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a b s t r a c t 

Speech processing entails a complex interplay between bottom-up and top-down computations. The former is re- 

flected in the neural entrainment to the quasi-rhythmic properties of speech acoustics while the latter is supposed 

to guide the selection of the most relevant input subspace. Top-down signals are believed to originate mainly from 

motor regions, yet similar activities have been shown to tune attentional cycles also for simpler, non-speech stim- 

uli. Here we examined whether, during speech listening, the brain reconstructs articulatory patterns associated 

to speech production. We measured electroencephalographic (EEG) data while participants listened to sentences 

during the production of which articulatory kinematics of lips, jaws and tongue were also recorded (via Electro- 

Magnetic Articulography, EMA). We captured the patterns of articulatory coordination through Principal Compo- 

nent Analysis (PCA) and used Partial Information Decomposition (PID) to identify whether the speech envelope 

and each of the kinematic components provided unique, synergistic and/or redundant information regarding the 

EEG signals. Interestingly, tongue movements contain both unique as well as synergistic information with the 

envelope that are encoded in the listener’s brain activity. This demonstrates that during speech listening the brain 

retrieves highly specific and unique motor information that is never accessible through vision, thus leveraging 

audio-motor maps that arise most likely from the acquisition of speech production during development. 
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. Introduction 

Verbal interaction is an essential part of human behavior and our

rains are tuned to decode speech. Neural oscillations in the delta and

heta range are believed to play a key role in shaping speech perception

 Giraud and Poeppel, 2012 ; Meyer, 2018 ). Indeed, coupling of brain os-

illatory activity to the quasi-rhythmic properties of speech, or speech

eural entrainment ( Obleser and Kayser, 2019 ), positively scales with

peech intelligibility ( Ghitza, 2012 ; Peelle et. al., 2013 ; Ding and Simon

014 ; Kayser et al., 2015 ; Riecke et al., 2018 ) and is tightly related to

peech comprehension performance ( Ahissar et al., 2001 ; Luo and Poep-

el, 2007 ; Peelle et. al., 2013 ; Gross et al., 2013 ; Ding and Simon, 2014 ).

mportantly, rhythmic neural electrical stimulation causally modulates

peech comprehension performance ( Zoefel et al., 2018a ; Riecke et al.,

018 ; Kösem et al., 2020 ) providing compelling evidence that the brain

scillatory activity is functionally relevant for speech processing (but

ee Zoefel et al. 2018b for a discussion on alternative interpretations of

he neural entrainment phenomenon). 

Brain entrainment to speech in the delta and theta band is suggested

o increase comprehension via a facilitation of task-relevant information
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 Obleser and Kayser, 2019 ). The cocktail party effect ( Cherry, 1953 ;

ing and Simon, 2012 ) is an example of this effect where selective

ttention translates into increased neural entrainment to the attended

coustic stream ( Golumbic et al., 2012 , 2013 a; Kerlin et al., 2010 ;

’Sullivan et al., 2015 ; Vander Ghinst et al., 2016 ). Furthermore, if

ther speech-related cues are available, neural activity can also entrain

o these signals. For instance, when acoustic intelligibility is compro-

ised, oscillatory occipital activity couples to the periodicity of lip/face

ovements ( Giordano et al., 2017 ; O’Sullivan et al., 2021 ; Park et al.,

016 ; Peelle and Sommers, 2015 ; Giordano et al., 2017 ). 

Unsurprisingly, speech comprehension mostly benefits from visual

ues in suboptimal listening conditions ( Sumby and Pollack, 1954 ;

chroeder et al., 2008 ; Golumbic et al., 2013 a). Neural entrainment to

peech thus reflects top-down influences ( Kösem et al., 2018 ; Di Lib-

rto et al., 2018 ; Cope et al., 2017 ) which are driven by prior knowl-

dge and/or context to predict the temporal structure of the heard stim-

li ( Calderone et al., 2014 ; Poeppel, 2003 ; Keitel, Gross and Kayser,

018 ; Poeppel and Assaneo, 2020 ). One source of top-down modulation

s located in the frontal lobe, as supported by the finding that oscil-

atory activity in the left inferior frontal cortex (between 1 and 3 Hz)
nd Communication (CTNSC@Unife), Italian Institute of Technology (IIT), Via 

silio) . 
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Fig. 1. Kinematic principal components. A. Schematic of the positions of the 

electromagnetic sensors: upper lip (UL), lower lip (LL), upper jaw (UJ), lower 

jaw (LJ), tongue tip (TT), tongue middle (TM), tongue back (TB). B. Variance 

Accounted For (VAF %) for all 21 principal components. Only components ex- 

plaining at least 5% of variance were retained for further analyes (PC1, 2, 3, 4; 

cumulative variance in the inset). C. Bar plots represent the weights (absolute 

values) of each kinematic variable (x-, y- and z-axis for each sensor) for the PC1, 

2, 3, 4. Dot size in the three vocal tract schematics show the relative contribu- 

tion of each sensor across the movement axis (x, y and z respectively in red, 

blue and green). 
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nd motor cortex (between 4 and 8 Hz) modulates the phase of low-

requency activity in auditory areas ( Park et al., 2015 ). This modula-

ion may reflect a domain-general mechanism extending beyond speech

rocessing with the motor system orchestrating sensory processing in

ime ( Morillon and Baillet, 2017 ). Whether the motor system provides

omain-general temporal predictions or richer domain-specific informa-

ion about articulatory features, is however still unclear. Indeed, top-

own motor influences may exploit action circuits to implement an in-

ernal ‘simulation’ of movements ( Morillon et al., 2019 ; Arnal and Gi-

aud 2012 ; Schubotz 2007 ). 

