DOI: 10.1002/jssc.202100306

#### RESEARCH ARTICLE



SEPARATION SCIENCE

# Profiling and quantitative analysis of underivatized fatty acids in *Chlorella vulgaris* microalgae by liquid chromatography-high resolution mass spectrometry

Carmela Maria Montone<sup>1</sup> | Sara Elsa Aita<sup>1</sup> | Martina Catani<sup>2</sup> | Chiara Cavaliere<sup>1</sup> | Andrea Cerrato<sup>1</sup> | Susy Piovesana<sup>1</sup> | Aldo Laganà<sup>1,3</sup> | Anna Laura Capriotti<sup>1</sup>

<sup>1</sup> Department of Chemistry, Sapienza University of Rome, Rome, Italy

<sup>2</sup> Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy

<sup>3</sup> CNR NANOTEC, Campus Ecotekne, University of Salento, Lecce, Italy

#### Correspondence

Prof. Chiara Cavaliere, Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Email: chiara.cavaliere@uniroma1.it

[Correction added on May 7, 2022 after first online publication: CRUI-CARE funding statement has been added.]

**Funding information** the Italian Ministry of University and Research, Grant/Award Number: ARS01\_00881; Sapienza Università di Roma *Chlorella vulgaris* is a popular microalga used for biofuel production; nevertheless, it possesses a strong cell wall that hinders the extraction of molecules, especially lipids within the cell wall. For tackling this issue, we developed an efficient and cost-effective method for optimal lipid extraction. Microlaga cell disruption by acid hydrolysis was investigated comparing different temperatures and reaction times; after hydrolysis, lipids were extracted with *n*-hexane. The best recoveries were obtained at 140°C for 90 min. The microalgae were then analyzed by an untargeted approach based on liquid chromatography with high-resolution mass spectrometry, providing the tentative identification of 28 fatty acids. First, a relative quantification on the untargeted data was performed using peak area as a surrogate of analyte abundance. Then, a targeted quantitative method was validated for the tentatively identified fatty acids, in terms of recovery (78-100%), intra- and interday relative standard deviations (<10 and <9%, respectively) and linearity ( $R^2 > 0.98$ ). The most abundant fatty acids were palmitic, palmitoleic, oleic, linoleic, linolenic, and stearic acids.

#### KEYWORDS

biofuel, compound discoverer, fatty acids, lipidomics, untargeted analysis

## 1 | INTRODUCTION

Microalgae are a rich source of precious bioactive compounds, such as lipids [1-4], carotenoids [5], phenolic compounds [6], bioactive peptides, and amino acids [7-9];

Article Related Abbreviations: AGC, automatic gain control; DAG, diacylglycerol; DDA, data-dependent acquisition; FA, fatty acid; FWHM, full width at half maximum; *i*-PrOH, isopropanol; MeOH, methanol; MRM, multiple reaction monitoring; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; RT, room temperature; SFA, saturated fatty acid; TAG, triacylglycerol for this reason, they found application in the pharmaceutical and nutraceutical fields as valuable sources of new food and functional products [10–12]. Fatty acids (FAs) are among the major constituents of microalgal biomass and typically range between 5 and 50% of the cell dry weight [13,14]. They are mainly present as glycerolipids, primarily consisting of phospholipids and glycolipids, which have an essential role in cell structure, and triacylglycerols (TAGs), primarily responsible for energy storage [15]. In particular, TAGs possess a broad spectrum of commercial applications, such as the production of biofuels [3,16,17],

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

@ 2021 The Authors. Journal of Separation Science published by Wiley-VCH GmbH

### PARATION SCIENCE

bulk chemicals [18], nutraceuticals, especially for the production of omega-3 FAs [19,20], and food commodities [13]. Microalgae mainly produce FAs with chain lengths of 16 and 18 carbon atoms, but some species can synthesize FAs of up to 24 carbon atoms in length. The presence or absence of saturation plays an important role in biofuel properties; for example, saturated FAs (SFAs) provide good oxidative stability and ignition properties, while polyunsaturated fatty acids (PUFAs) have good cold-flow characteristics [21].

Chlorella vulgaris is currently the second most commercially produced microalga due to its relative ease of cultivation. However, this microalgal strain's industrial productivity is hampered by its strong cell wall, making the extraction of functional molecules an issue [22]. Evaluating cost-effective cell disruption methods to maximize lipid extraction from microalgae is crucial for identifying promising biofuel-producing species. The appropriate method's choice depends on the microalgae species and cell wall characteristics [23,24]. Several cell-disruption methods, such as mechanical, biological, and chemical ones, have been used to develop efficient downstream processes to recover intracellular lipids, mostly free FAs, and pigment components from C. vulgaris [25]. Mechanical methods require energy inputs in the forms of shear forces, electrical pulses, waves, and heat; the main employed approaches are bead milling, high-pressure homogenization, hydrodynamic cavitation, and ultrasonication [26]. It has recently been demonstrated that the combination of two mechanical methods, such as sonication-assisted high-speed homogenization, was more efficient in lipid extraction than the single use of sonication or homogenization. Moreover, a chloroform/MeOH mixture gave a higher lipid yield than *n*-hexane, with 238 and 152 mg lipid/g cell, respectively [24].

Physical approaches are not suitable for large-scale production, since they are expensive and could cause final product degradation [25,27]. Biological techniques are based on the use of lysis enzymes or algicidal treatment. These methods have significant advantages, such as their biological specificity, mild operating conditions, and low energy consumption; however, they have not been applied at a large scale because of their low cost efficiency [28]. Chen et al. [29] demonstrated that the use of *Flammeovirga yaeyamensis*'s enzyme led to an increase of about 63% of lipid recovery in *C. vulgaris* compared to commercial amylase and cellulose enzymes. Nevertheless, the enzyme cost usually is higher than that of chemical and physical cell-disruption methods, and in any case, the cell wall disruption rate is lower [25,26].

Chemical methods, based on the use of strong acids, are nowadays the best solution in terms of high extraction efficiency and low cost for microalgae cell wall disruption compared to other chemical agents such as solvents, salts, and surfactants. In particular, 1% of sulfuric acid showed a lipid extraction yield of 935 mg/g from wet *C. vulgaris* [30]. Given the above, in this work, acid hydrolysis followed by solvent extraction was performed and optimized to weaken the microalgal cell walls of *C. vulgaris*. The effect of acid hydrolysis on FAs productivity was also investigated. An untargeted ultra (U)HPLC-high resolution (HR) MS/MS approach without chemical derivatization was applied to characterize lipid extracts. Identification of FAs was performed by Compound Discoverer software using a predefined workflow for food analysis. Finally, the method was validated for the quantitative analysis of the 28 tentatively identified FAs from the untargeted analysis.

### 2 | MATERIALS AND METHODS

### 2.1 | Chemicals and reagents

HPLC-grade chloroform, MeOH, and water used for sample pretreatment were supplied by VWR International (Milan, Italy). Ultrapure water and isopropanol (*i*-PrOH) of LC-MS grade were purchased from Thermo Fisher Scientific (Waltham, MA, USA); LC-MS grade MeOH was provided by Romil Pure Chemistry (Pozzuoli, NA, Italy).

Ammonium acetate, acetic acid, sulfuric acid, and *n*-hexane were purchased from Merck (St. Louis, MO, USA). The 35 lipid standards constituted of 28 FAs, 1 TAG, 1 diacylglycerol (DAG), and 5 phospholipids are reported in Supporting information Table S1 with all valuable information.

## 2.2 | Preparation of stock solutions, working standard solutions, and calibration mixtures

Standard and stock solution preparation was always performed using glass equipment to avoid lipid adsorption to plastics, and tubes were covered with aluminum foil to prevent lipid oxidation. Stock (10 mg/mL) and working solutions (1 mg/mL) were prepared in MeOH for each compound and stored at  $-20^{\circ}$ C. The quantitative analysis was carried out for all identified FAs. Eightpoint calibration curves were constructed in the range of 0.25-47.00 µg/mL for all standards. Quantification was performed by matrix-matched calibration.

