
Neural-Symbolic Temporal Decision Trees for
Multivariate Time Series Classification
Giovanni Pagliarini #Ñ

Department of Mathematics and Computer Science, University of Ferrara, Italy
Department of Mathematics, Physics, and Computer Science, University of Parma, Italy

Simone Scaboro #

Department of Mathematics, Physics, and Computer Science, University of Udine, Italy

Giuseppe Serra #

Department of Mathematics, Physics, and Computer Science, University of Udine, Italy

Guido Sciavicco #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Ionel Eduard Stan #Ñ

Department of Mathematics and Computer Science, University of Ferrara, Italy
Department of Mathematics, Physics, and Computer Science, University of Parma, Italy

Abstract
Multivariate time series classification is a widely known problem, and its applications are ubiquitous.
Due to their strong generalization capability, neural networks have been proven to be very powerful
for the task, but their applicability is often limited by their intrinsic black-box nature. Recently,
temporal decision trees have been shown to be a serious alternative to neural networks for the
same task in terms of classification performances, while attaining higher levels of transparency and
interpretability. In this work, we propose an initial approach to neural-symbolic temporal decision
trees, that is, an hybrid method that leverages on both the ability of neural networks of capturing
temporal patterns and the flexibility of temporal decision trees of taking decisions on intervals
based on (possibly, externally computed) temporal features. While based on a proof-of-concept
implementation, in our experiments on public datasets, neural-symbolic temporal decision trees
show promising results.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Machine learning, neural-symbolic, temporal logic, hybrid temporal decision
trees

Digital Object Identifier 10.4230/LIPIcs.TIME.2022.13

Supplementary Material Software (ModalDecisionTrees.jl): https://zenodo.org/record/7040420

Funding The authors acknowledge the partial support by the Italian INDAM GNCS project Natural
Language Elaboration and Temporal Logic for Text Formalization.

1 Introduction
A multivariate time series is a collection of time-stamped tuples, each composed by the value
of several attributes. Time series describe a variety of situations, and classification of time
series is an active area of research across many scientific disciplines: air quality control and
prediction in climate science, prices and rates of inflation in economics, infectious diseases
trends and spreading patterns in medicine, pronunciation of word signs in linguistics, sensor
recordings of systems in aerospace engineering, among many others [29].

As it is true for any other classification problem, the classification of multivariate time
series too can be approached by means of both symbolic and functional (or parametric)
machine learning, which are two fundamental pillars of modern machine learning; in short,
one may say that functional learning is the process of learning a function that represents

© Giovanni Pagliarini, Simone Scaboro, Giuseppe Serra, Guido Sciavicco, and Ionel Eduard Stan;
licensed under Creative Commons License CC-BY 4.0

29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 13; pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giovanni.pagliarini@unife.it
https://giopaglia.github.io/
https://orcid.org/0000-0002-8403-3250
mailto:scaboro.simone@spes.uniud.it
https://orcid.org/0000-0003-2533-1298
mailto:giuseppe.serra@uniud.it
https://orcid.org/0000-0002-4269-4501
mailto:guido.sciavicco@unife.it
https://orcid.org/0000-0002-9221-879X
mailto:ioneleduard.stan@unife.it
https://eduardstan.github.io/
https://orcid.org/0000-0001-9260-102X
https://doi.org/10.4230/LIPIcs.TIME.2022.13
https://zenodo.org/record/7040420
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

the theory of the underlying problem (functional methods range from simple regression
techniques to the modern neural network models, in their several variants), while symbolic
learning is the process of learning a logical description that represents that theory (typical
symbolic methods are rule-based classifiers and decision trees). Whether one or the other
approach should be preferred raised a long-standing debate among experts, whose roots lie
in the fact that functional methods tend to be more accurate than symbolic ones, as they are
capable to better generalize the problem at hand, while symbolic methods are able to extract
models that can be explained, interpreted, and integrated with human expert knowledge. The
higher interpretability degree of symbolic approaches over functional ones, both for political
(consider, e.g., the General Data Protection Regulation (GDPR) that highlights the need for
interpretable/explainable automatic decision processes) and technical reasons, are sometimes
used as arguments for preferring a symbolic approach over a functional one. As suggested
in [9, 10, 24] (among others), however, in order to solve the functional/symbolic duality, one
can think of an hybrid approach: hybrid systems combine the strengths of both symbolic
and functional methods, with the aim of guaranteeing highi degrees of interpretability of the
learned models, while retaining high enough statistical performances.

On the one side, we shall consider the native, symbolic time series classification method
proposed by Sciavicco and Stan [31]. The temporal decision tree prediction model, as it is
called, is an extension and generalization the decision tree paradigm. Temporal decision
trees work as the classical ones, but decisions are taken on intervals of time series, instead
of the series as a whole; therefore, there is no need of an initial feature extraction phase,
but, on the contrary, features are extracted dynamically, following the standard greedy
approach. Temporal decision trees have already been shown to be competitive for time series
classification. On the other side, we shall take, as a representative example, a time-preserving
autoencoder neural network model [37, 39], which is characterized by being able to play
both the role of time series classifier and the one of feature extractor, essentially without
any modification. As it turns out, in the pursue of an hybrid decision tree model there
are at least three independent parameters which can be combined, namely, the possibility
of using a network for an initial screening of the dataset, to be later dealt with in a more
precise way by one of several potentially different trees (root hybridization), the possibility
of querying an external network as a feature extractor in order to take split decisions in a
single tree (split hybridization), and the possibility of consulting one of several potentially
different networks at the leaves of a decision tree before deciding the class (leaf hybridization).
These techniques give rise to eight possible hybrid models, the simplest one of which is just
a decision tree. In this paper, we propose to increase the generalization capacity of temporal
decision trees by leveraging the power of a pre-trained autoencoder to partition instances in
a decision node (split hybridization). To assess the value of our proposal, we perform several
experiments on three public datasets. In particular, we consider the problem of establishing
if the neural-symbolic approach is, in fact, beneficial, when compared with the pure neural
network-based one as well as the pure temporal symbolic one. Therefore, our experiments
are not designed to achieve the highest absolute performances (such as in Bagnall et al.’s [3]
work, from which our datasets are taken), which is often the results of a very intensive
hyperparametrization, complex feature extraction, and model stacking/bagging; instead,
they are structured in such a way as to highlight the advantages of the hybrid approach over
its constituents.

