
ON CERTAIN ANISOTROPIC ELLIPTIC EQUATIONS

ARISING IN CONGESTED OPTIMAL TRANSPORT:

LOCAL GRADIENT BOUNDS

LORENZO BRASCO AND GUILLAUME CARLIER

Abstract. Motivated by applications to congested optimal transport problems, we prove higher in-
tegrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide
range of degeneracy. The model case we have in mind is the following:

∂x

[
(|ux| − δ1)q−1

+

ux
|ux|

]
+ ∂y

[
(|uy| − δ2)q−1

+

uy
|uy|

]
= f,

for 2 ≤ q < ∞ and some non negative parameters δ1, δ2. Here ( · )+ stands for the positive part. We
prove that if f ∈ L∞loc, then ∇u ∈ Lrloc for every r ≥ 1.
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1. Introduction

1.1. Background and motivations. Let Ω ⊂ RN be an open bounded (smooth) set and let us
consider a variational integral of the type

(1.1) F(u) =

∫
Ω
F (∇u(x)) dx+

∫
Ω
f(x)u(x) dx,
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with z 7→ F (z) being a convex energy with q−growth at infinity (here q > 1), uniformly convex for
|z| � 1, but not necessarily strictly convex in the whole. The prototypical case of such an energy is
given by

(1.2) F (z) =
1

q
(|z| − δ)q+, z ∈ RN ,

for some δ > 0, which identically vanishes on the ball {z : |z| ≤ δ}. Some pioneering works on the
regularity of minimizers of variational integrals of this type are [11, 19] and [21]. Then more general
functionals exhibiting such a lack of uniform convexity have been considered in other papers, like for
example in [10, 12, 17] and [18].

As pointed out in [7], regularity results for minimizers of such a kind of functionals are tightly
connected with optimal transport problems with congestion effects. In order to neatly motivate the
purposes of this paper, we want to spend some words about this point. Suppose that the positive
f+ and negative parts f− of f stand for the densities of centers of production and consumption of
a given commodity in the region Ω ⊂ RN (the physical case clearly corresponds to N = 2). The
transportation programs are represented by vector fields φ satisfying the balance laws

div φ = f+ − f− + Neumann boundary conditions,

where these boundary conditions are zero if
∫

Ω f
+ =

∫
Ω f
− , i.e. if the region is economically balanced,

so there is no need for import/export activities. Observe that the constraint on the divergence simply
states that in each point the incoming/outcoming transportation flow is ruled by the difference between
the demand and the supply. Then a function G : RN → R+ is given, such that for every transportation
program φ, the quantity

G(φ) =

∫
Ω
G(φ(x)) dx,

gives the total transportation cost. In order to capture the effects of congestion, the function G is
typically taken to be strictly convex and superlinear. In economical terms, this comes from the fact
that in a congested situation, the marginal cost ∇G is strictly monotone and divergent at infinity. In
other words, the transport problem we are facing is the so called Beckmann’s problem, introduced in
[2] and defined by

(1.3) min {G(φ) : div φ = f, in Ω, 〈φ, νΩ〉 = 0 on ∂Ω} .

Here and in what follows for simplicity we are considering the balanced case, i.e. we assume
∫

Ω f dx =
0. The link between (1.3) and our original problem (1.1) is given by

min
φ
G(φ) = max

u
−F(u),

provided that F is the Legendre-Fenchel transform of G. Then optimizers of the two problems are
linked by the primal-dual optimality conditions

∇u0 ∈ ∂G(φ0) or equivalently φ0 ∈ ∂F (∇u0),

which hold pointwisely almost everywhere in Ω. In other words (1.1) is the dual (in the sense of
convex analysis) of Beckmann’s problem. As always in Optimal Transport, the dual variables u of
problem (1.1) have to be thought as price systems for a company handling the transport in a congested
situation. An optimizer u0 then gives the price system which maximizes the profit of the company.

Observe that the function (1.2) considered in [6, 7] corresponds to Beckmann’s problem with cost

G(ξ) =
1

p
|ξ|p + δ |ξ|, ξ ∈ RN ,
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where p = q/(q − 1). In this case, a Lipschitz estimate and the higher differentiability of an optimal
price u0 can be proved, by looking at the corresponding Euler-Lagrange equation

(1.4) div

(
(|∇u0| − δ)q−1

+

∇u0

|∇u0|

)
= f.

Appealing to the primal-duality optimality conditions, these in turn give that the optimal φ0 in (1.3)
is a bounded Sobolev vector field, provided f is smooth enough (see [6, Theorem 2.1] and [7, Theorem
3.4]). We also mention the papers [13] and [25] where the continuity of φ0 is proved. Of course the
latter does not imply that ∇u0 as well is continuous.

It is crucial to observe that for such a cost G, the linear part |ξ| prevails on the strictly convex one
|ξ|p as |ξ| � 1. This means that

(?) “congestion effects are negligible, in the small mass regime”

an hypothesis which is very reasonable. The lack of strict convexity for the Lagrangian (1.2) is
precisely a consequence of this assumption. This implies that elliptic equations that are relevant for
these transport problems typically exhibit a severe degeneracy, like in (1.4).

1.2. More degeneracy: technical issues. However, the hypothesis of an isotropic cost function G
is not always well-motivated. For example, as shown in [1], the analysis of discrete congested transport
problems settled on a network grid of small size ε, naturally leads to (1.3) with a transportation cost
of the form

G(ξ) =

N∑
i=1

hi(|ξi|), ξ ∈ RN ,

as the parameter ε goes to 0. Roughly speaking, this anisotropic cost keeps memory of the rigid
geometry (i.e. the network grid) of the approximating discrete problems.

Here again, the functions h1, . . . , hN : R+ → R+ are strictly convex and superlinear, such that
hi(0) = 0 and h′i(0) = δi > 0. As before, this last hypothesis is motivated by the realistic assumption
(?) above, i.e. G should behave linearly for small masses. Back to our original problem (1.1), it is
then natural to ask which kind of Lagrangians we are lead to study, with such a choice. It is easily
seen that in this case we have

F (z) =

N∑
i=1

h∗i (|zi|), z ∈ RN ,

where h∗i are C1 functions of one variable, constantly equal to 0 on the interval [0, δi], due to the
assumption h′i(0) = δi > 0. A significant instance of such a Lagrangian is given by

(1.5) F (z) =

N∑
i=1

(|zi| − δi)q+
q

, z ∈ RN .

