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Abstract 
 

Factors governing slope stability include lithology, geological structures, hydrogeological conditions, 

and landform evolution. Given the intricate interplay among these factors, a comprehensive analysis 

is required to identify the mechanisms and processes leading to slope instability. The introduction 

and advancement of remote sensing techniques have significantly increased the quantity and quality 

of geological data that can be gathered. These techniques, including satellite imagery, aerial 

photography, and ground-based measurements, play a crucial role in improving our comprehension 

of geological phenomena, especially in areas that are challenging to access. Coastal regions present 

a particular challenge due to the inaccessibility of coastal slopes and the multitude of drivers 

influencing coastal processes, including subaerial, marine, and endogenic factors. 

Moreover, the erosion of coastal cliffs poses a significant risk to human safety and infrastructure, 

necessitating active monitoring for informed management decisions. 

In the current study, we have identified morphodynamic changes over time through repeated change 

detection analyses, particularly with the application of Unmanned Aerial Vehicle (UAV) digital 

photogrammetry. The findings underscore the significance of actively monitoring these regions and 

the availability of highly accurate and detailed three-dimensional (3D) geospatial data.  

Rocky coastlines, characterized by steep cliffs, undergo diverse natural processes such as rainfall, ice 

and water run-off, and marine action. The integration of high temporal and spatial resolution data 

through remote sensing and geomatics techniques enables the exploration of otherwise inaccessible 

areas. Integrating these datasets with fieldwork surveys enables analysis using Machine Learning 

(ML) algorithms to identify the primary influencing factors causing erosion. This identification is 

further supported through numerical modeling for assessing slope stability.  

In this comprehensive study, we explore the cliffs within the Conero Regional Park, located in 

Northern Adriatic Sea, Ancona province, Italy. The specific focus is on evaluating the cliff-top retreat 

occurring between the beaches of Portonovo and Trave.  

The study spans several decades, utilizing aerial orthophotos acquired between 1978 and 2021, UAV 

photographs surveyed in September 2021, and 2012 Light Detection and Ranging (LiDAR) data. The 

United States Geological Survey’s (USGS) Digital Shoreline Analysis System (DSAS) was employed 

to analyze the aerial orthophotos, identifying and estimating top-cliff erosion. The results were cross-

verified with wave data and rainfall from the corresponding period. 

Over this forty-year period in the northernmost sector (Trave), erosion of up to 40 meters was detected. 

Additionally, a Digital Elevation Model (DEM) of Difference (DoD) was implemented to validate 

the DSAS results revealing a consistent agreement between the retreat areas identified by DSAS and 

the sections of the coast characterized by high values of DoD. 

Subsequently, in the Portonovo-Trave cliffs, two UAV surveys conducted in September 2021 and 

October 2022 successfully provided dense point clouds, making it possible the application of the 

Multiscale-Model-to-Model Cloud-Comparison algorithm (M3C2) for change detection analysis. 

Volume estimation performed using the 2.5D Volume tool implemented in CloudCompare processing 

software, revealed erosion exceeding 500 m3 in one segment of Trave sector, interpreted and 

attributed both to notch erosion at the base and landslide processes along the slope. Mezzavalle sector 

differently from first DSAS analysis, showed erosion, even due to notch erosion, and differential 

accretion was noted along a section of this sector on the berm. Eventually, in the Portonovo-Trave 

cliffs a 2022 UAV survey of the Portonovo-Trave cliffs was complemented with geomechanical data 

collected during fieldwork.  

The determination of cliff top retreat was carried out within a GIS environment comparing 

orthophotos taken in 1978 and a new UAV survey in 2022 using the DSAS tool.  
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Furthermore, two Machine Learning (ML) algorithms, Random Forest (RF) and eXtreme Gradient 

Boosting (XGB), were employed to analyze the data. The Mean Decrease in Impurity (MDI) 

methodology assessed the significance of each factor, with both algorithms consistently highlighting 

slope height as a primary influencer of cliff-top erosion rates. 

To validate the results of the ML algorithms, a 2D Limit Equilibrium Method (LEM) was employed. 

The ten sections exhibiting the most substantial cliff top retreat, as identified by DSAS, were analyzed 

through 2D LEM analysis. Factor of Safety (FS) values were compared with the cliff height of each 

profile, and the outcomes from the 2D LEM analyses were consistent with the results obtained from 

the ML algorithms. 

In conclusion, the integration of various remote sensing techniques, as well as machine learning (ML) 

and limit equilibrium method (LEM) analyses, has proven to be an effective methodology for 

studying slope and erosion processes in a coastal area. 

This study reinforces the importance of utilizing high-resolution datasets to detect diverse processes 

and emphasizes the adaptability of UAV devices in complex environments. The findings also 

underscore how continuous monitoring and the use of advanced technologies are crucial for 

effectively assessing and managing coastal erosion. 

The findings contribute to the broader understanding of coastal processes, emphasizing the need for 

a holistic approach that integrates fieldwork, remote sensing, machine learning, and numerical 

modeling for comprehensive and accurate assessments. 

A novel methodology, accompanied by open-source code, is proposed to investigate site-specific cliff 

erosion. The results obtained from this approach identify the crucial factors that determine the erosion 

process. 
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Riassunto 
 

La stabilità dei versanti è governata da svariati fattori che includono la litologia, le strutture 

geologiche, ovvero assetto geologico e/o presenza di disturbi tettonici, le condizioni idrogeologiche 

e l'evoluzione del rilievo nel tempo, condizionata a sua volta da fattori esterni al versante. 

L’identificazione dei processi e dei meccanismi che possono portare a condizioni di instabilità, è 

un’operazione complessa anche in virtù della variabilità spaziale e temporale delle condizioni 

predisponenti ed innescanti. 

Le coste alte, in particolare, rappresentano un caso particolare nell’ambito della stabilità dei versanti 

a causa dell’interazione tra fattori subaerei, marini ed endogeni. In particolare, i processi erosivi che 

affliggono le coste alte costituiscono un ulteriore fattore di pericolosità per la sicurezza umana nel 

caso di un loro utilizzo ad uso balneare e per le eventuali infrastrutture presenti a monte o alla base 

della costa. 

Lo sviluppo e l'avanzamento delle tecniche di telerilevamento nel campo della stabilità dei versanti 

hanno aumentato notevolmente la possibilità di avere a disposizione una grande mole di dati geologici, 

idrogeologici e topografici nel tempo, anche in aree inaccessibili, grazie alla ripetibilità delle 

campagne di acquisizione.   

Diversi autori hanno evidenziato una lacuna nella ricerca riguardante l'erosione e l'evoluzione delle 

falesie. Nel corso del XX secolo, questa ricerca è stata condotta da pochi ricercatori, con limitato 

interesse da parte degli operatori nei campi affini, come l'ingegneria costiera, nell’unione dei dati per 

la ricostruzione di un modello multidisciplinare. Questa limitazione è stata accentuata dal fatto che le 

indagini venivano condotte da piccoli gruppi di ricercatori sparsi senza cooperazione nei diversi 

ambiti di ricerca. 

Nonostante questa mancanza, finora non è stato sviluppato un modello completo che integri i 

molteplici fattori che influenzano l'erosione delle scogliere, come la dinamica delle onde, le 

caratteristiche della spiaggia, i materiali delle scogliere e i meccanismi di cedimento. L’obiettivo di 

questo lavoro è colmare almeno in parte questa lacuna. 

Pertanto, il lavoro si è focalizzato nel determinare l’importanza di vari fattori che contribuiscono 

all'erosione delle falesie, con l'obiettivo di comprendere meglio i legami tra questi ed il processo 

erosivo. 

 

La tesi presenta tre studi condotti nell’area tra Portonovo ed il Trave, esaminando in prima battuta 

l’evoluzione geomorfologica dei versanti nel lasso temporale 1978-2021 e poi nell’evoluzione 

annuale 2021-2022. I dati ricavati sull’erosione decennale sono stati poi riutilizzati unitamente ai dati 

geologici, topografici e marini per ricavare l’importanza di ciascun fattore rispetto all’erosione, 

mediante l’utilizzo di algoritmi di apprendimento automatico (ML). 

 

Nel primo studio, viene analizzato e quantificato l’arretramento della falesia ubicata tra la spiaggia di 

Portonovo e il Trave, all’interno del Parco Regionale del Conero (Ancona, Italia). I cambiamenti 

morfodinamici sono stati valutati in un arco temporale complessivo di oltre 40 anni e in intervalli 

temporali minori (10 anni) utilizzando analisi di ortofoto aeree acquisite tra il 1978 e il 2021, dati da 

fotogrammetria digitale UAV (Unmanned Aerial Vehicle) e da Light Detection and Ranging 

(LiDAR). La combinazione di questi dati, integrata con rilevamenti sul campo, ha consentito 

mediante algoritmi di ML di identificare i principali fattori che causano l'erosione. Analisi di stabilità 

all’equilibrio limite 2D (LEM), condotte lungo sezioni rappresentative delle aree che mostravano i 

maggiori valori di arretramento del ciglio della falesia, hanno ulteriormente validato i risultati del 

ML. 
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In questo periodo di quarant'anni nel settore più settentrionale (Trave), è stata identificata un'erosione 

di oltre 40 metri. Inoltre, è stato calcolato un Modello Digitale di Elevazione (DEM) delle Differenze 

(DoD) per convalidare i risultati DSAS, rivelando un buon accordo tra le aree di ritiro identificate da 

DSAS e le sezioni della costa caratterizzate da valori elevati di DoD. 

 

Nel secondo studio sulle Falesie di Portonovo-Trave, due rilevamenti UAV condotti nel settembre 

2021 e nell'ottobre 2022 hanno fornito con successo nuvole di punti dense, consentendo l'applicazione 

dell'algoritmo di confronto tra nuvole di punti Multiscale-Model-to-Model Cloud-Comparison 

(M3C2) per l'analisi dei cambiamenti. La stima del volume, effettuata utilizzando lo strumento di 

Volume 2.5D implementato nel software di elaborazione CloudCompare, ha rivelato un'erosione 

superiore a 500 m3 in un segmento del settore del Trave, interpretata ed attribuita sia all'erosione alla 

base (solco di battigia) che ai processi di frana lungo il pendio. Il settore di Mezzavalle ha mostrato 

un’attività, anche con la formazione del solco di battigia, non registrata dalle analisi precedenti per le 

differenti modalità di analisi del dato e sono state osservate accrescimenti differenziali lungo una 

sezione della spiaggia di Mezzavalle. 

 

Nel terzo studio, al rilevamento UAV del 2022 è stato accompagnato da dati geomeccanici raccolti 

durante il lavoro sul campo. La determinazione del ritiro della cima della falesia in un ambiente GIS 

ha coinvolto il confronto tra le ortofoto scattate nel 1978 e un nuovo rilevamento UAV nel 2022 

utilizzando lo strumento DSAS. Inoltre, sono stati impiegati due algoritmi di apprendimento 

automatico (ML), Random Forest (RF) ed eXtreme Gradient Boosting (XGB), per analizzare i dati. 

La metodologia Mean Decrease in Impurity (MDI) ha valutato la significatività di ciascun fattore, 

con entrambi gli algoritmi evidenziando in modo coerente l'altezza del pendio come principale 

influenzatore dei tassi di erosione della cima della falesia. 

Per convalidare i risultati degli algoritmi di apprendimento automatico, è stato applicato un Metodo 

di Equilibrio Limite (LEM) bidimensionale (2D). Le dieci sezioni che mostravano il ritiro più 

importante della cima della falesia, come identificato da DSAS, sono state analizzate attraverso 

l'analisi LEM 2D. I valori del Fattore di Sicurezza (FS) sono stati confrontati con l'altezza della falesia 

di ciascun profilo, e i risultati delle analisi LEM 2D sono stati coerenti con i risultati ottenuti dagli 

algoritmi di apprendimento automatico. 

 

In conclusione, l'integrazione di varie tecniche di telerilevamento, nonché di analisi di apprendimento 

automatico (ML) e metodo di equilibrio limite (LEM), si è dimostrata essere una metodologia efficace 

per lo studio dei processi di pendio ed erosione in un'area costiera. Questo studio sottolinea 

l'importanza dell'utilizzo di set di dati ad alta risoluzione per rilevare processi diversificati e enfatizza 

l'adattabilità dei dispositivi UAV in ambienti complessi. I risultati sottolineano anche come il 

monitoraggio continuo e l'uso di tecnologie avanzate siano cruciali per valutare e gestire in modo 

efficace l'erosione costiera. Le conclusioni contribuiscono alla comprensione più ampia dei processi 

costieri, sottolineando la necessità di un approccio olistico che integri il lavoro sul campo, il 

telerilevamento, l'apprendimento automatico e la modellizzazione numerica per valutazioni complete 

e accurate. Una nuova metodologia, accompagnata da codice open source, è proposta per studiare 

l'erosione specifica del sito e ottenere come risultato i fattori che sono importanti nel determinare il 

processo. 
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1. INTRODUCTION 
1.1 Scope and problem definition 
 

Coastal environments are fundamental places where human activities and settlements are widely 

present (Martínez et al., 2007).  The majority of the world's coastlines consist of high cliffs, exhibiting 

a high level of complexity due to numerous variables as wave action, rainfall, tidal fluctuation, etc. 

simultaneously influencing them. This complexity makes it challenging to determine how they have 

changed over time (Williams and Pranzini, 2018). 

Enhancing our understanding of these phenomena is imperative to comprehend the inherent hazards 

within cliff environments and anticipate associated risks. 

Several authors have highlighted the scarcity of studies focusing on cliff erosion and evolution. They 

noted that in the 20th century, research on rock coasts was limited to a relatively small group of 

scientists, with little attention from practitioners in related fields like coastal engineering. Small teams 

of widely scattered researchers often conducted research (Naylor et al., 2010). 

Despite this, there hasn't been a model that comprehensively integrates many drives to investigate the 

links between wave dynamics, beach characteristics, cliff materials, failure mechanisms, and episodic 

coastal recession (Castedo et al., 2012). 

This work aims to address a portion of the gap highlighted by the writers, focusing particularly on 

one crucial objective: determining the significance of various factors contributing to cliff erosion. 

A cliff may recede in response to either externally acting or slope-independent processes. The stability 

of the slope can be altered by waves cutting its foot, leading to a rapid collapse of the cliff. 

Additionally, heavy precipitation, in combination with an unfavourable slope attitude and specific 

geological characteristics, can independently cause the cliff to become unstable (Sunamura T., 1992; 

Trenhaile, 2012). 

How is it possible determine when one action is more important significant than another?  There is a 

categorization that considers the morphologies of cliffs to identify recurring processes currently 

affecting the slope (Emery and Kuhn, 1982; Trenhaile, 2012). However, this classification relies on 

qualitative estimates of the cliff's form in relation to limit instances, rather than numerical values. 

In this work, the predominance of a certain element in the retreat process and its impact on other 

factors will be determined using numerical data rather than qualitative descriptions. 

Machine Learning (ML) approaches will be employed to identify potential relationships between 

topographical characteristics, maritime data, and geological measurements and erosion. 

To date, there have been no academic studies of cliffs using ML from this perspective.  Only one 

study (Dickson and Perry, 2016) has utilized machine learning to identify cliffs that are more 

vulnerable, but this was conducted over a larger region." 

By employing ML methodologies, this research holds promise for various stakeholders. 

Understanding the root causes of erosion enables the prediction of more effective remedies for 

specific situations. For instance, engineers tasked with designing structures near cliffs could benefit 

from this method by tailoring solutions based on a knowledge of erosion causation. 

This approach facilitates a deeper understanding of cliff stability issues, enabling decision-makers to 

develop targeted solutions for specific causes, such as addressing instability due to undercutting or 

slope material characteristics. 
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1.2 Project history 
 

The research for this PhD thesis commenced in November 2020 and was supervised by the University 

of Ferrara (Italy) and the University of Cadiz (Spain) from October 2022 to January 2023.The first 

year of a PhD involved a literature review and the selection of a case study, while the second year 

was dedicated to conducting fieldwork and data analysis. In the third year, a crucial stage of 

interpreting findings was carried out and regularly updated, leading to the development of the 

suggested approach. 

 

1.3 Thesis outline 

 

This thesis is structured into three principal parts: 

 

Part I. 

Serves as an introductory section, covering fundamental themes essential for the development of 

subsequent analyses. It starts by providing an overview of the rocky coast environment, displaying 

the interplay of complex processes. Following this, a brief exposition of rock mechanics and slope 

stability concepts is presented, laying the groundwork for a comprehensive understanding of the 

analyses employed in Part II. Lastly, a chapter dedicated to Machine Learning provides 

fundamental insights into the algorithms and techniques utilized to assess the significance of factors 

influencing erosion. 