# 2.3 | Microalgal strain and growth medium

Chlorella vulgaris was isolated and maintained in BG11 medium with the addition of 0.25% of glucose under

constant illumination at 1000 uE at room temperature (RT, 25°C), aerated (3 L/min), and maintained under continuous agitation with a magnetic stirrer. Illumination was provided 24 h/24 by cool light fluorescent lamps, positioned at a 10 cm distance from the bottle surface. Biomass concentration was determined as dry weight by filtering 10 mL of the suspension on glass microfiber filters (0.7  $\mu$ m) previously dried at 105°C. The filters were again dried after filtration at 105°C until reaching constant weight. The algal biomass was decanted overnight; then, the supernatant was discarded, and the solid residue was harvested via centrifugation at 25°C for 10 min at 3000× g. Pellets were lyophilized and then ground to a fine powder with liquid nitrogen.

The sample was stored at 20°C until analysis.

# 2.4 | Acid hydrolysis of *Chlorella vulgaris* and extraction of fatty acids

Acidic hydrolysis was performed on 0.5 g of microalgal biomass in 5 mL of H<sub>2</sub>SO<sub>4</sub> at 5%v/v; hydrolysis was carried out in autoclave (Autoclave vapour-lineeco, VWR), testing and comparing three temperatures (RT, 70°C, and 140°C) for three different reaction times (60 min, 90 min, and overnight). For each condition, the acid-hydrolyzed mixtures were extracted twice with 3 mL of n-hexane under vortex agitation for 30 min. The effects of hydrolysis temperature and reaction time were evaluated by spiking the dried microalgae (0.5 mg) with a mixture of standard lipids at 0.5 mg/mL. The following standard lipids were used: 15:0-18:1-15:0 TAG, 15:0-18:1 DAG, 14:0 PA, 14:0 phosphatidylglycerol, 14:0 phosphatidylcholine, 14:0 phosphatidylethanolamine, 14:0 phosphatidylserine. The sample was spiked either before  $(A_{set1})$  or after the hydrolysis and extraction process  $(A_{set2})$ to calculate the hydrolysis percentage, according to the following equation:

% hydrolysis = 
$$100 - \left(\frac{A_{set1}}{A_{set2}} \times 100\right)$$
 (1)

where  $A_{set1}$  is the analyte area in the sample fortified before extraction and  $A_{set2}$  is the analyte area in the spiked extract.

The hexane extracts were pooled and evaporated to dryness in an IKA RV 8 rotary evaporator (IKA-Werke GmbH & Co. KG, Staufen, Germany). The residue was redissolved in 200  $\mu$ L of MeOH/H<sub>2</sub>O/CHCl<sub>3</sub>, 80:15:5 (v/v/v) 5 mmol/L H<sub>3</sub>PO<sub>4</sub>. The best solubilization of FAs was achieved by adding solvents in the following order: CHCl<sub>3</sub>, MeOH, and H<sub>2</sub>O. The sample was stored at -20°C and diluted five times, with the same solvent mixture, before analysis.

# 2.5 | Ultra-high-performance liquid chromatography-high-resolution mass spectrometry analysis

The UHPLC Vanquish binary pump H (Thermo Fisher Scientific, Bremen, Germany), equipped with a thermostated autosampler and a thermostated column compartment, was used to analyze FAs in microalgae samples. Twenty microliter of each sample was injected on a Hypersil Gold  $(50 \times 2.1 \text{ mm i.d.}, 1.9 \mu \text{m particle size})$  equipped with a Security guard Hypersil Gold (4  $\times$  2.1 mm i.d., 5  $\mu$ m particle size), both from Thermo Fisher Scientific. The column was operated at 300 µL/min at 40°C. Mobile phases were H<sub>2</sub>O/MeOH 70:30 (v/v) (A) and MeOH/i-PrOH 60:40 (v/v) (B), both containing 0.05% acetic acid and 5 mmol/L ammonium acetate. The gradient was as follows: 20% B for 2 min; 20-99% B in 18 min; 99% B for 15 min; the column was finally re-equilibrated at 20% B for 9 min. The chromatographic system was coupled to a Q Exactive mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) via an ESI source. The ESI source was operated in the negative polarity ionization mode with the following parameters: spray voltage 2500 V; capillary temperature 320°C; auxiliary gas at 15 arbitrary units (a.u.); auxiliary gas heater temperature 400°C; sheath gas 35 a.u.; Slens RF level was 100%. HRMS analysis was performed in the range m/z 200-2000 with a resolution (full width at half maximum, FWHM, at m/z 200) of 70 000. The automatic gain control (AGC) target value was  $5 \times 10^5$ , with a max ion injection time set of 200 ms. Top five datadependent acquisition (DDA) was used, with 35 000 resolution (FWHM at m/z 200) for MS/MS analysis. Higherenergy collisional dissociation was performed at 40% normalized collision energy, using an isolation window width of 2 m/z and AGC target value of 5  $\times$  10<sup>5</sup>. Dynamic exclusion was set to 6 s. Raw data files were acquired by Xcalibur software (version 3.1, Thermo Fisher Scientific). Three technical replicates were performed for each experimental replicate. Runs were performed on the same day.

# 2.6 | Data analysis and fatty acid identification

Compound identifications were obtained according to level 2a confidence level in metabolomics analysis [31]. FA identification was carried out by Compound Discoverer<sup>TM</sup> 3.1 (Thermo Fisher Scientific) using the Food Research workflow template with few modifications. After spectra selection, alignment, and compound detections, adducts were grouped, and blank signals were removed. The *Fill Gaps* tool enabled a better evaluation of peak areas. Spectra

PARATION SCIENCE

matching was performed against FooDB and Lipid Maps databases with a mass tolerance of 5 ppm. The *Apply Spectral Distance* tool, which provides a ranking for compound annotation based on isotopic pattern comparison, was enabled, and the *Apply mzLogic* tool was used to rank annotations for unknown compounds based on MS/MS data.

# 2.7 | Method validation for fatty acids in *Chlorella vulgaris*

The analytical method validation was carried out following the Food and Drug Administration document for bioanalytical method validation guidance for industry (https://www.fda.gov/regulatory-information/search-fdaguidance-documents/bioanalytical-method-validation-

guidance-industry). Analyte stability was initially checked as freeze and thaw stability test, short-term temperature stability test, long-term stability test, stock solution stability test, and postpreparative stability test.

The method validation was carried out using selectivity, precision, recovery, and the analyte calibration curves in spiked samples. Compound identification was accepted if the retention time, accurate mass, and MS/MS fragmentation of the candidate compound in the sample matched the reference standard ones. The nonspiked microalgae samples were used to evaluate the absence of coeluted interferences at the same analytes retention time. Accuracy, precision, and recovery were determined by spiking microalgae samples before extraction and hydrolysis at three different concentration levels ( $C_1$ 0.02 µg/mL;  $C_2$  0.50 µg/mL;  $C_3$  1.00 µg/mL) with the 28 FAs reported in Supporting information Table S1. Recoveries (R, %) were calculated using the following equation:

$$R\% = \frac{A_{set1} - A_0}{A_{set2}} \times 100$$
 (2)

where  $A_0$  is the compound area in the sample without any spiking (endogenous amount).

Precision was assessed as intraday precision (repeatability) and interday precision (intermediate precision), and the values were expressed as RSD. Signal suppression or enhancement due to matrix effect (ME, %) was evaluated as follows:

$$ME\% = \frac{A_{set2} - A_0}{A_{set3}} \ 100$$
 (3)

where  $A_{set3}$  is the standard area in pure solvent.

#### 3 | RESULTS AND DISCUSSION

# 3.1 | Optimization of hydrolysis conditions

Acid hydrolysis with diluted sulfuric acid represents one of the best choices in industrial applications, especially for the low costs and ease of application. Moreover, compared with other strong acids, sulfuric acid provides a higher hydrolysis yield [32]. Although acid hydrolysis is a widely used method, the optimization of conditions is closely dependent on microalgae species and specific growth conditions. Three hydrolysis temperatures (RT, 70, and 140°C) and three reactions time (60 min, 90 min, and overnight) were evaluated and compared. The sulfuric acid concentration was not optimized, since several papers highlighted that 5% was the optimal choice, leading to an increased lipid yield compared to a more diluted acid [33]. On the other hand, Takisawa et al. [34] demonstrated that a higher concentration of sulfuric acid could degrade FAs.

