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Abstract

In this paper we consider a continuous description based on stochastic differential equations
of the popular particle swarm optimization (PSO) process for solving global optimization prob-
lems and derive in the large particle limit the corresponding mean-field approximation based
on Vlasov-Fokker-Planck-type equations. The disadvantage of memory effects induced by the
need to store the local best position is overcome by the introduction of an additional differential
equation describing the evolution of the local best. A regularization process for the global best
permits to formally derive the respective mean-field description. Subsequently, in the small
inertia limit, we compute the related macroscopic hydrodynamic equations that clarify the link
with the recently introduced consensus based optimization (CBO) methods. Several numeri-
cal examples illustrate the mean field process, the small inertia limit and the potential of this
general class of global optimization methods.

Keywords: global optimization, particle swarm optimization, consensus based optimization,
mean field limit, Vlasov-Fokker-Planck equation, small inertia limit

1 Introduction

Optimization by swarms of particles (Particle Swarm Optimization or PSO) was initially proposed
to model the intelligent behavior of flocks of birds or fish schools [32, 33, 40]. As a particle-based
stochastic optimization algorithm, the PSO has attracted a great deal of attention from the sci-
entific community, producing a huge number of variants of the standard algorithm [23, 31, 38, 40].
Today, similarly to other metaheuristic methods [1, 4, 7, 21], PSO is recognized as an efficient
method for solving complex optimization problems and is currently implemented in several pro-
gramming languages. Among popular metaheuristic methods we recall evolutionary program-
ming [17], Metropolis-Hastings sampling algorithm [24], genetic algorithms [25], ant colony op-
timization (ACO) [14] and simulated annealing (SA) [26, 34]. Despite its apparent simplicity,
the PSO presents formidable challenges to those interested in understanding swarm intelligence
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through theoretical analyses. So, to date a fully comprehensive mathematical theory for particle
swarm optimization is still not available.

Recently, a new class of particle based methods for global optimization based on consensus
(Consensus Based Optimization or CBO) has been introduced [9,11,18,19,36,41,42]. These methods
are intrinsically simpler than PSO methods and have been inspired by consensus like dynamics
typical of social interactions like opinion formations and wealth exchanges [35]. In contrast to
classic metaheuristic methods, for which it is quite difficult to provide rigorous convergence to
global minimizers (especially for those methods that combine instantaneous decisions with memory
mechanisms), CBO methods, thanks to the instantaneous nature of the dynamics permit to exploit
mean-field techniques to prove global convergence for a large class of optimization problems [9,11,
19]. Despite their simplicity CBO methods seem to be powerful and robust enough to tackle many
interesting high dimensional non-convex optimization problems of interest in machine learning
[11,19].

Motivated by these results, in this manuscript we take a first step towards building a robust
mathematical theory for PSO methods based on a continuous description of their dynamics. One
of the main difficulties is the introduction by PSO methods, and other metaheuristic algorithms, of
memory mechanisms that make their interpretation in terms of differential equations particularly
challenging. To this end, the description of the PSO model through a system of stochastic differ-
ential equations is based on the introduction of an additional state variable that takes into account
the memory of the single particle. In this way, the resulting time continuous PSO dynamics is
defined by a system of stochastic differential equations that uses both a global best search and a
local best search.

Adopting the same regularization process for the global best as in CBO methods [9, 36], it
is then possible to pass to the mean field limit and derive, at a formal level, the corresponding
Vlasov-Fokker-Planck equation that characterizes the behavior of the system in the limit of a large
number of particles [5,22,30,39]. Thanks to the new mathematical formalism based on mean field
equations, it is then possible to study the behavior of PSO methods in the limit of small inertia,
similarly to what done in other contexts for nonlinear Vlasov-Fokker-Planck type systems [2, 15].
In particular, we show how in this limit the PSO dynamics is described by simplified hydrodynamic
models that correspond to a generalization of CBO models including also memory effects and local
best search.

These results are subsequently validated by comparing a direct numerical solution of the stochas-
tic particle systems with a finite volume discretization of the mean-field system [13, 37]. Let us
emphasize that even if, as a side results of our analysis, we will derive novel global optimization
methods based on stochastic differential equations (SDEs) and mean-field partial differential equa-
tions (PDEs), it is beyond the scopes of the present manuscript to perform an extensive testing of
the various methods performances and to discuss the practical algorithmic enhancements that can
be adopted to increase the success rate, like for example the use of random batch methods [3,11,28],
particle reduction techniques [19] and parameters adaptivity [38]. In contrast, our numerical test
cases, will address the numerical validation of the mean field process and the small inertia limit,
and the role of the various parameters involved in solving high dimensional global optimization
problems for some prototype test functions.

The rest of the manuscript is organized as follows. In Section 2 we introduce the various
discrete PSO models and derive the corresponding representations as SDEs using a suitable time
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continuous approximation of the memory process. Thanks to a regularization of the global best, in
Section 3, we formally pass to the large particle limit and compute the respective Vlasov-Fokker-
Planck equations describing the mean-field dynamic. Section 4 is then devoted to the study of the
small inertia limit for the mean-field system that allows to recover a generalized CBO model as
the corresponding hydrodynamic limit. Next, in Section 4, we report several numerical examples,
validating the mean-field approximation, the small inertia limit and testing the performances of
the minimizers against some prototype functions in high dimension. Finally, some conclusions and
future research directions are reported in the last section.

2 Stochastic differential models for particle swarm optimization

In the sequel we consider the following optimization problem

x∗ ∈ argmin
x∈R

F(x) , (2.1)

where F(x) : Rd → R is a given continuous cost function, which we wish to minimize. In particular,
both statistical estimation and machine learning consider the problem of minimizing an objective
function in the form of a sum [6,20,43]

F(x) =
1

n

n∑

i=1

Fi(x). (2.2)

The PSO algorithm solves the above minimization problem by starting from a population of candi-
date solutions, represented by particles, and moving these particles in the search space according to
simple mathematical relationships on particle position and speed. The movement of each particle
is influenced by its best known local position, but it is also driven to the best known position in
the search space, which is updated when the particles find better positions.

2.1 The original PSO method

The method is based on introducing N particles with position xi ∈ R
d and speed vi ∈ R

d, i =
1, . . . , N . The particle positions and velocities, starting with an initial x0i and v0i assigned, are
updated according to the following rule for n ≥ 0

xn+1
i = xni + vn+1

i ,

vn+1
i = vni + c1R

n
1 (y

n
i − xni ) + c2R

n
2 (ȳ

n − xni ) ,
(2.3)

where c1, c2 ∈ R are the acceleration coefficients, yni is the local best position found by the i particle
up to that iteration, and ȳn is the global best position found among all the particles up to that
iteration. The terms Rn

1 and Rn
2 denote two d-dimensional diagonal matrices with random numbers

uniformly distributed in [0, 1] on their diagonals. These numbers are generated at each iteration
and for each particle. Typically, the values of xi and vi are restricted within a specific search
domain X = [Xmin,Xmax]

d and V = [−Vmax, Vmax]
d.
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By replacing the second equation in the first one and using the fact that in the previous step
xni = xn−1

i + vni , we get a model based on a single two-level recursive equation for the particle
positions

xn+1
i = 2xni − xn−1

i + c1R
n
1 (y

n
i − xni ) + c2R

n
2 (ȳ

n − xni ) . (2.4)

There are several ways to define the functions yni and ȳn. In the original PSO method, these are
defined by the following relationships

y0i = x0i ,

yn+1
i =

{
yni if F(xn+1

i ) ≥ F(xni ),

xn+1
i if F(xn+1

i ) < F(xni );
(2.5)

ȳ0 = argmin{F(x01),F(x02), . . . ,F(x0N )},
ȳn+1 = argmin{F(xn+1

1 ),F(xn+1
2 ), . . . ,F(xn+1

N ),F(ȳn)}.

2.2 The stochastic differential PSO system

In order to derive a time continuous version of the discrete PSO method (2.3), we rewrite it in the
form

xn+1
i = xni + vn+1

i ,

vn+1
i = vni +

c1
2
(yni − xni ) +

c2
2
(ȳn − xni ) +

c1
2
R̃1 (y

n
i − xni ) +

c2
2
R̃2 (ȳ

n − xni ) ,
(2.6)

where R̃k = (2Rk − 1), k = 1, 2. We can interpret (2.6) as a semi-implicit time discretization
method for SDEs of time stepping ∆t = 1 where the implicit Euler scheme has been used for the
first equation and the Euler-Maruyama method is used for the second one. Note that, the particular
distribution of the random noise will not change the corresponding stochastic differential system
provided the noise has the same mean value and variance. In the case of the PSO model (2.6), since
the random terms are uniformly distributed in [−1, 1], the mean value is 0 and the corresponding
variance 1/3.