To investigate this relevant question, we designed an EEG ex-

eriment where participants listened to auditorily presented sen-

ences. The sentences were obtained from a publicly available dataset

 Canevari et al., 2015 ) in which acoustic data is synchronized with artic-

latory data recorded via electromagnetic articulography (EMA). EMA

ses miniaturized sensor coils placed on articulators (lips, jaws, tongue)

o measure accurate position data with a high sampling frequency dur-

ng speech production. Of key relevance to the current research is that

he EMA provides the accurate description of speech articulators that is

ssential to uncover whether motor information contributes to the rep-

esentation of speech in the listener’s brain. To this end, we used the Par-

ial Information Decomposition (PID) method ( Williams and Beer 2010 ;

nce, 2017 ) that is designed to separate unique, redundant (shared), or

ynergistic (complementary) information provided by two source sig-

als (here speech envelope and kinematic data) about a third target sig-

al (here brain activity). We thus tested whether articulatory kinematics

s encoded during listening and conveys information about speech that

annot be obtained from the speech envelope alone, i.e. unique neu-

al information about kinematics or synergistic neural representation of

peech envelope and kinematics (a better prediction of the neural re-

ponse from both modalities simultaneously). Our hypothesis was that,

f speech-related neural entrainment entails also a domain-specific mo-

or process, entrainment to speech kinematics will be observed. 

. Methods 

.1. Participants 

A total of 23 healthy naive volunteers were recruited for this study

nd were paid 30 € for their participation. All participants were native

peakers of Italian, right-handed (by self-report) and had a normal or

orrected-to-normal vision. One participant was excluded because of

echnical problems during data acquisition. Analysis was performed on

ata from the remaining 22 participants (13 females; age: 23.04 ± 3.44;

EAN ± SD). Participants were informed about the experimental proce-

ure and gave their written consent before participation. The exper-

ment was approved by the local ethical committee “Comitato Etico

nico della Provincia di Ferrara ” (approval N. 170592). 

.2. Stimuli 

The stimuli were selected from the Multi-SPeaKing-style Articula-

ory corpus (MSPKA; Canevari et al., 2015 ) which comprises simulta-

eous recordings of audio and articulatory (lips, jaws and tongue) data

f three mother-tongue speakers pronouncing sentences in Italian. Au-

io was recorded at a sampling rate of 22.05 kHz. Articulators were

racked at a sampling frequency of 400 Hz by means of an electromag-

etic articulography system (EMA; NDI Wave, Northern Digital Instru-

ents, Canada; Berry, 2011). The EMA data provides a very accurate

haracterization of mouth kinematics and it is commonly used in speech

echnology research ( Savariaux et al., 2017 ). In the present study, we

sed data corresponding to x, y, and z positions of 7 sensor coils glued

n the upper lip (UL), lower lip (LL), upper jaw (UJ), lower jaw (LJ),

ongue tip (TT), tongue middle (TM) and tongue back (TB) (see Fig. 1

or a schematic illustration). 
2 
For this study, we used 50 sentences (duration ranging from 6.2 to

.4 s) pronounced by the same female speaker (referred to as “lls ” within

he dataset). The acoustic stimuli were manually checked and processed

o remove any silent and/or noisy part at the beginning and at the end

f the sentences. All acoustic stimuli were then normalized to the same

verage intensity (71 dB). Data corresponding to one sentence (out of

0) were discarded from the analysis because the corresponding EMA

ata turned out to be corrupted. During the experiment, participants

ere provided only with the acoustic stimuli. The corresponding EMA

ata were only used for data analysis (see below). 

.3. Experimental setup and procedure 

Participants sat at a ∼80 cm distance in front of an LCD monitor

VIEWPixx/EEG; 24", 120 Hz) with their right hand resting on a button-

ox (Cedrus RB-840 response Box). On each trial, participants were pre-

ented with a black fixation cross at the center of a uniformly gray

creen; after a variable time (ranging between 0.1 and 1.1 s), a ran-

omly selected sentence was presented acoustically via two loudspeak-
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Fig. 2. Acoustic and kinematic stimuli features. A. Example time series of the 

raw speech signal (blue), its envelope (black) and the kinematic PCs correspond- 

ing to the same stimulus. B. Normalized (1/f) power spectra for all features 

(envelope, PC1, PC2, PC3 and PC4). 
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rs placed at ∼20 cm from both sides of the screen. The fixation cross was

emoved after a variable time (between 0.1 and 1.1 s) from the end of

he acoustic stimulus, and one word appeared at the center of the screen.

he presented word rhymed 50% of the time with one of the words con-

ained in the previously heard sentence. The word was selected to rhyme

ith any word in the sentence excluding the first, the last and all mono-

yllabic ones. Participants had to indicate whether the word rhymed or

ot by pressing one of two buttons, located few centimeters apart, using

lways the same finger (the right index). The rhyming task was included

o encourage participants to listen attentively to the whole sentences.

o avoid possible biases in the participants’ responses, we ensured that

hyming and non-rhyming words were matched for number of sylla-

les and their frequency of use in the Italian language by means of an

nline software tool ( http://linguistica.sns.it/esploracolfis/home.htm ).

ifferent words were presented for each repetition of the same sentence

amounting to 4 words for each sentence, 200 words in total). 

Every trial ended when participants provided their response in the

hyming task; trials were automatically ended if no response was pro-

ided within 10 s. Participants were asked to reduce blinks as much

s possible and maintain their eyes on the fixation cross for the whole

uration of the sentence. 

The experiment consisted of four separate blocks of 50 trials

ach (200 trials in total), with short in-between breaks. The whole

xperiment lasted about 2 h, including the EEG cap mounting and

reparation. Stimulus presentation and button-press acquisition were

ontrolled via Matlab (The Math Works, Inc.; https://www.mathworks.

om ; RRID:SCR_001622) and the PsychToolbox-3 extensions

 http://psychtoolbox.org ; RRID:SCR_002881). All relevant events

n the trial (e.g., trial start, stimulus onset, button press) were con-

erted in a TTL by the VIEWPixx/EEG system to accurately synchronize

hem with the EEG data. 