This function considerably differs from (1.2), in that this time the Hessian matrix D2F is given by

a diagonal matrix, whose i−th entry (h∗i )
′′
(|zi|) is constantly zero as 0 ≤ |zi| ≤ δi. In terms of the

corresponding Euler-Lagrange equation

(1.6) div∇F (∇u) = f,

this implies that ellipticity breaks down at every point where a single component of the gradient is
small. Also observe that due to the particular structure of D2F , the function F not only lacks strict
convexity, but it is not even uniformly convex “at infinity”, i.e. outside a ball, contrary to the case
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of (1.2). This fact is the main source of difficulties. Typically, in order to derive higher integrability
results for the gradient of minimizers of F , one considers the differentiated equations

(1.7) div
(
D2F (∇u)∇uxj

)
= fxj , j = 1, . . . , N,

which are solved by the (components of the) gradient of a minimizer u0. Then it is sufficient to know
that this equation is uniformly elliptic at least “at infinity” to conclude that ∇u0 is in L∞. A typical
assumption is the following1:

• there exists M0 ≥ 0, such that (1 + |z|2)
q−2
2 . min

|ϑ|=1
〈D2F (z)ϑ, ϑ〉, for every |z| ≥M0;

• |D2F (z)| . (1 + |z|2)
q−2
2 , for every z ∈ RN ;

In this case the natural idea, which is somehow common to [6, 10, 17, 18], is that of cutting away the
degeneracy region, by localizing equation (1.7) “in a neighborhood of infinity”. In a nutshell, this is
done by selecting suitable test functions in the weak formulation of (1.7), for examples quantities like

(|∇u0|β −Mβ
0 )+ would do the job. Thanks to the hypotheses on D2F , one can derive Caccioppoli

inequalities for these quantities, which combined with the Sobolev inequality give a recursive scheme
of reverse Hölder inequalities, leading to the L∞ estimate for ∇u0.

Here on the contrary, with the choice (1.5) we have

min
|z|≥M

(
min
|ξ|=1
〈D2F (z) ξ, ξ〉

)
= 0, for every M > 0,

so that we have an obstruction in deriving a true Caccioppoli inequality for positive subsolutions of the
linearized equation (1.7). This is the main technical difficulty one faces with this type of degeneracy.

1.3. Strategy of the proof. First of all, a weak form of the Caccioppoli inequality can still be
derived (see Lemma 2.7 below). This time, rather than having an integral control on ∇uxj in terms
of uxj itself, we have a control on a “weighted” norm of ∇uxj , where the weights depend on all the
other components uxi of the gradient, through the nonlinear functions (h∗i )

′′. Once we have this, we
avoid the use of Sobolev inequality for these weighted integrals. Rather, we apply a sort of very
weak weighted Gagliardo-Nirenberg inequality (see Lemma 2.6 below), valid for solutions of equation
(1.6). This can be derived by means of a weird choice for the test function to be inserted in the weak
formulation of (1.6). Such a test function is given by a mixture of the solution and its gradient. We
learnt this trick from Di Benedetto’s celebrated paper on C1,α regularity for solutions of p−Laplacian
type equations (see [15, Lemma 2.4 and Proposition 3.1]). We point out that a similar idea can be
found in the papers [4, 5] (dealing with variational integrals similar to those considered here, in less
degenerate situations) and [24].

Once we have these two surrogates of the classical tools, we can join them to get the desired recursive
scheme of reverse Hölder inequalities (Lemma 2.10), like in the standard Moser’s technique. Here there
is a drawback, since at each step the gain of integrability for the gradient is quite poor (it is of additive
type) and does not permit to implement a real Moser iteration so to obtain an L∞ estimate. However,
integrability of any finite exponent can be obtained and this is the main achievement of this paper.

The whole proof is carried on by approximation. As it is classical, we approximate our equation
by less degenerate ones and aim to prove a priori estimates on the gradient which are independent of
the approximating equation. Due to its degeneracy, our equation does not permit to infer uniqueness
of the solution, then some care is needed in this argument as well. Here we take advantage of the
variational nature of our equation and use some penalization arguments, somehow inspired to [10].

1As shown in [18], in general the upper bound on D2F is not really necessary and can be replaced by a growth
assumption on ∇F . Here for ease of exposition, we stick to a more classical hypothesis.
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As for the growth conditions we are to going to consider, for technical reasons we will confine
ourselves to the case of superquadratic growth, i.e. we will restrict to the case q ≥ 2. We point out
that for Lagrangians displaying a structure similar to (1.5), the restriction q ≥ 2 gives some slight
simplifications in the choice of the regularized approximating problems. Moreover, it is quite typical
(see [5, Remark 1.2] or [20, Theorem 4.1], for example). Further investigations for the singular case
1 < q < 2 are left for future research.

Last but not least, some final words concerning the hypothesis on the datum f , which is required
to be in L∞. One may wonder whether this hypothesis is optimal or not, since usually f ∈ LN+ε

is the sharp assumption (in the scale of Lebesgue spaces) that could guarantee a Lipschitz estimate
for the solution. The key point is that the usual proof of this result uses the Sobolev inequality, to
treat the term f as a lower order perturbation. For the reason described before, such a strategy seems
not to work in the present situation. We leave as an (interesting) open question to know if the L∞

hypothesis on f can be weakened.

1.4. The result of this paper. Motivated by the previous discussion, the main aim of this paper is
to investigate regularity properties of local minimizers of the following convex energy

(1.8) Fq(u; Ω) =
N∑
i=1

∫
Ω
gi(uxi) dx+

∫
Ω
f u dx, u ∈W 1,q(Ω),

where q ≥ 2, the functions gi are defined by

gi(t) =
1

q
(|t| − δi)q+, t ∈ R,

for some δ1, . . . , δN ≥ 0 and f ∈ L∞(Ω) is given. For the reader’s convenience, we recall that

u ∈W 1,q
loc (Ω) is said to be a local minimizer of Fq if for every Ω′ b Ω we have

Fq(u; Ω′) ≤ Fq(u+ ϕ; Ω′), for every ϕ ∈W 1,q
0 (Ω′).

Observe that a local minimizer does not necessarily belong to W 1,q(Ω). In this paper, we are going to
prove the following higher integrability result for the gradient.

Main Theorem. Let f ∈ L∞loc(Ω) and q ≥ 2. If u ∈ W 1,q
loc (Ω) is a local minimizer of Fq, then

u ∈W 1,r
loc (Ω) for every r ≥ 1.

Remark 1.1. In the particular case δ1 = · · · = δN = 0, the gradient term of Fq coincides with the
anisotropic Dirichlet energy, i.e.

(1.9)
1

q

∫
Ω
‖∇u‖q`q dx+

∫
Ω
f u dx, u ∈W 1,q(Ω),

where for every z ∈ RN , we set ‖z‖`q =
(∑N

i=1 |zi|q
)1/q

. Observe that a local minimizer of this

anisotropic energy is a local weak solution of the equation

∆̃qu :=
N∑
i=1

(
|uxi |q−2 uxi

)
xi

= f,

where the differential operator on the left-hand side is sometimes called pseudo q−Laplacian. We
cite the papers [3, 8], where some spectral properties of this nonlinear operator are investigated. The

paper [3] also proves a local Lipschitz result for positive viscosity solutions of −∆̃qu ≥ 0 when q ≥ 2,
see [3, Theorem 2.9].