We can then write its time continuous formulation as a second order system of SDEs in Itô form

dXi
t = V i

t dt,

dV i
t = λ1

(
Y i
t −Xi

t

)
dt+ λ2

(
Ȳt −Xi

t

)
dt+ σ1D(Y i

t −Xi
t)dB

1,i
t + σ2D(Ȳt −Xi

t)dB
2,i
t ,

(2.7)

with
λk =

ck
2
, σk =

ck

2
√
3
, k = 1, 2 (2.8)

and
D(Xt) = diag {(Xt)1, (Xt)2, . . . , (Xt)d} , (2.9)

a d-dimensional diagonal matrix. In (2.7) the vectors Bk
t =

(
(Bk

t )1, (B
k
t )2, . . . , (B

k
t )d
)T

, k = 1, 2
denote d independent 1-dimensional Brownian motions and depend on the i-th particle.

One critical aspect is the definition of the best positions Y i
t and Ȳt which in the PSO method

make use of the past history of the particles. In [23] the authors observed that the local best can
be rewritten as

yn+1
i = yni +

1

2

(
xn+1
i − yni

)
S(xn+1

i , yni ),
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where
S(x, y) = (1 + sgn (F(y) −F(x))) . (2.10)

Therefore, for a positive constant ν we can approximate the above equation with the following
differential system

dY i
t = ν

(
Xi

t − Y i
t

)
S(Xi

t , Y
i
t )dt, (2.11)

with Y i
0 = Xi

0 and consequently define

Ȳt = argmin
{
F(Y 1

t ),F(Y 2
t ), . . . ,F(Y N

t )
}
. (2.12)

Note that, equation (2.11) does not describe the evolution of the local best, but rather a time
continuous approximation of its evolution.

2.3 Stochastic differential PSO model with inertia

To optimize the search algorithm, the value ck = 2, k = 1, 2 was adopted in early PSO research.
This value, which corresponds to λk = 1 and σk = 1/

√
3, k = 1, 2 in the SDEs form, however,

leads to unstable dynamics with particle speed increase without control. The use of hard bounds
on velocity in [−Vmax, Vmax]

d is one way to control the velocities. However, the value of Vmax is
problem-specific and difficult to determine. For this reason, the PSO model has been considered
with a modified term which reads as [40]

xn+1
i = xni + vn+1

i ,

vn+1
i = mvni + c1R

n
1 (y

n
i − xni ) + c2R

n
2 (ȳ

n − xni ) ,
(2.13)

where m ∈ (0, 1] is the inertia weight. The above system can be rewritten as

xn+1
i = xni + vn+1

i ,

mvn+1
i = mvni − (1−m)vn+1 + c1R

n
1 (y

n
i − xni ) + c2R

n
2 (ȳ

n − xni ) .
(2.14)

In this case, we can interpret the second equation as a semi-implicit Euler-Maruyama method, that
is implicit in vi and explicit in xi, hence the corresponding SDEs system reads

dXi
t = V i

t dt, (2.15)

mdV i
t = −γV i

t dt+ λ1

(
Y i
t −Xi

t

)
dt+ λ2

(
Ȳt −Xi

t

)
dt+ σ1D(Y i

t −Xi
t)dB

1,i
t + σ2D(Ȳt −Xi

t)dB
2,i
t ,

where γ = (1 −m) ≥ 0. Thus, the constant γ acts effectively as a friction coefficient, and can be
related to the fluidity of the medium in which particles move. System (2.15) is reminescent of other
second order stochastic particle system with inertia [2, 15]. However, note that here, the inertia
weight m and the friction coefficient γ are not independent.

In practice, in the PSO method (2.13) the parameter γ is often initially set to some low value,
which corresponds to a system where particles move in a low viscosity medium and perform exten-
sive exploration, and gradually increased to a higher value closer to one, where the system is more
dissipative and would more easily concentrate into local minima. Most PSO approaches, nowadays,
are based on (2.13) (or some variant) which is usually referred to as canonical PSO method to dis-
tinguish it from the original PSO method (2.3) (see [38]). Similarly we will refer to (2.7)-(2.11)
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as the original stochastic differential PSO (SD-PSO) system and to (2.15)-(2.11) as the canonical
SD-PSO system. We emphasize that these stochastic systems, when discretized according to the
methods described above (namely implicit in V i

t and explicit in Xi
t) and with the choice ∆t = 1

correspond to the original discrete PSO methods.

3 Mean-field description of particle swarm optimization

In this section we introduce a modified version of the canonical stochastic differential PSO system
for which we can formally compute its mean field limit. We first consider the case in absence of
memory effects and then we extend the results to the general case.

3.1 Regularized PSO dynamic without memory effects

To simplify the mathematical description, let us consider a PSO approach where the dynamic is
instantaneous without memory of the local best positions and the global best has been regularized
as in [36]. The corresponding second order system of SDEs takes the form

dXi
t = V i

t dt, (3.1)

mdV i
t = −γV i

t dt+ λ
(
X̄α

t −Xi
t

)
dt+ σD(X̄α

t −Xi
t)dB

i
t ,

where X̄α
t is the weighted average

X̄α
t =

1

Nα

N∑

i=1

Xi
tωα(X

i
t), Nα =

N∑

i=1

ωα(X
i
t), ωα(Xt) := e−αF(Xt) . (3.2)

The choice of the weight function ωα in (3.2) comes from the well-known Laplace principle, a
classical result in large deviation theory, which states that for any probability measure ρ ∈ P(Rd)
compactly supported, it holds

lim
α→∞

(
− 1

α
log

(∫

Rd

e−αF(x)dρ(x)

))
= inf

x∈ supp(ρ)
F(x) . (3.3)

Therefore, for large values of α ≫ 1 the regularized global best X̄α
t ≈ X̄t, where

X̄t = argmin
{
F(X1

t ),F(X2
t ), . . . ,F(XN

t )
}
.

We emphasize that the stochastic particle system (3.1) has locally Lipschitz coefficients, thus it
admits strong solutions and pathwise uniqueness holds up to any finite time T > 0, see [12, 16].
The above system of SDEs in the sequel is considered in a general setting, without necessarily
satisfying the PSO constraint (2.8).

Thanks to the smoothness of the right-hand side in (3.1), we can formally derive the mean-
field description of the microscopic system (see [22,30,39]). Introducing the N -particle probability
density

f (N)(x1, . . . , xN , v1, . . . , vN , t),
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we consider the dynamics of the first marginal

f
(N)
1 (x1, v1, t) =

∫
f (N)(x1, . . . , xN , v1, . . . , vN , t) dΩ1,

where dΩ1 = dx2 . . . dxN dv2 . . . dvN is the volume element, and make the so-called propagation of
chaos assumption on the marginals. More precisely, one assumes that for N ≫ 1 sufficiently large
the N -particle probability density f (N) ≈ f⊗N , i.e. the random pairs (X1, V1), . . ., (XN , VN ) are
approximatively independent and each with the same distribution f(x, v, t). As a consequence

X̄α
t ≈ X̄α(ρ) =

∫
Rd xωα(x)ρ(x, t) dx∫
Rd ωα(x)ρ(x, t) dx

, ρ(x, t) =

∫

Rd

f(x, v, t) dv, (3.4)

and the evolution of the distribution f(x, v, t) obeys the nonlinear Vlasov-Fokker-Planck equation

∂tf + v · ∇xf = ∇v ·
(

γ

m
vf +

λ

m
(x− X̄α(ρ))f +

σ2

2m2
D(x− X̄α(ρ))2∇vf

)
(3.5)

where we used the identity

d∑

k=1

∂2

∂v2k

(
(x− X̄α(ρ))2kf

)
= ∇v ·

(
D(x− X̄α(ρ))2∇vf

)

with D(x − X̄α(ρ))2 the diagonal matrix given by the square of D(x − X̄α(ρ)). Equation (3.5)
represents the mean-field PSO (MF-PSO) model without local best and should be accompanied by
initial (and boundary) data, and normalization

∫

Rd×Rd

f(x, v, t) dx dv = 1.