Part II. 

Comprises three distinct sections, each addressing studies conducted within the Portonovo-Trave 

cliffs site. The initial two studies examine the geomorphological evolution of the area across 

different temporal spans, employing varied input data and processing techniques. The third study 

employs a Machine Learning approach to search into the influence of diverse factors on cliff-top 

erosion. 

Part III. 

Comprises the findings and subsequent discussions. It first explores and evaluates individual 

findings before merging them comprehensively. The section ends by outlining the primary 

conclusions drawn from the whole research work. A visual representation of the structure of the 

thesis is provided below to offer a clearer understanding. 
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1.4 List of figures 
 

Figure 1: Rocky coasts distribution around the world. 

 

Figure 2: Rocky shores main morphologies: (a) Type-A shore platform, characterized by a sloping 

profile; (b) Type-B shore platform, featuring a horizontal or sub-horizontal configuration; and (c) 

plunging cliff . 

 

Figure 3: Combination of elements that affect sea cliff toe erosion. Sunamura mod.. 

 

Figure 4: Factors affecting the sea cliff profiles' shapes. According to M and Sa, marine and 

subaerial processes, respectively, the impact of processes and rock hardness, and the impact of 

Quaternary variations in sea level and climate, are represented. Two-story cliffs form where the 

last glacial stage's talus barely reached halfway up the cliff, whereas hog's-back cliffs formed 

where the scree reached the rock's peak 

 

Figure 5:  Pros and cons of the existing remote-sensing technologies (Image from Zhang et al. 

2020). 

 

Figure 6:  Advantages and limitations of photogrammetry and laser scanning techniques (after 

Petrie and Toth 2018). 

 

Figure 7: Schematic illustration of the indirect approach for orthophoto generation. 

 

Figure 8: Range measurement using Time Of Flight laser scanner 

(https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-

sensor-work/). 

 

Figure 9: Range measurements by means of phase-based laser scanner. 

 

Figure 10: (a) At incidence angles larger than 45°, only diffuse reflections reach the receiver. (b) 

At incidence angles smaller than 45°, both diffuse and specular reflections can be received. The red 

dotted lines are perpendicular to the reflection directions. 

 

Figure 11: Original SIFT algorithm flow. 

 

Figure 12: Sketch showing the relationships between the extrinsic and intrinsic camera parameters, 

the col-linearity equations and the projection line.  

 

Figure 13: Structure from Motion (SfM) process is illustrated. The structure in the world (cube) is 

imaged from multiple viewpoints (Image 1, Image 2, Image 3). By tracking (see dashed lines) the 

pixel locations (p1,1, p1,2, ...) of specific features (x1,x2 ...) in the images, both the camera motion 

(R1, T1; R2, T2, ...) and the 3D model of the structure is estimated.   

 

Figure 14: Important fracture characteristics for engineering rock mechanics. 

 

Figure 15: Q-slope stability chart. 

 

Figure 16: Characterization of rock masses by means of GSI system. 

https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-sensor-work/
https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-sensor-work/
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Figure 17: A new GSI classification chart for heterogeneous rock masses such as flysch 

 

Figure 18: Summary of the updated version of the Varnes classification system. With the apex a are 

indicated movement types that usually reach extremely rapid velocities as defined by Cruden and 

Varnes (1996). The other landslide types are most often (but not always) extremely slow to very 

rapid. 

 

Figure 19: Applications of the Finite Element Method to rock slope stability:example of the 2014 

San Leo rockslide (Italy). 

 

Figure 20: Typical workflow for analysis with DSAS plugin. 

 

Figure 21: Principal methods of learning in Machine Learning applications 

 

Figure 22: a) Location map of the study area. b) Satellite image showing the study area delimited 

by a red line (image taken from GeoEye satellite database, 2020). 

 

Figure 23: Geological setting of the study area and “Sectors”: 1) Portonovo; 2) Mezzavalle; 3) 

Trave. Bedrock legend: SAA (Scaglia Rossa Fm., Upper Cretaceous-Medium Eocene); VAS 

(Scaglia Variegata Fm., Medium Eocene-Upper Eocene), SCC (Scaglia Cinerea Fm., Upper 

Eocene-Upper Oligocene), BIS ( Bisciaro Fm., Lower Miocene), SCH (Schlier Fm., Lower 

Miocene-Upper Miocene), GNOa (Sapigno Fm. Upper Miocene), FCO (Colombacci Fm., Upper 

Miocene), Tv (Trave horizon, Lower Pliocene), FAA (Argille Azzurre Fm., Lower Pliocene-Lower 

Pleistocene). The Trave horizon is a natural stratum that forms a ridge outcropping from the sea in 

the northern section of the study area. 

 

Figure 24: Coastal points defined in front of the area of interest. The points are positioned on the 

20 m depth contour of the bathymetric dataset provided by ARPAE. 

 

Figure 25: Methodology followed in DSAS elaboration. a) We used as cliff top the edge between 

vegetated slope and the bare cliff (showed by the red line). b) The baseline (the blue line), i.e. the 

line from which all the transects origin, was created using a buffer of the identified shoreline, with 

the aim of obtaining transects as much perpendicular as possible respect to the coastline. c) Image 

showing the baseline (in green) and the transects (in violet) obtained by DSAS elaboration. 

 

Figure 26: Picture showing distribution of different data through time. The overlap window is 

between 1998 and 2021. 

 

Figure 27: At Trave sector. a) The Sapigno Fm., composed by gypsum, is thrusted on the younger 

Argille Azzurre Fm.. The trend of coastline in this picture is N-NW/S-SE and the attitude of the fault 

plane is 205/40 in Dip Direction and Dip convention. b) Outcrop of the Argille Azzurre Fm. 

composed of marls, completely fractured in blocks of few centimeters 

 

Figure 28: a) Values of slope and b) elevation: Trave sector shows the highest values for both the 

considered parameters. 

 

Figure 29: Summary of wave and rainfall parameters: a) POT analysis of CNR-ISMAR data 

between 1994-2019 for the significant wave height (hs) for coastal point CP005, showing the 
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identified events. The peak value is highlighted by a red dot. b) Precipitation recorded by the 

stations “Ancona Torrette” and “Ancona Regione RT-1638” in the period 1990-2021. 

 

Figure 30: NSM values calculated along transects, referred to the period 1978-2021: Portonovo 

and Trave sector showed the highest values of retreat. a) computed transects for the whole study 

area. b) Focus at Portonovo sector. c) Focus at Mezzavalle sector. d) Focus at Trave sector. 

 

Figure 31: NSM values calculated along transects, referred to the period 1998-2007: Trave sector 

results the most active sector. a) computed transects for the study area. b) Focus at Portonovo 

sector. c) Focus at Mezzavalle sector. d) Focus at Trave sector. 

 

Figure 32: NSM values calculated along transects, referred to the period 2010-2021: Portonovo 

and Trave sectors result the sectors most affected by retreating of the cliff top edge. a) computed 

transects for the study area. b) Focus at Portonovo sector. c) Focus at Mezzavalle sector. d) Focus 

at Trave sector. 

 

Figure 33: Results of DoDs comparison in the period 2021-2012. Every sector is displayed in 

detail in scale 1:10.000. Analysis shows that the biggest height differences were recorded in Trave 

sector. a) computed DoDs for the study area. b) Focus at Portonovo sector. c) Focus at Mezzavalle 

sector. d) Focus at Trave sector. 

 

Figure 34: The geological structure of Trave cliff (GNOa (Sapigno Fm. Upper Miocene) and FAA 

(Argille Azzurre Fm., Lower Pliocene-Lower Pleistocene)). The main thrusts are highlighted with 

red lines, the red arrows indicate the sense of movement between hangingwall and footwall. In 

orange secondary thrusts with a lower slip. The trend of coastline in this picture is N/S and the 

average attitude of the fault planes identified is 200/45 in Dip Direction and Dip convention. 

 

Figure 35: Satellite image showing the study area delimited by a violet line (image taken from 

GeoEye satellite database, 2020). 3 sectors are identified: 1) Portonovo; 2) Mezzavalle; 3) Trave. 

 

Figure 36: 2022 UAV derived orthophoto showing the segment identified by a red line. 4 sections 

are displayed in violet in the tract with a higher computed change. 

 

Figure 37: Histograms of PMC (a) and TC (b) C2C analysis. 

 

Figure 38: M3C2 results are displayed in the pictures showing M3C2 distance above and 

significant changes below for each area. Segment a) it is shown in 38a) and 38aa), then part b) it is 

shown in 38b) and 38bb). 

 

Figure 39: M3C2 results are displayed in the pictures showing M3C2 distance above and 

significant changes below for each area. Segment c) it is shown in 39c) and 39cc), then part b) it is 

shown in 39d) and 39dd).  

 

Figure 40: M3C2 results are displayed in the pictures showing M3C2 distance above and 

significant changes below for each area. Segment e) it is shown in 40e) and 40ee), then part f) it is 

shown in 40f) and 40ff). 

 

Figure 41: M3C2 results are displayed in the pictures showing M3C2 distance above and 

significant changes below for each area. Segment g) it is shown in 41g) and 41gg). 
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Figure 42: Extracted sections are shown to highlights the main changes in the coastline (Figure 

36). The topography of 2021 is represented in red while the one of 2022 in green. All the profile are 

seen from south to north. 

 

Figure 43: Map displaying the position of the study area: a) Satellite image showing the study area 

and the three sectors called Portonovo, Mezzavalle and Trave. (image taken from GeoEye satellite 

database, 2020). b) Collocation of the study area respect to Italy. 

 

Figure 44:  Workflow sketch: 1) Fieldwork; 2) Data analyses and surveys. 3) Parameters 

extraction. 4) Machine learning analysis. 5) Slope stability analysis. 

 

Figure 45: Representation of Random Forest ( image from https://ken-

hoffman.medium.com/random-forest-hyperparameters-explained-8081a93ce23d ). 

 

Figure 46: Representation of eXtreme Gradient Boosting (Image created by Michele Fraccaroli). 

 

Figure 47:  Extracted sections are highlighted in violet and numbered.  

 

Figure 48: Geomorphological map of the study area and “Sectors”: 1) Portonovo; 2) Mezzavalle; 

3) Trave. Bedrock legend: SCH (Schlier Fm., Lower Miocene-Upper Miocene), GNOa (Sapigno 

Fm. Upper Miocene), FCO (Colombacci Fm., Upper Miocene), Tv (Trave horizon, Lower 

Pliocene), FAA (Argille Azzurre Fm., Lower Pliocene-Lower Pleistocene). 

 

Figure 49: Pictures portraying the different configuration in the different sectors. a) Portonovo 

sector b) Mezzavalle sector c) Trave sector. 

 

Figure 50: Horizontal georeferencing uncertainty measured betweeen 1978 and 2022 Orthophotos. 
 

Figure 51: NSM values calculated along transects, referred to the period 1978-2022: Portonovo 

and Trave sector showed the highest values of retreat. Computed transects a) at Portonovo sector 

b) Mezzavalle sector c) at Trave sector. 
 

Figure 52: Picture resuming ML results and analysis performed using RF and XGB algorithms. 1) 

Sketch displaying the parameters used in the analysis. 2) Illustration of the ML algorithm used. 3) 

Picture illustrating ML results. 3a) Graph showing feature importance resulting from RF 

algorithm. 3b) Confusion matrix of RF elaboration. 3c) Graph illustrating the feature importance 

extracted using XGB algorithm.  3d) Confusion matrix of XGB analysis. 

 

Figure 53: Graph comparing FS and Cliff Height values in the ten extracted sections. The number 

behind the dot refers to the section number. 

  

https://ken-hoffman.medium.com/random-forest-hyperparameters-explained-8081a93ce23d
https://ken-hoffman.medium.com/random-forest-hyperparameters-explained-8081a93ce23d
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1.5 List of tables 
 

Table 1: Rock Mass Quality according to the RQD System. 

 

Table 2: Rock mass classification according to the RMR system. 

 

Table 3: Rock mass classification according to the SMR system. 

 

Table 4: Rock mass classification according to the Q system. 

 

Table 5: Rock mass classification according to the RMi system. 

 

Table 6: Spatial resolution of the orthophotos used for the cliff top retreat analysis. 

 

Table 7: Range of GSI and UCS values for the 3 sectors. 

 

Table 8: DSAS results for each period analyzed. Mean EPR and ECI are reported. 

 

Table 9: Volume variations computed for each sector are reported together with their uncertainty.  

 

Table 10: Summary of parameters used in ML analyses. 

 

Table 11: List of the parameters used for numerical modeling. 

 

Table 12: Range of GSI and UCS values for the 3 sectors according to different transects. 

 

Table 13: DSAS results for each period analyzed. Mean EPR and ECI are reported. 

 

Table 14: Results from LEM analysis along the extracted sections. 
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2. PART I: BACKGROUND AND SETTING 
 

 

2.1 Rocky Coasts 
 

The boundary between sea and lands extends for 1,634,701 km around the world (Martínez et al., 

2007)   an astonishing distance considering that the Earth-to-Moon distance is “only” 384 400 km 

(Fig.1). These coastal areas are closely tied to human social expansion. Thanks to a generally warmer 

climate, proximity to food sources, and opportunities for trade routes, they provide the ideal setting 

for the stabilization and construction of settlements (Martínez et al., 2007). 

Since the beginning of the 20th century, a fundamental dichotomy has been established in describing 

this environment, distinguishing  between high and low coast (Broc and Giusti, 2007). The former 

accounts for between 75% and 52% of the world’s coastline (Williams and Pranzini, 2018; Adam P 

Young and Carilli, 2019).  High coasts can further be categorized into soft and hard rock coasts, 

defining the former as cliffs composed of material with a uniaxial compressive strength (UCS) ≤ 5 

MPa (Sunamura, 2015) and, consequently, the latter as those with a higher UCS value." 

 

 

Figure 1: Rocky coasts distribution around the world (Emery and Kuhn, 1982). 

 

In describing rocky coast, it is essential to understand the various types found in nature. Landforms 

on rocky coasts are typically characterized by steep sea cliffs and can be broadly categorized into two 

main types: shore platforms and plunging cliffs. Shore platforms, in turn, can be further classified 

into two types: sloping (Type A) and horizontal (Type B) (Fig.2).  

Type-A platforms feature an erosion surface that gently slopes downward from the base of a sea cliff 

to below sea level without any evident topographic break. On the other hand, Type-B platforms have 

a horizontal or sub-horizontal erosion surface that extends in front of a sea cliff and terminates 

seaward in a marked scarp. In the absence of these platforms, plunging cliffs occur, which are steep 

slopes extending far below sea level, forming a vertical or semi-vertical face (Sunamura, 2015). 
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Figure 2: Rocky shores main morphologies: (a) Type-A shore platform, characterized by a sloping 

profile; (b) Type-B shore platform, featuring a horizontal or sub-horizontal configuration; and (c) 

plunging cliff (Sunamura T., 1992).  

 

These various morphologies result from the interplay of different processes at different scale in time 

and space (Trenhaile et al., 2006). There is a feedback loop between hydrodynamic forcing (tide and 

waves), material response (substrate erosion) and the resulting morphologies that emerge over 

extended time scales (Ogawa et al., 2016). 

Researchers have tried to quantify the connection between certain geological parameters and the rate 

of cliff erosion. According to Sunamura (Sunamura, 1982)(Eq. 1) 
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dx/dt∞ln(fw/fr) Eq. 1 
 
where dx/dt is the average rate of cliff erosion, fw is the wave's assault force, and fr is the rock's 

restraining force (Eq 2).  

The formula: 

ρgH/Sc+C  Eq.2 
 

may be used to express the ratio fw/fr, where g is the acceleration due to gravity, H is the height of 

the waves at the foot of the cliff, Sc is the compressive strength of the rock, and C is an arbitrary 

constant.  

Sunamura (Sunamura, 1982; Sunamura T., 1992) provides the information on the lowest wave height 

(Hcrit) capable of eroding the base of a cliff as (Eq. 3): 

 
Hcrit = (Sc /ρg)e−Γ Eq.3 

 
where with the symbol Γ is expressed ln(A/B) a nondimensional constant.  

The value of A indicate the abrasive properties of beach sands, while B signify the kind and frequency 

of cliff’s discontinuities. 

 

Tsujimoto (Tsujimoto, 1987) utilizes the number Ap to represent the assailing force of the waves, 

where p is the wave pressure and A is a nondimensional constant representing abrasion and proposed 

to represent the resisting force of the rocks as BS*
c , in which S*

c = Sc(Vpf / Vpc ), where Vpf / Vpc is 

the longitudinal ratio of sound wave velocity measured in the rocks in situ to that of cylindrical 

specimens without visible cracks, measured in the lab, B is a non-dimensional constant related to the 

effect of weathering. 