The effects of temperature and reaction time on the hydrolysis percentage are shown in Figure 1 and were calculated following the Eq. 1. The maximum hydrolysis percentage (97-100%) was obtained at 140°C after 90 min and overnight. Ninety minutes was selected as the best reaction time since it is preferred to carry out reactions at high temperatures for the shortest possible time to avoid degradation. The hydrolysis percentages at 25 and 70°C were in the range of 10-26 and 38-82%, respectively, for all the three tested reaction times. All hydrolysis percentages for every standard lipid, at every temperature and every reaction time, are reported in detail in Supporting information Table S2.

# 3.2 | Fatty acid profiling in *Chlorella vulgaris* microalgae

Untargeted characterization of hydrolyzed FAs was carried out by UHPLC-HRMS/MS. Before injection onto the UHPLC column, different solvent mixtures were tested to reach the best ionization rate and solubilization of the analyzed compounds in the extract resuspension mixture. Indeed, the solubility of FAs is a crucial factor in their identification. MeOH/H<sub>2</sub>O/CHCl<sub>3</sub> (80:15:5, v/v/v) with 5 mmol/L H<sub>3</sub>PO<sub>4</sub> was chosen as the best mixture for analyte injection; this mixture allowed obtaining a fourtime higher ionization efficiency. Furthermore, it has been proven that a small quantity of phosphoric acid into the resolubilization mixture can reduce peak tailing [35].

Figure 2A shows the chromatographic separation of the 28 tentatively identified FAs. These identified FAs



**FIGURE 1** Effect of temperature and reaction time on the hydrolysis percentage of *C. vulgaris* cell walls using 5% of sulfuric acid. Percentages are reported for the seven standard lipids



**FIGURE 2** (A) Total ion chromatogram of FA species, with an area  $>2.5 \times 10^8$  (left) and  $<2.5 \times 10^8$  (right), extracted from *C. vulgaris* and identified by the untargeted analysis (compounds are marked by the same numbers as reported in Table 1); (B) pie chart showing the percentages of tentatively identified FAs according to their degree of unsaturation; (C) percentage distribution of individual saturated FAs relative to the total saturated FA content; (D) percentage distribution of individual unsaturated FAs relative to the total unsaturated FA content;

| TABLE 1 Tenta | tively identified FAs ir | 1 C. vulgaris sample |
|---------------|--------------------------|----------------------|
|---------------|--------------------------|----------------------|