We refer to [8, 10,22,29,39] and the references therein, for more details and rigorous results about
mean-field models of Vlasov-Fokker-Planck type. Note, however, that the presence of X̄α(ρ) makes
the Vlasov-Fokker-Planck equation nonlinear and nonlocal. This is nonstandard in the literature
and raises several analytical and numerical questions (see [9, 19]).

3.2 Regularized PSO dynamic with memory and local best

We consider the second order system of SDEs corresponding to the canonical PSO method where
the global best and local best have been regularized as follows

dXi
t = V i

t dt,

dY i
t = ν

(
Xi

t − Y i
t

)
Sβ(Xi

t , Y
i
t )dt, (3.6)

mdV i
t = −γV i

t dt+ λ1

(
Y i
t −Xi

t

)
dt+ λ2

(
Ȳ α
t −Xi

t

)
dt

+σ1D(Y i
t −Xi

t)dB
1,i
t + σ2D(Ȳ α

t −Xi
t)dB

2,i
t ,
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where, similarly to the previous case, we introduced the following regularization of the global best
position

Ȳ α
t =

∑N
i=1 Y

i
t ωα(Y

i
t )∑N

i=1 ωα(Y i
t )

, ωα(Yt) := e−αF(Yt) . (3.7)

Furthermore, in the right hand side of (3.6) we have replaced the sgn(x) function with a
sigmoid, for example the hyperbolic tangent tanh(βx) for β ≫ 1, and consider Sβ(y, x) = 1 +
tanh (β(F(y) −F(x))). Thanks to these regularizations, also the stochastic particle system (3.6)
has locally Lipschitz coefficients and therefore it admits strong solutions and pathwise uniqueness
holds for any finite time T > 0. Even in this case, the system of SDEs (3.6) is generalized without
restricting the search parameters to the PSO constraint (2.8).

In order to derive a mean field description of system (3.6), we must introduce an additional
dependence from the memory variables in the N -particle probability density

f (N)(x1, . . . , xN , y1, . . . , yN , v1, . . . , vN , t),

and consider the dynamics of the first marginal

f
(N)
1 (x1, y1, v1, t) =

∫

Rd

f (N)(x1, . . . , xN , y1, . . . , yN , v1, . . . , vN , t) dΩ1,

where now dΩ1 = dx2 . . . dxN dy2 . . . dyN dv2 . . . dvN is the volume element. Again assuming prop-
agation of chaos, namely that for sufficiently large N ≫ 1 the N - particle probability density
factorizes f (N) ≈ f⊗N , i.e the random triples (Xi

t , Y
i
t , V

i
t ) are independent and with the same

distribution f(x, y, v, t), we have

Ȳ α
t ≈ Ȳ α(ρ̄) =

∫
Rd y ωα(y)ρ̄(y, t) dy∫
Rd ωα(y)ρ̄(y, t) dy

, ρ̄(y, t) =

∫

Rd×Rd

f(x, y, v, t) dx dv. (3.8)

Additionally, the distribution f(x, v, t) satisfies the nonlinear Vlasov-Fokker-Planck equation

∂tf + v · ∇xf +∇y ·
(
ν(x− y)Sβ(x, y)f

)
=

∇v ·
(

γ

m
vf +

λ1

m
(x− y)f +

λ2

m
(x− Ȳ α(ρ̄))f (3.9)

+

(
σ2
2

2m2
D(x− Ȳ α(ρ̄))2 +

σ2
1

2m2
D(x− y)2

)
∇vf

)
.

For consistency, initially we assume f(x, y, v, 0) = f0(x, y, v) with f0(x, y, v) compactly supported
and f0(x, y, v) 6= 0 only for x = y. As already mentioned, the rigorous proof of the mean-field
limit is an open problem for these interacting particle systems due to the nonlinear terms and the
difficulty of managing the multiplicative noise in (3.1) and (3.6).

4 Small inertia limit of particle swarm optimization

In this section we consider the asymptotic behavior of the previous Vlasov-Fokker-Planck equations
modelling the PSO dynamic in the small inertia limit. We will derive the corresponding macroscopic
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equations which permit to recover the recently introduced consensus based optimization (CBO)
methods [11]. We refer to [15] for a theoretical background concerning the related problem of the
overdamped limit of nonlinear Vlasov-Fokker-Planck systems.

4.1 The case without memory effects

Let us first consider the simplified setting in absence of local best. To illustrate the limiting
procedure, let us observe that for small values of m ≪ 1 from the second equation in (3.1) we
formally get

V i
t dt = λ

(
X̄α

t −Xi
t

)
dt+ σD(X̄α

t −Xi
t)dB

i
t ,

where we used the fact that γ = 1−m ≈ 1. Substituting the above identity into the first equation
in (3.1) gives the first order CBO dynamic [11]

dXi
t = λ

(
X̄α

t −Xi
t

)
dt+ σD(X̄α

t −Xi
t)dB

i
t . (4.1)

Therefore, the CBO models based on a multiplicative noise can be understood as reduced order
approximations of canonical SD-PSO dynamics. Note, however, that in (4.1) the values of λ and σ
are independent and does not necessarily satisfy the PSO constraints (2.8).

In the sequel we will develop these arguments in the case of the nonlinear Vlasov-Fokker-Planck
equation (3.5) describing the mean-field limit dynamic associated to (3.1). For notation clarity we
denote the small inertia value m = ε > 0 in (3.5), and re-write the scaled Vlasov-Fokker-Planck
system in the form

∂tf + v · ∇xf +
1

ε
∇v ·

(
−εvf + λ(X̄α(ρ)− x)f

)
= Lε(f) (4.2)

where we used the fact that γ = 1− ε and define

Lε(f) =
1

ε
∇v ·

(
vf +

σ2

2ε
D(x− X̄α(ρ))2∇vf

)

=
1

ε

d∑

j=1

σ2

2
(xj − X̄α

j (ρ))
2 ∂

∂vj

(
2fvj

σ2(xj − X̄α
j (ρ))

2
+

1

ε

∂f

∂vj

)
.

Let us now introduce the local Maxwellian with unitary mass and zero momentum

Mε(x, v, t) =
d∏

j=1

Mε(xj , vj , t),

Mε(xj, vj , t) =
ε1/2

π1/2σ|xj − X̄α
j (ρ)|

exp

{
−

εv2j
σ2(xj − X̄α

j (ρ))
2

}
,

then we have

Lε(f) =
1

ε2

d∑

j=1

σ2

2
(xj − X̄α

j (ρ))
2 ∂

∂vj

(
f

∂

∂vj
log

(
f

Mε(xj , vj , t)

))
.
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Therefore Lε(f) is of order 1/ε
2 and we can write for small values of ε ≪ 1

f(x, v, t) = ρ(x, t)Mε(x, v, t). (4.3)

Let us now integrate equation (4.2) with respect to v, we get

∂ρ

∂t
+∇x · (ρu) = 0

∂ρu

∂t
+

∫

Rd

v (v · ∇xf) dv =
1− ε

ε
ρu+

1

ε
λ(X̄α(ρ)− x)ρ

where

ρu =

∫

Rd

f(x, v, t)v dv.

Now assuming (4.3) we can compute for ε ≪ 1 the i-th component as

∫

Rd

vi (v · ∇x (ρ(x, t)Mε(x, v, t))) dv =
d∑

j=1

∂

∂xj

(
ρ(x, t)

∫

Rd

vi(vjMε(x, v, t)) dv

)

=
∂

∂xi

(
ρ(x, t)

∫

R

v2iMε(xi, vi, t) dvi

)

=
σ2

2ε

∂

∂xi

(
ρ(x, t)(xi − X̄α

i (ρ))
2
)

which provides the second order macroscopic model

∂ρ

∂t
+∇x · (ρu) = 0

∂(ρu)i
∂t

+
σ2

2ε

∂

∂xi

(
ρ(x, t)(xi − X̄α

i (ρ))
2
)
= −1− ε

ε
(ρu)i +

1

ε
λ(X̄α

i (ρ)− xi)ρ.