Furthermore, Tsujimoto postulates that the change from horizontal to gently sloping shore platforms 

happens when wave-generated bottom shear stress reaches a level high enough to weaken the 

platform surface and destroy the low-tide cliff, as (Eq.4): 

 

τo > 0.005 Ss  Eq.4 
 

where Ss is the shear strength, considering the impact of rock discontinuities, and τo is the wave-

induced shear stress on the bed.  

Tsujimoto's model may explain the presence of sloping and horizontal platforms in local regions but 

might not fully account for the predominance of sloping platforms in high-tidal range settings and 

sub-horizontal platforms in low-tidal range environments. In any event, wave quarrying at the water's 

edge rather than shear loads on the ground are considered the primary causes of wave erosion. 

 

On rocky coasts, intense wave action manages to produce vertical or undercut cliff faces, while strong 

weathering encourages the growth of more smoothly sloping, convex slopes (Fig.3). Whether both 

process groups are active, with wave erosion dominating at the cliff foot and chemical action in the 

upper part, the cliff profile might be composed by a steep lower slope and a convex upper one. Plumb 

cliff profiles are typical in mid-latitudes where we have wave-dominated environments. Vice versa, 

convex profiles often occur in the humid tropics, due to the combination of strong chemical 

weathering, weak wave action and shielding bioactivity produces slopes that are enclosed in 

vegetation. Then, in tropics we can have the presence of steep cliffs with deep biologically eroded 
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notches develop in limestones. Instead, in high latitudes, the presence of ice prevents wave erosion, 

and steep slopes are mainly the product of glacial erosion (Trenhaile, 2012). 

 

 
 

Figure 3: Combination of elements that affect sea cliff toe erosion. (Modified from Sunamura, 

1992). 

 
 

However, the classification of marine cliffs involves numerous special cases, related to different 

geological factors, which are as crucial as climate and wave regime in determining morphogenesis 

(Emery and Kuhn, 1982) (Fig.4). For instance, weaker material outcropping in the top part of a cliff 

can accelerate weathering and the leading to the creation of curved slopes. Meanwhile, tougher cap 

rocks can protect against weathering, preventing the growth of steep slopes. Additionally, the attitude 

or orientation of the bedding can incluence cliff morphology (Emery and Kuhn, 1980; Trenhaile, 

1987). Steep cliffs are usually associated with horizontally or vertically bedding strata, whereas cliff 

faces develop along bedding or joints in areas where the attitude of strata is seaward or landward. 

Cliffs can have composite profiles comprising of two or more major slope elements. Generally, cliffs 

are termed multi-storied when they consist of two or more steep faces separated by more gentle 

slopes. Another configuration is hog’s back cliffs, characterized by steep wave-cut faces at the bottom 

and convex or straight seaward-facing slopes above (Fleming, 1965; Orme, 1962). Typically, cliff 

profiles like this can form where marine and subaerial erosion act simultaneously; however, high 

composite cliffs in resistant rocks result from Quaternary changes in climate and sea level over 

extended periods (Hampton and Griggs, 2004). 

Plunging cliffs directly descend into deep water without shore platforms or beaches at their base. This 

type of cliff usually forms in hard rocks with minimal erosion from marine dynamics. Furthermore, 

the absence of beach/sediment at the cliff foot prevents abrasion. Plunging cliffs are commonly 

outcropping around resistant coral reef shelters, basaltic islands, and areas where tectonic features 

provide continuous scarps (Trenhaile, 2012, 1987). 

So, it’s evident how these slopes, distinct from inland ones, are subject to a different array of processes 

that act together with various interactions between them; we cannot consider one process 

disconnected from another. 

For example, cliff erosion trough instability generates a new talus, sediment input, (Komar and Shih, 

1993) (Moses and Robinson, 2011) acting as a double-edged sword. On one hand, when debris is 

thick enough, it completely protects the cliff from erosive processes (Kennedy and Milkins, 2015). 

On the other hand, when sediment is fully mobilized by waves, it acts as an abrasive, increasing 

erosion rates of both the platform and the cliff at its rear (Kennedy and Milkins, 2015).  
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Even topography in the offing of the cliffs play a role (Sunamura, 1991; Robinson, 1980) in fact both 

the gradient and the roughness of shore platforms are expected to play key roles in driving nearshore 

dynamics through their effect on wave transformation processes, incident wave energy decay, wave 

setup, and infragravity wave generation (Poate et al., 2018) and yet the width of beach could plays an 

important role. In fact, it has been noted that beach berms less than 20 meters in width offer only a 

minimal level of protection against wave attack. However, when the berm width is increased to 

between 20 and 30 meters, there is a significant decrease in seacliff retreat. The most effective level 

of protection is achieved with a berm that is at least 60 meters wide, which provides near-complete 

protection against wave attack (Everts, 1991). 

 

 

 
 

Figure 4: Factors affecting the sea cliff profiles' shapes. According to M and Sa, marine and 

subaerial processes, respectively, the impact of processes and rock hardness, and the impact of 
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Quaternary variations in sea level and climate, are represented. Two-story cliffs form where the 

last glacial stage's talus barely reached halfway up the cliff, whereas hog's-back cliffs formed 

where the scree reached the rock's peak (Emery and Kuhn, 1982; Trenhaile, 2012, 1987).  

 

As mentioned earlier, waves contribute to the erosion of cliffs (Sunamura T., 1992). The primary 

physical mechanisms by which they carry out this action are essentially two: Wave quarrying and 

abrasion.  

Quarrying stands out as a significant erosional process in various regions, evidenced by fresh rock 

scars and the presence of coarse, angular debris composed of jointed blocks and other rock fragments. 

The effects of high shock pressures, generated by breaking waves as they curl over and trap pockets 

of air against steep rock faces contribute to this process. However, perhaps most significant for a wide 

range of rock types is the compression of air trapped in joints, bedding planes, and other 

discontinuities. 

The most productive quarrying occurs in a small zone from the peak of the wave to just below the 

still water level (Robinson, 1977a, 1977b; Trenhaile, 1987). Quarrying activities result from the 

alternating forces of air and water. According to wave pressure models, standing, breaking, and 

broken waves generate the strongest pressures at or just above the mean sea surface. Most erosion 

likely takes place at the sea's surface due to the surf and swash of broken waves, contingent on precise 

conditions, including the depth of water in proportion to the wave height. These conditions must exist 

for unbroken and breaking waves to have an effect on steep coastal slopes. 

On rock beaches, there is often a scarcity of abrasive material, especially when fine-grained rock 

erosion results in suspended sediments that are moved offshore or when the resistant rocks erode too 

slowly to generate significant material. In such situations, any abrasives that do occur are typically 

confined to tiny pockets trapped at the foot of scarps, at the bottom of troughs and other topographic 

depressions, and to narrow zones near the cliff foot. At the base of cliffs and other steep slopes, 

undercut scarps are created by the back-and-forth movement of abrasive material beneath unbroken 

and broken waves. 

The material can be moved by wave-generated shear stresses at any depth, although abrasion is often 

most effective at or near the ocean surface. Long-term abrasion rates also decrease with beach 

thickness due to the challenges in moving material at the bottom of thick deposits. Although some 

estimates go as high as 0.5 m, the majority of estimates for the greatest beach thickness under which 

abrasion may occur are less than roughly 0.25 m (Robinson, 1977a, 1977b; Trenhaile, 1997, 1987). 

Particles beneath heavy accumulations may only be moved by huge waves, but if the bottom is 

subjected to excessive shear stresses, abrasives may be lifted into suspension and come into less 

contact with the bedrock. 

When a beach deposit is thin enough to be transported over the underlying bedrock, abrasion often 

occurs in a very limited zone that stretches from a small distance in front of the seaward edge up to a 

short distance under the beach. Abrasion zones spread (Trenhaile, 2009, 2005) landward through time 

as the cliffs retreated, even though the process is now only really active over a small region (Blanco-

Chao et al., 2007). 

 

There is an ongoing discussion related to the likelihood of tsunamis occurring along rock shores and 

their potential effects. Large stones, frequently imbricated in a seaward orientation, onshore 

platforms, coral reefs, and cliff tops have been the subject of much debate. 

Some researchers have claimed that these boulders were eroded and deposited by tsunami action 

(Bryant, 2008; Bryant and Haslett, 2007; Kennedy et al., 2007; Noormets et al., 2002; Scheffers and 

Kelletat, 2006, 2005), asserting that tsunamis were responsible for bedrock sculpturing on shore 

platforms (Aalto et al., 1999; Bryant, 2008; Bryant and Young, 1996). 
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However, distinguishing between tsunami deposits and other consequences of strong storms on rock 

beaches remains challenging. While deep ocean wave heights might suggest that storms historically 

couldn't erode, transport, and deposit extremely massive blocks high up on a coast, wave heights can 

significantly increase close to the shore due to shoaling processes and other considerations. 

Furthermore, big storm waves may compress air in joints, providing enough hydraulic lift to topple 

massive stones as well as lift and carry smaller boulders (Felton and Crook, 2003). 

The distribution of wave energy within the intertidal zone is significantly influenced by tidal range 

and the type of tidal regime, whether diurnal, semi-diurnal, or mixed. The amount of time (in hours 

per year or as a percentage of time) that the sea surface spends at each intertidal elevation is 

represented by tidal duration distributions. The zone of greatest wave erosion subsequently occurs 

most frequently at or around the mean high and low water neap tidal levels. At the mid-tidal level, 

frequencies are around one-quarter to one-third lower, and they rapidly decline from the neap to the 

spring high and low tidal levels. In comparison to macrotidal environments, wave energy is more 

concentrated in the intertidal zone and occurs more often at each height (Trenhaile, 2012, 1987; 

Trenhaile et al., 2006; Trenhaile and Porter, 2020). 

Although tidal levels typically fall within the mean neap tidal range, other factors such as weather, 

bottom gradient, water depths, and others all impact how wave energy is used in the intertidal and 

supratidal zones. During storms, when wind shear and other atmospheric factors elevate the ocean 

surface, the zones of highest wave-energy expenditure are raised above the tidal duration maxima at 

the neap high and low tidal levels. Water depth varies from location to location according to tidal 

range and over time during the tidal cycle, affecting the rate of wave attenuation (Trenhaile, 2012). 

Weathering may play a significant, and in some cases dominant, factor in the formation of rock 

coastlines. Cliff recession often occurs in polar locations and on noncalcareous rocks in the wet 

tropics due to weathering and removal of debris by mass movement and modest wave action. These 

mechanisms also function well in protected sections in generally wave-dominated settings. 

Weathering along joints, bedding planes, and other discontinuities helps to prepare the rock for 

eventual dislodgment and removal by wave quarrying. On polar shores, this process may be 

augmented by frost action and grounding ice blocks on the shore platform (Hansom, 1983; Trenhaile, 

1997). 

Although the significance of weathering processes is well acknowledged, little effort has been made 

up, until recently, to pinpoint the causative mechanisms or gauge their rates of activity. A laser-

scanning method has been utilized on several platforms in western Europe, although slow rates of 

surface downwearing have typically been measured during the past few decades using MEMs (J. O. 

H. Swantesson et al., 2006; Williams et al., 2000). While occasional occurrences at certain stations, 

such the loss of a small piece of surface rock, might result in rates as high as a few centimetres per 

year, the average rates of downwearing typically range from 0 to a few millimetres per year (Furlani 

and Cucchi, 2013; Gill and Lang, 1983; Kirk, 1977; Mottershead, 1989; Robinson, 1977b; 

Stephenson and Kirk, 2001; J. Swantesson et al., 2006; Trenhaile et al., 2006). 

The causative processes must be deduced from the erosional data's geographical and temporal 

properties. Downwearing has often been attributed to weathering and subsequent removal of fine-

grained debris by waves where there is a lack of abrasive material. This view has been confirmed by 

the observation, in certain regions, of quicker downwearing rates in summer, when waves are lower 

and temperatures are higher, than in winter, when waves are stronger and temperatures are lower 

(Mottershead, 1989; Robinson, 1977b).  

One possible explanation for these apparently conflicting seasonal patterns is that the separation of 

weathered grains is often dependent on, or aided by, wave-generated turbulence. As a result, the 

seasonality of surface downwearing may be affected by the wave environment, the type of rock 

cement, and other factors that influence the strength of the bindings between rock grains. 

Downwearing may be performed in summer by weathering operating alone or with the help of weak, 
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seasonal waves in weak rocks or those that are particularly vulnerable to weathering. The detachment 

and removal of grains already loosened by summer weathering, or of grains in weather-resistant 

rocks, may be dependent on the heavier waves of fall and winter in more cohesive rocks (Trenhaile, 

2012). 

 

Surface downwearing on rock coastlines has typically been associated with alternating wetting and 

drying, salt crystallization, and other salt weathering processes in the intertidal and lower supratidal 

zones. Salt weathering occurs in rock capillaries through crystal formation and growth, crystal 

swelling through the absorption of water, and crystal expansion due to changes in temperature. 

Tidally induced wetting and drying result from cycles of expansion and contraction in the rock. 

Additionally, a few studies have noted cases of surface elevation or swelling that might reach several 

millimetres. These occurrences can last anywhere from a few months to many years and have 

typically been linked to salt crystallization-related expansion, while expansion brought on by wetting 

and drying may also have a minor impact (Kirk, 1977; Mottershead, 1989; Stephenson and Kirk, 

2001). 

In eastern Canada, experiments have been conducted in the lab over three years using tidal simulators 

to compare and distinguish the downwearing rates caused by salt weathering and wetting and drying 

on basalt, sandstone, and argillitic rocks (Kanyaya and Trenhaile, 2005; Trenhaile et al., 2006). A 

recent study (Porter and Trenhaile, 2007) highlighted that, at least within the elevational zone 

generally flooded twice a day by the tides, downwearing is caused by alternating wetting and drying 

rather than salt crystallization 

 

On rock coastlines, chemical weathering is accelerated by alternating immersion and exposure in the 

intertidal zone and spray and splash in the supratidal zone. Coastal zones thus supply the water 

required for chemical reactions as well as the runoff required to remove the soluble products. 

Chemical weathering diminishes rock hardness, which is particularly critical at discontinuities and in 

hot, rainy climates where cliff retreat may be predominantly caused by the removal of fine-grained, 

weathered material by relatively weak waves (Trenhaile, 2012). 

 

Tafoni and honeycombs can be produced by chemical and salt weathering, and they contribute 

significantly to water-layer levelling, a set of processes that operates around the edges of pools of 

standing water to lower, smooth, and level shore platform surfaces (Turner and Bartrum, 1928). 

Chemical weathering can cause hardening or strengthening of rock surfaces by evaporating saline 

solutions containing silica, iron, and other cementing agents or vice versa softening and breaking of 

rock. 

The passage of dissolved ions along joint planes, which can deplete or saturate them with precipitates, 

causes frame weathering, which commonly happens in connection with water-layer levelling. If the 

impregnated joints become more resistant than the joint blocks, weathering pits with higher rims 

appear, but if the joints are weaker, small plateaus, sometimes resembling tiny volcanoes, can form. 

 

In the intertidal and spray and splash zones, where the rocks can reach high degrees of saturation, 

coasts may offer nearly ideal conditions for efficient frost action (Trenhaile and Mercan, 1984). The 

salinity of saltwater and more concentrated solutions in rock pools may be particularly favourable to 

successful frost action since studies have shown that frost cycles result in the largest levels of rock 

breakup in solutions that contain 2-6% of their weight in salt (Trenhaile, 2012). 

Frost and temperature-dependent wetting and drying processes are only successful in regions with 

the correct type of rocks and sufficient wave action to prevent the beach from progressively getting 

buried under debris." 
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Frost cycles are most common in chilly, storm wave settings, and mechanical wave erosion and frost 

action frequently work best on the same types of rock, especially if they are tightly jointed and thinly 

bedded. Therefore, the consequences of frost action in these regions may be obscured or inhibited by 

vigorous quarrying by waves or intertidally grounded ice, including the removal of joint blocks that 

have been weakened by frost (Trenhaile, 1987). 

 

Biological activity as well as inanimate factors have an impact on coastal evolution.  

The removal of rock by direct organic action is referred to as bioerosion. It comprises the work of 

boring organisms that use mechanical or chemical ways to drill holes into rocks and grazing 

organisms that scrape off the surface of rocks while feeding on the roots of epi- and endolithic 

microflora. The boring and grazing impacts of gastropods, barnacles, bivalve molluscs, sponges, 

echinoids, worms, and other marine fauna, as well as bioerosion by algae, particularly Cyanophyta 

and other microflora, have been widely reported in the literature (Spencer, 1988a, 1988b; Spencer 

and Viles, 2002; Trenhaile, 1987). 