The paper is organized as follows: in Section 2 we review the most important contributions
in the area of hybridization decision trees with neural networks; in Section 3 we present
neural-symbolic temporal decision trees; then, in Section 4 we benchmark the proposed
methodology based on a proof-of-concept implementation against public datasets, before
concluding.

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:3

2 Related Work

Decision trees and neural networks are well-known alternatives for pattern recognition,
and their strengths and weaknesses have been studied for more than three decades [2, 35].
Notoriously, decision trees favor the interpretability of their decisions which, due to their
symbolic nature, represent coarse concepts in numeric domains, whereas neural networks are
more difficult to interpret (they are often referred to as black-box models), but have a better
generalization capacity. Let us focus on the recent literature concerning the hybridization of
these two models.

From decision trees to neural networks. First, we mention Sethi [32], Brent [6] and Ivanova
and Kubat [15], who proposed a mapping algorithm of a decision tree into a 2-hidden-layers
neural network, whose topology is inferred by the structure of the decision tree; then the
weights can be retrained by error-backpropagation to increase generalization. Ivanova and
Kubat’s Tree-Based Neural Network has been further investigated by Setiono and Leow [33]
by compressing and removing redundant units and connections in the resulting network,
a method called Pruning-Based Neural Network. Radial-basis function networks can also
be initialized by decision trees, where each region in the instance space discovered by the
decision tree is then turned into a neuron, each of which representing a basis function, in the
resulting network [19].

From neural networks to decision trees. Craven and Shavlik [7] observed that decision tree
induction algorithms are limited by the fact that splits are performed over fewer and fewer
instances recursively. The decision tree inducer algorithm that they have proposed alleviates
such issue by querying the oracle (i.e., the trained neural network) which generates new
instances aiming at performing better statistically solid 𝑚-to-𝑛 Boolean splits [38] (i.e., 𝑚 out
of 𝑛 conditions must be satisfied) that are greedily evaluated using gain ratio [28]. Dancey
et al. [8] proposed a similar method where the splits are univariate. Krishnan et al. [18],
inspired by Craven and Shavlik’s work, extracted a decision tree from inputs generated by the
neural network instead of doing it directly from the data, that is, they also query the oracle.
Unlike Craven and Shavlik’s method, Schmitz et al. [30] proposed an approach that can be
applied to inputs and outputs that are both discrete or continuous with a novel attribute
significance analysis to perform splits. Zhou and Jiang [42], instead, proposed to extract a
C4.5 decision tree from the input instances merged with new randomly generated instances
from an ensemble of neural networks. Such an approach an be seen as a loop that uses a
genetic algorithm to generate prototypes (i.e., representative input instances for which the
neural network give a desired output classification) to train the decision tree; at this stage,
the decision tree is tested on an independent test set and if the performances are acceptable
then the procedure stops; otherwise, other prototypes are generated by the GA and the cycle
continues.

Hybrid neural-symbolic models. Li et al. [21] proposed a top-down adaptive neural tree
for hierarchical classification that can add and delete nodes incrementally while inducing
the tree structure. To increase the generalization of CART-like decision trees [5], Guo and
Gelfand’s [12] method trained a small 1-hidden-layer perceptron with one output at each
node of the decision tree to learn a non-linear, multivariate feature 𝑓 (·) that splits the
subset of the training instances at that node based on the test 𝑓 (·) < 0 (since the output’s
activation function is the 𝑡𝑎𝑛ℎ function) and showed that their method performed better

TIME 2022

13:4 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

split

split
root

leaves

root
leaves

split
leaves

split
root

leavesroot

Figure 1 Different types of hybridization, partially ordered by the residual level of interpretability.
In this paper, we focus our attention on temporal decision trees hybridized at the split level only.

than CART in terms of accuracy and better than a larger multi-layered neural network
trained with backpropagation in terms of training time. A similar approach can be found
in Setiono and Liu’s [34] work for generating oblique decision trees. Zhou and Chen [41]
proposed a methodology to induce a hybrid decision tree where, first, at the internal nodes
of the decision tree the splits are done over unordered attributes only, if any, to perform
qualitative analysis and, then, at the leaf nodes a virtual feed-forward neural network is
embedded to perform quantitative analysis over the ordered attributes only, if any. More
recently, Micheloni et al. [23] proposed a novel neural tree by using two innovations, namely
perceptron substitution and pattern removal, to produce 𝑘-ary balanced trees (𝑘 ≥ 2). In
the field of computer vision, tree-structured neural networks have been proposed, among
others, by Srivastava and Salakhutdinov [36] and Hinton et al. [14] to transfer knowledge, by
Kontschieder et al. [17] where a decision tree has been introduced after a fully connected
layer as part of the convolutional neural network, by Murthy et al. [26] where each decision
node of the decision tree is a convolutional neural network, by Murdock et al. [25] where
several layers are fused into the decision nodes of the decision tree, by Alaniz et al. [1] where
the structure of the decision tree is encoded in the memory of a recurrent neural network
jointly learned by two models acting as agents through message communication, and by Wan
et al. [40] where the final layer of the network is replaced by a decision tree.

In an attempt at taxonomizing the existing work, one could argue that there are at least
three independent parameters which can be combined, namely the possibility of using a
network for an initial screening of the dataset, to be later dealt with in a more precise way
by one of several potentially different trees (root hybridization), the possibility of querying an
external network as a feature extractor in order to take split decisions in a single tree (split
hybridization), and the possibility of consulting one of several potentially different networks
at the leaves of a decision tree before deciding the class (leaf hybridization). As a result,
there are at least eight types of hybridization (the simplest one of which is just a decision
tree), which can be, in a sense, partially ordered by their residual level of interpretability, as

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:5

Table 1 Allen’s interval relations and their representation.