(4.4)

Formally, as ε → 0, from the second equation in (4.4) we get

(ρu)i = λ(X̄α
i (ρ)− xi)ρ−

σ2

2

∂

∂xi

(
ρ(x, t)(xi − X̄α

i (ρ))
2
)
,

which substituted in the first equation yields the mean-field CBO system [11]

∂ρ

∂t
+∇x · λ(X̄α(ρ)− x)ρ =

σ2

2

d∑

j=1

∂2

∂x2j

(
ρ(x, t)(xj − X̄α

j (ρ))
2
)
. (4.5)

Therefore, in the small inertia limit we expect the macroscopic density in the PSO system (3.5) to
be well approximated by the solution of the CBO equation (4.5). We remark that this is not the
case for the original CBO method proposed in [36] where the noise is not in component-wise form.
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4.2 The general case with memory

Next, we consider the same small inertia scaling in the general case with dependence from the
local best. Again, we can first illustrate the result by considering the behaviour for m ≪ 1 of the
SD-PSO system (3.6). We formally get from the third equation

V i
t dt = λ1

(
Y i
t −Xi

t

)
dt+ λ2

(
Ȳ α
t −Xi

t

)
dt+ σ1D(Y i

t −Xi
t)dB

1,i
t + σ2D(Ȳ α

t −Xi
t)dB

2,i
t ,

which inserted into the first equation in (3.6) corresponds to a novel first order CBO dynamic with
local best

dXi
t = λ1

(
Y i
t −Xi

t

)
dt+ λ2

(
Ȳ α
t −Xi

t

)
dt+ σ1D(Y i

t −Xi
t)dB

1,i
t + σ2D(Ȳ α

t −Xi
t)dB

2,i
t ,

(4.6)
dY i

t = ν
(
Xi

t − Y i
t

)
Sβ(Xi

t , Y
i
t )dt.

In contrast with the model recently introduced in [42] the above first order CBO method avoids
backward time integration through the use of an additional differential equation. We remark that
at the SDEs level, by analogous arguments as the one presented in this paper, in principle even the
CBO model [42] can be derived as the small inertia limit of the corresponding PSO model where
memory effects are modeled as in [42].

Concerning the corresponding MF-PSO limit we can essentially perform analogous computa-
tions as in the previous section. Thus, after setting m = ε > 0 we consider the scaled system

∂tf + v · ∇xf +∇y ·
(
ν(x− y)Sβ(x, y)f

)

+
1

ε
∇v ·

(
−εvf + λ1(y − x)f + λ2(Ȳ

α(ρ̄)− x)f
)
= Lε(f),

(4.7)

where now

Lε(f) =
1

ε
∇v ·

(
vf +

σ2
2

2ε
D(x− Ȳ α(ρ̄))2∇vf +

σ2
1

2ε
D(x− y)2∇vf

)

=
1

2ε

d∑

j=1

Σ(xj , yj, t)
2 ∂

∂vj

(
2fvj

Σ(xj , yj, t)2
+

1

ε

∂f

∂vj

)

and we use the notation

Σ(xj, yj , t)
2 = σ2

2(xj − Ȳ α
j (ρ̄))2 + σ2

1(xj − yj)
2.

Then, introducing the local Maxwellian

Mε(x, y, v, t) =

d∏

j=1

Mε(xj, yj , vj , t),

Mε(xj , yj, vj , t) =
ε1/2

π1/2|Σ(xj , yj, t)|
exp

{
−

εv2j
Σ(xj , yj, t)2

}
,
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with unitary mass and zero momentum we have

Lε(f) =
1

2ε2

d∑

j=1

Σ(xj, yj , t)
2 ∂

∂vj

(
f

∂

∂vj
log

(
f

Mε(xj , yj , vj , t)

))
.

We can thus write for ε ≪ 1

f(x, y, v, t) = ρ(x, y, t)Mε(x, y, v, t), (4.8)

and after integrating (4.7) with respect to v and using the approach (4.8), we get the second order
macroscopic model

∂ρ

∂t
+∇x · (ρu) +∇y ·

(
ν(x− y)Sβ(x, y)ρ

)
= 0

∂(ρu)i
∂t

+
σ2

2ε

∂

∂xi

(
ρ(x, t)Σ(xi, yi, t)

2
)
= −1− ε

ε
(ρu)i +

1

ε

(
λ1(yi − xi) + λ2(Ȳ

α
i (ρ̄)− xi)

)
ρ.

(4.9)

Formally, as ε → 0, the above system reduces to a novel mean-field CBO system with local best

∂ρ

∂t
+∇x ·

(
λ1(y − x) + λ2(Ȳ

α(ρ̄)− x)
)
ρ+∇y ·

(
ν(x− y)Sβ(x, y)ρ

)

=
1

2

d∑

j=1

∂2

∂x2j

(
ρ(x, t)

(
σ2
1(xj − yj)

2 + σ2
2(xj − Ȳ α

j (ρ̄))2
))

.
(4.10)

5 Numerical examples

In this section we present several numerical tests in order to verify the validity of the previous
theoretical analysis, namely the mean field limit and the small inertial limit, and to analyze the
performance of the methods based on SD-PSO against various prototype global optimization func-
tions.

5.1 Validation of the mean field limit

In the following we present three numerical test cases to validate the mean field limit process in one
dimension by considering as prototype functions for global optimization the Ackley function (A.1)
and the Rastrigin function (A.3). Both functions have multiple local minima that can easily trap
the particle dynamics (see Figure 1) and have been used recently to test consensus based particle
optimizers [11,18,36].

First we have considered the case without memory effect formulated by the SD-PSO system
(3.1) that uses only the action of the global best compared to the solution obtained using the mean
field limit (3.5). The particle system (3.1) is solved by

Xn+1
i = Xn

i +∆t V n+1
i ,

(5.1)
mV n+1

i = mV n
i − γ∆t V n+1

i + λ∆t
(
X̄n

α −Xn
i

)
+ σ

√
∆t D(X̄n

α −Xn
i ) θ

n
i ,
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(a) Ackley (b) Rastrigin

Figure 1. One-dimensional Ackley and Rastrigin functions in the interval [−3, 3] with global minimum in
the origin.

where θi ∼ N (0, 1) and the last equation can be rewritten as

V n+1
i =

(
m

m+ γ ∆t

)
V n
i +

λ ∆t

m+ γ ∆t

(
X̄n

α −Xn
i

)
+

σ
√
∆t

m+ γ ∆t
D(X̄n

α −Xn
i ) θ

n
i .

The corresponding MF-PSO limit (3.5) has been discretized using a dimensional splitting where
the transport part is solved through a second order backward semi-Lagrangian method and the
remaining Fokker-Planck term is discretized using an implicit central scheme. This permits to
avoid restrictive CFL conditions and to obtain second order accuracy in space and velocity.

In the second and third test cases we introduced the memory variable, initially with the action
of the local best only, and then with both local and global dynamics. In this case, the SD-PSO
system (3.6) is solved by

Y n+1
i = Y n

i + ν ∆t
(
Xn+1

i − Y n
i

)
Sβ(Xn+1

i , Y n
i ),

Xn+1
i = Xn

i +∆t V n+1
i ,

(5.2)

V n+1
i =

(
m

m+ γ ∆t

)
V n
i +

λ1 ∆t

m+ γ ∆t
(Y n

i −Xn
i ) +

λ2 ∆t

m+ γ ∆t

(
Ȳ n
α −Xn

i

)

σ1
√
∆t

m+ γ ∆t
D(Y n

i −Xn
i ) θ

n
1,i +

σ2
√
∆t

m+ γ ∆t
D(Ȳ n

α −Xn
i ) θ

n
2,i,

where θ1,i, θ2,i ∼ N (0, 1). Note that, the above discretization is equivalent to the discrete PSO
system (2.13) under assumptions (2.8) for ∆t = 1, ν = 0.5, and taking the limit α, β → ∞ so
that Y n

i , Ȳ n
α match the local and global best definitions in (2.5). The limiting MF-PSO equation

(3.9) is solved by a further dimensional splitting where the additional memory term is discretized
using a Lax-Wendroff method that permits to achieve overall second order accuracy. We mention
here that we tested also various other approaches for the discretization of the differential memory
term. However, in our numerical results we have found essential for the accuracy of the mean-field
solution in presence of local best, to discretize the differential term modeling particles’ memory
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using a second order low dissipative scheme. Finally, concerning the time approximation, we
implemented both conventional splitting as well as second order Strang splitting without noticing
relevant differences in the results. We also tested several set of parameters and initial data (uniform,
Gaussian) without observing significant changes with respect to the selection of results reported in
the sequel.