. EEG recording and analyzes 

EEG data were recorded continuously during the experiment with a

4-channel active electrode system (BrainAmp MR Plus, Brain Products

mbH, Gilching, Germany). Electrooculograms (EOGs) were recorded

sing 4 electrodes from the cap (FT9, FT10, PO9, and PO10) that were

emoved from their original scalp sites and placed bilaterally at the outer

anthi and below and above the right eye to record horizontal and verti-

al eye movements, respectively. All electrodes were online referenced

o the left mastoid. The impedance of the electrodes was kept below

0 k Ω. EEG signals were acquired at 1000 Hz. 

Analyzes were performed within the Matlab and Python com-

uting environments, using open-source toolboxes and libraries

uch as Fieldtrip ( http://www.fieldtriptoolbox.org ; RRID:SCR_004849)

 Oostenveld et al., 2011 ), MNE ( Gramfort et al., 2013 ) and PID library

 https://github.com/robince/partial- info- decomp ) as well as custom-

ade code. Analyzes were performed only on trials in which participants

ave correct responses in the rhyming task (76.3 ± 7.5%; MEAN ± SD;

ange 64.5–89.5%; See supplementary Fig. 1). 

.1. Speech envelope extraction 

The amplitude envelope of the acoustic speech signals was calcu-

ated by adapting a previously described method ( Smith et. al., 2002 ,

ark et al., 2018 ). As in the Chimera toolbox ( Smith et al., 2002 ), we

efined 6 frequency bands in the range 80–8820 Hz that are equally

paced on the cochlear map. The speech signal was first filtered within

hose six frequency bands (MNE filter_data function, two-pass Butter-

orth filter, 4th order). Then, we computed the absolute value of the

ilbert transform for each bandpass-filtered signal. Finally, the speech

nvelope was obtained by summing up the result across all the frequency

ands. The envelope was down-sampled to 400 Hz to match the sam-

ling frequency of the EMA data. 
3 
.2. Kinematic features extraction 

To capture meaningful speech coordination patterns in the high-

imensional EMA data (i.e., 7 sensors X 3 dimensions = 21 time se-

ies of position data) we used a dimensionality reduction technique.

e applied Principal Component Analysis (PCA) as implemented in the

ieldtrip Toolbox (function: ft_componentanalysis; method: pca). PCA

utputs feature activations over time (principal components [PCs], see

ig. 2 A) that explain part of the variance in the EMA measurements and

re orthogonal to each other. Furthermore, PCA provides information

bout the relative contribution of each kinematic feature (PC weights,

ee Fig. 1 C) to the reconstruction of the EMA recordings in single trials.

y visually inspecting (the absolute values of) the PC weights it is thus

ossible to assess the physiological validity of the articulatory coordi-

ation pattern identified by each PC. 

.3. EEG pre-processing 

The continuous EEG data were band-pass filtered between 0.5 and

00 Hz (two-pass Butterworth filter, 4th order), and down-sampled

o 400 Hz to match the sampling frequency of the EMA data. Data

ere then re-referenced to the common average and time-aligned to

he acoustic stimulus onset (from -1 s to the duration of the longest

http://linguistica.sns.it/esploracolfis/home.htm
https://www.mathworks.com
http://psychtoolbox.org
http://www.fieldtriptoolbox.org
https://github.com/robince/partial-info-decomp
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Fig. 3. MI results. Topographical distribution of across-subjects average information values computed via Gaussian Copula Mutual Information performed on the 

broad-band filtered data (0.5–10 Hz). SE: Speech Envelope; PCi: Principal Components 1 to 4. Black dots highlight the electrodes belonging to the cluster(s) that 

survived one-tailed cluster-based statistics against circularly shifted data (alpha level = 0.05; see also Methods). 
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entence plus one second). Data were visually inspected, and noisy trials

ere removed. Independent component analysis (ICA) was then applied

o identify and remove artifacts related to eye movements and heart-

eat. Noisy channels (T8 for one subject) were excluded from the ICA

nalysis and substituted by linear interpolation of neighboring channels

after ICA-based artifact rejection). The total amount of trials retained

or further analysis was 142 ± 21.7 (MEAN ± SD). 

.4. Neural coupling to speech envelope and kinematic features 

To quantify neural coupling to speech production, we used mutual

nformation (MI), a measure of statistical dependence that captures any

ype of relationship (even non-linear and non-monotonic) between two

ignals ( Shannon, 1948 ). Our aim here was to uncover the neural repre-

entations of the different kinematic components in the brain of the lis-

ener and quantify the contribution of these representations to the neu-

al encoding of speech. To this end, we computed the MI between each

ecorded EEG signal and a) the speech envelope I(EEG;SE) and b) each

ne of the i = 1,…,4 extracted PCs (kinematic components) I(EEG;PCi).

efore computing MI, we first removed 1.5 s after sound onset for each

rial to exclude stimulus-locked evoked potentials. This interval was se-

ected to avoid any contamination from late event-related modulations

nd their slow return to the isoelectric. We then shifted the EEG signals

orward in time by 0.2 s relative to the SE and PCs based on preliminary

nalyzes showing that such a delay maximized information between

EG and all the source signals (See supplementary Fig. 2). The time-

hifting is consistent with the assumption that stimulus encoding nec-

ssarily follows stimulus presentation. Furthermore, an extensive litera-

ure has consistently shown that speech-brain coupling (entrainment)

s maximal at comparable lags of about 0.2 s (i.e., for brain activi-

ies following auditory/visual speech by 0.2 s; e.g., Gross et al. 2013 ;

