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Abstract: Severe aortic stenosis (AS) is the most common valve disease in the elderly and is associated
with poor prognosis if treated only medically. AS causes chronic pressure overload, concentric
left ventricular (LV) hypertrophy, myocardial stiffness, and diastolic dysfunction. This adverse
remodeling also affects the left atrium (LA), which dilates and develops myocardial fibrosis, with a
reduction in intrinsic function and a consequent high risk of the development of atrial fibrillation.
Speckle-tracking echocardiography is able to detect myocardial dysfunction before other conventional
parameters, such as LV ejection fraction, and also predict clinical outcomes. This review aims at
describing LV and LA remodeling in AS and before and after aortic valve replacement and the
usefulness of myocardial strain analysis in this clinical setting.
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1. Introduction

Aortic stenosis (AS) is the most common heart valve disease both in Europe and North
America [1]. Its incidence is increasing due to the aging of the population, reaching a
prevalence of 4–5% in individuals over 65 years [2,3]. The most common cause of AS is
degeneration and calcification of the leaflets, irrespective of the valve anatomy, tricuspid
or bicuspid. This etiology accounts almost for 80% of cases in Western Europe, followed
by rheumatic disease, which is characterized by commissural fusion with leaflet retraction
and is more common in less industrialized countries [4].

The normal aortic valve area is >2 cm2. In AS, the valve opening gradually decreases
and the degree of stenosis becomes severe with a valvular area lower than 1 cm2 [5]. The
resulting obstruction causes a pressure overload on the left ventricle (LV) with the devel-
opment of concentric myocardial hypertrophy as an adaptive mechanism to reduce wall
stress. Early in the disease process, such changes lead to diastolic dysfunction due to the
reduction of LV compliance, while systolic performance is only mildly compromised. Later
on, myocardial contractile function and deformation become impaired and, consequently,
cardiac output falls. These changes can easily be followed by the accurate recording of
trans-valvular Doppler velocities and pressure drop, which both drop as the systolic func-
tion becomes significantly compromised. The left atrium (LA) also shares some of these
cardiac morphological changes, with its size increasing due to chronic pressure overload,
which eventually leads to an increase in pulmonary venous and arterial pressure [6], with
resulting heart failure (HF) symptoms development and, often, atrial fibrillation (AF) [7].
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The prognosis of patients with untreated symptomatic severe AS is poor, affecting
approximately 80% of patients within 4 years of the onset of clinical manifestations [8]. AS
has therefore become the most frequent indication for surgical and percutaneous interven-
tion among structural heart diseases. According to the latest ESC/EACTS guidelines for
the management of valvular disease, intervention for severe AS is indicated, irrespective
of symptoms, in patients with one of these conditions, either isolated or associated: sys-
tolic dysfunction in absence of other causes; severe AS with mean gradient ≥ 60 mmHg;
rapid progression and markedly elevated BNP levels, particularly in those with estimated
poor prognosis [9]. The type of intervention should be decided based on the heart team
evaluation. Surgical aortic valve replacement (SAVR) remains the first choice in patients
<75 years of age with low surgical risk, while transcatheter aortic valve replacement (TAVR)
is preferred in those >75 years with high surgical risk [9]. SAVR provides greater guarantees
regarding prosthesis durability and has lower rates of permanent pacemaker implantation
and vascular complications. On the other hand, TAVR is associated with a lower probability
of bleeding, acute kidney injury, and shorter hospital stay. Another important difference
between the two approaches is the rate of new-onset AF, which is lower in TAVR, because
of the lower impact of the procedure on LA, with reported respective probability of 5–20%
and 30–60% for developing AF [10–12].

LA and LV remodeling can be noninvasively assessed with echocardiography. In the
last years, speckle-tracking echocardiography (STE) has emerged as an easy, quick, and
advanced tool to provide early detection of myocardial functional and structural properties.
Much research showed cardiac chamber remodeling anticipating the changes in basic
echocardiographic parameters, with important diagnostic and prognostic implications.