In all test cases we used N = 5 × 105 particles, a mesh size for the mean field solver of
90 × 120 points for (x, v) ∈ [−3, 3] × [−4, 4], and whenever present, the mesh and domain size
in y have been taken identical to those in x. The choice of the particle number was based on
having a good compromise between the convergence to the mean-field limit and the possibility to
still visually distinguish the two solutions in the figures. In the deterministic discretization the
boundary conditions have been implemented assuming f(x, v, t) = 0 or f(x, y, v, t) = 0 outside the
computational domain.

Case #1: MF-PSO without memory effects

We consider the optimization process of the Ackley function with global minimum in the origin
x = 0. Here we report the results obtained with

γ = 0.5, λ = 1, σ = 1/
√
3, α = 30. (5.3)

Note that, the values of λ and σ are compatible with the usual choice ck = 2 in (2.8). In Figure
2 we report the contour plots of the evolution, at times t = 0.5, t = 1 and t = 3, of the particle
distribution computed through (5.1) and by the direct discretization of the mean-field equation
(3.5). The initial distribution is taken uniform in all simulations.

To emphasize the good agreement between the results obtained from the resolution of the large
particle limit of the SD-PSO model and the results of its corresponding MF-PSO, in Figure 3 we
report the evolution in time of the marginal density ρ(x, t) =

∫
Rd f(x, v, t) dv. The convergence

towards a Dirac delta centered in the origin is very similar in both dynamics.
In Figures 4 and 5 we report the same results but applied to the Ackley function with minimum

in x = 1. Even in this case the plot of the density in Figure 5 show the excellent agreement between
the stochastic differential system and the mean-field limit. It is interesting to note that the particle
distribution evolves asymmetrically in this case and initially exceed the value x = 1 before moving
backward to reach the global minimum.

Case #2: MF-PSO with memory and only local best dynamics

In the second test case we introduce the dependence from the memory variable and report a
comparison between the solution of the discretized stochastic particle model (5.2) and the solver
of the mean field limit (3.9) where we assume λ2, σ2 = 0, namely only the local best is present.
The same parameters (5.3) have been used together with β = 30 and ν = 0.5 for the local best.
Initially the local best values are assumed to be equal to the particle positions.

In Figures 6 and 8 we report the contour plots of the particle solution and the mean-field
solution for the one-dimensional Ackley and Rastrigin functions with minimum in x = 0 and using
an uniform initial data. The final simulation time now is t = 6. We can note that in the presence of
local best only, the particles tend to return to their local best position creating a ”memory effect”
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that leads them to concentrate not only in the global minimum but also in the local minima.
For large times we obtain a sequence of particle peaks with zero speed exactly in the positions of
the local minima. Thus the dynamic allows us to identify each type of minimum present in the
functions.

(a) Particle solution, t = 0.5 (b) Particle solution, t = 1 (c) Particle solution, t = 3

(d) Mean-field solution, t = 0.5 (e) Mean-field solution, t = 1 (f) Mean-field solution, t = 3

Figure 2. Case #1 (no memory). Optimization of the one-dimensional Ackley function with minimum in
x = 0. First row: solution of the SD-PSO system (3.1). Second row: solution of the MF-PSO limit (3.5).

(a) ρ(x, t), t = 0.5 (b) ρ(x, t), t = 1 (c) ρ(x, t), t = 3

Figure 3. Case #1 (no memory). Evolution of the density ρ(x, t) of the SD-PSO system (3.1) and the
MF-PSO limit (3.5) for the one-dimensional Ackley function with minimum in x = 0.

This effect can be better appreciated if one compares the explicit form of the one-dimensional
Ackley and Rastrigin function in Figure 1 and the corresponding density plots of the particle
minimizer in Figures 7 and 9. It is interesting to point out that from a computational point of view
solving the mean field equation (3.9) in this setting (presence of local best only) has proved to be
quite challenging due to the high dimensionality and the importance of avoiding dissipative effects
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in the discretization of memory terms to preserve the peaks structure in the asymptotic numerical
solution. Second order schemes for the discretization of the mean-field equation are essential in
this case to resolve correctly the structure of the solution. One can appreciate the good agreement
between the particle and mean-field solutions in Figures 7 and 9.

(a) Particle solution, t = 0.5 (b) Particle solution, t = 1 (c) Particle solution, t = 3

(d) Mean-field solution, t = 0.5 (e) Mean-field solution, t = 1 (f) Mean-field solution, t = 3

Figure 4. Case #1 (no memory). Optimization of the one-dimensional Ackley function with minimum in
x = 1. First row: solution of the SD-PSO system (3.1). Second row: solution of the MF-PSO limit (3.5).

(a) ρ(x, t), t = 0.5 (b) ρ(x, t), t = 1 (c) ρ(x, t), t = 3

Figure 5. Case #1 (no memory). Evolution of the density ρ(x, t) of the SD-PSO system (3.1) and the
MF-PSO limit (3.5) for the one-dimensional Ackley function with minimum in x = 1.

Case #3: MF-PSO with memory, general case

In the last test case we repeat the previous scenario by adding the action of the global best with
the same weight as the local best. Therefore, we take λ1 = λ2 = 1, σ1 = σ2 = 1/

√
3 and the same

parameters in (5.3) in our numerical experiments.
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In Figures 10 and 12 we report the contour plots of the solutions obtained with the discretized
stochastic particle system (5.2) and the deterministic solver of the mean field equation (3.9). One
can immediately observe that the local minima effect disappears and the systems converge con-
sistently towards the global minima for both the Ackley and the Rastrigin functions. The good
agreement between the particle and the mean-field solutions, as before, is emphasized by the den-
sity plots in Figures 11 and 13. Note that, by comparing the results in Figure 11 and those in
Figure 3 obtained by solving the same problem in absence of memory terms and presence of global
best only, at the same time instants, a faster convergence towards the global minimum is observed
in Figure 11 thanks to the inclusion of the memory effects in the dynamic.

(a) Particle solution, t = 0.5 (b) Particle solution, t = 3 (c) Particle solution, t = 6

(d) Marginal ρ(x, v, t), t = 0.5 (e) Marginal ρ(x, v, t), t = 3 (f) Marginal ρ(x, v, t), t = 6

Figure 6. Case #2 (local best only). Optimization of the one-dimensional Ackley function with minimum
in x = 0. First row: solution of the SD-PSO system (3.6). Second row: solution of the MF-PSO limit (3.9).

(a) ρ(x, t), t = 0.5 (b) ρ(x, t), t = 3 (c) ρ(x, t), t = 6

Figure 7. Case #2 (local best only). Evolution of the density ρ(x, t) of the SD-PSO system (3.6) and the
MF-PSO limit (3.9) for the one-dimensional Ackley function with minimum in x = 0.
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(a) Particle solution, t = 0.5 (b) Particle solution, t = 3 (c) Particle solution, t = 6

(d) Marginal ρ(x, v, t), t = 0.5 (e) Marginal ρ(x, v, t), t = 3 (f) Marginal ρ(x, v, t), t = 6

Figure 8. Case #2 (local best only). Optimization of the one-dimensional Rastrigin function with minimum
in x = 0. First row: solution of the SD-PSO system (3.6). Second row: solution of the MF-PSO limit (3.9).

(a) ρ(x, t), t = 0.5 (b) ρ(x, t), t = 3 (c) ρ(x, t), t = 6

Figure 9. Case #2 (local best only). Evolution of the density ρ(x, t) of the SD-PSO system (3.6) and the
MF-PSO limit (3.9) for the one-dimensional Rastrigin function with minimum in x = 0.

5.2 Numerical small inertia limit

From the analysis in Section 4, in the limit of small inertia the classical CBO model (4.5) is obtained
as hydrodynamic approximation of the mean-field PSO system (3.5). Therefore, starting from the
discretization of the stochastic particle model without memory effect (5.1), we decrease the inertial
weight m → 0 (γ → 1) and compare the particle solution with a direct discretization of the limiting
mean-field CBO system (4.5).
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(a) Particle solution, t = 0.5 (b) Particle solution, t = 1 (c) Particle solution, t = 3

(d) Mean-field solution, t = 0.5 (e) Mean-field solution, t = 1 (f) Mean-field solution, t = 3

Figure 10. Case #3 (general case). Optimization of the one-dimensional Ackley function with minimum
in x = 0. First row: solution of the SD-PSO system (3.6). Second row: solution of the MF-PSO limit (3.9).