On protected coral, aeolianite, and other calcareous substrates in the tropics, where the collapse of 

deep, biologically eroded notches is a major contributor to cliff retreat (Trenhaile, 2012). 

Although there is a lot of information on bioerosional rates, there is a lot of variety in their accuracy 

and usefulness. When analyzing the data, it is important to take into account the kind of organism; 

grazers work across greater areas than borers, while their work is concentrated in a smaller area 

(Trenhaile, 2012). 

Sharp ridges, pinnacles, grooves, and circular basins in the spray and splash zones of limestone 

beaches have historically been attributed to chemical solution, especially since they resemble karren 

created by freshwater on land. Surface seawater is normally saturated or supersaturated with calcium 

carbonate, but faunal respiration in pools produces carbon dioxide that is not removed by algal 

respiration at night, lowering the pH and causing calcium carbonate to be transformed into more 

soluble bicarbonate (Trenhaile, 2012). 

Anyway, there is rising evidence to support the idea that marine karren and other distinctive 

characteristics of limestone beaches are largely bioerosional in origin, despite the possibility of 

chemical solution occurring in saltwater (Schneider and Sadler, 1976; Spencer, 1988a; Trudgill, 

1987). 

 

Until now, we have focused mostly on one component of the rocky shore, the cliff, but there are 

different morphologies typical of this environment that we will now discuss. 

Crenulated coastlines, which consist of a series of headlands and bays, typically reflect variations in 

the resistance of the rock to erosion, in some cases due to lithological differences caused by faulting 

or folding, and in others due to the influence of rock structure, such as differences in joint density, 

orientation of discontinuities, and thickness, strike, and dip of the bedding. Bays and headlands can 

also form in practically homogenous rocks as a result of the lower cliffs around stream outlets 

retreating faster than the higher cliffs on nearby interfluves, and the Holocene submergence of valley 

mouths (Trenhaile, 1987).  

Beaches in rocks with varying resistance to erosion may ultimately reach an equilibrium that restricts 

their degree of irregularity. This would happen if fewer refracted waves eroded the more resistant 

rocks on exposed headlands at the same rate as more refracted waves eroded the weaker rocks in the 

bays, keeping the plan form as the coast retreated landward over time. Unfortunately, due to the 

episodic nature of cliff retreat and a lack of good long-term records, it is now hard to assess whether 

rock coast plan forms are still developing (Trenhaile, 2012). 

In rocks strong enough to support high, nearly vertical slopes as well as in the roofs of caves, tunnels, 

and arches, erosion along well-defined and well-spaced planes of weakness can produce a variety of 

coves, narrow inlets, blowholes, caves, arches, stacks, and related features. Long tunnels, caverns, 
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and inlets can also form as a result of the sea crashing into underground karstic systems or lava tunnels 

in volcanic rocks (Shepard and Kuhn, 1983; Trenhaile, 1987; Trenhaile et al., 1998). 

 

Another element of important relevance in rocky coast is the shore platform. 

Platforms have historically been divided into two categories within larger geographic areas: sub-

horizontal surfaces that suddenly end in a low-tide cliff or generally gently sloping surfaces that 

stretch below the low-tidal level without a significant break in slope (Sunamura T., 1992; Trenhaile, 

2012). 

Some researcher argued that horizontal platforms develop at a level of permanent seawater saturation 

as weak, weathered material is washed away by weak waves in sheltered areas or eroded by waves in 

more exposed areas (Bartrum, 1916; Edwards, 1958). Some workers claimed that horizontal 

platforms are cut by waves (Bartrum, 1926; Cotton, 1963; Edwards, 1951). But research over the last 

several decades has demonstrated that the mean regional platform gradient and tidal range have a 

reasonably substantial association (Trenhaile, 1999, 1997, 1987).  

While it is still debatable whether weathering can construct broad shore platforms on its own, it is 

now widely acknowledged that shore platforms are produced by the combined effects of waves and 

weathering. The relative and absolute significance of these processes varies geographically in 

response to changes in the substratum's characteristics and morphogenetic causes, as well as 

momentarily in response to variations in climate, sea level, and intertidal and subtidal morphology 

(Trenhaile, 2012). Where waves, surf, and swash can impact upstanding irregularities, such as in 

horizontally bedded rocks with seaward-facing scarps, and in steeply dipping strata in which 

differences in rock resistance generate uneven corrugated platform surfaces with upstanding beds of 

resistant strata, wave quarrying is most effective. Mechanical wave erosion is substantially less 

effective in the absence of abrasive material on platforms with generally smooth profiles and few 

apparent abnormalities, especially if they have low slopes and low-tide cliffs that force waves to break 

at the seaward edge. As previously stated, sub-horizontal platforms in certain regions may have been 

carved by waves in the early to mid-Holocene, when sea level was higher than now. Weathering now 

commonly dominates these surfaces, especially if they are composed of argillaceous and other 

weathering-susceptible rocks. As wave-dominated platforms expand broader over time, their gradient 

diminishes, resulting in increased wave attenuation, waves breaking further from shore, and more 

energy dissipation in wider, turbulent surf zones. Consequently, weathering must grow increasingly 

prominent over time, although the relatively large equilibrium gradients of shore platforms in 

macrotidal settings may allow waves to remain the primary erosional agent (Trenhaile, 2001). 

 

Many researchers have attempted to simulate the long-term evolution of slowly shifting rock coast 

(Horikawa and Sunamura, 1970; Scheidegger, 2012; Sunamura, 1982, 1978a, 1978b, 1973; 

Trenhaile, 2003). The qualitative models of the early twentieth century were supplanted in the latter 

half of the century by very basic mathematical models that took just a few factors into account. These 

models were built on the premise that most erosion occurs at the water's surface or by underwater 

mechanisms in a tideless sea (Fleming, 1965; Horikawa and Sunamura, 1967), more recently 

including tidal duration distributions (Trenhaile, 2000). 

Recently, Trenhaile (2009) developed a model that considers mechanical wave erosion at the water 

surface on bare cliff and shore platform surfaces, as well as the abrasive and protective role of beach 

material, depending on the thickness of the deposits and the ability of the waves to move them. 

One of the most difficult issues for rock coast workers is determining whether they have been 

inherited from interglacial phases when sea level and temperature were comparable to todays, and 

from glacial stages when circumstances were very different. During the Quaternary, rock coasts were 

subjected to changes in the focus of wave attack and other marine processes, as well as climatically 
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induced changes in storm frequency and intensity, weathering processes and efficacy, and tidal range, 

which determined the extent of the marine and subaerial domains (Trenhaile, 2012). 

Deep-sea cores regarding paleo-sea level records (Bintanja et al., 2005) suggest that wave attack 

during warmer interglacials periods, when sea levels were similar to today, occurred more frequently 

on temperate coasts. In contrast, during cold glacial stages when sea levels were much lower than 

today, frost shattering and periglacial mass movements were more prominent. 

The impact of mechanical wave erosion may have been particularly effective during the transitions 

from glacial to nonglacial conditions, when the rising sea was able to operate on inherited platforms 

and cliffs that had been severely weakened by the effects of frost during the previous glacial stages. 

Frost-rived clasts may also have provided an abundant supply of abrasive material at those times 

(Blanco-Chao et al., 2007). 

Although rock coastlines are often very difficult to date, there is frequently qualitative evidence 

suggesting that some of them are quite ancient. For instance, shore platforms frequently appear to be 

too large and to be expanding too slowly to be attributed to the few thousand years since the water 

reached its current level. These shore platforms are found in strong, resistant rocks. These platforms 

usually have historic composite or hog's-back cliffs, glacial or periglacial deposits, emerging beaches, 

and erosional ledges as their backs. According to studies (Brooke et al., 1994; Stone et al., 1996; 

Young and Bryant, 1993), resistant rocky coasts contain some inherited shore platforms and other 

coastal features. 

Modelling reveals that inheritance may be crucial to the evolution of the coastline. The impact of sea 

level variations over the past 2 million years on the formation of rock coasts was examined by 

Trenhaile (2001a). Most modelled platforms were, at least in part, take over from one or more 

interglacial periods when sea level was comparable to that now. The effectiveness of wave erosion 

determined whether the present beach platform was totally contemporaneous, modified from an 

inherited surface, or altogether new. The findings indicated that shore platforms' over-steepening and 

truncation during glacial phases result in their alteration over the following interglacials, which is 

mostly done by erosion at the high-tidal level, unless platforms are in a condition of perfect static 

equilibrium. 

 

Another important issue to address in modelling is sea level rising. Between 1961 and 2003, sea level 

rose globally at an average rate of 1.8 ± 0.5 mm per year, and from 1993 to 2007, the pace climbed 

to 3.41 mm per year (Beckley et al., 2007). According to various climate change scenarios, the sea 

level would increase between 0.5 and 1 m in the twenty-first century, according to the Sixth 

Assessment Report of the Intergovernmental Panel on Climatic Change of the United Nations ( 

Pörtner et al., 2022). The sea level, however, may be 0.5–1.6 m higher than it is now by 2100, 

according to recent estimates on the rapid melting of Greenland and Antarctica ice (Hanna et al., 

2008; Pritchard and Vaughan, 2007). 

It is commonly accepted that as sea levels rise, rocky coasts will erode more quickly, in part because 

deeper water would slow the attenuation of waves. Rock beaches will also be affected by global 

warming and sea level rise due to changes in tidal range, wave refraction patterns, biological 

processes, precipitation, and, probably most significantly, an increase in storm frequency and 

severity. 

According to a clay coast model, erosion rates will grow as sea levels rise. Because this will have an 

impact on how long waves will assault each elevation, the gradient of equilibrium profiles will also 

rise as sea levels rise (Dickson et al., 2007; Walkden and Dickson, 2008). 
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2.2 Remote sensing 
 

The ability to capture and handle massive datasets has resulted in a modernized approach to 

geosciences during the last two decades, owing to the outstanding advancement of geospatial 

technology such as Differential Global Positioning Systems (DGPS) and robotic equipment. 

Remote sensing techniques can be defined as passive or active, depending on the subject of research 

(Schowengerdt, 2006) (Fig.5). 

Passive techniques such as satellite imaging, photography, and infrared thermography capture data 

by utilizing natural radiation (such as sunlight) emitted or reflected by an object (Zhang et al., 2020). 

 

 

Figure 5: Pros and cons of the existing remote-sensing technologies ( Zhang et al., 2020). 
 

Active techniques, on the contrary, such as LiDAR (Light Detection And Ranging) or Radar, deliver 

an impulse that strikes the target and is measured by the instrument after being reflected. In terms of 

rock slope studies, while remote sensing techniques can overcome various concerns commonly 

encountered during field surveys, the huge variety of accessible technologies might be intimidating. 

According to  Derron et al. (2013), the most crucial stage in selecting the proper methodology is 

understanding the benefits and limits of each method. Petrie and Toth (2018) attempt to resolve these 

ambiguities by comparing the two most commonly used technologies for rock slope assessment, laser 

scanning and photogrammetry (Fig.6). Furthermore, the characteristics of the investigated area (e.g., 

extension, morphology, meteorological conditions), the goals of the surveys (e.g., needed resolution, 

accuracy, ease of reproducibility), time availability, and budget should all be taken into account in 

order to find the best solution. 
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Figure 6: Advantages and limitations of photogrammetry and laser scanning techniques ( Petrie and 

Toth (2018)). 

 

2.2.1 Orthophotos 

 

Orthophotography, developed in the 1960s (Smith, 1995), was costly and time-consuming to create. 

By the early 1970s (Lin et al., 2021), technical advancements had made this data source inexpensive 

for commercial purposes, and its use convenient. Computer-driven optical technologies and 

equipment were used to create the first orthophotography. Today, computer workstations and 

sophisticated computer software algorithms have mostly supplanted these pieces of equipment 

(Smith, 1995). This method produces a digital image that may stand on its own aesthetic merits or be 

incorporated and used inside a geographic information system (Wiesel, 1985). 

Orthophoto imagery provides the benefits of a regular map product, but unlike a standard map, the 

orthophoto may depict actual ground characteristics rather than cartographic renderings of such 

elements (Wiesel, 1985). Until around 1990, the orthophoto was made by combining optical and 

computer processing. Because of the rising availability of more powerful computers at lower rates, 

the digital orthophotograph has become a commercial production reality. To create the orthophoto, 

four fundamental procedures or adjustments must be made to the conventional vertical aerial image, 

regardless of the technique of fabrication (Lin et al., 2021; Rau et al., 2002; Wiesel, 1985) (Fig.7). 
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Figure 7: Scheme of the indirect approach for orthophoto generation (Lin et al., 2021). 

  

The initial modification is to standardize the image's scale. The second adjustment entails eliminating 

the relief displacement in order to reposition the terrain in its right location. The third process involves 

assigning X and Y coordinate values to the picture. The final job is to make radiometric or tonal 

modifications to the image so that it blends with nearby photos. Understanding orthophoto imagery 

requires first knowing the geometric features of conventional vertical aerial photography, which is 

the source of all orthophoto images (Smith, 1995; Wiesel, 1985). 

Traditional aerial mapping photography is shot vertically with highly sophisticated cameras and 

lenses. These cameras, mounted on gyro stabilized mounts, are directed straight down at the earth's 

surface and record their pictures in flight lines. Within the flight path, each subsequent shot overlaps 

the preceding image frame by 60% to 80%. The overlap region between the two succeeding frames 

enables stereo (3-D) viewing of the common area as well as the following gathering of the digital 

elevation model (DEM). Additional flight lines are flown with between 20% and 30% duplication 

(sidelap) between flight lines when more than one flight line is necessary to cover the geographic 

region of interest (Rau et al., 2002; Smith, 1995). 

The scale of this imagery will change across the photograph in accordance with the camera's height 

above the ground. Using the photo's center as a reference point, landscape at a lower height (far from 

the camera) will be depicted at a smaller size, while territory at a higher elevation will be 

photographed at a bigger scale. 

The image's spatial precision is altered by a distortion known as relief displacement. Simply said, 

locations that are higher than the nadir are moved away from the center of the image, and locations 

that are lower in elevation are moved toward the center of the image instead of away from it. Since 

the terrain's relief displacement is eliminated throughout the orthophoto processing, the hills and 

valleys will be shown in their actual locations. So, the top and bottom of the objects are located at the 

same X and Y coordinates on the ground, relief displacement of flagpoles, buildings, trees, and other 

characteristics of a similar kind will stay on the image. Particularly at the connection between 

orthophoto sheets, this phenomenon of relief displacement might result in various visual distortions 

or illusions (Baltsavias, 1996). 
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2.2.2 LiDAR technique  

 

Laser scanners make it possible to quickly and accurately capture 3-D data across wide regions. Even 

though laser scanners were created in the 1960s, direct georeferencing technologies and computer 

technology advancements in the mid-1990s were fundamental to the successful development of this 

technology (Petrie and Toth, 2018). The earliest laser scanners used for slope assessments were 

installed on aerial platforms; later, ground-based laser scanners were developed (Heritage and Large, 

2009). 

LiDAR surveys are conducted using equipment that uses the Light Amplification by Stimulated 

Emission of Radiation (LASER) technology to estimate distances with a high degree of accuracy. 

Laser scanners are optical devices made up of a scanning mechanism and a highly collimated, 

directional, coherent, and in-phase transmitter/receiver of electromagnetic radiation. Laser scanners 

are divided into two categories: airborne laser scanners (ALS) and terrestrial laser scanners (TLS), 

depending on where the device is used (Jaboyedoff et al., 2012b).  

According to  Baltsavias (1999), the formers are commonly employed to scan wide regions with 

decimetrical accuracy and precision. As a result, ALS techniques are used to map regional structures 

(Humair et al., 2013; Loye et al., 2012; Matasci et al., 2011), obtain Digital Elevation Models (DEMs) 

for small-scale landslide modelling and susceptibility assessment (Chigira et al., 2004; Haneberg et 

al., 2009; Michoud et al., 2015). TLS systems, on the other hand, operate on static positions and 

frequently capture many scans from various places to get an overall picture of the region under 

investigation, although they may be constrained by topographic features (Lato et al., 2015). 

Given that they may be positioned within reasonable distances from the target, ground-based laser 

scanners are advised for sub-vertical or overhanging slopes that are not suitable for ALS approaches 

(Bremer and Sass, 2012; Oppikofer et al., 2009; Stock et al., 2011). 