’Sullivan et al. 2015 ; Keitel et al. 2017 ; Di Liberto et al. 2018 ). More

pecifically, we cut the SE and PCs signals from + 1.5 s relative to stim-

lus onset up to stimulus offset (variable length depending on stimulus

uration) and the EEG signals from + 1.7 s relative to stimulus onset

p to + 0.2 s after stimulus offset. Finally, all signals (EEG, SE, PCs)

ere padded (mirror padding) and then band-pass filtered between 0.5

nd 10 Hz (two pass Butterworth, 2nd order). This relatively broad fre-

uency range was set based on prior inspection of the power spectra of

oth acoustic (SE) and kinematic (PCs) signals, as it encompasses vir-

ually all of their spectral content (see Fig. 3 ). The choice of the high

ut-off frequency (10 Hz) is also consistent with evidence that coupling

etween brain activities and speech envelope is mostly confined to fre-

uencies below the alpha range ( Bröhl and Kayser, 2021 ). MI was then

alculated using a recent implementation of the Gaussian Copula Mu-

ual Information method which provides a lower bound of the actual MI

nd is robust to high-dimensional signals ( Ince et al., 2017 ). 
4 
.5. Partial information decomposition (PID) 

We then focused on a) the contribution of each kinematic compo-

ent and b) the interactions between speech and kinematic components

o the neural encoding of speech. We thus employed Partial Informa-

ion Decomposition (PID), a recent multivariate mathematical frame-

ork, originally proposed in Williams and Beer (2010) , to quantify and

haracterize representational interactions in the human brain. 

PID was performed using a recent modification of the original algo-

ithms, which is based on common change in surprisal ( Ince, 2017 ). 

PID decomposes the mutual information between a target vari-

ble and a multivariate set of predictor variables, called sources

 Timme et al., 2014 ). Indeed, if the sources are not statistically inde-

endent from the target, they will provide non-zero joint mutual infor-

ation about the target which, in other terms, indexes the degree of

ependence. PID allows then to disentangle this information, parcelling

t out into information that is uniquely carried by each of the sources

‘unique’), information that is shared by the sources (‘redundant’) and

nformation that is accessible only when considering the two sources

ogether (’synergistic’). 

Here, we considered the EEG measurement at each channel as the

arget signal. We run 4 different PID models, every time including as

ources: (1) the speech envelope (SE; derived directly from the acoustic

timuli), and (2) one of the 4 kinematic features (a different one for each

f the 4 models: PC1, 2, 3, 4; obtained from the EMA data through PCA;

ee above). The decomposition yielded 4 outcome terms: 

• U SE (EEG; SE): The unique information that the speech envelope car-

ries about the EEG signal and cannot be obtained from the kinematic

PCi. 
• U PCi (EEG; PCi): The unique information that the kinematic PCi car-

ries about the EEG signal and cannot be obtained from the speech

envelope. 
• SYN i (EEG; SE, PCi): The information that the joint observation of the

two predictors {SE; PCi} provides about the EEG signal that cannot

be obtained by observing each predictor separately. 
• RED i (EEG; SE, PCi): The information about EEG that is shared by

the two sources, SE and PCi, thus reflecting a common neural repre-

sentation of speech and kinematic component. 

If the interaction between SE and PCi is redundant (RED i ), the infor-

ation (about the EEG) that is carried by PCi can be obtained also from

E and vice versa. In other words, there will be no information loss if

ither the SE or the PCi is not available. In contrast, if the interaction

s synergistic (SYN i ), neural information is encoded by the relationship

etween SE and PCi. In other words, we would obtain a better estimate

f the EEG signal by considering SE and PCi together rather than in-

ependently. Finally, unique information (U) is carried by only one of
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B  
he two predictors. For example, a significant U PCi would suggest that

he corresponding brain response can only be predicted by that specific

inematic signal (PCi) and not by the speech envelope. 

In a first PID analysis, all the signals were pre-processed in the same

ay as described above for MI (i.e., epoching, relative time-shifting of

EG data), including band-pass filtering between 0.5 and 10 Hz. After

hese preprocessing steps, signals for all trials were concatenated and

opula normalized ( Ince et al., 2017 ). 

To further increase the granularity of our description, we explored

he temporal dimension by running the PID analyzes across different

ags (form -0.2 to 0.4 s, in 50-ms steps). We also performed a frequency-

esolved PID analysis to evaluate whether the acoustic and kinematic

eatures carry information at different spectral ranges. To this end, all

ignals were band-pass filtered by applying a sliding window along the

requency axis in the range between 0.5 and 10 Hz in steps of 0.5 Hz

nd with a frequency window length of 1 Hz. A separate PID was then

pplied for each band-pass filtered set of signals. 

.6. Statistical analysis 

The output values obtained both in the MI and PID analysis were

tatistically evaluated against surrogate data. The original relationship

etween the two signals (for the MI) or between the target (the EEG

ctivity) and the sources (the SE and the PCi) (for the PID) was de-

troyed without affecting the statistical properties of each signal, includ-

ng its autocorrelation structure ( Montemurro et al., 2007 ). More specif-

cally, the EEG activity at each electrode and for each trial (epoched

nd bandpass filtered as for the original analysis) was circularly shifted

y a number of samples that was randomly selected between N/4 and

-N/4, where N represent the number of samples of the shortest trial

i.e., 1892 samples). The time-shifted data were then submitted to the

ame processing steps as described above for the original data (i.e., trial

oncatenation, copula normalization) before applying the MI/PID algo-

ithms. As for the original analysis (see above), MI was computed be-

ween the EEG and each SE/PC feature (I(EEG;SE) and I(EEG;PCi) with

 = 1,…,4). The same applies for the PID analysis whereby 4 separate

IDs were run by including as sources the SE and one of the 4 kine-

atic PCs. This procedure was repeated 1000 times yielding a surro-

ate distribution for each participant and each information component

I SE , I PCi ; U SE , U PCi , SYN SE-PCi , RED SE-PCi ). We then applied one-tailed

luster-based permutation statistics ( Maris and Oostenveld, 2007 ) to test

t the group level whether the original information values were larger

han the mean of the surrogate distribution, i.e., the mean of the in-

ormation values obtained for the circularly shifted data. In practice,

ll samples exceeding an a priori decided threshold (here p < 0.05,

ne-tailed) for univariate statistical testing (dependent-samples t-test)

ere selected and subsequently clustered on the basis of their contigu-

ty along the spatial dimension. Cluster-level statistics was computed by

aking the sum of t-values in each cluster. This sum was then used as

est statistic and evaluated against the distribution of maximum clus-

er t-values obtained after permuting the original and circularly shifted

ata (at the level of participant-specific averages; 1000 permutations).