| <b>N</b>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exact mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta$ mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                        | $t_R$ (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Adduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( <i>u</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | abundance (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Myristoleic acid (14:1)     | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{14}H_{26}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 226.1929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hexadecadienoic acid (16:2) | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{16}H_{28}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 252.2087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Myristic acid (14:0)        | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{14}H_{28}O_{2}\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 228.2086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Linolenic acid (18:3)       | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{18}H_{30}O_{2} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 278.2240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Palmitoleic acid (16:1)     | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{16}H_{30}O_{2}\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 254.2243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pentadecanoic acid (15:0)   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{15}H_{30}O_{2}\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242.2244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Linoleic acid (18:2)        | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{18}H_{32}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 280.2397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Heptadecenoic acid (17:1)   | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{17}H_{32}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 268.2492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Palmitic acid (16:0)        | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{16}H_{32}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 256.2396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Oleic acid (18:1)           | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{18}H_{34}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 282.2553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Margaric acid (17:0)        | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{17}H_{34}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270.2556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Eicosadienoic acid (20:2)   | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{20} {\rm H}_{36} {\rm O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 308.2713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nonadecenoic acid (19:1)    | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{19}H_{36}O_{2}\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 296.2707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Stearic acid (18:0)         | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{18}H_{36}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 284.2711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gadoleic acid (20:1)        | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{20} {\rm H}_{38} {\rm O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 310.2869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nonadecanoic acid (19:0)    | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{19}H_{38}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 298.2869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Heneicosenoic acid (21:1)   | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{21}H_{40}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 324.3025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Arachidic acid (20:0)       | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{20} {\rm H}_{40} {\rm O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 312.3025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Brassidic acid (22:1)       | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{22}H_{42}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 338.3182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Heneicosanoic acid (21:0)   | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{21}H_{42}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 326.3181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Behenic acid (22:0)         | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{22}H_{44}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340.3336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nervonic acid (24:1)        | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{24}\mathrm{H}_{46}\mathrm{O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 366.3492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tricosanoic acid (23:0)     | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{23} {\rm H}_{46} {\rm O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 354.3493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lignoceric acid (24:0)      | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{24}H_{48}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 368.3647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pentacosanoic acid (25:0)   | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{25}H_{50}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 382.3806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cerotic acid (26:0)         | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{26} {\rm H}_{52} {\rm O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [M-H] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 396.3961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Heptacosanoic acid (27:0)   | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{27}H_{54}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 410.4118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Montanic acid (28:0)        | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{28} {\rm H}_{56} {\rm O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[M-H]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 424.4277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | NameNyristoleic acid (14:1)Myristoleic acid (14:1)Idexadecadienoic acid (16:2)Myristic acid (14:0)Inolenic acid (18:3)Palmitoleic acid (16:1)Pandaceanoic acid (17:1)Ideytadecenoic acid (17:1)Palmitic acid (16:2)Palmitic acid (16:2)Palmitic acid (17:0)Pargaric acid (17:0)Bargaric acid (17:0)Stearic acid (17:0)Paneicosanoic acid (19:1)Arachidic acid (20:1)Heneicosanoic acid (19:1)Paneicosanoic acid (19:1)Paneicosanoic acid (21:1)Paneicosanoic acid (21:1)Pineicosanoic acid (21:1) | Name <i>k<sub>k</sub></i> (min)   Myristoleic acid (14:0) 2.8   Hexadecadienoic acid<br>(16:2) 3.5   Myristic acid (14:0) 3.9   Myristic acid (14:0) 4.3   Palmitoleic acid (16:1) 4.3   Palmitoleic acid (16:1) 5.3   Pandadecanoic acid (17:0) 5.3   Palmitic acid (16:0) 6.1   Palmitic acid (17:0) 6.3   Palmitic acid (17:0) 7.3   Palosadienoic acid (17:0) 8.2   Margaric acid (17:0) 7.3   Nonadecenoic acid (19:1) 8.2   Nonadecenoic acid (19:1) 9.2   Myristic acid (10:0) 9.2   Margaric acid (12:1) 10.1   Nonadecanoic acid (20:1) 9.2   Monadecanoic acid (21:1) 10.1   Parenciosanoic acid (21:1) 11.4   Marconic acid (22:0) 14.2   Marconic acid (22:0) 14.2   Panetacosanoic acid (23:0) 15.6   Panetacosanoic acid (23:0) 16.3   Marconic acid (23:0) 16.3   Panetacosano | Name $I_R$ (min)MolecularMyristoleic acid (14:1)2.8 $C_{14}H_{26}O_2$ Hexadecadienoic acid3.5 $C_{16}H_{28}O_2$ Myristic acid (14:0)3.9 $C_{14}H_{28}O_2$ Linolenic acid (18:3)4.3 $C_{16}H_{30}O_2$ Palmitoleic acid (16:1)4.6 $C_{16}H_{30}O_2$ Pentadecanoic acid (15:0)5.3 $C_{18}H_{32}O_2$ Ideptadecenoic acid (17:1)5.8 $C_{16}H_{32}O_2$ Palmitic acid (18:2)5.3 $C_{16}H_{32}O_2$ Palmitic acid (16:0)6.1 $C_{19}H_{36}O_2$ Palmitic acid (16:0)8.2 $C_{19}H_{36}O_2$ Palmitic acid (17:0)7.3 $C_{19}H_{36}O_2$ Palmadecenoic acid (19:1)8.2 $C_{19}H_{36}O_2$ Panadecenoic acid (19:1)8.2 $C_{19}H_{36}O_2$ Panadecenoic acid (19:1)9.2 $C_{20}H_{30}O_2$ Panadecanoic acid (20:1)9.2 $C_{20}H_{40}O_2$ Parasidic acid (20:1)10.1 $C_{21}H_4O_2$ Parasidic acid (20:0)14.2 $C_{22}H_{4}O_2$ Parasidic acid (22:1)10.1 $C_{21}H_4O_2$ Parasidic acid (22:0)14.7 $C_{24}H_4O_2$ Parasidic acid (22:0)14.7 $C_{24}H_4O_2$ Parasidic acid (23:0)15.6 $C_{23}H_4O_2$ Paratosanoic acid (24:0)18.8< | Name $r_R$ (min)formulaAdductMyristoleic acid (14:1)2.8 $C_{14}H_{26}O_2$ $[M-H]^-$ Hexadecadienoic acid<br>(16:2)3.5 $C_{16}H_{28}O_2$ $[M-H]^-$ Myristic acid (14:0)3.9 $C_{14}H_{28}O_2$ $[M-H]^-$ Myristic acid (18:3)4.3 $C_{18}H_{30}O_2$ $[M-H]^-$ Palmitoleic acid (16:1)4.6 $C_{16}H_{30}O_2$ $[M-H]^-$ Pentadecanoic acid (15:0)5.0 $C_{15}H_{30}O_2$ $[M-H]^-$ Pentadecanoic acid (17:0)5.8 $C_{17}H_{32}O_2$ $[M-H]^-$ Palmitic acid (16:0)6.1 $C_{16}H_{32}O_2$ $[M-H]^-$ Palmitic acid (16:0)6.6 $R_18H_34O_2$ $[M-H]^-$ Palmitic acid (17:0)7.3 $C_{17}H_{32}O_2$ $[M-H]^-$ Margaric acid (17:0)7.6 $C_{20}H_{36}O_2$ $[M-H]^-$ Palmadecenoic acid (19:1)8.2 $C_{19}H_{30}O_2$ $[M-H]^-$ Palmitic acid (19:0)8.2 $C_{19}H_{30}O_2$ $[M-H]^-$ Margaric acid (19:1)8.2 $C_{19}H_{30}O_2$ $[M-H]^-$ Palmadecenoic acid (19:1)9.2 $C_{20}H_{30}O_2$ $[M-H]^-$ Palmic acid (20:1)9.7 $C_{19}H_{30}O_2$ $[M-H]^-$ Pareicosenoic acid (21:1)1.14 $C_{20}H_{40}O_2$ $[M-H]^-$ Pareicosenoic acid (21:1)1.9 $C_{21}H_4O_2$ $[M-H]^-$ Pareicosanoic acid (22:0)1.41 $C_{20}H_4O_2$ $[M-H]^-$ Pareicosanoic acid (21:1)1.9 $C_{22}H_4O_2$ $[M-H]^-$ Pareicosanoic acid (21:1) <t< td=""><td>Name<math>t_R</math> (min)formulaAdduct(<math>u</math>)Myristoleic acid (14:1)2.8<math>C_{14}H_{26}O_2</math><math>[M-H]^-</math>226.1929Hexadecadienoic acid<br/>(16:2)3.5<math>C_{16}H_{28}O_2</math><math>[M-H]^-</math>228.2086Myristic acid (14:0)3.9<math>C_{14}H_{26}O_2</math><math>[M-H]^-</math>288.2086Linolenic acid (18:3)4.3<math>C_{16}H_{30}O_2</math><math>[M-H]^-</math>242.243Pentadecanoic acid (15:0)5.0<math>C_{16}H_{30}O_2</math><math>[M-H]^-</math>242.244Linoleic acid (16:0)5.0<math>C_{16}H_{30}O_2</math><math>[M-H]^-</math>280.2397Heptadecenoic acid (15:0)5.3<math>C_{17}H_{32}O_2</math><math>[M-H]^-</math>280.2397Ideptadecenoic acid (17:1)5.8<math>C_{17}H_{32}O_2</math><math>[M-H]^-</math>280.2397Oleic acid (18:1)6.6<math>C_{18}H_{34}O_2</math><math>[M-H]^-</math>280.2397Margaric acid (17:0)7.3<math>C_{17}H_{32}O_2</math><math>[M-H]^-</math>280.2397Nonadecenoic acid (17:1)5.6<math>C_{18}H_{34}O_2</math><math>[M-H]^-</math>280.2397Margaric acid (17:0)7.3<math>C_{17}H_{32}O_2</math><math>[M-H]^-</math>280.2397Stearic acid (18:1)6.6<math>C_{18}H_{34}O_2</math><math>[M-H]^-</math>280.2397Margaric acid (17:0)7.3<math>C_{17}H_{32}O_2</math><math>[M-H]^-</math>280.2397Stearic acid (18:0)8.6<math>C_{18}H_{30}O_2</math><math>[M-H]^-</math>280.2017Margaric acid (19:0)9.7<math>C_{20}H_{30}O_2</math><math>[M-H]^-</math>280.2017Margaric acid (19:0)9.7<math>C_{21}H_{40}O_2</math><math>[M-H]^-</math>280.2017Mondecenoic acid (21:1)<td>Name<math>k_R</math> (min)KorcularExact massA massName<math>k_R</math> (min)formulaAdduct(u)(ppm)Myristoleic acid (14:1)<math>2,8</math><math>C_{14} L_{26} O_2</math>[M-H]<math>226.1929</math><math>-1.8</math>Hexadecadienoic acid<math>3.5</math><math>C_{16} H_{28} O_2</math>[M-H]<sup>-</sup><math>252.2087</math><math>-0.9</math>Myristic acid (14:0)<math>3.9</math><math>C_{14} H_{26} O_2</math>[M-H]<sup>-</sup><math>282.2086</math><math>-1.4</math>Linolenic acid (16:1)<math>4.6</math><math>C_{16} H_{30} O_2</math>[M-H]<sup>-</sup><math>282.2087</math><math>-2.3</math>Palmitoleic acid (16:1)<math>4.6</math><math>C_{16} H_{30} O_2</math>[M-H]<sup>-</sup><math>242.2244</math><math>-0.9</math>Linoleic acid (16:2)<math>5.3</math><math>C_{18} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.0</math>Heptadecenoic acid (15:2)<math>5.3</math><math>C_{17} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2393</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.293</math><math>-2.2</math>Palmitic acid (17:0)<math>7.3</math><math>C_{17} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.293</math><math>-0.7</math>Nonadecenoic acid (12:0)<math>8.2</math><math>C_{19} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.271</math><math>-1.6</math>&lt;</td></td></t<> | Name $t_R$ (min)formulaAdduct( $u$ )Myristoleic acid (14:1)2.8 $C_{14}H_{26}O_2$ $[M-H]^-$ 226.1929Hexadecadienoic acid<br>(16:2)3.5 $C_{16}H_{28}O_2$ $[M-H]^-$ 228.2086Myristic acid (14:0)3.9 $C_{14}H_{26}O_2$ $[M-H]^-$ 288.2086Linolenic acid (18:3)4.3 $C_{16}H_{30}O_2$ $[M-H]^-$ 242.243Pentadecanoic acid (15:0)5.0 $C_{16}H_{30}O_2$ $[M-H]^-$ 242.244Linoleic acid (16:0)5.0 $C_{16}H_{30}O_2$ $[M-H]^-$ 280.2397Heptadecenoic acid (15:0)5.3 $C_{17}H_{32}O_2$ $[M-H]^-$ 280.2397Ideptadecenoic acid (17:1)5.8 $C_{17}H_{32}O_2$ $[M-H]^-$ 280.2397Oleic acid (18:1)6.6 $C_{18}H_{34}O_2$ $[M-H]^-$ 280.2397Margaric acid (17:0)7.3 $C_{17}H_{32}O_2$ $[M-H]^-$ 280.2397Nonadecenoic acid (17:1)5.6 $C_{18}H_{34}O_2$ $[M-H]^-$ 280.2397Margaric acid (17:0)7.3 $C_{17}H_{32}O_2$ $[M-H]^-$ 280.2397Stearic acid (18:1)6.6 $C_{18}H_{34}O_2$ $[M-H]^-$ 280.2397Margaric acid (17:0)7.3 $C_{17}H_{32}O_2$ $[M-H]^-$ 280.2397Stearic acid (18:0)8.6 $C_{18}H_{30}O_2$ $[M-H]^-$ 280.2017Margaric acid (19:0)9.7 $C_{20}H_{30}O_2$ $[M-H]^-$ 280.2017Margaric acid (19:0)9.7 $C_{21}H_{40}O_2$ $[M-H]^-$ 280.2017Mondecenoic acid (21:1) <td>Name<math>k_R</math> (min)KorcularExact massA massName<math>k_R</math> (min)formulaAdduct(u)(ppm)Myristoleic acid (14:1)<math>2,8</math><math>C_{14} L_{26} O_2</math>[M-H]<math>226.1929</math><math>-1.8</math>Hexadecadienoic acid<math>3.5</math><math>C_{16} H_{28} O_2</math>[M-H]<sup>-</sup><math>252.2087</math><math>-0.9</math>Myristic acid (14:0)<math>3.9</math><math>C_{14} H_{26} O_2</math>[M-H]<sup>-</sup><math>282.2086</math><math>-1.4</math>Linolenic acid (16:1)<math>4.6</math><math>C_{16} H_{30} O_2</math>[M-H]<sup>-</sup><math>282.2087</math><math>-2.3</math>Palmitoleic acid (16:1)<math>4.6</math><math>C_{16} H_{30} O_2</math>[M-H]<sup>-</sup><math>242.2244</math><math>-0.9</math>Linoleic acid (16:2)<math>5.3</math><math>C_{18} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.0</math>Heptadecenoic acid (15:2)<math>5.3</math><math>C_{17} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2397</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{32} O_2</math>[M-H]<sup>-</sup><math>280.2393</math><math>-2.2</math>Palmitic acid (16:0)<math>6.1</math><math>C_{16} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.293</math><math>-2.2</math>Palmitic acid (17:0)<math>7.3</math><math>C_{17} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.293</math><math>-0.7</math>Nonadecenoic acid (12:0)<math>8.2</math><math>C_{19} H_{30} O_2</math>[M-H]<sup>-</sup><math>280.271</math><math>-1.6</math>&lt;</td> | Name $k_R$ (min)KorcularExact massA massName $k_R$ (min)formulaAdduct(u)(ppm)Myristoleic acid (14:1) $2,8$ $C_{14} L_{26} O_2$ [M-H] $226.1929$ $-1.8$ Hexadecadienoic acid $3.5$ $C_{16} H_{28} O_2$ [M-H] <sup>-</sup> $252.2087$ $-0.9$ Myristic acid (14:0) $3.9$ $C_{14} H_{26} O_2$ [M-H] <sup>-</sup> $282.2086$ $-1.4$ Linolenic acid (16:1) $4.6$ $C_{16} H_{30} O_2$ [M-H] <sup>-</sup> $282.2087$ $-2.3$ Palmitoleic acid (16:1) $4.6$ $C_{16} H_{30} O_2$ [M-H] <sup>-</sup> $242.2244$ $-0.9$ Linoleic acid (16:2) $5.3$ $C_{18} H_{30} O_2$ [M-H] <sup>-</sup> $280.2397$ $-2.0$ Heptadecenoic acid (15:2) $5.3$ $C_{17} H_{32} O_2$ [M-H] <sup>-</sup> $280.2397$ $-2.2$ Palmitic acid (16:0) $6.1$ $C_{16} H_{32} O_2$ [M-H] <sup>-</sup> $280.2397$ $-2.2$ Palmitic acid (16:0) $6.1$ $C_{16} H_{32} O_2$ [M-H] <sup>-</sup> $280.2397$ $-2.2$ Palmitic acid (16:0) $6.1$ $C_{16} H_{32} O_2$ [M-H] <sup>-</sup> $280.2397$ $-2.2$ Palmitic acid (16:0) $6.1$ $C_{16} H_{32} O_2$ [M-H] <sup>-</sup> $280.2393$ $-2.2$ Palmitic acid (16:0) $6.1$ $C_{16} H_{30} O_2$ [M-H] <sup>-</sup> $280.293$ $-2.2$ Palmitic acid (17:0) $7.3$ $C_{17} H_{30} O_2$ [M-H] <sup>-</sup> $280.293$ $-0.7$ Nonadecenoic acid (12:0) $8.2$ $C_{19} H_{30} O_2$ [M-H] <sup>-</sup> $280.271$ $-1.6$ < |