(a) ρ(x, t), t = 0.5 (b) ρ(x, t), t = 1 (c) ρ(x, t), t = 3

Figure 11. Case #3 (general case). Evolution of the density ρ(x, t) of the SD-PSO system (3.6) and the
MF-PSO limit (3.9) for the one-dimensional Ackley function with minimum in x = 0.

First, let us observe that the semi-implicit discretization scheme (5.1)

Xn+1
i = Xn

i +∆t V n+1
i ,

(5.4)

V n+1
i =

(
m

m+ γ ∆t

)
V n
i +

λ ∆t

m+ γ ∆t

(
X̄n

α −Xn
i

)
+

σ
√
∆t

m+ γ ∆t
D(X̄n

α −Xn
i ) θ

n
i ,

satisfies an asymptotic-preserving type property, allowing to pass to the limit m → 0 without any
restriction on ∆t. In fact, passing to the limit, the second equation in (5.4) gives

V n+1
i = λ

(
X̄n

α −Xn
i

)
+

σ√
∆t

D(X̄n
α −Xn

i ) θ
n
i ,
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which substituted into the first equation of (5.4) corresponds to the Euler-Maruyama scheme ap-
plied to the CBO system (4.1)

Xn+1
i = Xn

i +∆tλ
(
X̄n

α −Xn
i

)
+

√
∆tσD(X̄n

α −Xn
i ). (5.5)

In Figures 14 and 15 we report the plots of the density that describes the solution of the mean-field
CBO model and the stochastic PSO model for different inertial weights (m = 0.5, m = 0.1 and
m = 0.01). We considered the minimization problem for the Ackley function with minimum in
x = 0 and in x = 1 with N = 5× 105 particles for the SD-PSO discretization, a grid of 120 points
in space for the mean field CBO solver and the same set of parameters (5.3) with two different
initial data: a uniform distribution and a Gaussian distribution.

(a) Particle solution, t = 0.5 (b) Particle solution, t = 1 (c) Particle solution, t = 3

(d) Mean-field solution, t = 0.5 (e) Mean-field solution, t = 1 (f) Mean-field solution, t = 3

Figure 12. Case #3 (general case). Optimization of the one-dimensional Rastrigin function with minimum
in x = 0. First row: solution of the SD-PSO system (3.6). Second row: solution of the MF-PSO limit (3.9).

(a) ρ(x, t), t = 0.5 (b) ρ(x, t), t = 1 (c) ρ(x, t), t = 3

Figure 13. Case #3 (general case). Evolution of the density ρ(x, t) of the SD-PSO system (3.6) and the
MF-PSO limit (3.9) for the one-dimensional Rastrigin function with minimum in x = 0.
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It is clear that in the case of m = 0.5 the two densities at the final time t = 2 are considerably
different and a slower convergence is observed in the SD-PSO system, for m = 0.1 the agreement
is higher and the particle solution seems to converge faster to the minimum, finally in the case
m = 0.01 both densities simultaneously grow towards a Dirac delta centered in the minimum. As
expected an initial Gaussian profile, being more concentrated, leads to a faster convergence. For
smaller values of m the two solutions becomes indistinguishable and we omitted the results.

(a) ρ(x, t), t = 0.2 (b) ρ(x, t), t = 1 (c) ρ(x, t), t = 2

(d) ρ(x, t), t = 0.2 (e) ρ(x, t), t = 1 (f) ρ(x, t), t = 2

Figure 14. Low inertia limit. Evolution of the density ρ(x, t) of the SD-PSO discretization (5.4), for
decreasing inertial weight m = 0.5, 0.1, 0.01, and the mean-field CBO model (4.5) for the Ackley function
with minimum in x = 0. First row: uniform initial data. Second row: Gaussian initial data.

5.3 Comparison on high dimensional test cases

In this section we report the results of several experiments concerning the behavior of the stochastic
PSO models, discretized using (5.1) in absence of memory or (5.2) in the general case, in high
dimension (d = 20) for various prototype test functions (see Appendix A). For the sake of simplicity
we will focus our attention mostly to the case of the Ackley function and the Rastrigin function,
used also in the previous examples, and report additional results for other global optimization test
functions at the end of the Section. These two functions, in fact, although with several local minima
presents very different levels of difficulty and have been used as test functions for CBO methods in
various other papers [9, 11,18,19,36,42].

In all tables reported in this section we will use the following terminology:

1. the success rate, computed averaging over nr = 500 runs and using as convergence criterion

‖X̄n∗

α − xmin‖∞ < δerr, or ‖Ȳ n∗

α − xmin‖∞ < δerr

21



where xmin is the position of the minimum, n∗ the final time, and δerr = 0.25 as in [11,36].

2. the error, calculated as expected value in the L2 norm over the successful runs

E(‖X̄n∗

α − xmin‖2), or E(‖Ȳ n∗

α − xmin‖2);

3. the number of iterations, where for a given tolerance δstall = 10−4, we stop the iteration if

‖X̄n
α − X̄n−1

α ‖ < δstall, or ‖Ȳ n
α − X̄n−1

α ‖ < δstall

for nstall = 250 consecutive iterations or a maximum number of 104 iterations has been
reached.

(a) ρ(x, t), t = 0.2 (b) ρ(x, t), t = 1 (c) ρ(x, t), t = 2

(d) ρ(x, t), t = 0.2 (e) ρ(x, t), t = 1 (f) ρ(x, t), t = 2

Figure 15. Low inertia limit. Evolution of the density ρ(x, t) of the SD-PSO discretization (5.4), for
decreasing inertial weight m = 0.5, 0.1, 0.01, and the mean-field CBO model (4.5) for the Ackley function
with minimum in x = 1. First row: uniform initial data. Second row: Gaussian initial data.

It is important to remark that, while in previous simple one-dimensional validation examples
we have chosen a low α value, increasing the dimension, a larger value of α ≫ 1 provides better
performance [36]. On the other hand, a large value of α may generate numerical instabilities given
by the definition of X̄n

α in (3.2). To avoid this, we used the algorithm presented in [19] which
prevents the value of Nα from being close to 0 by substituting, in absence of memory,

ωα(X
n
i )

Nα
=

exp(−α(F(Xn
i )−F(Xn

∗ )))∑N
i=1 exp(−α(F(Xn

i )−F(Xn
∗ )))

, (5.6)
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with Xn
∗ := argminX∈{Xn

i
}N
i=1

F(X). In a similar way, the method extends to the evaluation of Ȳ n
α

in the general case including memory.
Let us emphasize that, it is beyond the scopes of the present manuscript to perform an exten-

sive testing of the various methods performances and to discuss the additional practical algorithmic
enhancements that can be adopted to increase the success rate, like for example the use of ran-
dom batch methods [3, 11, 28], particle reduction techniques [19] and parameters adaptivity [38].
In contrast, in the following test cases, we will address the role of the various parameters, of the
presence of memory and of the local best when solving high dimensional global optimization prob-
lems. We refer also to [41] for additional comparisons. In all simulations we used Gaussian samples
N (0, 1) in the exploration term but in principle it is possible to use another distribution having
mean 0 and variance 1. We analyzed also the use of a uniform noise U(−

√
3,
√
3) similarly to

the original discrete PSO dynamic but without noticing significant changes in the results except
that smaller values of σ are needed to achieve convergence. In our experiments, additionally, the
PSO constraints (2.8) have shown strong limitations in terms of success rates and have not been
considered. This has been verified both by direct simulations using traditional PSO parameters in
our numerical scheme and by using standard PSO libraries such as the particleswarm function of
the Matlab Global Optimization Toolbox.

Effect of the inertial parameter m

Initially we report in Table 1 and Table 2 the results obtained with the formulation (5.1) that does
not exploit the memory of particles. The initial data is a uniform distribution on the whole domain
of definition that here is fixed to [−3, 3]d. Since, typically, optimizing the Rastrigin function is far
more difficult than the Ackley function, we explore the space of parameters searching for optimal
values of σ and ∆t for the Rastrigin function, then we used the same values for the Ackley function.
This optimization has been done roughly through simple variations of a given step size for the
parameters. In the numerical examples we consider α = 5× 10 and α = 5 × 104 to emphasize the
role of such parameter in improving both the convergence rate as well as the efficiency of the solver.