 

Distance or range measurement can be accomplished using one of two approaches for both 

techniques: 

 

Time of Flight (TOF): the laser scanner emits a very brief and powerful pulse of radiation that is 

reflected back to the instrument (Fig.8). The time it takes for the pulse released at point A to strike 

the item at position B and return to the laser scanner allows us to calculate the distance using the 

following formula (Eq.5): 

 

R = νt / 2   Eq.5 
 

where t is the recorded time interval, ν is the electro-magnetic radiation's (or light's) speed, and R is 

the distance between the sensor and the object. 
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Figure 8: Range measurement using Time Of Flight laser scanner 

(https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-

sensor-work/). 
 

 

Phase pulse: instead of a pulse, the laser scanner generates a continuous stream of laser energy (Fig.9). 

The phase difference between the transmitted and received sinusoidal waves of the beam is used to 

calculate the object's distance (Eq.6). 
 

 

R = Mλ+Δλ/ 2  Eq.6 
 

 

where M is the integer number of wavelengths, λ is the known value of the wavelength and Δλ is the 

fractional part of the wavelength (=ϕ/2π, with ϕ being the phase angle). 

 

               

Figure 9: Range measurements by means of phase-based laser scanner (Mill et al., 2023) 

 

Phase-based laser scanners offer more precise distance measurements but are restricted to small 

ranges, typically up to 100 m (Petrie and Toth, 2018). Because of this, these methods are only 

appropriate in certain contexts, such as displacement monitoring, whereas TOF methods, which 

enable the measurement of greater distances, are commonly employed for observations of the Earth's 

https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-sensor-work/
https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-sensor-work/
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surface (Wehr and Lohr, 1999). Ground-based laser scanners move in the azimuth direction to 

measure a sequence of elevation profiles (a line of closely spaced points) all the way around the 

device's vertical axis. In contrast, airborne systems use profile measurements in a direction 

perpendicular to the flight line to scan the target region. 

Due to the divergence effect, the scanned area grows as the distance between the device and the item 

increases and is equal to the laser beam directed into the target object (Petrie and Toth, 2018). It is 

feasible to estimate the location x, y, and z of the target object with respect to the instrument by 

knowing the origin of the laser beam (LOS, Line Of Sight), as well as the attitude of the device 

(Jaboyedoff et al., 2012b). In reality, GPS devices are furthermore employed during surveys to 

precisely specify attitude and position of the laser scanner and to sequentially georeferenced the 

obtained data in a global coordinate system if they are not built into the laser scanners themselves. 

The location and elevation of thousands of points that make up a 3-D representation of the scanned 

object, also known as a LiDAR point cloud, are provided by both techniques. 

In addition to revealing the location of the scanned item, laser rangefinders reveal its reflectivity, 

which is determined by dividing the radiation incident on a surface by the radiation that surface 

reflects. Diffuse reflectivity scatters into a hemispherical pattern on "hard surfaces" like rocks and 

buildings, with the highest intensity perpendicular to the target (Fig. 10). The wavelength of the 

device's emission, the distance between the laser rangefinder and the target, the roughness and 

humidity of the target region, as well as the laser beam's incidence angle, all have an impact on 

reflectivity (Carrea et al., 2016; Jaboyedoff et al., 2012a; Lato et al., 2013; Petrie and Toth, 2018). 

 

 

        

Figure 10: (a) At incidence angles larger than 45°, only diffuse reflections reach the receiver. (b) At 

incidence angles smaller than 45°, both diffuse and specular reflections can be received. The red 

dotted lines are perpendicular to the reflection directions (Tan and Cheng, 2017). 
 

The capacity to identify small objects in a point cloud, or the amount of detail that can be viewed 

inside a point cloud, is generally referred to as laser scanner resolution (Pesci et al., 2011). Resolution 

is generally regarded as the inverse of point spacing, which is affected by survey parameters such as 

laser scanner-target distance and angular separation between adjacent scanlines (Jaboyedoff et al., 

2012a). Furthermore, the dimension of the laser footprint influences the effective resolution: a larger 

diameter results in greater point spacing and, as a result, a smaller resolution (Abellán et al., 2014). 

The term "accuracy" is used in a more precise context to denote the measurement's intrinsic range of 

error, or how closely a range measurement corresponds to the real distance (Abellán et al., 2014). 

Range accuracy and angular accuracy are the two categories (Jaboyedoff et al., 2012a; Kamerman, 
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1993; Lichti, 2007). The capacity of a laser scanner to resolve two items on the same line of sight is 

referred to as range accuracy, whereas the ability to resolve two things on neighbouring lines of sight 

is referred to as angular accuracy. Accuracy of laser scanners reduces with increasing range, surface 

roughness, and angle of incidence, as well as with temperature, humidity, and interfering radiation 

from lamps and the sun (Abellán et al., 2009; Boehler et al., 2003; Ingensand, 2006; Lichti, 2007; 

Voegtle et al., 2008). 

While early laser scanners could offer accuracy of between 5 and 15 centimeters for airborne systems 

(Habib, 2017) and between 1.5 and 2 centimeters for ground-based systems at a distance of 300 meters 

(Jaboyedoff et al., 2012b; Oppikofer et al., 2009), newer generation technologies now enable 

reaching, respectively, a few centimeters and a few millimiters (Jaboyedoff et al., 2012a). 

 

 

2.2.3 Structure from Motion (SfM) and Unmanned Aerial Vehicles (UAV)  

 

Structure from Motion (SfM) is the technique for applying photogrammetry to moving objects using 

terrestrial, unmanned aerial vehicles (UAV), or aircraft platforms. It was first developed for 

multimedia applications (Beardsley et al., 1997; Koenderink and Van Doorn, 1991; Shashua, 1994). 

The ability to generate high-quality point clouds of landforms at various scales for a relatively low 

price makes SfM, which was only recently introduced to the Earth Sciences, increasingly popular 

(Anderson et al., 2019; Carrivick et al., 2016; Eltner et al., 2016; Remondino and El-Hakim, 2006; 

Westoby et al., 2012). 

By using triangulation techniques, traditional photogrammetric techniques enabled the reconstruction 

of 3-D scenes from pictures obtained by compact and single lens reflex (SLR) cameras. However, the 

exact placement and attitude of the camera had to be known in advance. Alternately, the camera 

positions might be established using the precise locations of control points on the surveyed area 

(resectioning process). Early 1990s advancements in computer vision (Boufama et al., 1993; 

Spetsakis and Aloimonos, 1991; Szeliski and Kang, 1994) and the development of feature-matching 

algorithms (Förstner, 1986; Harris et al., 1988) resulted in the introduction of techniques that could 

automatically solve the geometry of the scene, camera positions, and orientations without the need to 

know the locations of the control points (Lucieer et al., 2014; Turner et al., 2012; Westoby et al., 

2012). 

As a result, SfM approaches employ highly redundant, iterative bundle adjustment processes (Snavely 

et al., 2008) to estimate the positions of various features by overlaying the photos taken by a moving 

sensor. 

The generated point clouds are situated in a relative "image-space" coordinate system because the 

SfM approach does not need the use of points with known coordinates that are part of the real scene 

(Fonstad et al., 2013; James and Robson, 2014; Turner et al., 2012; Westoby et al., 2012). Contrary 

to the conventional photogrammetric approaches, the produced point cloud or polygonal surface will 

not be georeferenced and scaled (Carrivick et al., 2016; Clapuyt et al., 2016; Favalli et al., 2012). 

With the use of Ground Control Points (GCPs) with known coordinates, roto-translation matrices 

may be applied to the point cloud to orient and scale the model into an absolute coordinate system. 

 

Today, a variety of commercial software programs, such as Agisoft Metashape 

(https://www.agisoft.com/), Pix4D (https://www.pix4d.com/), and Zephyr 

(https://www.3dflow.net/it/software-di-fotogrammetria-3df-zephyr/), are available to conduct the 

SfM approach on images captured by handheld cameras or more sophisticated UAV systems using 

normal desktop computers. Despite the possibility of certain commands changing, the procedure 

generally follows this main pattern: 

 

https://www.agisoft.com/
https://www.pix4d.com/
https://www.3dflow.net/it/software-di-fotogrammetria-3df-zephyr/
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➢ Image acquisition 

➢ Keypoints detection and matching 

➢ Collinearity, bundle adjustment and sparse point cloud  

➢ Absolute registration 

➢ Dense 3D reconstruction 

➢ Polygonal surface and orthophotos 
 

The gathering of pictures with adequate overlap (preferably 80-90%) and from multiple locations 

and/or perspectives is the initial stage in obtaining a 3-D reconstruction of the object (James and 

Robson, 2012; Lucieer et al., 2014). Ground-based systems are ideal for investigating large-scale and 

steep areas, whereas aerial platforms are more appropriate for collecting data on vast and low-relief 

zones (Westoby et al., 2012). 

 

Beginning with image matching, which identifies similar features in several photographs, the 

captured pictures are processed. These characteristics, known as keypoints, might take the form of 

points, edges, or distinctive patterns (Bay et al., 2008; Calonder et al., 2010; Lowe, 2004; Strecha et 

al., 2011), and they need to be resistant to changes in scale, orientation, and lighting conditions 

(Carrivick et al., 2016). By using certain algorithms as the Scale Invariant Feature Transform (SIFT) 

presented by Snavely (2008) or the Random Sample Consensus (RANSAC) by Fischler and Bolles 

(1981), the keypoints are automatically retrieved and matched in each picture (Fig.11). 

 

Figure 11: Original SIFT algorithm flow (Mizuno et al., 2011). 
 

To eliminate disturbances like items moving on the scene during the surveys, the pathways between 

particular keypoints are connected before the 3-D reconstruction starts (Snavely et al., 2008). Despite 

the fact that keypoints on moving objects may be recognized in many photographs, the distances 

between the keypoints and other characteristics are continually varying, making it possible to filter 

out the disturbance using visibility and regularization restrictions (Furukawa and Ponce, 2006). 
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In order to retain collinearity, a 3-D scene is recreated from a pair of 2-D images using a set of 

equations (Fonstad et al., 2013; Liu et al., 2006; Roncella et al., 2011). The camera optic center, a 

point belonging to the surveyed item, and its representation in an image are all determined to be 

aligned along a straight line by the collinearity equation (Fig.12). 
 

 

 

Figure 12: Sketch showing the relationships between the extrinsic and intrinsic camera parameters, 

the collinearity equations and the projection line (Loiotine, 2022). 
 

One of the major goals of photogrammetry is to create a 3-D scene by translating the coordinates of 

a point in an image (measured in pixels) into geographic coordinates. The extrinsic and intrinsic 

camera parameters must be known for this purpose. The optic center coordinates (X0, Y0, ZO) and 

the instrument's orientation (yaw, pitch, roll) are the extrinsic camera parameters. The (u, v) 

coordinates of the point in the picture, scaling factor k, focal length f, and lens distortion factor l make 

up the intrinsic camera parameters. According to the collinearity equation (Mikhail et al., 2001), the 

coordinates of the point in the picture are expressed as a function of the geographic coordinates of 

the same point (Eq.7). 
 

 

{
𝑢 = 𝑓𝑥(𝑋0, 𝑌0, 𝑍0, 𝜔, 𝛷, 𝜅, 𝑢0, 𝑣0, 𝑓, 𝑋, 𝑌, 𝑍)
𝑣 = 𝑓𝑦(𝑋0, 𝑌0, 𝑍0, 𝜔, 𝛷, 𝜅, 𝑢0, 𝑣0, 𝑓, 𝑋, 𝑌, 𝑍)

  Eq.7 

 

 

The collinearity equation can be expressed in matrix form as (Eq.8): 
 

 

[
𝑢 −  𝑢0
𝑣 − 𝑣0

𝑓
] = 𝑘𝑀 [

𝑋 −  𝑋0
𝑌 − 𝑌0
𝑍 − 𝑍0

]  Eq.8 

 

 

where k and M, respectively, are the rotation matrix and scaling factor that account for the camera's 

orientation. This is the rotation matrix in more detail (Eq.9): 
 

 

𝑀 = [
𝑐𝑜𝑠Ф𝑐𝑜𝑠𝜅 𝑐𝑜𝑠𝜔𝑠𝑖𝑛𝜅 + 𝑠𝑖𝑛𝜔𝑠𝑖𝑛Ф𝑐𝑜𝑠𝜅 𝑠𝑖𝑛𝜔𝑠𝑖𝑛𝜅 − 𝑐𝑜𝑠𝜔𝑠𝑖𝑛Ф𝑐𝑜𝑠𝜅

−𝑐𝑜𝑠Ф𝑠𝑖𝑛𝜅 𝑐𝑜𝑠𝜔𝑐𝑜𝑠𝜅 − 𝑠𝑖𝑛𝜔𝑠𝑖𝑛Ф𝑠𝑖𝑛𝜅 𝑠𝑖𝑛𝜔𝑐𝑜𝑠𝜅 + 𝑐𝑜𝑠𝜔𝑠𝑖𝑛Ф𝑠𝑖𝑛𝜅
𝑠𝑖𝑛Ф 𝑠𝑖𝑛𝜔𝑐𝑜𝑠Ф 𝑐𝑜𝑠𝜔𝑐𝑜𝑠Ф

] = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

]   Eq.9 
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The following relationships are then achieved from the previous equations (Eq.10): 
 

{
𝑢 − 𝑢0 = −𝑓

𝑚11(𝑋−𝑋0)+𝑚12(𝑌−𝑌0)+𝑚13(𝑍−𝑍0)

𝑚31(𝑋−𝑋0)+𝑚32(𝑌−𝑌0)+𝑚33(𝑍−𝑍0)

𝑣 − 𝑣0 = −𝑓
𝑚21(𝑋−𝑋0)+𝑚22(𝑌−𝑌0)+𝑚23(𝑍−𝑍0)

𝑚31(𝑋−𝑋0)+𝑚32(𝑌−𝑌0)+𝑚33(𝑍−𝑍0)

    Eq.10 

 

 

Because there are fewer equations than there are X, Y, and Z unknowns, the issue is still unsolved. 

Additionally, there will be 2 additional equations and 3 additional unknowns for each additional point 

in the picture under analysis. With the help of multiple views and the Structure from Motion 

technique, it is possible to solve the issue and determine the target point's three-dimensional 

coordinates. If additional images of the same point are examined, the three unknown coordinates will 

remain the same, but the number of equations will rise (two additional equations will be provided for 

each image). By analysing all key points, a 3-D scene will be able to be created since the number of 

equations will significantly outnumber the number of unknowns (Fig. 13, Eq. 11). 

 

𝑁𝑝 =
6𝑁𝑉+3

3𝑁𝑉−3
  Eq. 11 

 
 

 

Figure 13: Structure from Motion (SfM) process. The structure in the world (cube) is imaged from 

multiple viewpoints (Image 1, Image 2, Image 3). By tracking (see dashed lines) the pixel locations 

(p1,1, p1,2, ...) of specific features (x1,x2 ...) in the images, both the camera motion (R1, T1; R2, T2, 

...) and the 3D model of the structure is estimated  (Yilmaz and Karakus, 2013). 
 

For each detected key point and each photograph inserted into the model, the common SfM software 

automatically solve the collinearity equations using least-square bundle adjustment (Brown, 1976; 

Fonstad et al., 2013; Lucieer et al., 2014; Snavely et al., 2008; Triggs et al., 2000). In order to precisely 

place the images, the extrinsic and intrinsic camera parameters as well as the XYZ coordinates of the 
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feature points are determined (Favalli et al., 2012; Ohnishi et al., 2006; Turner et al., 2012). Low-

density point cloud with RGB colours taken from the images is generated consequently. 
 

The generated point clouds are positioned in a relative "image-space" coordinate system because the 

SfM approach does not need the use of known-coordinate points from the real scene (Fonstad et al., 

2013; James and Robson, 2014; Turner et al., 2012; Westoby et al., 2012). Contrary to the 

conventional photogrammetric approaches, the produced point cloud or polygonal surface will not be 

georeferenced and scaled (Carrivick et al., 2016; Clapuyt et al., 2016; Favalli et al., 2012). With the 

use of ground-control points (GCPs) with known coordinates, roto-translation matrices may be 

applied to the point cloud to orient and scale the model into an absolute coordinate system. It is 

standard procedure to position easily visible objects (targets) on the surveyed area prior to the 

gathering of images and to get their GPS coordinates. 

To prevent mistakes during the 3-D scene reconstruction, the control points should be dispersed 

across the region (James and Robson, 2012). To scale and orient the point cloud in an absolute 

reference system, the GCPs are semi-automatically recognized on the pictures during the procedures 

and their coordinates are assigned in the program. It is recommended to use more targets (5-7) evenly 

distributed throughout the area, even though 3 GPCs with XYZ coordinates should theoretically be 

sufficient to locate the scene in a 3-D environment. This will help to reduce deformations caused by 

camera lens distortions (doming shape deformations) (Eltner et al., 2016; James and Robson, 2014). 