MONTONE ET AL.

<sup>a</sup>Please refer to Figure 2 for the peak numbering.

The related retention time (*tR*), formula, accurate mass (u),  $\Delta$  mass error (ppm), and relative abundance are provided.

comprised 15 SFAs, 8 monounsaturated FAs (MUFAs), and 4 PUFAs, and they are reported in Table 1. Details on adduct, molecular weight,  $\Delta$  error in ppm, major product ions, and peak area of tentatively identified FAs are reported in Supporting information Table S3.

Relative abundance, based on areas as provided by Compound Discoverer, was used for a quantitative comparison of the tentatively identified FAs. The most abundant FAs were unsaturated ones, with a percentage of 72% and with a prevalence of carbon chain lengths of C16 and C18 (Figure 2B and D). Two MUFAs and three PUFAs were the most abundant species, with oleic and palmitoleic acid present at 10.3 and 6.2%, respectively. Linoleic, linolenic, and hexadecadienoic acids were in the percentage of 21.5, 21.3, and 10.3%, respectively. A smaller percentage of SFAs (28%) was also present in the microalgae sample, consisting primarily of C16 carbon chain length (Figure 2C). The most abundant acid was palmitic acid (23.0%), with a small proportion of stearic acid (2.2%). The qualitative identification highlights that *C. vulgaris* species could serve both as a good nutrition source when incorporated into diets, and a potential candidate for biodiesel production, since the amount and ratio of saturated and unsaturated FAs is fundamental to whether microalgae can be used as a biofuel feedstock. Our data are entirely according to the literature [36–39]. Furthermore, the qualitative identification confirmed that the use of sulfuric acid was not only adequate for the break of the cell walls but also it was helpful for the complete hydrolysis of all lipids present in the microalgae.

## 3.3 | Method validation

Even though untargeted analysis is a powerful approach for the qualitative identification of complex mixtures, absolute quantification is necessary to obtain more reliable data and share the obtained results more straightforwardly from one laboratory to another. To date, the most widely employed hyphenated technique for the profiling and the absolute quantification of FAs is GC-MS, which can be highly laborious since it requires chemical derivatization due to the nonvolatile nature and low thermostability of these compounds. In the last years, LC-MS/MS platforms have taken root in FA profiling, especially for their suitability in analyzing both polar and nonpolar, nonvolatile, or thermolabile compounds [40]. Usually, quantitative analysis is carried out by low-resolution MS based on multiple reaction monitoring (MRM) acquisition. The MRM acquisition disadvantages are linked to the limited number of targets and low-resolution MS generally employed. Since FAs do not have a fragmentation pattern, HRMS was necessary for their identification to compensate for the lack of characteristic product ions at the MS/MS level. The fragmentation patterns of FAs, in the negative-ion mode, are primarily represented by the loss of a water molecule from saturated and some of the MUFAs species, the loss of carbon dioxide from the majority of unsaturated FA species, and the loss of acetate group. The intensity of these characteristic ion peaks depends on FAs species structures and collision conditions [41].

DDA was employed for the untargeted profiling and absolute quantification of the 28 tentatively identified FAs.

### 3.3.1 | Selectivity, precision, and recovery

Standard compounds were used to compare retention times and MS/MS spectra. The nonspiked extract was used to assess the absence of interference at the analyte retention times. However, endogenous amounts of the analytes were detected. Initially, recoveries were calculated for the 28 FAs subtracting the endogenous amount ( $C_0$ ), following Eq. 2. The proposed method accuracy was expressed as average R% at three spiking levels ( $C_1$ ,  $C_2$ ,  $C_3$ ) with related RSD (Table 2). Satisfactory assay accuracy ranging from 78 to 100% was achieved.