The aim of this review is to provide information on the pathophysiology of left atrial
remodeling after SAVR and TAVR in patients with AS and to provide an overview of the
increasing evidence on the use of speckle-tracking echocardiography to detect these changes.
A literature review was conducted to identify English language studies in Pubmed from
2009 to 2022, using combinations of the following search terms: ‘left atrial,’ ‘remodelling’
or ‘remodeling’, ‘aortic valve replacement’, ‘aortic valve repair’, ‘aortic valve implantation’,
‘speckle-tracking echocardiography’, ‘myocardial strain’. Examination of reference lists
of these studies yielded additional studies. Studies were reviewed by two independent
authors and then used for the first paper draft, which was implemented and reviewed by
all the authors.

2. Left Atrial Remodeling and Myocardial Fibrosis in Aortic Stenosis

LV and LA function are closely related; in fact, the latter modulates LV filling and plays
an important role in the diastolic phase of the cardiac cycle, while LV function influences LA
contraction and relaxation. This interdependence means that changes in the intracavitary
pressures of one chamber also affect the other [13].

In AS, systolic pressure overload leads to compensatory concentric LV hypertrophy to
preserve normal wall stress and EF [14]. Wall thickening causes diastolic dysfunction due
to decreased compliance and impaired relaxation, which requires raised filling pressures in
order to maintain normal end-diastolic volume. This is reflected in the LA, which undergoes
adverse remodeling [15]. These hemodynamic adaptations determine excessive activation
of cardiac fibroblasts with resulting collagen formation. Consequently, the progressive
extracellular matrix (ECM) expands, and LV and LA myocardial fibrosis develop [16].
This chronic process is first adaptive but progressively results in significant disturbances
of myocardial fiber architecture. The enhanced ECM incorporates cardiac myocytes and
microvascular cells leading to myofibrils dysfunction, increased wall stiffness, and impaired
relaxation [17]. Such LA structural and function changes eventually lead to the deterioration
of diastolic function, and HF symptoms and predispose patients to arrhythmias such
as AF [Figure 1].
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Figure 1. Mechanism underlying clinical deterioration in aortic stenosis. ECM, extracellular matrix; 
HF, heart failure; LA, left atrium; LV, left ventricle. 

Cardiac magnetic resonance (CMR) with late gadolinium enhancement (LGE) is cur-
rently the gold standard imaging technique for the detection and quantification of both 
focal and diffuse myocardial fibrosis [18]. Gadolinium deposits in extracellular space al-
low the identification of fibrosis as areas of hyper-intensity on T1-weighted images, which 
appear a few minutes after contrast infusion. It is a reliable technique that has been vali-
dated against myocardial biopsy findings [19]. However, CMR has its known limitations, 
particularly limited availability, accessibility, and high costs. 

More recently, STE has been used to evaluate myocardial function, showing high ac-
curacy in detecting myocardial fibrosis and early LA function disturbances, particularly 
in patients with preserved LV EF and normal LA volume quantified by two-dimensional 
measurements [20]. This technique offers a measure of myocardial deformation through 
the analysis of conventional echocardiographic images acquired on a stable ECG tracing; 
it is increasingly available on echocardiographic machines as well and may be applied to 
all cardiac chambers. The use of STE in assessing LA reservoir function, measuring peak 
atrial longitudinal strain (PALS), proved superior over conventional echocardiographic 
parameters for the diagnostic and prognostic evaluation of HF with both reduced and 
preserved EF [21,22] as well as predicting new-onset AF [23,24]. Indeed, several studies 
have shown the ability of STE in identifying myocardial fibrosis that correlated with his-
topathological analyses in different settings, such as patients undergoing surgical valve 

Figure 1. Mechanism underlying clinical deterioration in aortic stenosis. ECM, extracellular matrix;
HF, heart failure; LA, left atrium; LV, left ventricle.

Cardiac magnetic resonance (CMR) with late gadolinium enhancement (LGE) is cur-
rently the gold standard imaging technique for the detection and quantification of both focal
and diffuse myocardial fibrosis [18]. Gadolinium deposits in extracellular space allow the
identification of fibrosis as areas of hyper-intensity on T1-weighted images, which appear a
few minutes after contrast infusion. It is a reliable technique that has been validated against
myocardial biopsy findings [19]. However, CMR has its known limitations, particularly
limited availability, accessibility, and high costs.