In order to put into the right framework the previous result, a remark on related existing regularity
results is in order.
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Remark 1.2. We already mentioned the papers [4, 5, 20] as a (non exhaustive) list of works considering
functionals similar to ours. As gradient regularity of local minimizers is concerned, the model case
there studied is given by

(1.10)

∫
Ω
F̃ (∇u) dx, with F̃ (z) =

N∑
i=1

(µ+ |zi|2)
qi
2 ,

where µ > 0 and 1 < q1 ≤ q2 ≤ · · · ≤ qN are given exponents, possibly different. We observe that such
a functional belong to the class of problems with non standard growth conditions, whose systematic
study started with the paper [23] by Marcellini. However, already in the standard growth case, i.e.
when q1 = · · · = qN , the type of degeneracy is quite different from that of our functional Fq in (1.8).
For example, when 2 ≤ q1 = q2 = · · · = qN the corresponding Euler-Lagrange equation is not even
degenerate, in the sense that

0 < min
|ϑ|=1
〈D2F̃ (z)ϑ, ϑ〉.

Then the result of our Main Theorem is not directly comparable to those in the above mentioned
references. Also observe that due to the peculiar structure, it is not even true that our Fq has the
same behaviour of a functional like (1.10) “asymptotically at infinity”.

We also mention that the degenerate case µ = 0 has been considered in the pioneering paper [26].
There the Lipschitz character of minimizers has been shown under some restrictions on the exponents
q1, . . . , qN , by using the so-called Bernstein method. For example, their result applies to minimizers
of (1.9) for q > 3. Again, though the growth conditions considered are more general than ours, the
type of degeneracy is weaker than that admitted in Fq.

1.5. Plan of the paper. The rest of the paper is devoted to prove the Main Theorem. In Section 2
we will derive local uniform estimates for the gradients of minimizers of some regularized problems.
The crucial estimate is contained in Proposition 2.1, whose proof occupies the whole section. Then in
Section 3 we will show how to take these estimates to the limit, in order to prove the desired result.
Since the functional Fq is not strictly convex, a further penalization argument will be needed, so to
select the desired local minimizer in the limit. Finally, the concluding Section 4 gives an application
of the Main Theorem to the relevant optimal transport problem.

2. Regularity estimates for approximating problems

Let us fix an open bounded set O ⊂ RN . For every ε� 1, we consider the following functional

(2.1) Fεq(u) =

N∑
i=1

∫
O
gεi (uxi) dx+ ε

∫
O
H(∇u) dx+

∫
O
bε(x, u) dx, u ∈W 1,q(O),

where:

• for every i = 1, . . . , N , we simply set gεi (t) = gi(t) if q > 2, while if q = 2 this is given by

gεi (t) =



0, if |t| ≤ δi − ε,

1

12 ε
(|t| − δi + ε)3, if δi − ε ≤ |t| ≤ δi + ε,

1

6
ε2 +

1

2
(|t| − δi)2, if |t| ≥ δi + ε,

which converges in C1 to 1/2 (|t| − δi)2
+ as ε goes to 0;
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• H : RN → R is the C∞ strictly convex function given by

H(z) =
1

q
(1 + |z|2)

q
2 , z ∈ RN ;

• bε : O × R→ R are of class C∞ and such that

(2.2) |bε(x, u)| ≤ C1 (|u|+ 1) and

∣∣∣∣b′ε(x, u) :=
∂

∂u
bε(x, u)

∣∣∣∣ ≤ C2, (x, u) ∈ O × R,

for some positive constants C1, C2 independent of ε.

In this section, we will prove the following result.

Proposition 2.1. Let q ≥ 2 and ζ ∈W 1,q(O). If uε ∈W 1,q(O) is a solution of

(2.3) min
{
Fεq(v) : v − ζ ∈W 1,q

0 (O)
}
,

with Fεq defined in (2.1), then uε ∈ W 1,r
loc (O) for every r ≥ 1. Moreover, for every Σ b O and r ≥ 1,

we have the following estimate

(2.4) ‖uε‖W 1,r(Σ) ≤ C,

for some positive constant C depending on q, r, N,max{δ1, . . . , δN}, ‖uε‖W 1,q , dist(Σ, ∂O) and the
constants C1, C2 in (2.2).

The rest of this section is devoted to prove Proposition 2.1. For the sake of readability, we divide
the proof in five main steps, each corresponding to a subsection.

2.1. Step 1: machinery and preliminary results. Let us first collect some basic properties of the
convex functions gεi . The proof being elementary, it is left to the reader. From now on, we will always
drop the superscript ε on the functions gεi and we will simply denote them by gi.

Lemma 2.2. For every i = 1, . . . , N and every q ≥ 2, the function gi is C2,α, with α = min{q− 2, 1}
for q > 2 and α = 1 for q = 2 (regularized case). Moreover, we have the following estimates

(2.5) g′′i (t) ≤ (q − 1) |t|q−2 and
g′′i (t) t2

q − 1
≥ 2−q |t|q − C, (C = C(δi, q)), for every t ∈ R,

and also

(2.6) g′i(t) t ≥
1

2(q − 1)
g′′i (t) t2 − δ2

i

2 (q − 1)
g′′i (t) and

|g′i(t)|
|t|

≤ g′′i (t)

q − 1
, for every t ∈ R.

We also need the following classical L∞ result, for local minimizers of integral having q−growth
conditions in the gradient variable. The important point is the dependence of the constant of the L∞

estimate. For a proof of this standard result, the reader can consult [22, Theorem 7.5]. The statement
has been adapted to suit our simplified hypotheses.

Lemma 2.3. Let F : O × R× RN → R be a Caratheodory function satisfying the growth conditions

(2.7) |z|q −M (|u|+ 1) ≤ F (x, u, z) ≤ L |z|q +M (|u|+ 1), (x, u, z) ∈ O × R× RN ,

for some positive constants L and M . Then every local minimizer u ∈W 1,q(O) of the functional∫
F (x, u,∇u) dx,
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belongs to L∞loc(O). Moreover, there exists a constant C depending on q,N, ‖u‖W 1,q , L and M , such
that for every pair of concentric balls B%(x0) ⊂ BR(x0) b O, we have

‖u‖L∞(B%(x0)) ≤ C

[
1

(R− %)
N
q

‖u‖Lq(BR(x0)) + 1

]
.

In what follows, we will drop the superscript ε and we will simply use u to denote the solution of
(2.3). We will use the same convention for the functions bε. Observe that the Euler-Lagrange equation
of problem (2.3) is given by

N∑
i=1

∫
O
g′i(uxi)ϕxi dx+ ε

∫
O
〈∇H(∇u),∇ϕ〉 dx

+

∫
O
b′(x, u)ϕdx = 0, for every ϕ ∈W 1,q

0 (O).

(2.8)

Particularizing the result of Lemma 2.3 to our problem (2.3), we have the following.