HS modality Definition w.r.t. the interval structure Example
𝑥 𝑦

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

⟨𝐴⟩ (after) [𝑥, 𝑦]𝑅𝐴[𝑤, 𝑧] ⇔ 𝑦 = 𝑤

⟨𝐿⟩ (later) [𝑥, 𝑦]𝑅𝐿 [𝑤, 𝑧] ⇔ 𝑦 < 𝑤

⟨𝐵⟩ (begins) [𝑥, 𝑦]𝑅𝐵 [𝑤, 𝑧] ⇔ 𝑥 = 𝑤 ∧ 𝑧 < 𝑦

⟨𝐸⟩ (ends) [𝑥, 𝑦]𝑅𝐸 [𝑤, 𝑧] ⇔ 𝑦 = 𝑧 ∧ 𝑥 < 𝑤

⟨𝐷⟩ (during) [𝑥, 𝑦]𝑅𝐷 [𝑤, 𝑧] ⇔ 𝑥 < 𝑤 ∧ 𝑧 < 𝑦

⟨𝑂⟩ (overlaps) [𝑥, 𝑦]𝑅𝑂 [𝑤, 𝑧] ⇔ 𝑥 < 𝑤 < 𝑦 < 𝑧

in Fig. 1. When the architecture of the underlying neural networks are comparable, different
hybridization types become comparable as well. In our initial exploration, we focus on the
hybridization at the split level only.

3 Neural-Symbolic Temporal Decision Trees

A single multivariate time series has 𝑛 (temporal) attributes 𝐴1, . . . , 𝐴𝑛 evolving through a
time axis, whose values are time-stamped by 𝑁 integers (the length of the series), that is,
its underlying domain of interest is ({0, 1, . . . , 𝑁 − 1}, <). A temporal labelled dataset is a
set of 𝑚 multivariate time series, each labelled with a class. The multivariate time series
classification problem is the problem of automatically extract a classifier from a temporal
labelled dataset. Existing multivariate time series classification methods can be divided into
feature-based (see, e.g., [20]), instance-based (see, e.g., [3]) and native ones (see, e.g., [11]).

Designed as a native time series classification method, temporal decision trees have been
recently proposed [22, 31]. Let T = {𝑇1, . . . , 𝑇𝑚} be a temporal dataset of 𝑚 instances, where
each is a multivariate time series described by 𝑛 attributes {𝐴1, . . . , 𝐴𝑛}. Given 𝑇 ∈ T and a
time point 𝑡, we denote by 𝐴(𝑡) the value of 𝐴 at the point 𝑡, and by 𝑑𝑜𝑚(𝐴) the domain
of 𝐴. Now, let 𝑓 a dynamic feature of the variable 𝐴 (e.g., the average value of 𝐴 over an
interval); in its simplest form, 𝑓 is a scalar descriptor for 𝐴 within any non-point interval of
the series.

The key idea of interval temporal decision trees is that decisions are taken over strict
intervals, that is, intervals of the type [𝑥, 𝑦] with 𝑥 < 𝑦, and for time series whose length is
𝑁, there are 𝑁 · (𝑁 − 1)/2 such intervals. A temporal decision tree starts off by looking at
the whole dataset from the point of view of the first temporal value, and searches through
all possible non-point intervals, and, for each one of them, it computes a predetermined set
of dynamic features; then, it searches through all possible interval-interval relations, and it
establishes which other interval, and which other dynamic feature over that interval, is most
informative in the considered sub-dataset. In this way, it applies the same abstract approach
of the classical static decision tree up until a dataset is small enough, or pure enough, so
that a stopping criteria can be applied and a leaf can be created. For each possible feature
𝑓 , let 𝑑𝑜𝑚(𝑓 (𝐴)) denote the set of possible values that 𝑓 takes over 𝐴 throughout T . The
temporal dataset T entails a propositional alphabet AP defined as follows:

AP = { 𝑓 (𝐴) ⊲⊳ 𝑎 | 𝐴 ∈ A, ⊲⊳ ∈ {<, ≤, =, ≥, >} and 𝑎 ∈ 𝑑𝑜𝑚(𝑓 (𝐴))}.

TIME 2022

13:6 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

𝜏

2

1 2

⟨𝐿⟩
(𝑝)

[𝐿] (¬𝑝)

⟨𝑂
⟩ (𝑞

) [𝑂] (¬𝑞)

Figure 2 Example of temporal decision tree.

The set AP is the natural generalization of the set of propositional letters that implicitly
emerges in inductive processes from static data; for example, in a static dataset, the
propositional letter fever greater than 38 degrees may emerge. The main difference between
the two cases, propositional and temporal, is that in the latter case propositions in AP
are given an interval semantics, that is, they are evaluated over intervals of time; this is a
natural choice that depends from the fact that time series describe continuous processes,
in which evaluations based on point-wise values have little sense. Intuitively, consider an
interval of time [𝑥, 𝑦] and an attribute 𝐴 that varies on it. We can ask the question 𝐴 ⊲⊳ 𝑎

over the entire interval, which is positively answered if every value of 𝐴 in the interval [𝑥, 𝑦]
respects the given constraint; but, to enhance an interval-based semantics we replace this
question with 𝑓 (𝐴) ⊲⊳ 𝑎, which, in general, allows us to extract more information from the
interval [𝑥, 𝑦]; in the above example, we may have the proposition average fever greater than
38 degrees. As it turns out, many dynamic features have been studied in the literature of
time series to extract features from whole series, and these range from simple functions such
as average, minimum, or maximum to very complex ones such as number of local minima or
number of local maxima; we generalize this concept by applying them to intervals, which are,
themselves, series. Thus, in temporal decision trees the univariate split-decisions (or, simply,
decisions) that partition a set of instances at a specific node are of the type:

S = {⟨𝑋⟩(𝑝) | 𝑋 ∈ X ∪ {=} and 𝑝 ∈ AP},

where X = {𝐴, 𝐿, 𝐵, 𝐸, 𝐷,𝑂, 𝐴, 𝐿, 𝐵, 𝐸, 𝐷,𝑂}, contains the possible interval-interval relations,
whose informal semantics is depicted in Tab. 1 (for a formal definition of the semantics,
see [13]). In conclusion, binary temporal decision trees 𝜏 are formulas of the following
grammar:

𝜏 ::= (𝑆 ∧ 𝜏) ∨ (¬𝑆 ∧ 𝜏) | 𝐶,

where 𝑆 ∈ S is a decision and 𝐶 ∈ C is a class. An example of temporal decision tree is
depicted in Fig. 2. Recall that time series of length 𝑁 have ({0, 1, . . . , 𝑁 −1}, <) as underlying
domain of interest. The learning starts by splitting the dataset at the root, where each
time series is fixed on the dummy interval [−2,−1] so that the only feasible interval-interval
operators are ⟨𝐿⟩ (for the left branch) and [𝐿] (for the right branch); then, recursively, for the
instances that fall into the left branch, the intervals that are witnesses for the decision ⟨𝑋⟩(𝑝)
are the new intervals to which the time series are fixed to find the next interval-interval
relation with a proposition (from A𝑃) as argument; similarly, if the instances fall on the right
branch by some decision [𝑋] (¬𝑝), the witnesses remain the same as before the split. What is
more, just as static decision trees induce propositional formulas on their branches, temporal
decision trees induce interval temporal logic [13] formulas. Continuing the parallelism with
the static case, a static decision tree may give rise to a branch whose associated formula is
fever greater than 38 degrees and cough as a symptom, whereas a formula on a temporal

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:7

Encoder 𝑓𝐸 :
⋃𝑁

𝑘=2 R
𝑘 → R

⋃𝑁
𝑘=2 R

𝑘

Decoder 𝑓𝐷 : R→ ⋃𝑁
𝑘=2 R

𝑘⋃𝑁
𝑘=2 R

𝑘

R

⟨𝑋⟩ (𝑓𝐸 (𝐴𝑖) ⊲⊳ 𝑎𝑖)

⟨𝑋⟩ (𝑓𝐸 (𝐴 𝑗) ⊲⊳ 𝑎 𝑗)

A
ut

oe
nc

od
er

s
Te

m
po

ra
ld

ec
is

io
n

tr
ee

s

N
eu

ra
l-s

ym
bo

lic
te

m
po

ra
ld

ec
is

io
n

tr
ee

s

Figure 3 Neural-symbolic temporal decision trees pipeline. At the top level, an autoencoder is
trained for each attribute 𝐴𝑖 on each of its non-point interval of a multivariate time series. At the
bottom level, a temporal decision tree queries the encoder of each trained autoencoder to partition
instances in a decision node.

decision tree may be (a period of) average fever greater than 38 degrees overlapping (a
period of) cough as a symptom; to complete the example, following the left-most branch of
the temporal decision tree illustrated in Fig. 2, the corresponding interval temporal logic
formula is:

⟨𝐿⟩(𝑝 ∧ ⟨𝑂⟩(𝑞)),

from which, by interpreting 𝑝 as average fever greater than 38 degrees and 𝑞 as cough as
symptom, we obtain the above sentence in natural language.

An autoencoder is a neural network architecture typically used for extracting significant
feature representations from unlabeled data. The feature extraction is achieved by training
the model to reproduce its input (i.e., to learn the identity function) while introducing an
information bottleneck throughout the model. This generally results in an encoder-decoder
architecture where the encoder (that is, the first part of the network), ends with a layer
with the smallest number of neurons, which is, then, the only input to the remaining part
of the network. Ultimately, the training phase forces the encoder to learn to extract a
succinct representation of the input, performing a non-linear dimensionality reduction, and
the decoder to learn to retrieve the original information from this representation. After the
training phase, the encoder can be used as a feature extractor, that is, a model that provides
a succinct abstract description of its input.

In the case of time series, a fundamental distinction among autoencoders is between
time preserving models, which provide a description that also extends along the time axis,
and non-time preserving ones, which provide a static description, only consisting of a fixed-
size vector of scalar values. The architectures used for time series are typically based on
convolutional neural networks, that are effective for shift-invariant pattern recognition, or
recurrent neural networks, that are specifically designed for temporal data.

TIME 2022

13:8 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

Table 2 Dataset specifications.

Dataset # train+test instances # points # attributes # classes
Libras 180 + 180 = 360 45 2 15

NATOPS 180 + 180 = 360 51 24 6
RacketSports 151 + 152 = 303 30 6 4

In this first attempt at split hybridization of temporal decision trees, autoencoders are
used to derive attribute-specific feature extractors; that is, once an autoencoder is trained,
the encoder part, seen as a function whose input is mapped to a real number, plays the same
role that the average, minimum, and maximum functions play. With respect to these simpler
function, the learned encoder has a black-box nature, and is, therefore, less interpretable;
however, as we shall see, it can yield higher specificity for a given attribute, thus providing
scalar descriptions that are more relevant. For the purpose of this work, we consider a
sequence-to-sequence [37] architecture (referred to as S2S), and a transformer-based [39]
architecture (referred to as transformer autoencoder, TSA); these are two time preserving
autoencoders which found fruitful application in many contexts, and represented a major
breakthrough in the field of natural language processing. Note that, being time preserving
architectures, the descriptions computed by the encoders extend along a time axis, whereas
the framework presented above requires a scalar feature extraction. To solve this issue,
we operate a choice commonly adopted in contexts where a scalar feature extraction is
needed: we only consider a single temporal slice of the description. For both architectures,
we considered the one temporal slice that is used by the decoder to reproduce the input
series but, because of structural differences between the two architectures, different policies
are required: for S2S, the last temporal slice is considered while, for TSA, the first slice is
considered. Fig. 3 depicts an abstraction of the structure of the autoencoders in use, and
the deployment of the trained encoders within the split-decisions of a temporal decision tree.
Recall that the encoder maps its input series (seen as a vector of real numbers) to a single
real number, therefore reducing the original size.

4 Experiments

In order to assess the performances of hybrid temporal decision trees, we carried out
several experiments using three publicly available datasets that are commonly employed for
benchmarking multivariate time series classification models. They are known, respectively,
as Libras, NATOPS, and RacketSports [3], and their specifications are shown in Tab. 2. The
Libras dataset consists of sensor recordings of hand movements in a bidimensional space,
extracted from videos of Brazilian sign language speakers performing different gestures;
NATOPS data consists of 3D recordings of hands, elbows, wrists and thumbs of people
performing different actions; and RacketSports contains 3D recordings for both a gyroscope
and an accelerometer mounted on a smartwatch worn by several subjects while playing
badminton and squash games.