More recently, STE has been used to evaluate myocardial function, showing high
accuracy in detecting myocardial fibrosis and early LA function disturbances, particularly
in patients with preserved LV EF and normal LA volume quantified by two-dimensional
measurements [20]. This technique offers a measure of myocardial deformation through
the analysis of conventional echocardiographic images acquired on a stable ECG tracing;
it is increasingly available on echocardiographic machines as well and may be applied to
all cardiac chambers. The use of STE in assessing LA reservoir function, measuring peak
atrial longitudinal strain (PALS), proved superior over conventional echocardiographic
parameters for the diagnostic and prognostic evaluation of HF with both reduced and
preserved EF [21,22] as well as predicting new-onset AF [23,24]. Indeed, several studies
have shown the ability of STE in identifying myocardial fibrosis that correlated with
histopathological analyses in different settings, such as patients undergoing surgical valve
repair or heart transplantation, in whom PALS proved a good predictor of LA fibrosis
extension and was associated with clinical outcomes [25,26].
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3. Left Ventricular and Left Atrial Remodeling after Aortic Valve Replacement

Both surgical and transcatheter aortic valve replacement reduce trans-valvular pres-
sure drop (gradient) and increase the aortic valve orifice area. This leads to a reduction in
pressure overload and wall stress and, consequently, improvement of structural, systolic,
and diastolic LV parameters. Garg V. et al., in their systematic review of changes in myocar-
dial deformation after aortic valve replacement [27], have shown that LV ejection fraction
(EF) and global longitudinal strain (GLS) improve one week after surgical replacement of
the aortic valve. These rapid changes are mainly due to immediate LV pressure offloading
after the removal of the outflow tract resistance [28]. Early changes were seen within
a few days of SAVR [29–31] and TAVR [32,33]; however, TAVR patients seem to have a
greater early improvement in GLS, possibly due to the well-known myocardial stunning
and abnormal septal motion related to surgery [Figure 2].
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Figure 2. Structural and functional myocardial changes after surgical or transcatheter aortic valve
replacement. AV, aortic valve; EF, ejection fraction; LA, left atrium; LV, left ventricle; SAVR, surgical
aortic valve replacement; TAVR, transcatheter aortic valve replacement.

Studies have shown that myocardial recovery demonstrated by strain parameters
continues to develop for up to one year after TAVR [34,35] and 17 months for SAVR [36]
with evidence of better LV EF recovery after TAVR compared with SAVR [37,38]. These
late changes reflect a process of reverse remodeling after the restoration of normal heart
mechanics with partial regression of maladaptive changes after the removal of pressure
overload. However, there is a lack of histopathological data in the literature to confirm that
restoration of functional parameters after aortic valve replacement is also accompanied by
real regression of myocardial fibrosis.

Myocardial reverse remodeling after aortic valve replacement also involves the LA.
SAVR and TAVR both result in an improvement of LA atrial function with a reduction
in LA volume and an increase in PALS 40 days after intervention, which become stable
at the 3-month follow-up [27,39]. The main determinant of this structural and functional
recovery is the severity of AS evaluated by trans-valvular pressure drop, which indirectly
reflects chronic chamber-pressure overload and the extent of myocardial fibrosis. Moreover,
LA dimensions before aortic valve replacement have also been found to correlate with LA
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structural and functional recovery, suggesting that earlier intervention promotes better
myocardial remodeling and, though partial, more likely restoration of atrial function [40].

4. Clinical Implications

LA speckle-tracking analysis proved to be associated with clinical outcomes. Galli et al.
studied 128 patients with severe AS, a quarter of whom underwent TAVR, and found that
an overall PALS lower than 21% was a significant predictor of major adverse cardiovascular
events (MACE), unlike LA volume [41]. Other reports showed a modest but significant
association with clinical outcomes for PALS as well as preoperative LA volume and for
transvalvular pressure gradients [42,43].

LA function evaluated by STE proved also to be the strongest predictor of post-
operative atrial arrhythmias [44], which are the most frequent complication after cardiac
surgery but is not an uncommon finding after the transcatheter approach. A systematic
review and meta-analysis by Kawczynski et al. evaluated the correlation between pre-
operative transthoracic echocardiography and post-operative atrial fibrillation (POAF)
and showed the unique ability of PALS in predicting POAF [45]. Thus, patients’ risk
stratification based on the pro-arrhythmic substrate by echocardiographic evaluation (LA
strain assessment) should be considered an important tool in planning targeted prevention
measures such as pharmacological prophylaxis and careful fluid management both pre-
and early post-intervention in patients considered at high risk.