Corollary 2.4. Let u ∈W 1,q(O) be a solution of problem (2.3). Then for every Σ b O we have

‖u‖L∞(Σ) ≤ C,

for some constant C depending on q,N, ‖uε‖W 1,q ,dist(Σ, ∂O),max{δ1, . . . , δN} and the constant C1

in (2.2).

Proof. It is sufficient to check that Fεq verifies hypothesis (2.7), then we can apply the estimate of
Lemma 2.3. To this aim, we simply use the first hypothesis (2.2) on b, the definition of H and the
estimates of Lemma 2.2 for the functions gi. �

Remark 2.5. We observe that the integrand of Fεq is a C2,α function, whose Hessian with respect
to the gradient variable is bounded from below and such that the ratio between its minimal and
maximal eigenvalue is bounded. Then we can infer the C2,α local regularity for the solutions uε (see
[22, Theorem 10.18]). This implies that quantities of the type h(uxi) are admissible test functions, for
every h : R→ R locally Lipschitz.

The following notation will be used throughout the rest of the paper:

(2.9) w(x) = 1 + |∇u(x)|2, kj = δj + 1, and vj = (uxj − kj)2
+ + 1, j = 1, . . . , N.

Also, from now on, we will omit to indicate the domain of integration of our integrals each time these
are performed on the whole O.

2.2. Step 2: a Sobolev-type inequality. As already remarked in the Introduction, we need a sort
of Sobolev inequality for solutions of (2.8). In this sense, the most important term in the right-hand
side of (2.10) below is the gradient term. It is not difficult to see that the sum of the powers of the
right-hand side is smaller than that on the left-hand one. Heuristically, this means that we are facing a
a Gagliardo-Nirenberg inequality. However, things are more complicated, since the partial derivatives
uxj and uxi are mixed.

Lemma 2.6. Let α, β be two positive exponents such that

0 ≤ α < β,
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then using the notation introduced in (2.9), for every ξ ∈ C1
0 (O) and every j = 1, . . . , N , we have

N∑
i=1

∫
g′′i (uxi) |uxi |2 v

β
j ξ

2 + ε

∫
w
q
2 vβj ξ

2 ≤ C
N∑
i=1

∫
|g′′i (uxi)|

∣∣∣∂xi (vβ−α2j

)∣∣∣2 ξ2

+ C

∫
w
q
2 vαj ξ

2 + C

∫
w
q−2
2 vβj

(
|∇ξ|2 + ξ2

)
+ εC

∫
w
q−2
2

∣∣∣∇(vβ−α2j

)∣∣∣2 ξ2,

(2.10)

for some constant C depending on q,N,max{δ1, . . . , δN},dist(support(ξ), ∂O), ‖u‖W 1,q and the con-
stant C1 in (2.2).

Proof. We take the following test function

ϕ+
j,β = u vβj ξ

2, j = 1, . . . , N, β > 0,

which is admissible thanks to Remark 2.5. Inserting it into (2.8), we get

N∑
i=1

∫
Ω
g′i(uxi)uxi v

β
j ξ

2 +
N∑
i=1

∫
g′i(uxi) ∂xi (vβj )u ξ2 + 2

N∑
i=1

∫
Ω
g′i(uxi) ξxi ξ u v

β
j

+ ε

∫
Ω
〈∇H(∇u),∇u〉 vβj ξ

2

+ ε

∫
〈∇H(∇u),∇(vβj )〉 ξ2 u

+ 2 ε

∫
Ω
〈∇H(∇u),∇ξ〉 ξ u vβj

= −
∫
b′ u vβj ξ

2, j = 1, . . . , N.

(2.11)

We start estimating the second term in (2.11): observe that by using Young inequality we have2

g′i(uxi)
∣∣∣∂xi (vβj )∣∣∣ = β g′(uxi) v

β−1
j |∂xivj |

≤ 1

2
β2 v2β−α−2

j |∂xivj |2
|g′(uxi)|
|uxi |

+
1

2
vαj |g′(uxi)| |uxi | 1{uxj>k}

=
2β2

(2β − α)2

∣∣∣∂xi (vβ−α2j

)∣∣∣2 +
1

2
vαj |g′(uxi)| |uxi | 1{uxj>kj},

where we used that ∂xivj = 0 on the set {uxj ≤ kj}. Also observe that thanks to the fact that we are
assuming α < β, in the previous we can further estimate

(2.12)
β2

(2β − α)2
≤ 1,

2Observe that the therm
|g′i(uxi

)|
|uxi
| is well-defined even when uxi = 0.
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so that the constant C that will appear in (2.10) will not depend on α and β. Using the previous
estimate and the fact that u ∈ L∞loc by Corollary 2.4, the second term can be estimated by∣∣∣∣∣

N∑
i=1

∫
g′i(uxi) ∂xi (vβj )u ξ2

∣∣∣∣∣ ≤ C
N∑
i=1

∫
|g′i(uxi)|
|uxi |

∣∣∣∂xi (vβ−α2j

)∣∣∣2 ξ2

+ C

N∑
i=1

∫
{uxj>kj}

|g′i(uxi)| |uxi | vαj ξ2,

(2.13)

for some constant C > 0, clearly depending on the L∞ norm of u on the support of ξ. Observe that
the second integral can be easily estimated by

N∑
i=1

∫
{uxj>kj}

|g′i(uxi)| |uxi | vαj ξ2 ≤ C
∫
{uxj>kj}

w
q
2 vαj ξ

2,

using the growth of gi and the definition of w. The third term in (2.11) is estimated by∣∣∣∣∣
N∑
i=1

∫
g′i(uxi) ξxi ξu v

β
j

∣∣∣∣∣ ≤ C τ
N∑
i=1

∫
|g′i(uxi)| |uxi | ξ2 vβj

+
C

τ

N∑
i=1

∫
|g′i(uxi)|
|uxi |

|∇ξ|2 vβj

≤ C

τ

∫
w
q−2
2 vβj |∇ξ|

2 + C τ

N∑
i=1

∫
|g′i(uxi)| |uxi | ξ2 vβj ,

and the second term can be absorbed in the left-hand side, by taking τ > 0 small enough and observing
that g′i(t) t ≥ 0.