he p-value was finally calculated as the proportion of random permuta-

ions yielding a larger test statistic compared with that computed for the

on-permuted data. PID results were also statistically evaluated at the

ingle-subject level by computing (separately for each subject and each

lectrode) the probability that the original information values exceeded

he 95% of the distribution for the circularly shifted data. Resulting p-

alues were corrected for multiple comparisons across electrodes by con-

rolling the False Discovery Rate (FDR; as described in Benjamini and

ekutieli (2001) ). 

. Results 

Neural entrainment to the speech envelope ( Meyer, 2018 ;

iraud and Poeppel 2012 ; Keitel et al., 2018 ) – as well as the lips mo-
5 
ion ( Park et al., 2016 ; Giordano et al. 2017 ; Ozker et al., 2018 ) – are

ell-documented phenomena. However, only a fraction of speech artic-

lation is available to vision while most speech-relevant information is

n principle contained in hidden articulators (e.g. tongue movement).

e here set out to investigate whether articulatory kinematics that is

ot visually available to the listener still conveys information about

he produced speech that goes above and beyond that contained in

he speech envelope. We recorded the EEG brain-wide activity while

ative-language participants were listening to acoustic speech stim-

li taken from the Multi-SPeaKing-style Articulatory corpus (MSPKA;

anevari et al. 2015 ). This corpus contains simultaneous recordings of

udio and kinematic data of the articulatory tract (measured via electro-

agnetic articulography; see methods) while speakers were pronounc-

ng Italian sentences. The dimensionality of the articulatory data was

educed by means of PCA and the first 4 PCs accounting for most of the

ariance were selected for further analyzes to examine the relationship

etween the kinematics associated to speech production (in the speaker)

nd the listener’s ongoing brain activity. 

.1. Articulatory features 

The first 4 components derived from PCA explained most of the total

ariance of the kinematic data (85%; Fig. 1 ). Inspection of the compo-

ents weights shows that the first 2 components (PC1 and PC2) repre-

ented almost entirely movements of the tongue on the antero-posterior

x-) and vertical (z-) axis, respectively ( Fig. 1 ). Two of the movements

hat contribute significantly to articulation ( Perrier et al., 2007 ), such as

hat of the tongue towards (and away from) the lips (PC1) or the palate

PC2), were thus automatically identified by PCA. Lower lip and jaw

again along the antero-posterior as well as vertical axes) as well as the

ongue mainly contributed to PC3 which, despite explaining a smaller

mount of variance (10%) compared to the tongue movements (PC1:

2%; PC2: 17%), appeared to capture another meaningful articulatory

omponent, reflecting most likely mouth opening/closing, lip protrusion

nd lip-tongue coordination. Finally, a more composite mixture of artic-

lators moving along multiple directions contribute to PC4 (6%), possi-

ly reflecting complex tongue-lip movement synergies. The remaining

omponents explained negligible amounts of variance ( < 5% each) and

heir articulatory interpretation was less straightforward; these compo-

ents were thus excluded from further analysis. 

Examples of the reconstructed time series for the 4 retained kine-

atic components along with the corresponding speech envelope are

hown in Fig. 2 . The analysis of their spectral content reveals that

ll the kinematic components show spectral concentration over a low

requency range between 1 and 4 Hz (delta band); the speech enve-

ope instead, in line with previous evidence ( Bröhl and Kayser 2021 ;

oellin et al., 2014 ; Gross et al., 2013 ; Luo and Poeppel, 2007 ;

eelle and Davis,2012 ; Bosker and Ghitza 2018 ), is marked by relatively

igher frequencies, with a broad spectral peak between 4 and 8 Hz (theta

and). 

.2. Neural encoding of speech envelope and articulatory features 

Firstly, we evaluated whether the brain encodes the information

ontained in the speech envelope as well as in the hidden speech

inematics by computing the mutual information (MI; Shannon 1948 ;

nce et al. 2017 ) between the respective signal pairs (i.e., I(EEG;SE);

(EEG;PCi) with i = 1,…,4). As expected, MI for the speech envelope is

tatistically significant (higher than that obtained for surrogate data;

 < 0.0001, one-tailed cluster-based statistics; see Fig. 3 and Methods

or details) and maximal in two foci overlaying central electrodes and,

ore laterally, right temporo-parietal electrodes. Such a topography is

ndeed very similar to what reported in previous works when quantify-

ng neural speech entrainment with linear ( Molinaro and Lizarazu 2018 ;

oucher et al., 2019 ) as well as non-linear ( Kayser et al., 2015 ) coupling
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Fig. 4. PID results. Topographical distribution of across- 

subjects average information values obtained by PID ana- 

lyzes performed on the broad-band filtered data (0.5–10 Hz). 