Furthermore, studies have shown that LA strain is one of the major determinants of
right heart pressures in patients with severe AS and preserved LV EF [46,47]. This could be
a further reason to routinely evaluate LA function in order not to delay the intervention
and to prevent the onset of irreversible pulmonary hypertension.

5. Speckle-Tracking Echocardiography (STE)—Technical Aspects

The STE technique has been developed on two-dimensional strain echocardiographic
imaging and is based on the analysis of standard two-dimensional grey-scale echocardio-
graphic images for myocardial function analysis. The speckle patterns (acoustic backscatter
generated by the reflected ultrasound beam) are followed frame by frame by the software,
using a statistical approach based on the detection of the best matching area. The displace-
ment of these speckles is expected to follow myocardial movement, tracing a movement
curve (negative in case of contraction, positive in case of relaxation), which is assumed to
represent myocardial deformation (and is considered as a percentage value [48]). Different
curves are traced to represent the movement of different chamber segments, and then the
software generates an average curve of the chamber deformation derived from the average
of the segmental curves. Sometimes, achieving such precision might not be easy because
of limited image acquisition. However, with the development of dedicated software for
the LA and the right ventricle as well, the accuracy of this technique has significantly
augmented also for lower-quality acoustic windows.

6. LA Longitudinal Myocardial Intrinsic Function by STE

LA intrinsic myocardial function is obtained using STE from the apical four- and
two-chamber views, applying the method described above for LV longitudinal myocardial
intrinsic function. Care should always be taken in obtaining true apical images using
standard anatomical landmarks to avoid foreshortening the LA, therefore allowing a clear
delineation of the LA endocardial border. As previously described [17,49]. LA endocardial
border is manually traced in both the four- and two-chamber views, thus delineating
a region of interest (ROI), consisting of six segments. After segmental tracking, quality
analysis, and manual adjustment of the ROI, the longitudinal strain curves are generated
by the software for each atrial segment. Peak atrial longitudinal strain (PALS), measured at
the end of the reservoir phase, is calculated by averaging values of all LA segments (global
PALS) and by separately averaging values from the four- and two-chamber views. Likewise,
peak atrial contraction strain (PACS), obtained during LA contraction, is measured as the
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average of all 12 segments (global PACS) and by separately averaging values from the two
apical views (four- and two-chamber PACS) [50] [Figure 3].
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7. Left Atrial Strain in Aortic Stenosis

PALS was shown to be correlated with prognosis in patients with several degrees of
AS [41,51], and with the development of post-operative AF caused by fibrosis, increased
myocardial stiffness, and altered relaxation [44], also regardless of pre-existing LA dilata-
tion [52]. In addition, LA strain was the major determinant of pulmonary hypertension
in patients with severe AS and preserved LV EF [47] and a marker of LA remodeling after
transcatheter aortic valve replacement [38], suggesting that a serial evaluation of LA func-
tion in these patients could help to provide early surgical treatment also in AS before the
development of pulmonary hypertension and irreversible LA damage. However, further
research is warranted on this topic.

8. Conclusions

AS is one of the most frequent valvular heart diseases requiring surgical treatment.
Pressure overload due to aortic valve stenosis results in adverse LV and LA remodeling
with the development of myocardial fibrosis and diastolic dysfunction with an increased
risk of HF and AF. This adaptation is only partially reversible, and recovery is not complete
even after aortic valve replacement. The reduction of longitudinal strain evaluated by
STE proved to be closely related to myocardial fibrosis and, indeed, is a good predictor of
cardiac outcome and the development of atrial arrhythmias.

The latest ESC guidelines on the management of valvular heart diseases consider
invasive treatment of AS based on patient symptoms or LV impairment evaluated by
EF but do not consider strain evaluation when deciding on the optimal timing of valve
replacement. This strategy often results in late management with irreversible cardiac
structural changes. As illustrated in this review, alterations in LV GLS and PALS are able to
detect myocardial dysfunction before the reduction of EF and LA enlargement take place.
In the near future, their routine use in clinical practice could help identify patients requiring
earlier invasive treatment in order to improve post-operative outcomes and recovery.
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