We now come to the estimates of the ε−terms: for the fourth term in (2.11), we first observe that∫
〈∇H(∇u),∇u〉 vβj ξ

2 =

∫
w
q
2 vβj ξ

2 −
∫
w
q−2
2 vβj ξ

2,

so that we will collect the first integral in left-hand side and put the second one in the right-hand side,
since this is a lower-order term with respect to the first (just check the sum of the powers). As for the
second ε−term, we use:

|〈∇H(∇u),∇(vβj )〉| ≤ C β |∇vj | vβ−1
j |∇u| (1 + |∇u|2)

q−2
2

≤ C β |∇vj | v
β−α

2
−1

j v
α
2
j w

q−1
2

≤ C β2

(2β − α)2

∣∣∣∇(vβ−α2j

)∣∣∣2 w q−2
2 + C w

q
2 vαj ,

then by further using (2.12) we obtain∣∣∣∣∫ 〈∇H(∇u),∇(vβj )〉 ξ2 u

∣∣∣∣ ≤ C ∫
{uxj>kj}

w
q−2
2

∣∣∣∇(vβ−α2j

)∣∣∣2 ξ2 + C

∫
{uxj>kj}

w
q
2 vαj ξ

2,

with some constant C not depending on α and β. Finally, still in the same way as before we get∣∣∣∣∫
Ω
〈∇H(∇u),∇ξ〉 ξ u vβj

∣∣∣∣ ≤ C τ ∫
Ω
w
q
2 ξ2 vβj +

C

τ

∫
Ω
w
q−2
2 |∇ξ|2 vβj ,

so that the first integral can be once again absorbed in the left-hand side.
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Finally, we estimate the term containing b′. By using (2.2) and Corollary 2.4, it is readily seen that
we have ∣∣∣∣∫ b′ u vβj ξ

2

∣∣∣∣ ≤ C ∫ vβj ξ
2 ≤ C

∫
w
q−2
2 vβj ξ

2,

where the constant C depends again on the L∞ norm of u on the support of ξ, which is in turn
estimated as in Corollary 2.4. Collecting all the estimates and using once again (2.6), we arrive
at(2.10). �

2.3. Step 3: a Caccioppoli-type inequality. In order to derive a Caccioppoli-type inequality for
the gradient, we have to differentiate the equation (2.8) with respect to xj . More precisely, let us take
the test function ϕ = ηxj in (2.8), for some η ∈ C∞0 (O). By recalling that u ∈ C2,α and integrating
by parts, the resulting equation takes the form

−
N∑
i=1

∫
g′′i (uxi)uxi xj ηxi dx− ε

∫
〈D2H(∇u)D2

ju,∇η〉 dx+

∫
b′(x, u) ηxj dx = 0,(2.14)

for every η ∈ C∞0 (O). Here D2
ju stands for the j−th column of the Hessian matrix, i.e.

D2
ju =

 ux1 xj
...

uxN xj .

 , j = 1, . . . , N.

By a density argument, we then get that (2.14) holds for every η ∈W 1,q
0 (O).

Lemma 2.7. Using the notation (2.9), for every s > 0, ξ ∈ C1
0 (O) and j = 1, . . . , N , we have

s

(s+ 1)2

N∑
i=1

∫
g′′i (uxi)

∣∣∣∣∂xi (v s+1
2

j

)∣∣∣∣2 ξ2 +

N∑
i=1

∫
{uxj>kj}

g′′i (uxi)u
2
xi xj v

s
j ξ

2

+ ε
s

(s+ 1)2

∫
w
q−2
2

∣∣∣∣∇(v s+1
2

j

)∣∣∣∣2 ξ2

+ ε

∫
{uxj>kj}

〈D2H(∇u)D2
ju,D

2
ju〉 vsj ξ2

≤ C 1 + s

s

∫
{uxj>kj}

w
q−2
2 vs+1

j (|∇ξ|2 + ξ2),

(2.15)

for a constant C depending on q,N and the constant C2 in (2.2).

Proof. We insert the test function

ψ+
j,s = (uxj − kj)+ v

s
j ξ

2,

in equation (2.14), with s > 0. Then we obtain the following 3 groups of terms that have to be
estimated: the terms containing the functions gi

N∑
i=1

∫
{uxj>kj}

g′′i (uxi)u
2
xi xj v

s
j ξ

2 + 2 s
N∑
i=1

∫
g′′i (uxi)u

2
xi xj v

s−1
j (uxj − kj)2

+ ξ
2

+ 2

N∑
i=1

∫
g′′i (uxi)uxi xj (uxj − kj)+ v

s
j ξxi ξ

=: G1 + 2 sG2 + 2G3,
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the terms containing H∫
{uxj>kj}

〈D2H(∇u)D2
ju,D

2
ju〉 vsj ξ2 + 2 s

∫
〈D2H(∇u)D2

ju,D
2
ju〉 vs−1

j (uxj − kj)2
+ ξ

2 dx

+ 2

∫
〈D2H(∇u)D2

ju,∇ξ〉 ξ (uxj − kj)+ v
s
j dx

=: H1 + 2 sH2 + 2H3,

and the terms containing b′, i.e.

−
∫
{uxj>kj}

b′ uxj xj v
s
j ξ

2dx+ 2 s

∫
b′ (uxj − kj)2

+ v
s−1
j uxj xj ξ

2

− 2

∫
b′ (uxj − kj)+ v

s
j ξxj ξ =: B1 + 2 sB2 + 2B3.

Terms Gi. Let us start with the term G2: by noticing that

u2
xi xj v

s−1
j (uxj − kj)2

+ =

∣∣∣∣v s−1
2

j uxi xj (uxj − kj)+

∣∣∣∣2 =
1

(s+ 1)2

∣∣∣∣∂xi (v s+1
2

j

)∣∣∣∣2 ,
we get

G2 =
1

(s+ 1)2

N∑
i=1

∫
g′′i (uxi)

∣∣∣∣∂xi (v s+1
2

j

)∣∣∣∣2 ξ2.

For the term G3, we estimate it from above: we use Young inequality, so to get

|G3| ≤
N∑
i=1

∫
g′′i (uxi) |uxi xj | (uxj − kj)+ v

s
j |ξxi | ξ

≤ 1

τ

N∑
i=1

∫
{uxj>kj}

g′′i (uxi) v
s+1
j |∇ξ|2

+ τ

N∑
i=1

∫
g′′i (uxi) |uxi xj |2 (uxj − kj)2

+ vs−1
j ξ2,

and the last integral is exactly the same as in G2.

Terms Hi. We keep the term H1, which is positive, and we estimate H2 from below by

H2 ≥
C

(s+ 1)2

∫
w
q−2
2

∣∣∣∣∇(v s+1
2

j

)∣∣∣∣2 ξ2.