Method reproducibility was determined by the intraand interday precision calculation in extracts spiked with FAs at an intermediate fortification value ( $C_2$ ). Intraday accuracy was determined from five parallel experiments within 1 day, and intraday accuracy was determined from three parallel experiments for three consecutive days. The results showed that the intra- and interday RSDs were lower than 10 and 9%, respectively (Table 2), indicating that the method achieved satisfactory reproducibility and high performance.

**RATION SCIENCE** 

### 3.3.2 | Calibration curve and matrix effect

Validation of the analytical method ideally requires calibration curves to be built in the same matrix, especially using ESI MS, because components in the sample can lead to ME, namely signal enhancement or suppression. In this work, the analytical validation was carried out on microalgae, and the background subtraction method was employed for building calibration curves. Absolute area values from the calibration curves were used to evaluate the ME (Eq. 3) and assess the impact of signal enhancement or suppression due to matrix components without using pure deuterated standards for each analyte. ME was not significant (97  $\pm$  2%).

Good linearity was achieved for all analytes in the tested concentration range (0.25-47.00  $\mu$ g/mL), and the calibration curve equations were linear with correlation coefficients ( $R^2$ )  $\geq$  0.9854 (Table 2). The results indicated that this method was sensitive to the determination of free FAs in microalgae.

# 3.4 | Absolute quantitation of fatty acids in *Chlorella vulgaris*

The validated method was finally applied to the quantitation of the 28 tentatively identified FAs (Table 3). Compared to the literature, this was the highest number of FAs quantified in one single analysis for microalgae samples. Few articles dedicated their attention to the absolute quantification of FAs in microalgae or similar organisms since only the qualitative percentage is usually provided [37,38]. The only percentage analysis cannot establish the best strain for biodiesel production. Therefore, the quantitative analysis is fundamental to obtain critical decisions and select the microalgae with a high concentration of specific FAs.

It is difficult to determine an ideal FAs profile for biodiesel production; despite this, some general previsions based on cost production could be done. MUFAs, predominant in traditional high-quality feedstocks, provide a reasonable balance between cold flow, oxidative stability, and combustion properties [42] and are preferable to SFAs or PUFAs. In our sample, oleic acid (18:1) and palmitoleic acid were present in a quantity of 47.16 mg/g and 35.25 mg/g, respectively. A small proportion of PUFAs in a biodiesel feedstock can benefit the biofuel flow properties, but the increasing levels could impact its oxidative stability [43]. As a result, production costs could increase

**TABLE 2** Extraction recoveries (R, %) of 28 tentatively identified FAs at three different concentration levels ( $C_1$ : 0.020 µg/mL;  $C_2$ : 0.50 µg/mL;  $C_3$  1.00 µg/mL)

|                             | $(R \pm RSD)\%$  |                       | Precision ( $C_2$ ) (%) |          |          |        |
|-----------------------------|------------------|-----------------------|-------------------------|----------|----------|--------|
| Fatty acid                  | $\overline{C_1}$ | <i>C</i> <sub>2</sub> | $\overline{C_3}$        | Intraday | Interday | $R^2$  |
| Myristoleic acid (14:1)     | $(78 \pm 2)\%$   | $(98 \pm 1)\%$        | $(97 \pm 1)\%$          | 10%      | 5%       | 0.9878 |
| Myristic acid (14:0)        | $(96 \pm 2)\%$   | $(99 \pm 2)\%$        | $(98 \pm 1)\%$          | 8%       | 3%       | 0.9865 |
| Pentadecanoic acid (15:0)   | $(85 \pm 4)\%$   | (97 ± 3)%             | $(96 \pm 2)\%$          | 3%       | 7%       | 0.9865 |
| Hexadecadienoic acid (16:2) | (95 ± 3)%        | $(95 \pm 1)\%$        | $(94 \pm 1)\%$          | 8%       | 2%       | 0.9977 |
| Palmitoleic acid (16:1)     | (79 ± 3)%        | $(98 \pm 2)\%$        | (97 ± 3)%               | 5%       | 3%       | 0.9987 |
| Palmitic acid (16:0)        | (97 ± 3)%        | (99 ± 2)%             | $(98 \pm 2)\%$          | 5%       | 2%       | 0.9978 |
| Heptadecenoic acid (17:1)   | (85±3)%          | (97 ± 3)%             | $(95 \pm 4)\%$          | 7%       | 4%       | 0.9867 |
| Margaric acid (17:0)        | (85 ± 3)%        | $(92 \pm 3)\%$        | $(90 \pm 2)\%$          | 5%       | 2%       | 0.9875 |
| Linolenic acid (18:3)       | (97 ± 2)%        | (99 ± 1)%             | (99 ± 2)%               | 7%       | 4%       | 0.9959 |
| Linoleic acid (18:2)        | (87 ± 2)%        | $(90 \pm 2)\%$        | (89 ± 3)%               | 6%       | 4%       | 0.9988 |
| Oleic acid (18:1)           | (98 ± 2)%        | $(100 \pm 1)\%$       | (99 ± 1)%               | 6%       | 3%       | 0.9998 |
| Stearic acid (18:0)         | (78 ± 4)%        | $(95 \pm 4)\%$        | $(94 \pm 3)\%$          | 6%       | 9%       | 0.9872 |
| Nonadecenoic acid (19:1)    | $(80 \pm 2)\%$   | (98 ± 3)%             | (97 ± 2)%               | 4%       | 2%       | 0.9863 |
| Nonadecanoic acid (19:0)    | (89 ± 3)%        | $(98 \pm 4)\%$        | (97 ± 3)%               | 7%       | 3%       | 0.9877 |
| Eicosadienoic acid (20:2)   | $(84 \pm 4)\%$   | (97 ± 2)%             | $(96 \pm 2)\%$          | 7%       | 4%       | 0.9854 |
| Gadoleic acid (20:1)        | $(82 \pm 2)\%$   | (94 ± 3)%             | $(94 \pm 2)\%$          | 6%       | 2%       | 0.9867 |
| Arachidic acid (20:0)       | $(98 \pm 2)\%$   | $(100 \pm 1)\%$       | $(99 \pm 1)\%$          | 6%       | 2%       | 0.9988 |
| Heneicosenoic acid (21:1)   | $(85 \pm 2)\%$   | (97 ± 3)%             | $(96 \pm 2)\%$          | 8%       | 5%       | 0.9887 |
| Heneicosanoic acid (21:0)   | $(82 \pm 3)\%$   | (89 ± 3)%             | $(90 \pm 1)\%$          | 6%       | 4%       | 0.9898 |
| Brassidic acid (22:1)       | $(80 \pm 4)\%$   | (99 ± 1)%             | $(99 \pm 2)\%$          | 7%       | 4%       | 0.9897 |
| Behenic acid (22:0)         | (88 ± 3)%        | $(90 \pm 2)\%$        | $(89 \pm 1)\%$          | 7%       | 3%       | 0.9879 |
| Tricosanoic acid (23:0)     | $(84 \pm 3)\%$   | (97 ± 2)%             | (96 ± 3)%               | 8%       | 4%       | 0.9984 |
| Nervonic acid (24:1)        | $(85 \pm 5)\%$   | (95 ± 3)%             | $(94 \pm 2)\%$          | 7%       | 2%       | 0.9972 |
| Lignoceric acid (24:0)      | (89 ± 2)%        | (98 ± 3)%             | (97 ± 3)%               | 8%       | 5%       | 0.9969 |
| Pentacosanoic acid (25:0)   | (98 ± 2)%        | (99 ± 1)%             | (98 ± 2)%               | 6%       | 5%       | 0.9978 |
| Cerotic acid (26:0)         | (87 ± 2)%        | (95 ± 2)%             | $(94 \pm 3)\%$          | 8%       | 5%       | 0.9888 |
| Heptacosanoic acid (27:0)   | $(85 \pm 2)\%$   | (97 ± 3)%             | $(93 \pm 2)\%$          | 7%       | 3%       | 0.9889 |
| Montanic acid (28:0)        | (84 ± 3)%        | (95 ± 3)%             | (95 ± 1)%               | 8%       | 5%       | 0.9899 |

to add antioxidant fuel additives. In this case, our results highlighted that linoleic, linolenic, and hexadecadienoic acids were in a high concentration (86.31, 85.37, and 54.16 mg/g, respectively).