All datasets are provided with pre-existent partitioning into training set and test set.
The expertiments are conducted in a randomized cross-validation setting with 10 repetitions,
where the training and test sets for each repetition are drawn from the union of the original
sets, reproducing the class distributions of the original sets, with the sole exception that
the first of the 10 repetitions uses the exact original training and test sets; this approach is
similar to Ruiz et al. [29]. Six variations of decision trees are compared, which are obtained
by using both a static decision tree model and the temporal decision tree one, each, in turn,

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:9

Table 3 Test results and training time of the decision tree models in comparison. Values for
the performance metrics are shown in percentage points. For each measure, the table reports the
average and standard deviation over 10 repetitions. For each dataset, the most performant model is
highlighted.

𝜅 OA AA F1 time (𝑠)

Li
br

as

D
T

min, max 35.4 ± 3.4 39.7 ± 3.1 39.7 ± 3.1 39.3 ± 3.2 0.1
neural 19.0 ± 4.3 24.4 ± 4.0 24.4 ± 4.0 23.8 ± 4.0 0.1

min, max, neural 40.9 ± 5.9 44.8 ± 5.5 44.8 ± 5.5 44.2 ± 5.6 0.1

T
D

T

min, max 54.6 ± 4.3 57.6 ± 4.0 57.6 ± 4.0 57.2 ± 3.8 6.3 ± 1.6
neural 54.5 ± 3.7 57.5 ± 3.5 57.5 ± 3.5 56.7 ± 4.0 18.0 ± 5.1

min, max, neural 55.2 ± 4.1 58.2 ± 3.8 58.2 ± 3.8 57.6 ± 3.9 30.7 ± 6.5

N
AT

O
P

S D
T

min, max 65.1 ± 3.7 70.9 ± 3.1 70.9 ± 3.1 70.8 ± 3.3 0.7 ± 0.1
neural 42.8 ± 4.3 52.3 ± 3.6 52.3 ± 3.6 52.1 ± 3.8 0.6 ± 0.1

min, max, neural 65.7 ± 2.2 71.5 ± 1.8 71.5 ± 1.8 71.4 ± 1.9 1.0 ± 0.1

T
D

T

min, max 84.0 ± 2.9 86.7 ± 2.4 86.7 ± 2.4 86.7 ± 2.4 37.0 ± 9.0
neural 87.1 ± 3.7 89.2 ± 3.1 89.2 ± 3.1 89.3 ± 3.1 118.3 ± 35.8

min, max, neural 86.7 ± 2.9 88.9 ± 2.4 88.9 ± 2.4 89.0 ± 2.4 252.1 ± 98.3

R
ac

ke
tS

po
rt

s

D
T

min, max 55.4 ± 3.3 66.6 ± 2.4 68.0 ± 2.5 67.4 ± 2.3 0.2
neural 44.2 ± 3.9 58.4 ± 3.0 59.6 ± 2.8 59.2 ± 3.1 0.2 ± 0.1

min, max, neural 57.5 ± 6.9 68.2 ± 5.2 69.7 ± 5.1 69.3 ± 5.3 0.3 ± 0.1

T
D

T

min, max 55.0 ± 5.8 66.3 ± 4.3 67.7 ± 4.2 67.5 ± 4.1 1.1 ± 0.9
neural 56.0 ± 5.6 67.1 ± 4.2 68.2 ± 4.0 68.1 ± 4.3 2.7 ± 1.5

min, max, neural 56.3 ± 5.8 67.3 ± 4.3 68.6 ± 4.2 68.3 ± 4.1 5.5 ± 5.4

in three versions: original (non-hybrid), split hybrid using only neural features, and split
hybrid using both neural and non-neural features. As we have seen in the previous section,
temporal decision trees are characterized by taking decisions on intervals of time, and then
relating such decisions via temporal logic formulas. This is paradigm-shifting with respect
to static ones, which, in the common literature, can only deal with dimensional data (for
us, temporal data) by extracting global features for each attribute and then using them
as decisions. Such a difference has been maintained in the hybrid version; in fact, in the
static case both neural and non-neural features are computed on the whole series. For these
experiments, in both the temporal and the static case, the non-neural feature functions
were fixed to minimum and maximum. Temporal and static trees were trained using the
ModalDecisionTrees.jl open-source Julia package [27], which implements the CART algorithm
and its modal extensions.

After a preliminary study in which different decision tree parametrizations are tested,
two tree-pruning conditions are fixed, namely, a minimum number of instances at the tree
leaves of 2 for RacketSports and Libras, and 4 for NATOPS, and a minimum entropy gain of
0.01, which prevents less informative splits to be performed at any internal node. As neural
feature extractors, we use S2S for Libras and TSA for NATOPS and RacketSports. For the
training of both neural architectures, we use PyTorch and the following hyperparameters:
AdamW optimizer with 10−5 learning rate and 10−8 epsilon factor, batches of size 256 with
accumulation step equal to 4, L1Loss as loss function, 150 epochs, gradient clipping during
training, and weights initialized using the default setting of PyTorch. The architecture of
S2S is the same proposed in [4] with the difference that we used two Gated Recurrent Unit
Networks as encoder and decoder instead of the LSTMs. A simpler architecture is used to

TIME 2022

13:10 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

Table 4 Class-wise accuracies and average accuracy (AA) (shown in percentage points) of the
decision tree models in comparison. For each entry, the table reports the average over 10 repetitions.
The best result of each class is highlighted.

Libras
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AA

D
T

min, max 29 41 26 45 53 38 34 39 88 28 38 38 36 16 48 40
neural 17 12 13 46 38 22 34 8 30 14 28 32 19 22 30 24

min, max, neural 35 57 25 59 53 31 42 50 87 36 41 43 44 28 42 45

T
D

T

min, max 48 77 49 70 70 49 64 55 88 42 55 51 41 58 48 58
neural 59 76 42 68 59 56 62 58 88 35 52 60 50 50 47 58

min, max, neural 56 78 46 72 69 51 62 55 86 39 54 53 53 52 47 58

NATOPS
1 2 3 4 5 6 AA

D
T

min, max 91 77 65 52 51 90 71
neural 48 45 40 60 52 69 52

min, max, neural 91 73 64 57 53 90 72

T
D

T

min, max 93 87 68 90 90 92 87
neural 95 88 70 91 94 92 89

min, max, neural 95 87 67 91 94 94 89

RacketSports
1 2 3 4 AA

D
T

min, max 50 55 83 84 68
neural 54 36 85 64 60

min, max, neural 55 52 88 85 70

T
D

T

min, max 51 54 80 85 68
neural 60 49 77 87 68

min, max, neural 54 53 82 84 69

build TSA, which is composed of a transformer encoder layer with two heads, both for the
encoder and for the decoder. In the encoder, we used Time2Vec [16] to resize each temporal
slice from 1 to 168 adding also information about the position of the slices, as done by
classical transformers with the positional embeddings. Both the output of the encoder and
of the decoder is resized from 168 to 1 with a linear layer. Note that, while static decision
trees feature functions are computed on the whole series, features for temporal decision trees
are evaluated on all the sub-intervals of the series; as such, the autoencoder models are
trained using the raw training instances in the first case, and using all the sub-intervals of
the training instances in the second case.