For H3 we proceed similarly to G3, then getting

|H3| ≤
1

τ

∫
{uxj>kj}

w
q−2
2 vs+1

j |∇ξ|2 + τ

∫
〈D2H(∇u)D2

ju,D
2
ju〉 vs−1

j (uxj − kj)2
+ ξ

2,

having used Cauchy-Schwarz inequality in the following form∣∣〈D2H(∇u)D2
ju,∇ξ〉

∣∣ ≤√〈D2H(∇u)D2
ju,D

2
ju〉

√
〈D2H(∇u)∇ξ,∇ξ〉,

and the growth of |D2H| ' w
q−2
2 .
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Terms Bi. We estimate from above each of these terms, replacing |b′| by the constant C2, thanks to
our assumption (2.2). Then we have

|B1| ≤ C
∫
{uxj>kj}

|uxj xj | vsj ξ2 ≤ C τ
∫
{uxj>kj}

|uxj xj |2 vsj ξ2 +
C

τ

∫
{uxj>kj}

vsj ξ
2

and then we observe that we have

(2.16) 1{uxj>kj} ≤
1

q − 1
g′′j (uxj ) 1{uxj>kj},

thanks to the fact that kj = δj + 1. Inserting this information in the previous estimate, we finally get

|B1| ≤ C τ
∫
{uxj>kj}

g′′j (uxj ) |uxj xj |2 vsj ξ2 +
C

τ

∫
{uxj>kj}

g′′j (uxj ) v
s+1
j ξ2,

possibly with a different constant C. Notice that we further estimated vsj ≤ vs+1
j , thanks to the fact

that vj ≥ 1.
The term B2 is readily estimated in a similar manner: we have

|B2| ≤ C
∫

(uxj − kj)2
+ v

s−1
j |uxj xj | ξ2 ≤ C τ

∫
g′′j (uxj ) (uxj − kj)2

+ v
s−1
j |uxj xj |2 ξ2

+
C

τ

∫
{uxj>kj}

g′′j (uxj ) v
s+1
j ξ2,

where we used again (2.16) and (uxj − kj)2
+ ≤ vj ≤ v2

j . Finally, we come to the term B3: we obtain

|B3| ≤ C
∫

(uxj − kj)+ v
s
j |∇ξ| |ξ| ≤ C

∫
{uxj>kj}

vs+1
j |∇ξ| |ξ|

≤ C
∫
{uxj>kj}

g′′j (uxj ) v
s+1
j

(
ξ2 + |∇ξ|2

)
,

still using (2.16) and (uxj − kj)+ ≤ vj .

We are now ready to put all these estimates together. We keep the lower estimates on G2 and H2

on the left, while we put all the other terms on the right. By taking τ > 0 small enough, in order to
absorb all the terms appearing on the right and containing the Hessian of u, we finally get

s

(s+ 1)2

N∑
i=1

∫
g′′i (uxi)

∣∣∣∣∂xi (v s+1
2

j

)∣∣∣∣2 ξ2 +

N∑
i=1

∫
{uxj>kj}

g′′i (uxi)u
2
xi xj v

s
j ξ

2

+ ε
s

(s+ 1)2

∫
w
q−2
2

∣∣∣∣∇(v s+1
2

j

)∣∣∣∣2 ξ2

+ ε

∫
{uxj>kj}

〈D2H(∇u)D2
ju,D

2
ju〉 vsj ξ2

≤ C
(

1 +
1

s

) N∑
i=1

∫
{uxj>kj}

g′′i (uxi) v
s+1
j |∇ξ|2

+ ε
C

s

∫
{uxj>kj}

w
q−2
2 vs+1

j

(
ξ2 + |∇ξ|2

)
, j = 1, . . . , N,

i.e. we showed the validity of (2.15). We only have to remark that

g′′i (uxi) ≤ w
q−2
2 , i = 1, . . . , N.
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Observe that the first integral on the left-hand side is equally performed on the set {uxj > kj}, since
otherwise vj is constant. �

Let us now pay special attention to the case s = 0. Computations are very much the same.

Lemma 2.8. For every ξ ∈ C1
0 (O), we have

N∑
i=1

∫
g′′i (uxi)

∣∣∣∣∂xi (v 1
2
j

)∣∣∣∣2 ξ2 + ε

∫
w
q−2
2

∣∣∣∣∇(v 1
2
j

)∣∣∣∣2 ξ2

≤ C
∫
{uxj>kj}

w
q−2
2 vj (|∇ξ|2 + ξ2),

(2.17)

for j = 1, . . . , N , for some constant C independent of ε.

Proof. We repeat the previous computations, using the test function ψ+
j,0 = (uxj − kj)+ ξ

2. This gives

N∑
i=1

∫
{uxj>kj}

g′′i (uxi)u
2
xi xj ξ

2 + ε

∫
{uxj>kj}

〈D2H(∇u)D2
juD

2
ju〉 ξ2

≤ C
N∑
i=1

∫
{uxj>kj}

g′′i (uxi) vj |∇ξ|2

+ εC

∫
{uxj>kj}

w
q−2
2 vj

(
ξ2 + |∇ξ|2

)
, j = 1, . . . , N.

By combining this together with

u2
xixj ≥

∣∣∣∣∂xi (v 1
2
j

)∣∣∣∣2 and

∫
{uxj>kj}

〈D2H(∇u)D2
ju,D

2
ju〉 ξ2 ≥

∫
w
q−2
2

∣∣∣∣∇(v 1
2
j

)∣∣∣∣2 ξ2,

and using again g′′i (uxi) ≤ w
q−2
2 , we readily get the thesis. �

Remark 2.9. The previous estimates are valid for the functions vj , which are different from 0 if uxj
is large and positive. If on the contrary uxj is large in absolute value but negative, we can repeat the
same estimates of Lemma 2.6 and Lemma 2.7, this time using as test functions

ϕ−j,β = u zβj ξ
2 and ψ−j,s = (−uxj − kj)+ z

s
j ξ

2,

where zj is given by

zj = (−uxj − kj)2
+ + 1, j = 1, . . . , N.

Then we derive inequalities (2.10), (2.15) and (2.17), with zj in place of vj .

2.4. Step 4: an iterative scheme of reverse Hölder inequalities. Gluing together the estimates
of Lemmas 2.6, 2.7 and 2.8 and tuning the exponents β and s, we obtain the following intermediate
estimate, that we enunciate as a separate result for the sake of readability.

Lemma 2.10. For every ξ ∈ C1
0 (O), we have

(2.18)

∫
w
q
2 v

1
2
j ξ

2 ≤ C
∫
w
q
2
(
ξ2 + |∇ξ|2

)
, j = 1, . . . , N,

and for α ≥ 1/2

(2.19)

∫
w
q
2 v

1
2

+α

j ξ2 ≤ C α
∫
w
q
2 vαj

(
ξ2 + |∇ξ|2

)
, j = 1, . . . , N,



ON CERTAIN ANISOTROPIC ELLIPTIC EQUATIONS 15

for some constant C depending on q,N,max{δ1, . . . , δN},dist(support(ξ), ∂O), ‖u‖W 1,q and the con-
stants C1, C2 in (2.2).