 

Through a dense matching process employing the Multi-View-Stereo (MVS) methods, which 

enhance the point cloud density by at least two orders of magnitude, a higher resolution point cloud 

is created (Smith, 2016). The most popular MVS algorithms employed in geosciences, according to 

Eltner and colleagues (Eltner et al., 2016), are the depth-map merging approach (Li et al., 2010) and 

Patch-based Multi-view Stereo (PMVS) methods (Furukawa and Ponce, 2006). The second approach, 

known as depth maps, is based on the distances between the camera location and the 3-D scene, 

whereas the PMVS methodology reconstructs the 3-D scene from clusters of manageable size. To 

create a thick point cloud, patches or depth maps are matched and built around the sparse point cloud. 

The precision of the 3D model may be assessed after it has been scaled and rotated by looking at the 

Bundle Adjustment residuals: the fewer the reprojection errors, or the distance between each key 

point's projection and its observations, the better is the result. 
 

The point cloud or dense map may be used to create a polygonal surface (mesh), with various filters 

(such as vegetation removal), face counts, and quality options available. The mesh can receive a 

texture produced from the images. Digital elevation models (DEMs) and orthophotos can also be 

created. It should be explicitly clear that in order to produce dense point clouds and subsequently 

their products, the SfM approach needs to be linked with the MVS algorithm. Therefore, when 

referring to the entire procedure (from photo acquisition to point clouds/meshes production), the name 

SfM-MVS is more applicable. But after intensive matching, the data are also frequently referred to 

as SfM in the literature. To minimize confusion, the word SfM will be used broadly throughout this 

work, although it refers to the SfM-MVS coupling. 
 

2.3 Rock-mass and Stability of rock slopes 
 

A rock mass refers to a substantial volume or assemblage of rock materials separated by 

discontinuities. It encompasses various geological elements such as rock types, structures, fractures, 

and discontinuities. The properties and behavior of a rock mass are influenced by factors like 

lithology, structural features, weathering, and the presence of joints or faults. Its characterisation and 

categorization strive to determine the properties of the rock mass by giving values to a set of rock 



“COMBINED TECHNIQUES STUDY FOR THE IDENTIFICATION OF MAIN DRIVES IN COASTAL CLIFF 

PROCESSES BETWEEN PORTONOVO AND TRAVE (ANCONA, ITALY)” PhD Thesis FULLIN NICOLA  

 

 

39 

 
 

parameters. Although continuum mechanics may predict the behaviour of unbroken rock material, 

most rock masses are extensively fragmented. Since fractures influence the mechanical response of 

rock masses, the definition of their mechanical behaviour is challenging. Rock mass classifications 

are often employed in geotechnical engineering and mining to assess the stability, deformation, and 

strength characteristics of rock formations for construction or excavation purposes. 

In this chapter, it will be further addressed a review on discontinuities, rock mass classification and 

slope stability and related numerical model approaches.  
 

2.3.1 Discontinuities 

 

Numerous works (Attewell and Farmer, 2012; Baecher and Lanney, 1978; Barton, 1978; Blyth and 

De Freitas, 2017; Fookes and Denness, 1969; Hills, 2012; Marinos and Carter, 2018; Price, 2016; 

Priest, 1993; Priest and Hudson, 1981; Wyllie, 2017) discuss the different types and characteristics 

of discontinuities. 

Discontinuities are categorized based on their formation as: 

 

➢ Bedding planes: large discontinuities found within sedimentary rock masses, resulting from 

interruptions in the sedimentation process. These planes typically exhibit parallel alignment, 

although they can undergo folding during deformation processes. 

 

➢ Faults: identifiable discontinuities characterized by relative displacements occurring on 

opposing sides of the fault plane. 

 

➢ Joints: discontinuities that lack visible relative displacement and commonly occur as groups 

of parallel or subparallel structures known as joint sets. Joints are formed because of various 

geological processes, including rapid cooling of basaltic lava flows (yielding columnar joints), 

diurnal temperature changes, geological uplift, or tectonic activities. 

 

➢ Foliation: planar surfaces formed through the recrystallization and parallel alignment of   

minerals during metamorphism. 
 

➢ Fractures and cracks: although lacking a universally precise definition, are terms often 

employed interchangeably with "discontinuity" in general and colloquial discourse. Within 

the literature, Priest (1993) suggests that "fracture" and "crack" serve as synonyms for the 

broader concept of "discontinuity." 
 

Quantitative evaluations of discontinuities adhere to the recommendations set forth by the 

International Society for Rock Mechanics (Barton, 1978) for comprehensive characterization. These 

guidelines aim to identify ten distinct attributes as follows (Fig. 14): 

 

➢ Orientation: This attribute describes the spatial attitude of a discontinuity and is measured 

using geological compasses and clinometers. Orientation will be defined in terms of strike 

and dip direction/dip for planar representations (top view imagery) and 3-D datasets (point 

clouds and triangulated surfaces), respectively. 

➢ Set spacing: It refers to the normal distance between two adjacent discontinuities that belong 

to the same discontinuity set. 

➢ Persistence or continuity: This attribute denotes the length of a discontinuity trace observed 

in an exposed section. 
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➢ Roughness: It signifies the level of asperity exhibited by the surface of a discontinuity at 

various scales. 

➢ Wall strength: It quantifies the compressive strength of the exposed surface of a discontinuity. 

➢ Aperture: This attribute measures the orthogonal distance between the opposing sides of an 

open discontinuity, which may be filled with air or water. 

➢ Infilling: It refers to the material that separates the two rock walls of a discontinuity. This 

material can encompass weaker substances (e.g., soil, weathered material) or more resilient 

materials (e.g., cement, veins). 

➢ Water seepage: It denotes the presence of water within a discontinuity or the entirety of the 

rock mass. 

➢ Number of discontinuity sets: This attribute represents the count of distinct sets in which the 

discontinuity network is organized. 

➢ Block size: It encompasses the dimensions of rock blocks determined by intersecting 

discontinuities. 
 

 

Figure 14: Rock mass characteristics  (Hudson and Harrison, 2000) 
 

The field-based collection of information on discontinuities commonly employs two primary 

sampling strategies: scanline surveys and window surveys. The scanline approach involves placing 

an imaginary or physical line along an exposed rock face that is representative of the study area. Data 

is then gathered on all the discontinuity traces that intersect this line. To achieve statistical 

significance, Priest (1993) recommends analysing 150-350 discontinuities, with at least half of them 

displaying visible terminations. The length of the scanline should be sufficiently long compared to 

the size and spacing of the discontinuities. For instance, Priest and Hudson (1976) suggest that the 

linear sample should be at least 50 times the mean spacing of the discontinuity sets. It is also advisable 

to employ a minimum of three sampling lines orthogonal to each other (Priest, 1993). Further 

discussions and details on scanlines can be found in La Pointe and Hudson (1985) (La Pointe and 

Hudson, 1985), Villaescusa (1992) (Villaescusa, 1992), Priest (1993) (Priest, 1993), and Windsor 

(1997) (Windsor, 1997). 
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The window sampling technique involves a two-dimensional survey aimed at gathering information 

on the discontinuities that intersect or lie within a rectangular window. Similar to the scanline 

approach, the size of the window should be appropriately chosen so that each side intersects a 

minimum of 30-100 discontinuities  Priest (1993). To avoid under-sampling of discontinuities that 

are parallel to the sampled surface, it is recommended to employ a second window placed 

perpendicular to the first one. 
 

2.3.2 Rock mass characterizations  
 

In this part, a concise overview of how the properties of discontinuities are incorporated into the 

prevailing rock mass classification systems, widely utilized for characterizing rock masses and 

designing engineering structures like tunnels and underground excavations, is provided. 
 

2.3.2.1 Rock Quality Designation (RQD) 
 

The RQD (Rock Quality Designation) system was proposed by Deere (1964) and revolves around the 

assessment of the RQD index. This index can be obtained directly from drill core logs or indirectly 

by utilizing correlations such as the discontinuity frequency (Priest and Hudson, 1976). In cases 

where core samples are unavailable, but the traces of discontinuities are clearly visible in rock 

exposures, Palmstrom (1996) suggested the following relationship to estimate the RQD (Eq.12) based 

on the number of discontinuities per unit volume: 
 

𝑅𝑄𝐷 = 115 − 3.3𝐽𝑣 Eq.12 
 

Where Jv is the volumetric joint count (Palmstrom, 2005). 

Employing the volumetric joint count to calculate the RQD index can minimize its dependence on 

the orientation of the borehole (Hoek, 2007). The classification of rock mass quality is divided into 

five classes based on the RQD value (Tab.1). However, according to Zhang et al. (2006), relying 

solely on the RQD index is insufficient for obtaining a comprehensive understanding of the behaviour 

of the rock mass. This is because the RQD index does not consider the properties of the 

discontinuities. Consequently, the RQD index is presently utilized as an input parameter in other 

classification systems. 
 

 

 

Table 1: Rock Mass Quality according to the RQD System (Deere, 1964; Loiotine, 2022). 
 

 

2.3.2.2 Rock Mass Rating (RMR) and Slope Mass Rating (SMR) 
 

The Rock Mass Rating (RMR) classification system, initially introduced by Bieniawski (Bieniawski, 

1989, 1973) for tunnels and subsequently expanded to encompass rock slopes and foundations 
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(Romana et al., 2015), revolves around the estimation of the RMR index (Eq.13). This index considers 

both the strength characteristics of the intact rock and the conditions of the discontinuities: 
 

𝑅𝑀𝑅𝑏 = 𝑅𝑠 + 𝑅𝑄𝐷 + 𝑅𝑑𝑗 + 𝑅𝑐𝑗 + 𝑅𝑤 Eq.13 
 

In the RMR system, the RMR index is determined using various parameters. These include Rs, which 

represents the compressive strength of the intact rock, Rdj denoting the joint spacing, Rcj indicating 

the joint conditions, and Rw representing the groundwater conditions. The rock mass quality is then 

classified into five classes, as outlined in the corresponding Table 2: 
 

 

 

 

Table 2: Rock mass classification according to the RMR system (Bieniawski, 1973; Loiotine, 

2022). 
 

 
 

 

The Slope Mass Rating (SMR) proposed by Romana (1985) (Romana et al., 2015)  modify the RMR 

method in order to produce a more accurate evaluation of the rock mass quality for slope stability 

assessment (Eq.14): 
 

 

𝑆𝑀𝑅 = 𝑅𝑀𝑅𝑏 + (𝐹1 · 𝐹2 · 𝐹3) + 𝐹4 Eq.14 
 

 

The RMRb (basic RMR index) is derived from Bieniawski's classification. It is further modified by 

incorporating additional factors to obtain the final Stability RMR (SMR) index. The additional factors 

include F1, which accounts for the parallelism between the strike of the discontinuities and the slope 

face, F2, which considers the dip angle of the joints in relation to the planar mode of failure, F3, 

which assesses the relationship between the dip of the discontinuities and the dip of the slope face, 

and F4, a correction factor associated with the excavation method. Based on the SMR value, the rock 

mass stability is classified into five classes, ranging from completely unstable (SMR < 20) to 

completely stable (SMR < 81) (Tab. 3). 

 
 

 

Table 3: Rock mass classification according to the SMR system (Loiotine, 2022; Romana et al., 

2015) 
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2.3.2.3 Q-System and Q-Slope 
 

Barton (1974) (Barton et al., 1974) introduced the Q-system as a methodology for addressing 

tunneling and subterranean excavations. Over time, its scope was broadened to encompass various 

applications within rock formations (Barton, 2002). The assessment of rock mass quality is conducted 

using the Q index, a metric that incorporates the characteristics of discontinuities in the rock (Eq.15): 

 

𝑄 =
𝑅𝑄𝐷

𝐽𝑛
 ×

𝐽𝑟

𝐽𝑎
×

𝐽𝑤

𝑆𝑅𝐹
 (Eq.15) 

 

Here, Jn denotes the count of joint sets, Jr represents the parameter for joint roughness, Ja signifies 

the parameter for joint alteration, Jw accounts for the joint water parameter, and SRF corresponds to 

the Stress Reduction Factor. To elaborate, the initial ratio pertains to the configuration of the rock 

mass, the subsequent ratio relates to attributes of the discontinuities (specifically, roughness and wall 

alteration), and the third ratio reflects the prevailing stress conditions. Detailed guidance on 

ascertaining these parameters can be located within dedicated tables presented by Barton and 

colleagues (Barton et al., 1974). Depending on the resultant Q value, classification of the rock mass 

can be categorized into nine distinct classes (Tab.4). 
 

Table 4: Rock mass classification according to the Q system (Barton et al., 1974; Loiotine, 2022) 

 

 
 

 

The Q-slope technique, designed for the purposes of rock slope engineering and rock mass 

classification, is a product of the collaborative efforts of Barton and Bar (Bar and Barton, 2017). This 

method quantifies the rock mass's quality concerning slope stability, and it yields the Q-slope value, 

facilitating the calculation of sustainable slope angles over extended periods without the need for 

additional reinforcement. 

The computation of the Q-slope value involves (Eq.16): 
 

 

𝑄 = (
𝑅𝑄𝐷

𝐽𝑛
)  × (

𝐽𝑟

𝐽𝑎
)

0
× (

𝐽𝑤𝑖𝑐𝑒

𝑆𝑅𝐹𝑠𝑙𝑜𝑝𝑒
) Eq.16 
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The Q-slope methodology draws upon analogous parameters as the Q-system, which has been utilized 

for more than four decades in formulating ground support strategies for underground excavations and 

tunnel construction. The initial quartet of parameters, namely RQD (rock quality designation), Jn 

(joint set count), Jr (joint roughness coefficient), and Ja (joint alteration coefficient), align with those 

found in the Q-system. Nevertheless, the frictional resistance pair, Jr and Ja, can be applied to specific 

facets of potentially unstable wedges if necessary. Straightforward orientation factors (denoted as 0), 

such as (Jr/Ja)1x0.7 for the J1 set and (Jr/Ja) 2 x 0.9 for the J2 set, yield approximations of the 

collective frictional resistance reduction across an entire wedge, as applicable. The Q-system's term, 

Jw, is substituted with Jwice, which considers a broader array of environmental circumstances 

pertinent to rock slopes exposed to enduring environmental influences.  

These circumstances encompass extremes like erosive heavy rainfall and ice wedging, which may 

transpire seasonally at opposite geological and regional extremities.  

Additionally, classifications pertinent to SRF (strength reduction factor) pertinent to slope stability 

are incorporated. The product of these factors yields the Q-slope value, encompassing a range from 

0.001 (indicating extremely suboptimal conditions) to 1000 (indicating exceptionally favourable 

conditions) across diverse rock masses (Fig. 15). 

A concise equation for determining the steepest feasible slope angle (β) in degrees, without 

necessitating reinforcement or auxiliary support, is provided as follows (Eq.17): 
 

 

𝛽 =  20 log10  𝑄𝑠𝑙𝑜𝑝𝑒 + 65°     Eq.17 

 

 
 

 

 

Figure 15: Q-slope stability chart (Bar and Barton, 2017). 
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2.3.2.4 Rock Mass index (RMi) 
 

Palmstrom's Rock Mass Index (RMi) (Palmstrøm, 1996) classifies rock masses by taking into account 

the qualities of the discontinuities that tend to lower their strength. 

The RMi is written as (Eq.18): 
 

𝑅𝑚𝑖 = 𝜎𝑐 𝐽𝑃 Eq.18 
 

where σc is the intact rock's uniaxial compressive strength and JP is the jointing parameter, which 

reflects the strength drop induced by the joints. 

The jointing parameter is made up of the joint condition factor (jC) and the block volume (Vb), as 

shown below (Eq.19): 

𝑗𝐶 = 𝑗𝑅
𝑗𝐿

𝑗𝐴
          Eq.19 

 

where jR, jL, and ja are the joint roughness factor, joint size and continuity factor, and joint alteration 

factor, respectively. 

Table 5 depicts all the range of values in RMi classification. Further discussion is provided in Zhang 

(2016)(Zhang, 2016). 
 