Tab. 3 gives an overview of the trained models in terms of the training time required
(excluding the prior training of the neural networks), and the performance obtained on
the test data. The results are given in terms of mean and standard deviations over the 10
repetitions. The performance itself is measured in terms of 𝜅 coefficient (which relativizes
the overall accuracy to the probability of a random correct answer), overall accuracy (OA),
average accuracy (AA), and average F1-score (F1). Note that the four metrics measure in
different ways the overall performance of the models, but they all happen to be in agreement;
as such, we focus on the values of the 𝜅 coefficients, which is invariant to the number of
classes, and varies largely across the three datasets.

At a first look, Libras seems to enclose the hardest problem for the models at hand (𝜅
equal to 55.2%), followed by RacketSports (57.5%) and then by NATOPS (87.2%). Libras
and NATOPS reveal a performance gap between static and temporal trees; that is, when
the best models for each group is considered, the second group has an average 𝜅 higher by
∼15 and ∼22 percentage points, respectively. Conversely, RacketSports represents a case
where temporal decision trees are outperformed by classical decision trees; indeed, in both
cases, the best accuracy is achieved using both simple and neural features, but temporal
trees achieve an average 𝜅 of 56.3%, while classical trees achieve 57.5%. When it comes to
neural features, classical DTs only benefit from them when these are used as supplementary
information; in fact, for all datasets, classical decision trees using only neural features are

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:11

Table 5 Confusion matrixes for the tree generated with seed 6, dataset NATOPS; left: static,
non-neural; right: temporal, neural.

static, non-neural
1 2 3 4 5 6

1 24 6 0 0 0 0
2 2 26 2 0 0 0
3 0 14 16 0 0 0
4 1 0 0 19 9 1
5 1 0 0 13 16 0
6 0 0 0 0 3 27

temporal, neural
1 2 3 4 5 6

1 30 0 0 0 0 0
2 0 28 2 0 0 0
3 0 5 25 0 0 0
4 0 0 0 26 1 3
5 0 0 0 0 28 2
6 3 1 0 0 0 26

outperformed by classical DTs based on minimum and maximum, but the latter are in turn
always outperformed by mixed trees that use both simple and neural features, which may
indicate that our approach is promising. If we look separately at DTs and TDTs within
the same experimental settings, we observe, once again, that adding neural features gives
a greater advantage in the temporal case; a possible interpretation of this phenomenon is
that, being able to perform qualitative temporal reasoning among intervals when partitioning
instances, the inductive procedure becomes some kind of symbolic attention mechanism;
however, as it must be acknowledged, TDTs generally require higher training times due to
the interval-interval relations.

A more specific analysis of the trends can be made by inspecting the ability of the models
for correctly classifying each of the classes in the three datasets. Tab. 4 reports the class-wise
accuracies, as well as the average accuracy; although they provide useful insights, class-wise
accuracies are subject to a higher variance than metrics of overall performance, and, as
such, reliable conclusions from them can be drawn only when comparing different groups of
models. We observe that with the Libras dataset the step from static to temporal learning
encompasses a general accuracy improvement over all classes except two (9 and 15), and in
some classes, such as 14, such an improvement is impressive (from 28% to 58%); classes 1,
2, 12, and 13, moreover, show a clear benefit of the hybrid temporal-and-neural approach.
The improvement due to the temporal approach in NATOPS emerges in all classes except
class 1, and in all classes, though in a lesser amount, adding the neural features results
in a further improvement. Finally, as for RacketSports, the improvement of the temporal
approach is less clear, and only visible in class 1 and 4, and the same holds for the further,
slight, improvement given by the addition of the neural features.

In addition to the simple analysis of the numerical performance, we can give a closer
look at the generated trees. In order to do so, we consider the dataset NATOPS and a
representative seed, namely seed 6, and compare the extracted trees in terms of structure,
size, and ability to predict specific classes in two specific cases: the static tree without neural
features and the temporal tree with neural features (Fig. 4 and Fig. 5, in which we used
𝑚 to represent the minimum, 𝑀 the maximum, and 𝑁 the encoding by the encoder neural
network, applied to an attribute 𝐴). As it can be observed, the static one is 40% bigger
than the temporal one, the former having 17 leaves, versus the 11 leaves of the latter. Yet,
the classification abilities of the static tree are clearly lower than those of the temporal one:
on the one side, in average, the static non-neural approach presented 71% accuracy versus
the 89% of the temporal one with neural and non-neural features; on the other side, these
specific trees present 71% accuracy in the static case versus 91% in the temporal case. Even
more interestingly, class 5 labels several leaves in the static tree, and only 1 in the temporal

TIME 2022

13:12 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

𝜏

𝑚
(𝐴7)

≥ −0.07
𝑚(𝐴7) < −0.07

6
𝑀
(𝐴21)

≥ −0.06
𝑀 (𝐴21) < −0.06

5

𝑚
(𝐴1)

<
1.0

4 𝑚(𝐴1) ≥ 1.04

5
𝑚
(𝐴 2)

<
0.5

7 𝑚(𝐴2) ≥ 0.57

𝑚
(𝐴 7)

≥ 0.5
2 𝑚(𝐴

7) < 0.52

𝑚
(𝐴 2)

≥ 0.4
4 𝑚(𝐴

2)
< 0.44

4 5

𝑚
(𝐴 19

) ≥
0.7

1 𝑚(𝐴
19)
< 0.71

5 4

𝑚
(𝐴 3)