SE: Speech Envelope; PCi: Principal Components 1–4. Black 

dots highlight the electrodes belonging to the cluster(s) that 

survived one-tailed cluster-based statistics against circularly 

shifted data (alpha level = 0.05; see also Methods). 

m  

l  

p  

w  

e

 

e  

e  

t  

p  

p  

u  

p  

T  

P

 

k  

fl  

t  

l  

P  

n  

w  

t  

c  

t  

e  

t  

(  

a  

i  

p  

p  

h  

a

 

e  

t  

r  

u  

i  

s  

1  

f  

f  

r  

n  

8  

g

 

a  

e  

p  

P  
etrics. Remarkably, we found consistent MI also for one of the ana-

yzed kinematic features, i.e., PC1, which mainly relates to the antero-

osterior movement of the tongue ( p < 0.0001). MI for PC1 – similar to

hat obtained for the speech envelope – largely increases over central

lectrodes and over right temporo-parietal electrodes ( Fig. 3 ). 

The speech envelope and the tongue movements (PC1) could, how-

ver, provide (brain-relevant) information that is either exclusive to

ach feature, fundamentally shared, or complementary between the

wo features. To disentangle among these different possibilities, we em-

loyed a computational approach known as Partial Information Decom-

osition (PID) ( Williams and Beer, 2010 ). The speech envelope carries

nique information in the 4 different PID models ( Fig. 4 , first column;

 < 0.0001; one-tailed cluster-based statistics; see Methods for details).

he topographic distribution of such activity is very similar across all

ID models and closely resembles that already observed for the MI. 

Most remarkably, passive listening also entails neural encoding of

inematic information that is not accounted for by the speech amplitude

uctuations, i.e., the SE. Specifically, the PC1 provides unique informa-

ion (not carried by the SE; U PC1 ) that is consistently represented in the

istener’s brain (p = 0.002; cluster-based statistics; see Fig. 4 , first row).

C1 not only carries unique informational content but also interacts sig-

ificantly with the acoustic information in a synergistic fashion; in other

ords, its combination with the SE leads to a net increase in informa-

ion encoded in the listener’s brain (SYN SE-PC1 ; p < 0.0001; Fig. 4 , third

olumn). We also observe significant synergistic information between

he SE and both PC2 ( p < 0.0001) and PC3 ( p < 0.0001). Indeed, PID

nables to uncover representational interactions in the listener’s brain
6 
hat cannot be directly observable in pairwise measures of dependence

MI for PC2 and PC3), suggesting that the listener’s brain may integrate

rticulatory information with SE in a super-additive way. Redundancy

s then observed between SE and the first 3 PCs (PC1: p < 0.0001; PC2:

 = 0.029 and p = 0.045 for the first and second significant cluster; PC3:

 = 0.007 and p = 0.012, for the first and second significant cluster),

ighlighting the informational overlap that exists between articulation

nd speech output. 

Overall, the same pattern of results is observed also when statistical

valuation is performed at the single-subject level, with a large propor-

ion of participants showing significant U SE and U PC1 . All PID systems

esulted in 14 subjects having at least one significant channel for the SE

nique information (U SE ) while PC1 unique information (U PC1 ) is signif-

cant in 8 participants (supplementary Fig. 3). Very few subjects show

ignificant unique information for the other kinematic components (0,

 and 3 subjects for U PC2 , U PC3 and U PC4 , respectively). Synergistic in-

ormation between SE and PC1 is significant in 14 subjects and fewer

or the other components (10, 8 and 3 subjects for PC2, PC3 and PC4,

espectively). A non-negligible number of participants also report sig-

ificant redundant information between SE and the first three PCs (9,

, 5 subjects, respectively), which is in agreement with corresponding

roup-level statistics. 

The results reported above indicate that the brain encodes a certain

mount of information carried by articulatory kinematics that cannot be

quivalently extracted from the speech envelope. To explore the tem-

oral dynamics of information encoding in the brain we repeated the

ID analyzes by systematically varying the EEG lag with respect to all
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Fig. 5. Lag and frequency tuning for SE and PC1 Unique information. Group average of the unique information for speech envelope (top) and PC1 (bottom) as a 

function of lag (left) and frequency (right) for the electrode (TP8; marked in white in the topographies) showing maximal information in the broad-band analysis 

(see Fig. 4 ). The shaded areas represent ± standard errors of the mean (SEM). Topographies are shown for the frequency and lag where information is maximal. 
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ources. In line with results on MI (supplementary Fig. 2), maximal in-

ormation for all the most relevant components (see Fig. 5 left column

nd supplementary Fig. 4) is obtained at ∼0.2-s lag. To further gain in-

ight into whether information conveyed by the kinematic and acoustic

ignals is band-limited and possibly concentrated within distinct fre-

uency ranges, we repeated the PID analysis in a frequency-resolved

ay (all results are presented as supplementary Fig. 5). Fig. 5 (right col-

mn) shows the outcome of PID as a function of frequency for SE and

C1 for which we show significant unique information in the previous

broadband) analysis (see above). The information that is uniquely car-

ied by the SE is clearly spectrally selective with maximal values being

bserved at ∼5-6 Hz, i.e., in the theta band. A different spectral fin-

erprint, however, marks the information that is uniquely contained in

he kinematics (PC1) which is enhanced within a lower frequency range

etween 1 and 4 Hz, i.e., in the delta band. 

. Discussion 

Neural entrainment to speech originates from the integration of

ottom-up processing and top-down projections from higher-order func-

ional nodes in the brain to select and isolate particular signals of interest

 Rimmele et al., 2018 ). Top-down projections, based on context and a

riori knowledge, bias bottom-up sensory sampling via predictive mod-

ls operating at multiple levels (e.g. Meyer 2018 ; Keitel et al. 2018 ).

or instance, the neural computations run in the motor system may pro-

ide key top-down signals to isolate segmental or suprasegmental cues
7 
 Giraud and Poeppel, 2012 ). In fact, the sensory ambiguity characteriz-

ng the acoustic stream may partially be solved by unambiguous (or less

mbiguous) endogenous signals ( Meyer et al., 2020 ) arising from the in-

erent rhythmicity in speech articulation ( Poeppel and Assaneo, 2020 ).

et, for such a claim to be tenable, one should be able to find traces of

rticulatory signals in brain activities of speech-listening participants.

ost importantly, neural activities should encode articulatory informa-

ion in a way that is not trivially explained by the encoding of other

ightly-coupled speech acoustic features (i.e. mouth opening and speech

nvelope; Chandrasekaran et al. 2009 ). Here we show that vocal tract

onfigurations are encoded in the EEG signal and that they contain in-

ormation that goes above and beyond the one carried by the speech

nvelope. 