The presence of SFAs improves the biodiesel combustion properties and gives rise to cold-flow problems that limit its geographical market or year-round suitability [44,45]. The most abundant saturated species were palmitic and pentadecanoic acids with a concentration of 135.01 and 30.08 mg/g, respectively.

In addition to the overall FA profile, the partitioning of the FAs between different lipid classes is essential. Polar lipids primarily contain a high quantity of PUFAs, storage lipids are present in the form of TAGs, having a high content of SFAs and some unsaturated FAs and neutral lipids, for energy storage, consist of acylglycerols and free FAs, which have fatty acyl groups and a hydrogen atom attached to the glycerol backbone, respectively.

The high amount of omega-3 and omega-6 FAs make the analyzed *C. vulgaris* commercially useful for nutraceuticals and biofuel production.

A comparison with some recent articles was also provided. Schlotterbeck and his coworkers [20] determined, in an extract of *Undaria pinnatifida* alga, 421.2 ng/mL of hexadecatetranoic acid concentration. Due to its low abundance, the precursor ion quantification was carried out from the sequential window acquisition of all theoretical fragmentation mass spectra in data-independent acquisition. Guan and coworkers [46] developed a GC-MS method for simultaneous quantification of seven free FAs produced by wild-type *Synechocystis* PCC 6803 cyanobacterium, its genetically engineered strain. The concentration ranged from a minimum of 16.4  $\mu$ g/mL for arachidic

TABLE 3 Results of FA quantitation in the C. vulgaris

| Analyte                     | Concentration<br>(mg/g) ± RSD |  |  |
|-----------------------------|-------------------------------|--|--|
| Palmitic acid (16:0)        | $135.01\pm0.16$               |  |  |
| Linoleic acid (18:2)        | $86.31 \pm 0.05$              |  |  |
| Linolenic acid (18:3)       | $85.37 \pm 0.15$              |  |  |
| Hexadecadienoic acid (16:2) | $54.16 \pm 0.12$              |  |  |
| Oleic acid (18:1)           | $47.16 \pm 0.06$              |  |  |
| Palmitoleic acid (16:1)     | $35.24 \pm 0.02$              |  |  |
| Pentadecanoic acid (15:0)   | $30.08 \pm 0.03$              |  |  |
| Stearic acid (18:0)         | $9.99 \pm 0.04$               |  |  |
| Nonadecenoic acid (19:1)    | $5.00 \pm 0.02$               |  |  |
| Gadoleic acid (20:1)        | $4.40\pm0.02$                 |  |  |
| Margaric acid (17:0)        | $4.12\pm0.05$                 |  |  |
| Lignoceric acid (24:0)      | $3.40\pm0.02$                 |  |  |
| Heptadecenoic acid (17:1)   | $2.88 \pm 0.01$               |  |  |
| Cerotic acid (26:0)         | $2.76\pm0.02$                 |  |  |
| Pentacosanoic acid (25:0)   | $2.16\pm0.02$                 |  |  |
| Eicosadienoic acid (20:2)   | $1.80 \pm 0.02$               |  |  |
| Behenic acid (22:0)         | $1.40\pm0.01$                 |  |  |
| Arachidic acid (20:0)       | $1.20\pm0.02$                 |  |  |
| Myristic acid (14:0)        | $0.84 \pm 0.01$               |  |  |
| Heptacosanoic acid (27:0)   | $0.60\pm0.01$                 |  |  |
| Montanic acid (28:0)        | $0.31 \pm 0.01$               |  |  |
| Nonadecanoic acid (19:0)    | $0.20\pm0.01$                 |  |  |
| Myristoleic acid (14:1)     | $0.12\pm0.02$                 |  |  |
| Tricosanoic acid (23:0)     | $0.11\pm0.01$                 |  |  |
| Brassidic acid (22:1)       | $0.09\pm0.01$                 |  |  |
| Heneicosanoic acid (21:0)   | $0.04\pm0.01$                 |  |  |
| Nervonic acid (24:1)        | $0.02\pm0.01$                 |  |  |
| Heneicosenoic acid (21:1)   | <loq< td=""></loq<>           |  |  |

Results are provided as mg of each FA compound per g of microalgae biomass (mean of six measurements).

acid to a maximum of 97.4  $\mu$ g/mL for hexadecanoic acid. Linolenic, oleic, stearic, and linoleic acids were determined at 87.6, 45.1, 45.1, and 38.3  $\mu$ g/mL, respectively. The absolute amount of C-14:0, C-16:0, and C-18:0 by a validated GC-MS/MS method was found to be 1.5-1.7, 15.0-42.5, and 4.2-18.4 mg/g, respectively, in biodiesel obtained from six microalgal oils [47]. Kumari et al. [48] studied three different fresh macroalgal matrices (Gracilaria corticata, Sargassum tennerrimum, and Ulva fasciata) to find the best extraction method for FA quantification. Olmstead et al. [49] quantified three SFAs, four MUFAs, and two PUFAs in Chlorella sp., obtained from the extraction and fractionation of neutral lipids, glycolipids, and phospholipids, and analyzed by GC-MS studying the presence or deprivation of nitrogen during the growth. The transesterified FAs were reported as the sum of SFAs (25.5 and 41.9 mg/g),

MUFA (8 and 26.1 mg/g), and PUFAs (67.0 and 58.6 mg/g) in *N* repleted or depleted growth condition, respectively.

## 4 | CONCLUDING REMARKS

In our experimental condition, 28 FAs were quantified in the *C. vulgaris* extracts and palmitic, palmitoleic, oleic, linoleic, linolenic, and stearic acids were the most abundant ones. These specific FAs suggest that *C. vulgaris* is a good candidate for nutrition and biodiesel production. Further applicative studies should be carried out comparing different microalgal strains to improve biodiesel properties and to select the best microalgae or a combination of different microalgal strains with complementary FA profiles.

### ACKNOWLEDGMENT

This work was supported by the Italian Ministry of University and Research (MUR, Italy) under grant PON for industrial research and experimental development ARS01\_00881, ORIGAMI: Integrated biorefinery for the production of biodiesel from microalgae.

Additional funding was obtained by Sapienza University with a project: "Microalgae as a source of bioactive compounds: chromatographic fractionation characterization of peptides and lipids and their mass spectrometric identification" protocol n° RM11715C82118E74.

Open Access Funding provided by Universita degli Studi di Roma La Sapienza within the CRUI-CARE Agreement.

## CONFLICT OF INTEREST

The authors have declared no conflict of interest.

## ORCID

Chiara Cavaliere https://orcid.org/0000-0003-1332-682X

Anna Laura Capriotti D https://orcid.org/0000-0003-1017-9625

## REFERENCES

- Ferreira GF, Pinto R, F L, Carvalho PO, Coelho MB, Eberlin MN, Maciel Filho R, Fregolente LV. Biomass and lipid characterization of microalgae genera *Botryococcus*, *Chlorella*, and *Desmodesmus* aiming high-value fatty acid production. Biomass Convers Biorefinery. 2019, DOI: 10.1007/s13399-019-00566-3.
- 2. La Barbera G, Antonelli M, Cavaliere C, Cruciani G, Goracci L, Montone CM, Piovesana S, Laganà A, Capriotti AL. Delving into the polar lipidome by optimized chromatographic separation, high-resolution mass spectrometry, and comprehensive identification with lipostar: microalgae as case study. Anal Chem. 2018;90:12230–8.
- 3. Qv XY, Zhou QF, Jiang JG. Ultrasound-enhanced and microwave-assisted extraction of lipid from *Dunaliella ter-tiolecta* and fatty acid profile analysis. J Sep Sci. 2014;37:2991–9.