≥ −
0.0

6 𝑚(𝐴
3)
< −0.06

4 5

𝑚
(𝐴 9)

≥ 0.1
6 𝑚(𝐴

9)
< 0.16

𝑀
(𝐴15)

≥ 0.8
5 𝑀 (𝐴15) < 0.85

2 1

𝑀
(𝐴 16

) ≥
−1
.84

𝑀 (𝐴
16)
< −1.84

3
𝑚
(𝐴 3)

<
0.2

5 𝑚(𝐴3) ≥ 0.25

𝑀
(𝐴 13

) ≥
2.0

9 𝑀 (𝐴
13) < 2.09

2
𝑚
(𝐴 17

) ≥
−0
.14 𝑚(𝐴

17)
< −0.14

3 2

𝑚
(𝐴 18

) ≥
−0
.63

𝑚(𝐴
18)
< −0.63

3 2

𝑚
(𝐴 3)

≥ 0.0
9 𝑚(𝐴

3)
< 0.09

Figure 4 Static tree without neural features, seed 6, NATOPS.

𝜏

⟨𝐿⟩
(𝑁 (

𝐴2)
≥ −0.2

4) [𝐿] (𝑁 (𝐴2) < −0.24)

6

𝑁
(𝐴 1)

≥ 1.1
2

𝑁 (𝐴1)
< 1.12

4 5

⟨𝐸
⟩(𝑁

(𝐴 13
) ≥

−0
.68
)[𝐸] (𝑁 (𝐴13)

< −0.68)

⟨𝐿⟩
(𝑁 (

𝐴5)
≤ −2.1

5) [𝐿] (𝑁 (𝐴5) > −2.15)

1 2

𝑁
(𝐴 11

) ≤
1.8

4 𝑁 (𝐴11)
> 1.84

3
⟨𝐿⟩

(𝑁
(𝐴11)

≥ 2.5
1) [𝐿] (𝑁 (𝐴11) < 2.51)

⟨𝐿⟩
(𝑚
(𝐴 19)

≥ 2.0
9) [𝐿] (𝑚(𝐴19) < 2.09)

2
𝑁
(𝐴 6)

≥ −
0.0

8
𝑁 (𝐴6)

< −0.08

2 3

⟨𝐴
⟩(𝑁

(𝐴 23
) ≤

−0
.99
)[𝐴] (𝑁 (𝐴23)

> −0.99)

3 2

⟨𝐿
⟩(𝑁

(𝐴 11
) ≥

1.5
7) [𝐿] (𝑁 (𝐴11)

< 1.57)

Figure 5 Temporal tree with neural features, seed 6, NATOPS.

one, indicating that the temporal tree was able to extract the essence, in some sense, of this
class, in a single formula. Observe that class 5 is classified correctly only 51% of the times
in the static tree versus 94% of the times in the temporal one, in average, and 53% in the
static case versus 93% in the temporal one for the considered trees. More in particular, as it
can be deduced from the observation of the confusion matrices in both cases (Tab. 5), the
static tree confuses class 5 with class 4 very often, and, in lesser amount, with class 6, while

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:13

0 1 2 3 . . . 𝑝 𝑝 + 1 . . . 𝑁 − 1

𝑁 (𝐴1) ≥ 1.12 ∧ 𝑁 (𝐴2) ≥ −0.24

}
𝑁 (𝐴13) < −0.68

Figure 6 A model for class 5 of the NATOPS dataset.

the temporal neural tree presents similar mistakes a very reduced number of times. In other
words, the temporal neural approach was able to extract a smaller and more precise logical
description of class 5, which can be summarized into a single temporal formula:

⟨𝐿⟩(𝑁 (𝐴2) ≥ −0.24 ∧ 𝑁 (𝐴1) ≥ 1.12 ∧ [𝐸]𝑁 (𝐴13) < 0.68) ⇒ 5,

which, in turn, can be expressed as a temporal model to visualize, in a sense, the class
itself (see Fig. 6 and recall our discussion from the previous section on the witnesses for the
left/right branch). To finalize this discussion, we observe that, in the static case, 7 variables
were involved in the decision tree for class 5, while in the temporal case only 3 variables were
sufficient.

5 Conclusions

In this paper we have presented a method for multivariate time series classification that
combines the high generalization capacity of trained neural networks with the symbolic
nature of temporal decision trees. This method is able to learn the structure of a temporal
decision trees from raw multivariate time series, and, internally (at each decision node)
performs both a qualitative analysis by means of entity-relation reasoning and a quantitative
one by means of neural features extracted from pre-trained neural networks. Although based
on a proof-of-concept implementation, our experiments performed on public datasets showed
promising results, and allowed us to draw some initial conclusions: (i) the hybridization
between temporal decision trees and neural networks seems quite natural; (ii) the obtained
method offers a statistically significant improvement in performances over its constituents;
(iii) such an improvement seems to be higher in more complicated problems.

As future work, we plan to perform a more systematic experimental benchmark, explore
different neural network architectures, which have been successfully applied to the problem of
multivariate time series classification, and investigate higher context sizes. More importantly,
we plan to explore all different hybridization schemata, and compare them against each other
and against the standard approach. Finally, a similar idea can be pursued in the spatial case,
where neural networks have shown even more predictive ability than in the temporal one.

References
1 S. Alaniz, D. Marcos, B. Schiele, and Z. Akata. Learning decision trees recurrently through

communication. In Proc. of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13518–13527, 2021.

2 L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M. El-Sharkawai, and R.J.
Marks. A performance comparison of trained multilayer perceptrons and trained classification
trees. Proc. of the IEEE International Conference on Systems, Man and Cybernetics (SMC),
78(10):1614–1619, 1990.

TIME 2022

13:14 Neural-Symbolic Temporal Decision Trees for Multivariate Time Series Classification

3 A. J. Bagnall, J. Lines, A. Bostrom, J. Large, and E. J. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

4 D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate, 2014. doi:10.48550/arXiv.1409.0473.

5 L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression trees.
Wadsworth Publishing Company, 1984.

6 R. P. Brent. Fast training algorithms for multilayer neural nets. IEEE Transactions on Neural
Networks, 2(3):346–354, 1991.