The structure of the tables is the same: the results are given for two different choices of α and
for different numbers of particles N . Since we are using a different solver we computed a different
optimal value of σ for the Rastrigin function which is then used also for the Ackley function. The
other two important parameters to be set are β and ν, chosen respectively equal to 3 × 103 and
1/(2∆t) = 50 so that the memory dynamics is close enough to the classical one of discrete PSO
methods. In this case, thanks to the memory effect there is no need to bound the computational
domain since particle tend to converge to the global minimum without spreading in the whole space.
Introducing the boundary conditions, the situation improves but not significantly, and we omit the
corresponding results. Finally, from Table 3 it is clear that, within the memory formulation, the
choice of α ≫ 1 is essential to achieve good performances and therefore, the use of the algorithm
described in (5.6) is fundamental in the practical implementation of the method.

Introduction of local best dynamics

Next we have considered the formulation (5.2) introducing the dynamics that lead the particles to
move towards their local historical minimum. To reduce the number of free parameters we made
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the following assumption between the parameter defining the local best and the global best

λ1 = ξ · λ2, σ1 = ξ · σ2 (5.7)

with ξ ∈ [0, 1] so that the local best is always weighted less than the global best. In this test we keep
the inertial value m = 0 and λ1 = 1, so that we are solving the generalized stochastic differential
CBO model with memory (4.6). For each value of ξ reported, we have computed an optimal σ2
achieving the maximum rate of success. We chose β = 3× 103, ∆t = 0.01 and ν = 0.5/∆t = 50 as
in the previous case and consider α = 5× 104 in evaluating the global best.

Rastrigin Case α = 5× 10 Case α = 5× 104

m σ N = 50 N = 100 N = 200 σ N = 50 N = 100 N = 200

0.00 Rate 7.0 100.0% 100.0% 100.0% 9.0 100.0% 100.0% 100.0%
Error 6.10e-04 3.91e-04 2.52e-04 1.19e-04 1.11e-04 9.68e-05
niter 10000.0 10000.0 10000.0 10000.0 10000.0 9912.4

0.01 Rate 6.5 100.0% 100.0% 100.0% 7.0 100.0% 100.0% 100.0%
Error 8.57e-04 4.94e-04 3.08e-04 9.74e-05 2.01e-05 1.62e-05
niter 10000.0 10000.0 10000.0 10000.0 6899.2 2060.1

0.05 Rate 3.5 42.5% 85.0% 92.0% 3.5 37.0% 74.0% 94.0%%
Error 1.02e-03 7.98e-04 6.40e-04 4.27e-04 1.26e-04 1.14e-04
niter 10000.0 10000.0 10000.0 8233.2 7814.0 7326.6

0.10 Rate 2.0 0.7% 2.5% 12.5% 2.0 1.0% 5.5% 29.5%
Error 3.52e-03 2.24e-03 2.05e-03 2.00e-04 1.28e-04 1.11e-04
niter 6818.3 7495.8 8680.9 6155.4 6221.9 6214.3

Table 1: SD-PSO without memory and with b.c. for λ = 1 and ∆t = 0.01.

Ackley Case α = 5× 10 Case α = 5× 104

m σ N = 50 N = 100 N = 200 σ N = 50 N = 100 N = 200

0.00 Rate 7.0 100.0% 100.0% 100.0% 9.0 100.0% 100.0% 100.0%
Error 3.43e-03 1.90e-03 1.18e-03 8.46e-05 4.20e-05 1.27e-05
niter 10000.0 10000.0 10000.0 1364.9 1032.4 869.2

0.01 Rate 6.5 100.0% 100.0% 100.0% 7.0 100.0% 100.0% 100%
Error 5.03e-03 2.52e-03 1.36e-03 9.49e-05 5.89e-05 2.81e-05
niter 10000.0 10000.0 10000.0 2192.9 1886.7 1723.6

0.05 Rate 3.5 100.0% 100.0% 100.0% 3.5 100.0% 100.0% 100.0%
Error 3.76e-03 2.82e-03 7.74e-03 2.27e-04 1.48e-04 1.03e-04
niter 10000.0 9857.2 6031.1 5367.3 4459.4 3928.4

0.10 Rate 2.0 99.5% 100.0% 100.0% 2.0 100.0% 100.0% 100.0%
Error 2.34e-03 2.28e-03 2.24e-03 8.31e-04 2.76e-04 1.91e-04
niter 5914.0 3856.7 2909.1 5480.8 4514.1 3909.4

Table 2: SD-PSO without memory and with b.c. for λ = 1 and ∆t = 0.01.
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First, in Tables 5 and 6 we report the behavior of the particle optimizer on the Ackley and
Rastrigin functions for different positions of the minimum xmin = 0, xmin = 1 and xmin = 2. In
this test we need to use the boundary conditions in order to achieve a high success rate when the
minimum is close to the boundary of the domain. Since for large values of ξ we must decrease σ2
to avoid a reduction of the convergence rate we expect that the total number of iterations may
decrease. This is the case of the Ackley function in Table 6 where a considerable speed-up is
obtained thanks to the local best when the minimum is close to the boundary.

Rastrigin Case α = 5× 10 Case α = 5× 104

m σ2 N = 50 N = 100 N = 200 σ2 N = 50 N = 100 N = 200

0.00 Rate 11.0 18.8% 16.8% 20.0% 11.0 100.0% 100.0% 100.0%
Error 1.30e-03 5.09e-03 7.31e-03 6.83e-04 4.70e-04 4.69e-04
niter 2331.9 1382.5 1289.6 10000.0 9878.2 3290.2

0.01 Rate 9.0 25.4% 25.6% 39.5% 9.0 100.0% 100.0% 100.0%
Error 4.53e-03 7.44e-03 9.06e-03 8.60e-04 8.56e-04 8.81e-04
niter 3536.0 3016.4 3128.9 9939.5 7012.2 5422.1

0.05 Rate 4.5 30.4% 34.8% 44.4% 4.5 100.0% 100.0% 100.0%
Error 4.51e-03 5.74e-03 9.87e-03 1.15e-03 6.67e-04 6.54e-04
niter 4646.0 4277.9 3598.5 9978.0 7657.6 5639.7

0.10 Rate 3.0 8.6% 20.8% 35.2% 3.0 80.8% 96.8% 100.0%
Error 2.72e-02 1.71e-02 1.31e-02 2.94e-03 8.96e-04 8.24e-04
niter 3686.7 4577.5 5361.4 9661.5 8676.5 7331.8

Table 3: SD-PSO with memory for λ1 = σ1 = 0, λ2 = 1, ∆t = 0.01, ν = 50, β = 3× 103.

Ackley Case α = 5× 10 Case α = 5× 104

m σ2 N = 50 N = 100 N = 200 σ2 N = 50 N = 100 N = 200

0.00 Rate 11.0 100.0% 100.0% 100.0% 11.0 100.0% 100.0% 100.0%
Error 2.84e-03 3.96e-03 5.47e-03 1.02e-04 7.66e-05 5.44e-05
niter 2260.2 1762.0 1346.5 2457.0 1778.0 1513.1

0.01 Rate 9.0 100.0% 100.0% 100.0% 9.0 100.0% 100.0% 100.0%
Error 3.34e-03 4.70e-03 6.46e-03 2.34e-03 1.91e-04 1.61e-04
niter 3722.2 2809.9 2104.2 6430.4 5447.8 4598.3

0.05 Rate 4.5 100.0% 100.0% 100.0% 4.5 100.0% 100.0% 100.0%
Error 4.17e-03 6.06e-03 8.24e-03 2.41e-04 1.84e-04 1.48e-04
niter 5300.6 4059.0 3113.1 7186.1 5996.0 5074.6

0.10 Rate 3.0 100.0% 100.0% 100.0% 3.0 100.0% 100.0% 100.0%
Error 6.72e-03 9.58e-03 1.25e-02 3.90e-03 2.64e-03 2.06e-03
niter 6411.8 4856.5 3783.5 8590.6 7326.4 6350.2

Table 4: SD-PSO with memory for λ1 = σ1 = 0, λ2 = 1, ∆t = 0.01, ν = 50, β = 3× 103.
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Finally, in Table 7 we report the results obtained by solving simultaneously a set of different
optimization functions considered in their standard domains (see Appendix A). Here, instead of
trying to find an optimal set of parameters for each function we use the same parameters for
all functions. Even if further investigations are necessary in terms of identifying optimal set of
parameters, through the previous simplifications assumptions we reduced our analysis to a minimal
choice of parameters which seems the more relevant for the success of the algorithm.