PARATION SCIENCE

- 4. Webster L, Walsham P, Yusuf AA, Richards S, Hay S, Heath M, Moffat CF. Development and application of an analytical method for the determination of storage lipids, fatty acids and fatty alcohols in *Calanus finmarchicus*. J Sep Sci. 2006;29:1205–16.
- Macías-Sánchez MD, Serrano CM, Rodríguez MR, de la Ossa EM, Lubián LM, Montero O. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci. 2008;31:1352–62.
- Haoujar I, Cacciola F, Abrini J, Mangraviti D, Giuffrida D, El Majdoub YO, Kounnoun A, Miceli N, Taviano MF, Mondello L, Rigano F, Senhaji NS. The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from mediterranean Morocco. Molecules. 2019;24:4037.
- Montone CM, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S, Zenezini Chiozzi R, Laganà A. Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in *Tetradesmus obliquus* microalgae. Anal Bioanal Chem. 2018;410:3573–86.
- Nehmé R, Atieh C, Fayad S, Claude B, Chartier A, Tannoury M, Elleuch F, Abdelkafi S, Pichon C, Morin P. Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci. 2017;40:558–66.
- Penteado JCP, Rigobello-Masini M, Liria CW, Miranda MTM, Masini JC. Fluorimetric determination of intra- and extracellular free amino acids in the microalgae *Tetraselmis gracilis* (Prasinophyceae) using monolithic column in reversed phase mode. J Sep Sci. 2009;32:2827–34.
- Ramesh Kumar B, Deviram G, Mathimani T, Duc PA, Pugazhendhi A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol. 2019;17:583–8.
- Acquah C, Tibbetts SM, Pan S, Udenigwe C. Handbook of Microalgae-Based Processes and Products. Elsevier 2020, pp. 493–531.
- Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8:2672–85.
- Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH, Lamers PP. Analysis of fatty acid content and composition in microalgae. J Vis Exp. 2013. https://doi.org/10. 3791/50628.
- Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.
- 15. Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact. 2019;18:178.
- Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V. Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev. 2016;58:180–97.
- Hossain N, Mahlia TMI, Saidur R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels. 2019;12:125.
- 18. Benvenuti G, Bosma R, Ji F, Lamers P, Barbosa MJ, Wijffels RH. Batch and semi-continuous microalgal TAG produc-

tion in lab-scale and outdoor photobioreactors. J Appl Phycol. 2016;28:3167–77.

- Oliver L, Dietrich T, Marañón I, Villarán MC, Barrio RJ. Producing omega-3 polyunsaturated fatty acids: a review of sustainable sources and future trends for the EPA and DHA market. Resources. 2020;9:1–15.
- 20. Schlotterbeck J, Kolb A, Lämmerhofer M. Free fatty acid profiling in marine algae extract by LC-MS/MS and isolation as well as quantification of the  $\omega$ -3 fatty acid hexadeca-4,7,10,13-tetraenoic acid. J Sep Sci. 2018;41:4286–95.
- Knothe G. Fuel properties of highly polyunsaturated fatty acid methyl esters: prediction of fuel properties of algal biodiesel. Energy Fuel. 2012;26:5265–73.
- 22. Coelho D, Lopes PA, Cardoso V, Ponte P, Brás J, Madeira MS, Alfaia CM, Bandarra NM, Gerken HG, Fontes CMGA, Prates JAM. Novel combination of feed enzymes to improve the degradation of *Chlorella vulgaris* recalcitrant cell wall. Sci Rep. 2019;9:5382.
- Li Y, Ghasemi Naghdi F, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact. 2014;13: 14.
- 24. Kim DY, Vijayan D, Praveenkumar R, Han JI, Lee K, Park JY, Chang WS, Lee JS, Oh YK. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: *Chlorella* and *Haematococcus*. Bioresour Technol. 2016;199:300–10.
- Kumar RR, Rao PH, Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res. 2015;3. https://doi.org/10.3389/fenrg.2014.00061.
- 26. Lee SY, Cho JM, Chang YK, Oh YK. Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresour Technol. 2017;244:1317–28.
- Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy. 2013;103:444–67.
- Zheng Y, Xiao R, Roberts M. Polymer-enhanced enzymatic microalgal cell disruption for lipid and sugar recovery. Algal Res. 2016;14:100–8.
- 29. Chen CY, Bai MD, Chang JS. Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem Eng J. 2013;81:170–6.
- Park JY, Oh YK, Lee JS, Lee K, Jeong MJ, Choi SA. Acidcatalyzed hot-water extraction of lipids from *Chlorella vulgaris*. Bioresour Technol. 2014;153:408–12.
- Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8.
- 32. Agustini NWS, Hidhayati N, Wibisono SA. IOP Conference Series: Earth and Environmental Science. 2019, p. 012029.
- Duongbia N, Chaiwongsar S, Chaichana C, Chaiklangmuang S. Acidic hydrolysis performance and hydrolyzed lipid characterizations of wet *Spirulina platensis*. Biomass Convers Biorefinery. 2019;9:305–19.
- Takisawa K, Kanemoto K, Miyazaki T, Kitamura Y. Hydrolysis for direct esterification of lipids from wet microalgae. Bioresour Technol. 2013;144:38–43.

- Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC— Trends Anal Chem. 2014;61:192–206.
- Pantami HA, Bustamam MSA, Lee SY, Ismail IS, Faudzi SMM, Nakakuni M, Shaari K. Comprehensive GCMS and LC-MS/MS metabolite profiling of *Chlorella vulgaris*. Mar Drugs. 2020;18:367.
- 37. Rahman A, Prihantini NB, Nasruddin. AIP Conference Proceedings. 2019, p. 020059.
- Jay MI, Kawaroe M, Effendi H. IOP Conference Series: Earth and Environmental Science. 2018, p. 012015.
- Fernández-Linares LC, Guerrero Barajas C, Durán Páramo E, Badillo Corona JA. Assessment of *Chlorella vulgaris* and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour Technol. 2017;244:400–6.
- 40. Losito I, Facchini L, Valentini A, Cataldi TRI, Palmisano F. Fatty acidomics: evaluation of the effects of thermal treatments on commercial mussels through an extended characterization of their free fatty acids by liquid chromatography—Fourier transform mass spectrometry. Food Chem. 2018;255:309–22.
- Han X. Lipidomics. John Wiley & Sons, Inc, Hoboken, NJ 2016, pp. 229–42.
- 42. Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci. 2009;2:759–66.
- Moser BR. Biodiesel production, properties, and feedstocks. Vitr Cell Dev Biol—Plant. 2009;45:229–66.
- 44. Costa M, Piazzullo D. Biofuel powering of internal combustion engines: production routes, effect on performance and CFD modeling of combustion. Front Mech Eng. 2018;4. https://doi. org/10.3389/fmech.2018.00009.
- Jeong GT, Park JH, Park SH, Park DH. Estimating and improving cold filter plugging points by blending biodiesels with different fatty acid contents. Biotechnol Bioprocess Eng. 2008;13:505– 10.

- 46. Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatographymass spectrometry. J Chromatogr A. 2011;1218:8289–93.
- Musharraf SG, Ahmed MA, Zehra N, Kabir N, Choudhary MI, Rahman A. Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS/MS analysis. Chem Cent J. 2012;6:149.
- Kumari P, Reddy CRK, Jha B. Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem. 2011;415:134–44.
- Olmstead ILD, Hill DRA, Dias DA, Jayasinghe NS, Callahan DL, Kentish SE, Scales PJ, Martin GJO. A quantitative analysis of microalgal lipids for optimization of biodiesel and omega-3 production. Biotechnol Bioeng. 2013;110:2096–104.

# SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

**How to cite this article:** Montone CM, Aita SE, Catani M, Cavaliere C, Cerrato A, Piovesana S, Laganà A, Capriotti AL. Profiling and quantitative analysis of underivatized fatty acids in *Chlorella vulgaris* microalgae by liquid chromatography-high resolution mass spectrometry. J Sep Sci. 2021;44:3041–3051.

https://doi.org/10.1002/jssc.202100306