This result was obtained through the combination of a series of tar-

eted novel approaches. First and foremost, participants listened to a

et of acoustic speech stimuli for which synchronized articulatory data

as available ( Canevari et al., 2015 ). EMA data is characterized by a

patial and temporal resolution ( Rebernik et al., 2021 ) that is not oth-

rwise achievable by other technologies for speech kinematic analysis

i.e. Ultrasound or MRI). Moreover, as it is customary in the field of

otor control ( Ting, 2007 ), we reduced the dimensionality of the data

i.e. PCA) to derive a tractable number of signals explaining most of the

ariance ( Lambert-Shirzad and Van del Loos, 2017 ). Yet, this choice has

lso key theoretical implications since data reduction techniques may be

sed to extract physiologically meaningful data-driven patterns of coor-

ination across articulators (i.e. vocal tract synergies), which have far
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reater functional relevance than the raw time-varying spatial positions

f isolated articulators ( Story, 2005 ; Sorensen et al., 2019 ). Secondly, we

sed a mathematical framework (Partial Information Decomposition –

ID; Williams and Beer 2010 ; Ince 2017 ) that captures complex nonlin-

ar relations among variables and decomposes these relations into atoms

f information between the target (i.e. EEG data) and the sources (i.e.

peech envelope and speech kinematics principal components). The PID

an indeed extract unique, synergistic or redundant information con-

ained in the sources ( Park et al., 2018 ; Daube et al., 2019 ; Delis et al.,

022 ). 

As expected from the abundant literature on neural entrainment to

peech, the PID analysis highlights that the speech envelope contains

nique information encoded in the EEG data. The topographical dis-

ribution of this effect matches the one normally observed with other

nalytical methods, with the involvements of central and right temporo-

arietal electrodes ( Ding et al., 2017 ). At the same time, we found that

he first kinematic principal component, reflecting the antero-posterior

ovement of the tongue, also carries unique information about the neu-

al signals. The topography of this effect is confined to central and

ight temporo-parietal electrodes. Interestingly, the synergistic inter-

ction between the speech envelope and the first, second and third

inematic components conveys additional information about the EEG

ata (PC2 represents vertical tongue movements while PC3 captures

he coordination between mouth opening/closing and tongue motion).

n these three cases, the topography similarly shows a distribution

overing both central and right temporo-parietal electrodes. The PID

nalyzes also reported redundant information between the first three

inematic components and speech envelope, stemming from the obvi-

us coupling existing between articulators motion and speech sound

utput. 

Importantly, we found a spectral dissociation that emerged in the

requency-resolved PID analysis. Lower frequencies (from ∼0.5 to 4 Hz)

ppear to be relevant for kinematics-specific information (unique in-

ormation provided by the PC1), in agreement with previous evidence

hat entrainment in the delta-range originates from higher-level pro-

esses in frontal ( Molinaro et al., 2016 ) and motor cortices in particular

 Park et al., 2015 ; Morillon et al., 2019 ; Biau et al., 2022 ). Instead,

igher frequencies (between 4 and 8 Hz) contain unique information

arried by the speech envelope. Such a delta/theta dissociation is com-

atible with the idea that neural entrainment in the theta-band is asso-

iated to the phonetic features that are critical for speech recognition,

hile the delta range entrainment is more closely related to the per-

eived acoustic rhythm of speech ( Ding and Simon, 2014 ; Meyer et al.,

020 ). Overall, our results offer new insight regarding the functional

rigin of the delta/theta dissociation observed in speech neural entrain-

ent, especially regarding the contribution provided by domain-specific

otor processes. 

In fact, the goal of our study was to investigate if speech listening

oes entail neural coupling to highly granular speech kinematic infor-

ation that is not readily available to the participants. In our study, par-

icipants listened to auditory speech signals and were never – explicitly

or implicitly – exposed to the articulatory side of speech. Recent stud-

es showed that brain signals encode missing information such as acous-

ic features when only silent lip-reading is allowed ( Hauswald et al.,

018 ; Bourguignon et al., 2020 ). In this case, the tight audio-visual con-

ingencies experienced during early childhood (as well as throughout

ife; Chandrasekaran et al. 2009 ) offer a solid ground to explain these

henomena according to a Bayesian perspective and as the result of

ultimodal associative learning ( van Wassenhove, 2013 ). In our case,

inematic data contain information that is neither available during the

xperiment nor ever visually accessible throughout life (i.e. tongue kine-

atics). It follows that neural coupling to unavailable information can-

ot be explained by the life-long learning of audio-visual associations

i.e. as is the case for lip motion). Rather, we advance the proposal that

peech production learning must play a key ontogenetic role in explain-

ng our results. 
8 
Neural coupling to tongue kinematics could still imply that (at least

art of the) articulatory information is retrieved from speech acous-

ics. Recent investigations have looked for example at the temporal fine

tructure (TFS) of speech. The recent study by Teng et al. (2019) showed

hat TFS and SE are both coupled to brain signals in the same frequency

and (3–6 Hz) and suggested that TFS can be exploited by the brain

o reconstruct relevant temporal information when speech is distorted.

mportantly though, SE and TFS appear to share the same informational

ontent when it comes to temporal cues useful for speech segmenta-

ion ( Teng et al., 2019 ). Notwithstanding the obvious fact that speech

coustics contains more information than that conveyed by the enve-

ope, the mapping between such an acoustic information and the articu-

atory space is tremendously complex ( Atal et al., 1978 ). During speech

roduction, different phono-articulatory tract configurations produce

he same acoustic target depending on phonetic context (i.e., coartic-

lation; Grimme et al. 2011 ). Known as the “many to one ” mapping

roblem, it would force the brain to solve an ill-posed inverse problem

hen listening to speech (known as acoustic-to-articulatory inversion).

s a consequence, how is it possible that information related to the coor-

ination of an invisible articulator is retrieved (and potentially partially

econstructed) from speech acoustics? 