Table 5: Rock mass classification according to the RMi system (Loiotine, 2022; Palmstrom, 1996) 
 

 
 

2.3.2.5 Geological Strength Index (GSI) 
 

Hoek and Brown (Hoek and Brown, 1997) proposed the GSI categorization system, which is based 

on the Hoek-Brown strength criteria for rock masses. This criteria was first developed for intact rock 

(Brown and Hoek, 1980) as follows (Eq.20): 
 

𝜎′1 = 𝜎′3 + 𝜎𝑐𝑖  (𝑚𝑖
  𝜎′3

𝜎𝑐𝑖
+ 1)

0.5
 Eq.20 

 

where σci is the rock unconfined compressive strength, mi is a material constant for the intact rock, 

and σ'1 and σ'3 are the effective major and minor primary stresses, respectively. 

The generalized Hoek-Brown strength criteria (Hoek and Brown, 1997) which is defined using the 

following equation, was later used to apply the criterion to rock masses (Eq.21). 
 

𝜎′1 = 𝜎′3 + 𝜎𝑐𝑖  (𝑚𝑏
  𝜎′3

𝜎𝑐𝑖
+ 𝑠)

𝛼
 Eq.21 

  

where the rock mass material's specified constants are mb, s, and . 
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By using the GSI index, which is based on the rock mass structure (range from intact to disintegrated) 

and the discontinuity conditions (from very good to very poor), the GSI classification system offers 

a qualitative assessment of the rock mass quality. Hoek and Brown recommended identifying a range 

of GSI rather than a single figure because the assessment of the GSI is somewhat arbitrary. Figure 16 

presents the initial GSI categorization scheme. The method has recently been modified to account for 

various types of rock masses (Hoek et al., 2005, 2002, 1998; Hoek and Brown, 2019; Hoek and 

Marinos, 2007, 2000; Marinos and Hoek, 2018; Marinos et al., 2005; Marinos and Carter, 2018; 

Marinos, 2017) as Flysch (Fig.17). 
 

 

Figure 16: GSI classification chart (Hoek and Marinos, 2000) 
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Figure 17: GSI classification chart for heterogeneous rock masses such as flysch (Marinos, 2017). 
 

2.3.3 Classification of landslides  

 

In the majority of instances, occurrences of rock mass failures are regulated by geological structures, 

with their kinematic characteristics contingent upon the geometric interplay between the slope and 

the structural discontinuities (Stead and Wolter, 2015). Multiple notable failure mechanisms, 

including planar sliding, wedge sliding, rotational sliding, and toppling, have been extensively 

documented (Cruden, D.M., Varnes, 1996; Cruden, 2003; Giani, 1992; Goodman and Shi, 1985; 

Hoek, 2007; Hoek and Bray, 1981). Nevertheless, additional forms of failure have been identified, 

characterized primarily by the observed phenomena rather than the spatial arrangement of the slope 

and joints (Hantz et al., 2003; Hungr et al., 2014; Hungr and Evans, 2004). 

An update of the Varnes Classification of Landslide Types, is proposed by Hungr et al. (2014)(Hungr 

et al., 2014). In accordance with this classification, the principal landslides are as follows and in 

Figure 18: 

 

- Rock/ice fall: Detachment, fall, rolling, and bouncing of rock or ice fragments. May occur 

singly or in clusters, but there is little dynamic interaction between the most mobile moving 

fragments, which interact mainly with the substrate (path). Fragment deformation is 

unimportant, although fragments can break during impacts. Usually of limited volume. 
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- Boulder/debris/silt fall: Detachment, fall, rolling and bouncing of soil fragments such as large 

clasts in soil deposits, or blocks of cohesive (cemented or unsaturated) soil. The mechanism 

of propagation is similar to rock fall, although impacts may be strongly reduced by the 

weakness of the moving particles. 

- Rock block topple: Forward rotation and overturning of rock columns or plates (one or many), 

separated by steeply dipping joints. The rock is relatively massive, and rotation occurs on 

well-defined basal discontinuities. Movement may begin slowly, but the last stage of failure 

can be extremely rapid. Occurs at all scales. 

- Rock flexural topple: Bending and forward rotation of a rock mass characterized by very 

closely spaced, steeply dipping joints or schistose partings, striking perpendicular to the fall 

line of the slope. The rock is relatively weak and fissile. There are no well-defined basal joints, 

so that rotation of the strata must be facilitated by bending. The movement is generally slow 

and tends to self-stabilize. However, secondary rotational sliding may develop in the hinge 

zone of the topple. Occurs at large scale. 

- Gravel/sand/silt block topple: Block toppling of columns of cohesive (cemented) soil, 

separated by vertical joints. 

- Rock rotational slide (“rock slump”): Sliding of a mass of weak rock on a cylindrical or other 

rotational rupture surface which is not structurally controlled. The morphology is 

characterized by a prominent main scarp, a characteristic back-tilted bench at the head and 

limited internal deformation. Usually slow to moderately slow. 

- Rock planar slide (“block slide”): Sliding of a mass of rock on a planar rupture surface. The 

surface may be stepped forward. Little or no internal deformation. The slide head may be 

separating from stable rock along a deep, vertical tension crack. Usually extremely rapid. 

- Rock wedge slide: Sliding of a mass of rock on a rupture surface formed of two planes with a 

downslope-oriented intersection. No internal deformation. Usually extremely rapid. 

- Rock compound slide: Sliding of a mass of rock on a rupture surface consisting of several 

planes, or a surface of uneven curvature, so that motion is kinematically possible only if 

accompanied by significant internal distortion of the moving mass. Horst-and-graben features 

at the head and many secondary shear surfaces are typical. Slow or rapid. 

- Rock irregular slide (“rock collapse”): Sliding of a rock mass on an irregular rupture surface 

consisting of a number of randomly oriented joints, separated by segments of intact rock 

(“rock bridges”). Occurs in strong rocks with non- systematic structure. Failure mechanism is 

complex and often difficult to describe. May include elements of toppling. Often very sudden 

and extremely rapid. 

- Clay/silt rotational slide (“soil slump”): Sliding of a mass of (homogeneous and usually 

cohesive) soil on a rotational rupture surface. Little internal deformation. Prominent main 

scarp and back-tilted landslide head. Normally slow to rapid but may be extremely rapid in 

sensitive or collapsible soils. 

- Clay/silt planar slide: Sliding of a block of cohesive soil on an inclined planar rupture surface, 

formed by a weak layer (often pre-sheared). The head of the slide mass separates from stable 

soil along a deep tension crack (no active wedge). May be slow or rapid. 

- Gravel/sand/debris slide: Sliding of a mass of granular material on a shallow, planar surface 

parallel with the ground. Usually, the sliding mass is a veneer of colluvium, weathered soil, 

or pyroclastic deposits sliding over a stronger substrate. Many debris slides become flow-like 

after moving a short distance and transform into extremely rapid debris avalanches. 

- Clay/silt compound slide: Sliding of a mass of soil on a rupture surface consisting of several 

planes, or a surface of uneven curvature, so that motion is kinematically possible only if 

accompanied by significant internal distortion of the moving mass. Horst-and-graben features 
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at the head and many secondary shear surfaces are observed. The basal segment of the rupture 

surface often follows a weak horizon in the soil stratigraphy. 

- Rock slope spread: Near-horizontal stretching (elongation) of a mass of coherent blocks of 

rock as a result of intensive deformation of an underlying weak material, or by multiple 

retrogressive sliding controlled by a weak basal surface. Usually with limited total 

displacement and slow. 

- Sand/silt liquefaction spread: Extremely rapid lateral spreading of a series of soil blocks, 

floating on a layer of saturated (loose) granular soil, liquefied by earthquake shaking or 

spontaneous liquefaction. 

- Sensitive clay spread: Extremely rapid lateral spreading of a series of coherent clay blocks, 

floating on a layer of remoulded sensitive clay. 

- Rock/ice avalanche: Extremely rapid, massive, flow-like motion of fragmented rock from a 

large rockslide or rock fall. 

- Dry (or non-liquefied) sand/silt/gravel/debris flow: Slow or rapid flow-like movement of 

loose dry, moist, or subaqueous, sorted, or unsorted granular material, without excess pore 

pressure. 

- Sand/silt/debris flowslide: Very rapid to extremely rapid flow of sorted or unsorted saturated 

granular material on moderate slopes, involving excess pore-pressure or liquefaction of 

material originating from the landslide source. The material may range from loose sand to 

loose debris (fill or mine waste), loess and silt. Usually originates as a multiple retrogressive 

failure. May occur subaerially, or under water. 

- Sensitive clay flowslide: Very rapid to extremely rapid flow of liquefied sensitive clay, due 

to remolding during a multiple retrogressive slide failure at, or close to the original water 

content. 

- Debris flow: Very rapid to extremely rapid surging flow of saturated debris in a steep channel. 

Strong entrainment of material and water from the flow path. 

- Mud flow: Very rapid to extremely rapid surging flow of saturated plastic soil in a steep 

channel, involving significantly greater water content relative to the source material. Strong 

entrainment of material and water from the flow path (Plasticity Index>5 %). 

- Debris flood: Very rapid flow of water, heavily charged with debris, in a steep channel. Peak 

discharge comparable to that of a water flood. 

- Debris avalanche: Very rapid to extremely rapid shallow flow of partially or fully saturated 

debris on a steep slope, without confinement in an established channel. Occurs at all scales.ù 

- Earthflow: Rapid or slower, intermittent flow-like movement of plastic, clayey soil, facilitated 

by a combination of sliding along multiple discrete shear surfaces, and internal shear strains. 

Long periods of relative dormancy alternate with more rapid “surges”. 

- Peat flow: Rapid flow of liquefied peat, caused by an undrained failure. 

- Mountain slope deformation: Large-scale gravitational deformation of steep, high mountain 

slopes, manifested by scarps, benches, cracks, trenches and bulges, but lacking a fully defined 

rupture surface. Extremely slow or unmeasurable movement rates. 

- Rock slope deformation: Deep-seated slow to extremely slow deformation of valley or hill 

slopes. Sagging of slope crests and development of cracks or faults, without a well-defined 

rupture surface. Extremely slow movement rates. 

- Soil slope deformation: Deep-seated, slow to extremely slow deformation of valley or hill 

slopes formed of (usually cohesive) soils. Often present in permafrost slopes with high ice 

content. 
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- Soil creep: Extremely slow movement of surficial soil layers on a slope (typically less than 1 

m deep), as a result of climate-driven cyclical volume changes (wetting and drying, frost 

heave). 

- Solifluction: Very slow but intensive shallow soil creep involving the active layer in Alpine 

or polar permafrost. Forms characteristic solifluction lobes. 
 

 

Figure 18: Summary of the updated version of the Varnes classification system (Hungr et al., 2014). 

With the apex a are indicated movement types that usually reach extremely rapid velocities as defined 

by Cruden and Varnes (1996) (Cruden, D.M., Varnes, 1996). The other landslide types are most often 

(but not always) extremely slow to very rapid. 
 

2.3.4 Numerical modelling approaches for rock slope analysis 
 

The utilization of numerical techniques for the assessment of the stability of rock slopes has witnessed 

a significant upsurge in the last two decades (Stead and Coggan, 2012). Numerous methodologies are 

available to explore progressively intricate processes of slope failure. Initial evaluations of rock slope 

stability can be conducted through basic kinematic analyses, hinging on the alignment of the slope 

and the documented structural discontinuities. The employment of limit equilibrium methods permits 

the appraisal of slope stability by quantifying the ratio between propelling and opposing forces within 

the system (Hoek and Bray, 1981). 

Continuum and Discontinuum numerical methodologies offer a means to incorporate the deformation 

and failure tendencies of the materials constituting the slope. This facilitates the investigation of more 

intricate mechanisms such as material deterioration, step path failures, and the accumulation of 

damage. Complex hybrid methodologies can be adopted to simulate the fragile conduct of the 

unbroken rock, replicating the progression of fractures within unbroken material. These approaches 
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also enable the exploration of the impact of rock bridges and the potency of unbroken rock on slope 

stability (Elmo and Stead, 2010; Lisjak et al., 2014). 

In recent times, the utilization of lattice-spring scheme methods for modelling brittle fractures has 

gained prominence, driven by the development of modern, user-friendly numerical codes and the 

enhanced computational capabilities of contemporary workstations (Cundall, 2011). This has resulted 

in a growing prevalence of such methods. This passage furnishes a synopsis of the most employed 

techniques for the analysis of slope stability, with specific emphasis on limit equilibrium techniques 

and continuum. 

 

2.3.4.1 Kinematic analyses and Limit Equilibrium techniques 
 

During an initial stage, deterministic or probabilistic evaluations of rock slopes stability can be 

conducted through kinematic analyses utilizing stereographic projections. These assessments involve 

the execution of kinematic feasibility tests (Markland, 1972)(e.g., Markland 1972) to recognize 

potential failure mechanisms and determine movement directions. These determinations rely on the 

spatial orientation of both the rock slope and its discontinuities. Various commercial software 

packages, such as Dips (https://www.rocscience.com/) and Dips Analyst (Admassu and Shakoor, 

2013), are accessible for performing kinematic analyses encompassing different failure modes, 

including planar sliding, wedge sliding, direct toppling, and oblique toppling. 

Limit Equilibrium methods are specialized tools employed for evaluating the stability of rock slopes 

impacted by planar or circular failure surfaces. In this context, the slope is treated as a rigid entity, 

and its stability hinges on the factor of safety (Eq.22). This factor signifies the ratio between the 

resisting force along a distinct failure surface (ultimate stress) and the driving force exerted on the 

same surface (working stress). In instances of shear-type failures, the values of resisting and working 

stresses are defined in terms of shear strength τ (Wyllie, 2017): 
 

𝐹𝑆 =
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠
=

𝜏

𝜏𝑠
  Eq.22 

 

 

Here, τ represents the resisting shear strength, and τs the shear strength along the displacing sliding 

surface. The equilibrium condition is attained in limit equilibrium when the driving forces equate the 

resisting forces, denoted as FS=1. The literature has documented various Limit Equilibrium methods, 

differing in the investigated failure mechanisms and the underlying assumptions that render the 

problem statistically determinate. For example, Fellenius (1936) (Fellenius, 1936), Bishop 

(1955)(Bishop, 1955), and Janbu (1973)(Janbu, 1973) addressed mechanisms involving both circular 

and non-circular failure surfaces. Subsequently, Morgenstern-Price (1965)(Morgenstern and Price, 

1965), Spencer (1967)(Spencer, 1967), and Sarma (1973)(Sarma, 1973) considered inter-slice forces. 

Commercial software such as RocPlane (https://www.rocscience.com/), Swedge 

(https://www.rocscience.com/), Slide3 (https://www.rocscience.com/), enable the swift application 

of these methods and facilitate sensitivity analyses. These analyses estimate the factor of safety by 

varying discontinuity parameters within a specified range, rather than assuming fixed values. 

However, these software tools are restricted to simulating relatively straightforward block 

configurations and are unsuitable for more intricate geometries and conditions. Indeed, the limitations 

of limit equilibrium methods and associated computer codes become apparent in scenarios involving 

non-persistent failure planes (Stead et al., 2006). While some researchers have made efforts in this 

direction (Baczynski, 2000; Jennings, 1970; Kemeny, 2003), methods do not accommodate the 

simulation of progressive failures (Bjerrum, 1967; Chowdhury and A-Grivas, 1982) or the internal 

deformation of the rock mass. 

 

https://www.rocscience.com/
https://www.rocscience.com/
https://www.rocscience.com/
https://www.rocscience.com/
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2.3.4.2 Continuum methods: FEM and FDM 
 

Continuum methods rank among the most extensively employed techniques for examining the 

stability of soil and rock slopes (Stead and Coggan, 2012). They facilitate the integration of intricate 

rock mass attributes and processes, including stiffness, anisotropy, water pore pressure, and material 

degradation (Stead et al., 2006). The classification of continuum methods commonly distinguishes 

between Finite Element Methods (FEM) and Finite Difference Methods (FDM). While the 

mathematical methodologies for solving the models differ, they yield similar outcomes in practical 

terms (https://www.itascacg.com/). A comprehensive exposition of the theories underlying these 

methods lies beyond the scope of this summary; for an in-depth, technical elucidation, Peiró and 

Sherwin (2005) are recommended. 

Both FEM and FDM partition the model domain (e.g., the slope) into a grid of elements or zones 

within which stress and strain calculations are performed. The model solution can be achieved 

through either an implicit or explicit scheme. Codes utilizing an implicit scheme resolve the model 

iteratively, reaching equilibrium if a solution exists. Implicit schemes are generally unsuited for 

investigating unstable slopes with significant displacements, but they accommodate the use of large 

time-steps, leading to relatively short runtimes. On the other hand, explicit codes employ a time-

stepping scheme that computes stress, strain, displacement, and velocity at each node during each 

cycle, utilizing Newton's second law (https://www.itascacg.com/). Consequently, realistic modeling 

of substantial failures and displacements is feasible, although smaller time-steps are required for 

mathematical stability, resulting in longer runtimes. Prominent FEM geomechanical codes that use 

an implicit solution scheme include RS2 (https://www.rocscience.com/) and RS3 

(https://www.rocscience.com/). FLAC (https://www.itascacg.com/) and FLAC3D 

(https://www.itascacg.com/) utilize an FDM with an explicit time-stepping scheme for solving slope 

stability problems. 