7 M. W. Craven and J. W. Shavlik. Extracting tree-structured representations
of trained networks. In Proc. of the 8th Advances in Neural Information Pro-
cessing Systems (NIPS), pages 24–30, 1995. URL: http://papers.nips.cc/paper/
1152-extracting-tree-structured-representations-of-trained-networks.

8 D. Dancey, D. McLean, and Z. Bandar. Decision tree extraction from trained neural networks.
In Proc. of the 7th International Florida Artificial Intelligence Research Society Conference
(FLAIRS), pages 515–519, 2004.

9 A. S. d’Avila Garcez, M. Gori, L. C. Lamb, L. Serafini, M. Spranger, and S. N. Tran. Neural-
symbolic computing: An effective methodology for principled integration of machine learning
and reasoning. Journal of Applied Logics, 6(4):611–632, 2019.

10 A. S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. Neural-Symbolic Cognitive Reasoning.
Cognitive Technologies. Springer, 2009.

11 H. I. Fawaz, G. F., J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time series
classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

12 H. Guo and S. B. Gelfand. Classification trees with neural network feature extraction. IEEE
Transactions on Neural Networks, 3(6):923–933, 1992.

13 J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of the
ACM, 38(4):935–962, 1991.

14 G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network, 2015.
doi:10.48550/arXiv.1503.02531.

15 I. Ivanova and M. Kubat. Initialization of neural networks by means of decision trees.
Knowledge-Based Systems, 8(6):333–344, 1995.

16 Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,
Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec:
Learning a vector representation of time, 2019. doi:10.48550/arXiv.1907.05321.

17 P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulò. Deep neural decision forests. In
Proc. of the International Conference on Computer Vision (ICCV), pages 1467–1475, 2015.

18 R. Krishnan, G. Sivakumar, and P. Bhattacharya. Extracting decision trees from trained
neural networks. Pattern Recognition, 32(12):1999–2009, 1999.

19 M. Kubat. Decision trees can initialize radial-basis function networks. IEEE Transactions on
Neural Networks, 9(5):813–821, 1998.

20 M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning and deep
learning for time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

21 T. Li, L. Fang, and A. Jennings. Structurally adaptive self-organizing neural trees. In Proc.
of the International Joint Conference on Neural Networks (IJCNN), volume 3, pages 329–334,
1992.

22 F. Manzella, G. Pagliarini, G. Sciavicco, and I. E. Stan. Interval temporal random forests
with an application to COVID-19 diagnosis. In Proc. of the 28th International Symposium
on Temporal Representation and Reasoning (TIME), volume 206 of LIPIcs, pages 7:1–7:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

23 C. Micheloni, A. Rani, S. Kumar, and G. L. Foresti. A balanced neural tree for pattern
classification. Neural Networks, 27:81–90, 2012.

https://doi.org/10.48550/arXiv.1409.0473
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.1907.05321

G. Pagliarini, S. Scaboro, G. Serra, G. Sciavicco, and I. E. Stan 13:15

24 M. Minsky. Logical versus analogical or symbolic versus connectionist or neat versus scruffy.
AI Magazine, 12(2):34–51, 1991.

25 C. Murdock, Z. Li, H. Zhou, and T. Duerig. Blockout: Dynamic model selection for hierarchical
deep networks. In Proc. of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2583–2591, 2016.

26 V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and D. Comaniciu. Deep decision network for
multi-class image classification. In Proc. of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2240–2248, 2016.

27 G. Pagliarini, F. Manzella, G. Sciavicco, and I. E. Stan. ModalDecisionTrees.jl: Interpretable
models for native time-series & image classification, 2021. doi:10.5281/zenodo.7040419.

28 J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
29 A. Pasos Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. J. Bagnall. The great multivariate

time series classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 35(2):401–449, 2021.

30 G. P. J. Schmitz, C. Aldrich, and F. S. Gouws. ANN-DT: An algorithm for extraction
of decision trees from artificial neural networks. IEEE Transactions on Neural Networks,
10(6):1392–1401, 1999.

31 G. Sciavicco and I. E. Stan. Knowledge extraction with interval temporal logic decision trees. In
Proc. of the 27th International Symposium on Temporal Representation and Reasoning (TIME),
volume 178 of LIPIcs, pages 9:1–9:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020.

32 I. K. Sethi. Entropy nets: From decision trees to neural networks. Proc. of the IEEE,
78(10):1605–1613, 1990.

33 R. Setiono and W. K. Leow. On mapping decision trees and neural networks. Knowledge-Based
Systems, 12(3):95–99, 1999.

34 R. Setiono and H. Liu. A connectionist approach to generating oblique decision trees. IEEE
Transactions on Systems, Man and Cybernetics – Part B, 29(3):440–444, 1999.

35 J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms: An
experimental comparison. Machine Learning, 6:111–143, 1991.

36 N. Srivastava and R. Salakhutdinov. Discriminative transfer learning with tree-based priors. In
Proc. of the 26th Advances In Neural Information Processing Systems (NIPS), pages 2094–2102,
2013.

37 I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Proc. of the 27th Advances in Neural Information Processing Systems (NIPS), pages 3104–3112,
2014.

38 G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural networks.
Machine Learning, 13:71–101, 1993.

39 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Proc. of the 30th Advances in Neural Information
Processing Systems (NIPS), pages 5998–6008, 2017.

40 A. Wan, L. Dunlap, D. Ho, J. Yin, S. Lee, S. Petryk, S. Adel Bargal, and J. E. Gonzalez.
NBDT: Neural-Backed Decision Tree. In Proc. of the 9th International Conference on Learning
Representations (ICLR), 2021.

41 Z.-H. Zhou and Z. Chen. Hybrid decision tree. Knowledge-Based Systems, 15(8):515–528,
2002.

42 Z.-H. Zhou and Y. Jiang. NeC4.5: Neural Ensemble Based C4.5. IEEE Transactions on
Knowledge and Data Engineering, 16(6):770–773, 2004.

TIME 2022

https://doi.org/10.5281/zenodo.7040419

	1 Introduction
	2 Related Work
	3 Neural-Symbolic Temporal Decision Trees
	4 Experiments
	5 Conclusions