Proof. First of all, we consider the case α ≥ 1/2 and make the choices

β =
1

2
+ α and s = 2β − α− 1 = α,

in (2.10) and (2.15). Then we drop the ε−term in the left-hand side of (2.10). In this way, by using
vj ≤ w, we obtain

N∑
i=1

∫
g′′i (uxi) |uxi |2 v

1
2

+α

j ξ2 ≤ C (α+ 1)3

α2

∫
w
q−2
2 vα+1

j

(
ξ2 + |∇ξ|2

)
+ C

∫
w
q
2 vαj (|∇ξ|2 + ξ2) ≤ C α

∫
w
q
2 vαj

(
ξ2 + |∇ξ|2

)
,

(2.20)

for some constant C depending on the relevant data of the problem. We now estimate from below the
left-hand side of (2.20): thanks to (2.5), we have

(2.21)
N∑
i=1

g′′i (uxi) |uxi |2 ≥ Cq
N∑
i=1

|uxi |q − C ′q ≥ Cq,N w
q
2 − C ′′q,N ,

by using that in RN all norms are equivalent and the simple convexity estimate

(t− 1)
q
2 ≥ 2

2−q
2 t

q
2 − 1, t ≥ 1.

Using this into (2.20) and using as always C as a generic constant depending on the data of the
problem, we can thus infer∫

w
q
2 v

1
2

+α

j ξ2 ≤ C α
∫
w
q
2 vαj

(
ξ2 + |∇ξ|2

)
+ C α

∫
v

1
2

+α

j ξ2,

which finally yields the thesis, by exploiting again that 1 ≤ vj ≤ w and q ≥ 2.

To treat the case α = 0, which gives the first gain of integrability, we proceed similarly. We combine

(2.17) and (2.10) with β = 1/2 and α = 0. Then we use v
1/2
j ≤ vj , thus arriving at

N∑
i=1

∫
g′′i (uxi) |uxi |2 v

1
2
j ξ

2 ≤ C
∫
w
q−2
2 vj

(
ξ2 + |∇ξ|2

)
+ C

∫
w
q
2 ξ2 ≤ 2C

∫
w
q
2
(
ξ2 + |∇ξ|2

)
.

Again using (2.21), we immediately deduce the thesis. �

2.5. Step 5: proof of Proposition 2.1. Keeping in mind Remark 2.9, the same estimate (2.19)
holds with zj in place of vj , so that summing up we get∫

w
q
2

(
v

1
2

+α

j + z
1
2

+α

j

)
ξ2 dx ≤ C (α+ 1)

∫
w
q
2
(
vαj + zαj

) (
ξ2 + |∇ξ|2

)
dx, j = 1, . . . , N.

If we set
Tj = max{vj , zj}, j = 1, . . . , N,

from the previous we can easily infer∫
w
q
2 T

1
2

+α

j ξ2 dx ≤ 2C (α+ 1)

∫
w
q
2 Tαj

(
ξ2 + |∇ξ|2

)
dx, j = 1, . . . , N.

Summing up all these inequalities and setting T = max{T1, . . . , TN}, we get∫
w
q
2 T

1
2

+α ξ2 dx ≤ 2N C (α+ 1)

∫
w
q
2 Tα

(
ξ2 + |∇ξ|2

)
dx.
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Finally, we observe that there exist two constants γ1, γ2 > 0 depending only on the dimension N and
max{δ1, . . . , δN}, such that

γ1 T ≤ w ≤ γ2 T.

Inserting this information in the previous inequality, we get∫
T
q
2

+α+ 1
2 ξ2 dx ≤ C (α+ 1)

∫
T
q
2

+α
(
ξ2 + |∇ξ|2

)
dx.

By fixing two balls B%(x0) ⊂ BR(x0) and suitably choosing a sequence of cut-off functions {ξk}k∈N ⊂
C1

0 (O) supported on an infinite family of shrinking balls B%(x0) b Brk+1
(x0) b Brk(x0) b BR(x0), we

can iterate the previous estimate, taking

αk =
k

2
, with k ∈ N.

Then a standard covering argument concludes the proof of Proposition 2.1.

3. Proof of the Main Theorem

We now come to the proof of the Main Theorem. Let f ∈ L∞loc(Ω) and call u a local minimizer of

(1.8). We have to show that u ∈W 1,r
loc (Ω) for every r ≥ 1. At this aim, it is sufficient to show that for

every ball B b Ω there holds u ∈W 1,r(B) for every r ≥ 1.
We then fix a ball B b Ω and consider a slightly larger ball B′ b Ω. For δ > 0 sufficiently small,

we take a standard mollification kernel ηδ with compact support and set

uδ = (u ∗ ηδ) · 1B′ ∈ C∞(B′).

The localization on B′ is needed since by definition our local minimizer u just belongs to W 1,q
loc (Ω).

Now we fix ε � 1 and take f ε ∈ C∞(Ω), such that f ε ∗−weak converges in L∞loc to f . In particular,
we can assume that

‖f ε‖L∞(B′) ≤ C ‖f‖L∞(B′),

with C independent of ε. Then, let uε,δ be a solution of

(3.1) min
{
Jεq (v;B′) + P (v − uδ;B′) : v − uδ ∈W 1,q

0 (B′)
}
,

where Jεq is given by

Jεq (v;B′) =

N∑
i=1

∫
B′
gεi (vxi) dx+

∫
B′
f ε v dx+ ε

∫
B′
H(∇v) dx, v ∈W 1,q(B′),

and P is a penalization term, defined by

P (v;B′) =

∫
B′

[
1− exp(−|v(x)|2)

]
dx, v ∈W 1,q(B′).

Lemma 3.1 (Uniform estimates). The following estimate holds

(3.2) ‖uε,δ‖W 1,q(B′) ≤ C
(
‖u‖W 1,q(B′) + 1

)
,

for some constant C > 0 not depending on δ and ε. Moreover, uε,δ ∈W 1,r(B) for every r ≥ 1 and we
have the estimate

‖uε,δ‖W 1,r(B) ≤ C,
for a constant C > 0 depending on N, q, r,dist(B, ∂Ω), ‖u‖W 1,q(B′) and ‖f‖L∞(B′), but not on ε and δ.
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Proof. We consider the Euler-Lagrange equation of problem (3.1), tested with ϕ = uε,δ−uδ ∈W 1,q
0 (B′).

This yields

N∑
i=1

∫
B′

(gεi )
′(uε,δxi )uε,δxi + ε

∫
B′
〈∇H(∇uε,δ),∇uε,δ〉 ≤

N∑
i=1

∫
B′
|(gεi )′(uε,δxi )| |uδxi |

+ ε

∫
B′
|∇H(∇uε,δ)| |∇uδ|

+ C ‖uε,δ − uδ‖Lq(B′),

for a constant depending on q, |B′| and ‖f‖L∞(B′), but not on ε and δ. Using the growth conditions
on ∇H and g′i and Young inequality, from the previous we can infer in a standard way∫

B′
|∇uε,δ(x)|q dx ≤ C

∫
B′
|∇uδ(x)|q dx+ C ‖uε,δ − uδ‖Lq(B′) dx+ C.

Finally using Poincaré inequality for the function uε,δ − uδ ∈W 1,q
0 (B′), we obtain

‖uε,δ‖W 1,q(B′) ≤ C
(
‖uδ‖W 1,q(B′) + 1

)
,

for a different constant C, yet still independent of ε and δ. Recalling the definition of uδ, this finally
gives (3.2).