An answer to this conundrum could be that, during development,

he brain approximates a solution for this inverse problem, mapping in-

ended acoustic targets back to vocal tract articulatory parameters to al-

ow intelligible speech production ( Guenther, 1995 ; Tourville and Guen-

her, 2011 ). Indeed, infants explore how sounds are produced by experi-

enting the full range of their vocal tract configurations ( Bruderer et al.,

015 ; Kuhl et al., 2014 ). In support of this idea, automatic speech recog-

ition models trained with both acoustic and articulatory data achieve

etter classification performance with far fewer examples than acoustic-

nly training regimes ( King et al., 2007 ; Ghosh and Narayanan, 2011 ).

hese models recapitulate some key properties of speech production

evelopment ( Canevari et al., 2013 ; Badino et al., 2014 ) and demon-

trate that learning auditory-motor mappings grants more compact and

fficient representations of speech acoustics ( Badino et al., 2016 ). As

 consequence of learning audio-motor contingencies, speech auditory

rocessing should in principle be tuned to capture those cues that allow

riggering of endogenously guided reconstruction of missing articulatory

ignals ( Meyer et al., 2020 ). To date, regardless of how fine-grained ar-

iculatory information is mapped onto the acoustic space, there was no

vidence that the brain encodes articulatory configurations whose rele-

ance is functionally dependent on the acquisition of speech production

 and thus reflecting an intrinsically domain specific process. However, a

onclusive demonstration of this point will only come from future devel-

pmental research (i.e. by investigating the developmental trajectory of

he auditory-based neural encoding of invisible articulators) or exploit-

ng a multi-language approach (i.e. by studying similar phenomena in

2). 

Yet, the idea of a tight functional relationship between speech pro-

uction and speech perception is not a new concept ( Pulvermuller and

adiga, 2010 ; Fadiga et al., 2002 ; Watkins et al., 2003 , Wilson et al.,

004 , Pulvermüller et al., 2006 ; D’Ausilio et al., 2014 ; but see also

he pioneering insight provided by other scientists such as A. M. Liber-

an, L. A. Chistovich or A. N. Leontiev). Indeed, transcranial magnetic

timulation of the motor system produce specific ( Meister et al., 2007 ;

öttönen et al., 2009 ; Sato et al., 2009 ) and somatotopic effects on

peech discrimination performance ( D’Ausilio et al., 2009 ; Bartoli et al.,

015 ). A recent series of studies proposed a more detailed, oscillation-

ased mechanism through which the motor system could have an impact

n speech perception. Assaneo and Poeppel (2018) found synchronized

rain activity between motor and auditory areas during a syllable lis-

ening task and successfully modelled the speech motor cortex as an

scillator coupled to the auditory system. According to this model, neu-

onal oscillations observed in auditory and motor cortices indeed syn-

hronize in a frequency range corresponding to the mean syllable rate

cross languages ( ∼4.5 Hz). Endogenous signals from the motor system



A. Pastore, A. Tomassini, I. Delis et al. NeuroImage 264 (2022) 119724 

w  

t  

c  

p

 

s  

s  

m  

e  

t  

l  

2  

m  

p  

d  

i  

s  

p  

t  

w  

t

F

 

t  

F  

i  

2  

2  

8

D

 

a

D

C

 

D  

W  

D  

I  

F  

&

A

 

f

S

 

t

R

A  

 

A  

A  

 

A  

A  

 

B  

B  

B  

 

B  

B  

 

B  

 

B  

 

B  

 

B  

B  

C  

 

C  

 

C  

C  

C  

C  

 

D  

D  

D  

D  

 

D  

D  

D  

D  

 

D

 

F  

 

G  

G  

 

G  

G  

 

G  

 

ould phase-reset neuronal oscillations in the auditory cortex to align

he most excitable states to the occurrence of expected events and/or

hanges in the speech stream ( Rimmele et al., 2018 ) with benefits on

erceptual/comprehension performance ( Assaneo et al., 2021 ). 

Perception is an inherently noisy process and in order to cope with

peech-intrinsic (talker-specific) and speech-extrinsic (environment-

pecific) noise ( Ru et al., 2003 ) our brain needs to integrate and weigh

ultiple sources of information depending on their reliability ( Golumbic

t al., 2013a,b ; Schroeder et al., 2008 ). In this regard, when the acous-

ic signal is corrupted, the increased importance of visual cues trans-

ates into stronger entrainment to lip movements ( Giordano et al.,

017 ; O’Sullivan et al., 2021 ; Park et al., 2016 , 2018 ; Peelle and Som-

ers, 2015 ). Here, we provide a demonstration that neural speech

rocessing can draw inferences based on highly granular endogenous

omain-specific motor signals whose relevance for perception necessar-

ly derives from the acquisition of speech production capabilities. Sub-

tantial progress in our understanding could come by providing a clearer

icture on: (1) the detailed acoustic encoding of the different articula-

ory synergies, (2) whether those acoustic cues overlap fully or partly

ith articulatory information, and (3) to which extent information is

hen truly synthesized via endogenous processes. 
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