distribution and mean galaxy density
of both early and late type populations;

• utils : is devoted to the computation of the halo mass function, the halo
bias and the halo density and pressure profiles;

• power-spectrum : compute the theory curves for the CIB halo model, the tSZ
halo model, the tSZ-CIB correlation, the radio sources, the cirrus emission,
the kSZ and the level of the shot noise.

The final spectra of the foregrounds are summed to the CMB power spectrum,
computed through the use of CAMB, which is integrated in the present code.
Two more functions complete the pictures: the first combines the theory power
spectra with the window functions in order to obtain the theory bandpowers.
The second computes the likelihood and includes the call to Cobaya to perform
the fit. The likelihood used is:

− 2 lnL = (Cth
b − Cdata

b )TΣ−1(Cth
b − Cdata

b ) + ln detΣ. (130)

The quantity Σ is the bandpower covariance matrix, Cdata
b are the data bandpow-

ers, while Cth
b are the theory bandpowers. They are computed from the theory

power spectrum, Cth
` , as:

Cth
b =

∑
`

wb`C
th
` , (131)

where wb` is the bandpower window function.
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