The W 1,r estimates are a straightforward consequence of Proposition 2.1 applied with

O = B′, ζ = uδ and bε(x, t) = f ε(x) t+
[
1− exp(−|t− uδ(x)|2)

]
, x ∈ B′, t ∈ R,

in conjunction with the uniform estimate (3.2) on ‖uε,δ‖W 1,q(B′) and the fact that the C∞ functions
bε verify (2.2) with constants C1 and C2 depending only on ‖f‖L∞(B′). �

We also need the Γ−convergence result below: the proof is standard and we just skecth it, referring
the reader to [14] for more details. The interesting point here is the convergence of the minimizers.
We recall that Fq is the original functional defined in (1.8).

Lemma 3.2. Let δ > 0 be given and {εk}k∈N be a sequence of positive reals converging to 0, then the
functionals

u 7→ Jεkq (u) + P (u− uδ), u ∈W 1,q(B′),

are Γ−converging to Fq + P (· − uδ) with respect to the W 1,q(B′) weak topology. Moreover, a sequence

of minimizers {uεk,δ}k∈N weakly converges (up to a subsequence) in W 1,q(B′) to a minimizer u0,δ of

(3.3) min
{
Fq(v;B′) + P (v − uδ;B′) : v − uδ ∈W 1,q

0 (B′)
}
.

Proof. First of all, we observe that the additive term u 7→ P (u − uδ) is not dependent on ε and
it is continuous with respect to the W 1,q(B′) weak convergence, then it is sufficient to prove the
Γ−convergence of the functionals Jεkq , thanks to [14, Proposition 6.21]. Also, we observe that for
every sequence {uεk}k∈N strongly converging in Lq(B′) to a function u, we have

lim
k→∞

∫
B′
f εk uεk dx = lim

k→∞

∫
B′
f εk u dx =

∫
B′
f u dx,

then by [14, Proposition 6.20] we only need to prove that the functional

v 7→
N∑
i=1

∫
B′
gεi (vxi) dx+ ε

∫
B′
H(∇v) dx,
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is Γ−converging to
∑N

i=1

∫
B′ gi(vxi) dx. By using the convexity of gi and H and the uniform conver-

gence of gεki , we can conclude by appealing to [14, Theorem 5.14].

For the last part of the statement, we can use [14, Corollary 7.20], once it is observed that the
minimizers {uεk,δ}k∈N satisfy the equi-coercivity condition (3.2). �

Proof of the Main Theorem. We first pass to the limit as ε goes to 0. Thanks to (3.2), there exists
a subsequence {uεk,δ}k≥0 weakly converging in W 1,q(B′) to a limit function u0,δ. Moreover, thanks to
Lemma 3.2, this u0,δ is a minimizer of (3.3). We now take the limit as δ goes to 0. Still from (3.2) we
have

‖u0,δ‖W 1,q(B′) ≤ C
(
‖u‖W 1,q(B′) + 1

)
,

then there exists a subsequence {u0,δk}k≥0 ⊂ W 1,q(B′) which weakly converges in W 1,q(B′) to a
function u0. Using the minimality of u0,δk , the semicontinuity of the penalized functional and the
continuity of the functional Fq(· ;B′) with respect to the strong convergence, we get

Fq(u
0;B′) + P (u0 − u;B′) ≤ lim inf

k→∞

[
Fq(u

0,δk ;B′) + P (u0,δk − uδk ;B′)
]

≤ lim inf
k→∞

Fq(u
δk ;B′) = Fq(u;B′).

Finally, we use the fact that u is a local minimum and that u0 − u ∈W 1,q
0 (B′), then

Fq(u
0;B′) + P (u0 − u;B′) ≤ Fq(u;B′) ≤ Fq(u

0;B′),

which implies that P (u0−u;B′) = 0. By recalling the definition of P , the latter implies u = u0 almost
everywhere in B′.

Let us now observe that thanks to Lemma 3.1, we have that uεk,δ ∈ W 1,r
loc (B′), for every r ≥ 1. In

particular, uεk,δ ∈W 1,r(B) for every r ≥ 1 and we have a uniform estimate of the type

‖uεk,δ‖W 1,r(B) ≤ C,

with C independent of εk and δ. Using the fact that uεk,δ converges to u0,δ, we get that u0,δ ∈W 1,r(B)
for every r ≥ 1 as well, with an estimate uniform in δ. Finally, taking the limit as δ goes to 0, from
the previous discussion we get that u ∈ W 1,r(B) as well, for every r ≥ 1. This finally concludes the
proof of the Main Theorem. �

4. Applications to Beckmann’s problem

Going back to our original purpose, it is mandatory to conclude the paper with some applications
to Beckmann’s problem (1.3).

Corollary 4.1. Let q ≥ 2 and f ∈ L∞(Ω) be such that
∫

Ω f dx = 0. Every solution u ∈ W 1,q(Ω) of
the following variational problem

(4.1) min

{
N∑
i=1

∫
Ω

1

q
(|vxi | − δi)

q
+ dx+

∫
Ω
f v dx : v ∈W 1,q(Ω)

}
,

satisfies u ∈W 1,r
loc (Ω), for every r ≥ 1.

Proof. At first, we observe that (4.1) is equivalent to

min

{
N∑
i=1

∫
Ω

1

q
(|vxi | − δi)

q
+ dx+

∫
Ω
f v dx : v ∈W 1,q(Ω) and

∫
Ω
v dx = 0

}
,
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since the functional is unchanged if we replace v with v + c, for every constant c. Then the existence
of a minimizer u follows from the Direct Methods in a standard way. A global minimizer u is of course
a local minimizer of the functional Fq, thus the thesis follows by applying the Main Theorem to u. �

An “almost” L∞ estimate for the optimal transportation program is now an easy consequence of
the previous result and the primal-dual optimality condition.

Corollary 4.2. Let f ∈ L∞(Ω) be such that
∫

Ω f(x) dx = 0 and 1 < p ≤ 2. Then the (unique) vector

field φ̃ ∈ Lp(Ω;RN ) which solves

min
φ∈Lp(Ω;RN )

{
N∑
i=1

∫
Ω

[
|φi|p

p
+ δi |φi|

]
dx : div φ = f in Ω, 〈φ, νΩ〉 = 0 on ∂Ω

}
,

is in Lrloc(Ω;RN ), for every r ≥ 1.

Proof. Existence and uniqueness of φ̃ ∈ Lp(Ω;RN ) is straightforward, since we are minimizing a strictly
convex energy with p−growth, under a linear and closed constraint. By standard convex duality (see
[16, Proposition 5, page 89]), we get the primal-dual optimality condition

φ̃i = (|uxi | − δi)
q−1
+

uxi
|uxi |

, i = 1, . . . , N,

with q = p/(p − 1) ≥ 2 and u ∈ W 1,q(Ω) solution of (4.1). Then the result follows from Corollary
4.1. �
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