Rastrigin Case ξ = 0, σ2 = 11.0 Case ξ = 0.25, σ2 = 8.5

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

xmin = 0 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 7.04e-04 4.58e-04 3.29e-04 9.28e-04 6.11e-04 4.31e-04

niter 10000.0 9963.9 4635.1 9978.0 8311.5 5754.1

xmin = 1 Rate 98.8% 100.0% 100.0% 99.2% 100.0% 100.0%

Error 7.08e-04 4.60e-04 3.27e-04 9.31e-04 6.74e-04 4.59e-04

niter 10000.0 10000.0 4670.0 9987.0 9746.7 7460.1

xmin = 2 Rate 96.0% 99.1% 100.0% 93.5% 100.0% 100.0%

Error 6.91e-04 4.52e-04 3.28e-04 8.78e-04 6.74e-04 5.66e-04

niter 10000.0 10000.0 5035.5 9980.3 9854.1 8971.9

Table 5: SD-PSO with memory (m = 0) for λ1 and σ1 given by (5.7), λ2 = 1, ∆t = 0.01, ν = 50,
β = 3× 103, α = 5× 104.

Ackley Case ξ = 0, σ2 = 11.0 Case ξ = 0.25, σ2 = 8.5

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

xmin = 0 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 7.36e-05 5.13e-05 3.26e-05 2.54e-05 1.13e-05 1.07e-05

niter 2778.6 2030.0 1623.0 1942.9 1663.8 1442.5

xmin = 1 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 7.31e-05 5.14e-05 3.26e-05 2.58e-05 1.12e-05 1.02e-05

niter 5298.5 3640.6 2575.9 2465.3 1948.5 1632.5

xmin = 2 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 7.30e-05 5.07e-05 3.22e-05 2.64e-05 1.09e-05 1.01e-05

niter 7819.8 5771.3 4235.9 3126.8 2286.0 1803.8

Table 6: SD-PSO with memory (m = 0) for λ1 and σ1 given by (5.7), λ2 = 1, ∆t = 0.01, ν = 50,
β = 3× 103, α = 5× 104.

Thus, we let most parameters fixed as in previous test case, namely α = 5× 104, β = 3 × 103,
ν = 0.5/∆t since these essentially define the modeling process of the local best and global best.
Additionally we keep m = 0, ∆t = 0.01, and for a given value of ξ = 0 (absence of local best) and
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ξ = 0.25 (local best weighted 1/4 of global best) estimate the value for σ2 in order to maximize
the average convergence rate among all functions. Again this has been done roughly with simple
variations of step 0.5 for σ2 in the simulations.

The results confirm the potential of the method in identifying correctly the global minima for
different test functions. Overall, with the exception of the Rastrigin function for which the local
best produces a reduction in the convergence rate using this set of parameters, the importance of
the local best is evident. In particular, the presence of the local best yields a significant reduction
in the number of iterations for the Salomon function and an increase in the convergence rate for
the XSY random function.

Case ξ = 0, σ2 = 8.0 Case ξ = 0.25, σ2 = 6.5

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

Ackley Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 7.74e-05 6.12e-05 5.22e-05 2.08e-04 1.98e-04 1.65e-04

niter 1325.0 1114.8 924.9 1263.2 992.3 902.4

Rastrigin Rate 31.4% 65.7% 95.6% 5.3% 10.5% 27.9%

Error 5.59e-04 7.70e-04 9.68e-04 1.46e-03 9.73e-04 1.06e-03

niter 1404.7 1107.8 954.1 4390.0 4756.2 4643.6

Griewalk Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 9.12e-02 7.55e-02 5.78e-02 8.22e-02 5.34e-02 4.12e-02

niter 10000.0 10000.0 10000.0 10000.0 10000.0 9978.4

Schwefel Rate 99.6% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 1.16e-05 1.22e-05 1.39e-05 2.69e-05 2.80e-05 2.85e-05

niter 1211.2 1044.1 987.3 1127.9 964.8 849.7

Salomon Rate 96.7% 98.3% 100.0% 100.0% 100.0% 100.0%

Error 9.26e-02 8.73e-02 8.02e-02 8.22e-02 6.12e-02 5.23e-02

niter 9443.0 8176.2 7443.3 6476.0 3009.7 1923.2

XSY random Rate 35.5% 59.5% 94.2% 75.1% 94.2% 100.0%

Error 1.12e-01 9.81e-02 8.82e-02 1.06e-01 9.79e-02 8.57e-02

niter 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0

Table 7: SD-PSO with memory (m = 0) for λ1 and σ1 given by (5.7), λ2 = 1, ∆t = 0.01, ν = 50,
β = 3× 103, α = 5× 104.

6 Conclusions

In this work we attempted to make a contribution to the construction of a general mathematical
theory that will allow the rigorous analysis of optimization methods based on particle swarms
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(PSO). To this aim, starting from the original discrete formulation, we derived, by approximating
in an appropriate way the memory dynamics, the corresponding systems of SDEs. In the large
particle limit, using a regularized version of these systems we obtain a mean-field PDE of Vlasov-
Fokker-Planck type describing the PSO dynamic. The new mean-field formalism, for small values
of the inertia parameter, permits to compute as hydrodynamic approximation a generalization of
consensus-based optimization models (CBO) with local best, thus highlighting the relationships
between these two classes of metaheuristic optimization methods. These results are numerically
validated through several examples that compare the mean-field and the particle dynamics. The
methods are then tested against some prototype high dimensional global optimization functions
with the goal of understanding the effects of the various parameters and the main differences
between the novel stochastic differential models and standard CBO systems, namely the presence
of memory effects together with the local best. The numerical results confirmed the ability of the
local best to improve the performance of the methods in terms of speed of convergence and rate
of success. It is worth noting that the SD-PSO models here introduced, thanks to the increased
independence of the search parameters, allow better performances of the classic PSO methods
(which represent a particular case included in the choices of possible optimization parameters).

In perspective, the introduction of a memory variable opens interesting possibilities towards
the construction of novel SD-PSO minimizers and CBO minimizers for multi-objective functions.
In addition to this, the main research directions we intend to deal with in the near future concern
the analysis of the convergence properties of the mean-field PSO system to global minimizers,
the rigorous derivation of the small inertia limit, and the study of the convergence ranges for the
parameters that characterize the system.
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A Test Functions

In this Appendix we report the global optimization test functions that were used in the article
to validate the performance of the SD-PSO algorithms [27]. Each function is reported within the
typical search domain and, if B,C = 0, has the global minima located at x∗ = (0, . . . , 0) with
F(x∗) = 0.
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1. Ackley function (Continuous, Differentiable, Non-convex, Non-Separable, Multimodal)

F(x) = −20 exp


−0.2

√√√√1

d

d∑

i=1

(xi −B)2


− exp

(
1

d

d∑

i=1

cos (2π(xi −B))

)
+ 20 + exp(1) + C,

(A.1)

subject to −32 ≤ x ≤ 32.

2. Griewalk function (Continuous, Differentiable, Non-convex, Separable, Unimodal)

F(x) = 1 +

d∑

i=1

(xi −B)2

4000
−

d∏

i=1

cos

(
xi −B

i

)
+ C, (A.2)

subject to −100 ≤ x ≤ 100.

3. Rastrigin function (Continuous, Differentiable, Convex, Separable, Multimodal)

F(x) = 10d+
d∑

i=1

[
(xi −B)2 − 10 cos (2π(xi −B))

]
+ C, (A.3)

subject to −5.12 ≤ x ≤ 5.12. .

4. Salomon function (Continuous, Differentiable, Non-Convex, Non-Separable, Multimodal)

F(x) = 1− cos


2π

√√√√
d∑

i=1

(xi −B)2


+ 0.1

√√√√
d∑

i=1

(xi −B)2 + C, (A.4)

subject to −100 ≤ x ≤ 100.

5. Schwefel function (Continuous, Non-Differentiable, Convex, Separable, Unimodal)

F(x) =

d∑

i=1

|xi −B|+ C, (A.5)

subject to −100 ≤ x ≤ 100.

6. Xin She-Yang random function (Random, Non-Differentiable, Non-convex, Separable,
Multimodal)

F(x) =

d∑

i=1

ηi|xi −B|i + C (A.6)

with ηi, i = 1, . . . , d random variable uniformly distributed in [0, 1]. The standard domain
size is −5 ≤ x ≤ 5.
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