Continuum methods are well-suited for assessing rock slopes or subterranean excavations where 

failure hinges on the rock mass's strength, represented as a "continuum equivalent" (Grøneng et al., 

2010; Hoek and Guevara, 2009; Zhao et al., 2015), a limited number of discontinuities can be 

incorporated to investigate the impact of discrete fractures on slope stability (Hammah et al., 2008; 

Jing, 2003; Spreafico et al., 2017) (Fig. 19). 

Exploring the stability of rock slopes often involves the Shear Strength Reduction (SSR) method 

(Diederichs et al., 2007; Matsui and San, 1992), which entails a gradual weakening (or strengthening) 

of material (or discontinuity) strength parameters until a state of limit equilibrium is attained. SSR 

analyses are now commonplace in both two-dimensional (De Caro et al., 2018; Spreafico et al., 2017) 

and three-dimensional models (Shen and Karakus, 2014). 

Continuum methods, albeit to a more constrained extent, have also been tailored for the exploration 

of brittle fracturing in rock formations. Notably, the Fracture Analysis Code (FRANC) emerged as 

one of the initial software to adopt a Finite Element Method (FEM) approach for analyzing the brittle 

fracturing of intact rock material (Wawrzynek and Ingraffea, 1987). The FEM-based Rock Failure 

Process Analysis (RFPA) code serves to replicate the development and propagation of cracks within 

a cohesive, unbroken medium (Tang, 1997; Tang and others, 2011). The RFPA methodology has also 

been employed to investigate the accrual of brittle damage and the ensuing acoustic emissions in the 

right bank slope of the Jinping hydropower project (Xu et al., 2011) as well as the Dagangshan 

Hydropower Station (Xu et al., 2012). More recently, FEM Voronoi tessellation techniques have been 

deployed to simulate the brittle fracturing of rock bridges preceding rock slope failures (Spreafico et 

al., 2017). 

https://www.itascacg.com/
https://www.itascacg.com/
https://www.rocscience.com/
https://www.rocscience.com/
https://www.itascacg.com/
https://www.itascacg.com/


“COMBINED TECHNIQUES STUDY FOR THE IDENTIFICATION OF MAIN DRIVES IN COASTAL CLIFF 

PROCESSES BETWEEN PORTONOVO AND TRAVE (ANCONA, ITALY)” PhD Thesis FULLIN NICOLA  

 

 

53 

 
 

 

Figure 19: Applications of the Finite Element Method to rock slope stability:example of the 2014 San 

Leo rockslide (Italy) (Donati, 2016; Spreafico et al., 2017). 
 

 

2.4 Digital Shoreline Analysis System (DSAS)  
 

The Digital Shoreline Analysis System (DSAS) (Himmelstoss et al., 2018) plugin is an ArcGis tool 

designed for coastal scientists, geographers, and environmental professionals. DSAS is an essential 

component of shoreline change analysis, enabling users to assess coastal dynamics and monitor 

shoreline shifts (Baig et al., 2020; Mutaqin, 2017; Nassar et al., 2019). Recently it founded 

applications not only in shoreline shifts but even in the quantification of the evolution in other coastal 

features, like dune fields and cliff top (Fabbri et al., 2021a; Gómez-Pazo et al., 2021; Lollino et al., 

2021).   

DSAS workflow begins by importing geospatial data, primarily historical and contemporary shoreline 

data, which may include: Shoreline vectors (polygons or lines), aerial or satellite imagery, 

topographic maps, LiDAR (Light Detection and Ranging) data, bathymetric data. Once the data is 

imported, DSAS offers tools to calibrate and georeference it accurately, ensuring alignment with the 

spatial coordinate system. The first step in shoreline analysis is identifying the shoreline positions in 

the historical and contemporary datasets. DSAS employs various techniques for shoreline 

identification as manual digitization; users can trace the shoreline positions on maps or images. 

Another technique is automated shoreline extraction; algorithms may be employed to identify 

shorelines from imagery or LiDAR data (Swirad and Young, 2021). 

DSAS excels at detecting and quantifying shoreline changes over time. This involves many steps: 

Calculating distances between corresponding points in historical and contemporary shorelines, 

analyzing spatial shifts and changes, including erosion, accretion, or stability, generating change rate 

statistics to assess the speed of shoreline alterations. 
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Then, the software allows users to define analysis zones, which can be customized based on specific 

research or management objectives. These zones can vary in size, location, and shape, enabling 

targeted analysis of coastal areas. 

DSAS provides a rich suite of statistical tools and visualization options, including: Shoreline change 

statistics mean, standard deviation, and rates of change, graphical representations, charts, graphs, and 

maps displaying shoreline change patterns, time series analysis studying long-term trends in coastal 

dynamics. 

Coastal analysis often deals with intrinsic uncertainties (Casella et al., 2020; Del Río and Gracia, 

2013). DSAS offers tools to assess and quantify uncertainty in shoreline change measurements. 

Here a typical workflow of how DSAS (Fig. 20) can be used for shoreline analysis: 
 

 

 

Figure 20: Typical workflow for analysis with DSAS plugin (Pepe et al., 2023). 
 

➢ Data Import: Import historical and contemporary shoreline data, as well as relevant geospatial 

datasets such as imagery and topographic data. 

➢ Data Calibration: Ensure accurate georeferencing and alignment of all datasets. 

➢ Shoreline Identification: Identify shoreline positions using manual or automated methods. 

➢ Change Detection: Calculate shoreline change by comparing historical and contemporary 

shorelines. 
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➢ Analysis Zones: Define analysis zones based on study objectives and specific coastal areas of 

interest. 

➢ Statistics and Visualization: Generate shoreline change statistics, charts, graphs, and maps to 

visualize coastal dynamics. 

➢ Uncertainty Assessment: Evaluate and quantify uncertainties associated with shoreline 

change measurements. 

➢ Reporting and Export: Create detailed reports and export data for dissemination and decision-

making. 
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2.5 Machine learning 
 

Algorithms are indispensable for resolving computer-related issues (Alpaydin, 2020). They serve as 

a set of instructions guiding the transformation of input into output. For instance, one can formulate 

an algorithm to sort a set of numbers, rearranging an unordered list into an ascending order. 

Nonetheless, certain tasks lack pre-established algorithms (Rebala et al., 2019).  

 

To bridge this knowledge gap, we turn to data. Essentially, we seek to automate the extraction of the 

algorithm for these tasks, empowering the computer (machine) without the need for explicit coding. 

While we have well-established algorithms for tasks such as numerical sorting, numerous applications 

require no predefined algorithms but rely on accessible example data (Alpaydin, 2020). 

 

The advancement of computer technology has provided us with the capacity to store and process vast 

volumes of data, along with remote access through computer networks. Many data acquisition devices 

now generate digital and dependable data (Han et al., 2012a).  

In the absence of complete knowledge regarding a process, data collection becomes the key, with the 

hope of extracting answers from the data (Alpaydin, 2020). 

 

Despite not having a complete understanding of the data generation process, we believe it follows a 

non-random pattern. While we may not be able to comprehensively explain the process, we can 

construct useful approximations. Although these approximations may not account for everything, 

they capture a portion of the data's patterns. This is where machine learning plays a critical role. These 

patterns facilitate our understanding of the process and support predictions based on the assumption 

that the near future will resemble the past when the sample data was collected (Alpaydin, 2020). 

 

In essence, machine learning entails programming computers to optimize performance criteria 

through example data or past experiences. It involves defining a model with parameters and then 

executing a computer program to optimize these parameters based on training data or prior 

experiences. The model may be predictive, aiming to make future predictions, or descriptive, with 

the goal of acquiring knowledge from data, or a combination of both (Han et al., 2012b). 

 

Machine learning relies on statistical theory to construct mathematical models, given that the primary 

task involves drawing inferences from a sample. Computer science plays a dual role in this context. 

First, during training, efficient algorithms are essential to solve the optimization problem efficiently 

and manage vast data volumes (Han et al., 2012c). Second, once a model is learned, the representation 

and algorithm for inference must also be efficient. In specific applications, the efficiency of the 

learning or inference algorithm, holding space and time complexity, assumes equal importance 

alongside predictive accuracy (Alpaydin, 2020). 

 

For an in-depth exploration of the diverse applications and types of machine learning, let's focus on 

the main subdivision of machine learning techniques in supervised, unsupervised and reinforced 

learning (Fig. 21) (Badillo et al., 2020). Then, the algorithms used in this work, Random Forest 

(RF)(Breiman, 2001) and eXtreme Gradient Boosting (Chen and He, 2014) will be presented together 

with Mean Decrease of Impurity (MDI) method (Louppe et al., 2013). 
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Figure 21: Principal methods of learning in Machine Learning applications. 

 

2.5.1 Supervised machine learning 
 

Supervised machine learning stands as an extensively utilized approach within the domain of artificial 

intelligence and data science (Burkart and Huber, 2021). It serves as a methodology enabling 

computer systems to acquire knowledge from data and subsequently formulate predictions or 

decisions predicated on this acquired information. In the supervised learning paradigm, the algorithm 

is presented with a dataset characterized by labelled instances. This dataset comprises input-output 

pairs, where the inputs represent the data's features or attributes, and the outputs correspond to the 

associated target values or labels. The principal objective of supervised learning is to facilitate the 

training of a model capable of generalizing from the furnished examples, thereby accurately 

predicting outcomes for novel, unseen data (Alpaydin, 2020). 

 

At the core of supervised learning is the conceptual analogy of a teacher instructing a student. In this 

analogy, the algorithm functions as the student, while the labelled dataset assumes the role of the 

"teacher". The teacher's responsibility is to provide correct answers or labels during the training 

phase, thereby guiding the model as it iteratively adjusts its parameters to enhance its predictive 

performance. This process of learning from labelled data positions supervised learning as a 

fundamental tool across a diverse spectrum of applications, ranging from image recognition and 

natural language processing to medical diagnosis, financial forecasting, and geosciences application 

(Alpaydin, 2020). 
 

2.5.2 Unsupervised machine learning 
 

Unsupervised learning is an important facet of machine learning, distinct from its supervised 

counterpart (Hastie et al., 2009). In contrast to supervised learning, which deals with labelled data to 

make predictions or classifications, unsupervised learning operates on unlabelled data, seeking to 

discover intrinsic patterns, structures, and relationships within the information. It is a branch of 
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machine learning where algorithms delve into data without predefined categories or target outcomes, 

allowing them to extract hidden insights and generate valuable knowledge from unstructured 

information. 

 

Unsupervised learning is an effective tool for uncovering hidden information within large datasets, 

clustering similar data points, reducing dimensionality, and providing valuable guidance for 

downstream decision-making (Alpaydin, 2020). Whether in anomaly detection, recommendation 

systems, or exploratory data analysis, unsupervised learning is instrumental in revealing the intrinsic 

organization of data and advancing our understanding of the intricate patterns that surround us (Han 

et al., 2012d). 
 

2.5.3 Reinforced machine learning 
  

Reinforcement Learning (RL) stands as a highly specialized domain within the field of machine 

learning (Kaelbling et al., 1996). Unlike supervised and unsupervised learning, which rely on labelled 

data or intrinsic data patterns, reinforcement learning operates in a distinctive paradigm where an 

autonomous agent interacts with an environment, learning by making a sequence of decisions and 

receiving feedback in the form of rewards or punishments (Alpaydin, 2020). 

 

In RL, the agent's primary objective is to plan a strategy or policy that maximizes cumulative rewards 

over time. This result in making a series of decisions, known as actions, in response to the state of the 

environment. These actions influence the state transitions and, consequently, the rewards received by 

the agent. The essence of RL lies in the agent's ability to learn from its interactions with the 

environment and adapt its decision-making process to optimize long-term outcomes (Kaelbling et al., 

1996). 

 

Reinforcement learning is particularly well-suited for tasks that involve sequential decision-making, 

where the optimal strategy may not be readily apparent and must be acquired through trial and error 

(Rogova et al., 2002). This methodology has gained prominence in various domains, including 

robotics, autonomous systems, game playing, and recommendation systems. It allows machines to 

operate autonomously, make complex decisions, and continually refine their strategies to achieve 

goals in dynamic and uncertain environments (Alpaydin, 2020). 

 

2.5.4 Decision trees and ensemble models 

 

Machine learning has witnessed remarkable growth and innovation in recent years, reshaping 

industries by automating complex tasks, predicting outcomes, and uncovering hidden patterns within 

vast datasets. Decision trees and ensemble models have emerged as important and versatile 

techniques within this dynamic landscape, providing valuable tools for predictive modelling and data 

analysis (Alpaydin, 2020). 

 

Decision trees are a fundamental class of algorithms in machine learning that excel in both 

classification and regression tasks (Kotsiantis, 2013). These models emulate human decision-making 

processes by partitioning the input data space into regions through a hierarchical structure of nodes 

and branches. Each internal node of the tree represents a decision based on a particular feature, and 

the leaves yield the final predictions. In the construction of a decision tree, selecting the most 

appropriate features for splitting the data at each internal node is a challenge. The choice of these 

features significantly influences the model's accuracy, interpretability, and overall performance, 

making an understanding of feature importance essential (Alpaydin, 2020). 
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Ensemble models (Sagi and Rokach, 2018) exploit the strength of multiple base models, such as 

decision trees, to create an aggregated prediction that often outperforms any individual component. 

The ensemble approach mitigates overfitting and reduces the risk of being influenced by outliers or 

noise in the data (Alpaydin, 2020). 

Decision trees and ensemble models have proven to be useful tools with numerous applications in 

various domains: 

 

➢ Classification and Regression: Decision trees are adept at managing classification tasks, 

where the goal is to categorize data into distinct classes, as well as regression tasks, which 

involve predicting continuous values (Loh, 2011).  

 

➢ Interpretability: Decision trees are highly interpretable, making them valuable in domains 

where model transparency and comprehensibility are crucial (Carvalho et al., 2019). 

 

➢ Feature Importance: The concepts of feature importance, enable researchers and practitioners 

to understand the impact of individual features on model predictions (Zien et al., 2009). 

 

➢ Model Robustness: Ensemble models enhance model robustness by aggregating predictions 

from multiple base models, reducing the risk of overfitting and increasing generalization 

(Hancox-Li, 2020). 
 

2.5.5 Random Forest (RF) 
 

Random Forest algorithm is a prominent example of an ensemble learning method (Breiman, 2001). 

It operates by constructing multiple decision trees based on bootstrapped subsets of the dataset and 

employing a random subgroup of features at each node. These individual decision trees, when 

aggregated into an ensemble, aim to mitigate overfitting, and enhance the generalization of the model. 

By accounting the diversity of the constituent trees, Random Forest excels in predictive accuracy 

across various tasks (Azar et al., 2014; Deng et al., 2021; He et al., 2021; Kardani et al., 2021). 

 

The Random Forest algorithm can be summarized as follows: 

 

➢ Bootstrap Sampling: A random selection of data points, with replacement, creates multiple 

subsets from the original dataset. This introduces variability into the training data for each 

decision tree (Tsamardinos et al., 2018). 

 

➢ Feature Subset Selection: At each node in a decision tree, a random subset of features is 

considered for splitting. This decorrelates the individual trees, leading to a more robust 

ensemble. 

 

➢ Voting or Averaging: The predictions from all the decision trees in the forest are combined to 

produce the final ensemble prediction. In classification tasks, this is often done through 

majority voting, while regression tasks use averaging. 
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2.5.6 eXtreme Gradient Boosting (XGB)  
 

Gradient Boosting is a machine learning technique that builds predictive models by combining the 

outputs of several weaker models, typically decision trees (Chen and He, 2014). The core idea is to 

iteratively train new models that correct the errors made by the ensemble of previous models. Each 

new model focuses on the mistakes of its predecessors, gradually improving the overall predictive 

accuracy (Chen and He, 2014). 

 

XGB, is an advanced implementation of the Gradient Boosting framework (Friedman, 2001). It is 

specifically designed to optimize performance, speed, and scalability, making valid in various 

machine learning competitions and applications. 

 

XGB introduces several key innovations and optimizations: 

 

➢ Regularization Techniques: XGB incorporates Lasso and Ridge regularization (McDonald, 

2009; Tibshirani, 1996)to control overfitting, allowing it to build more robust models. 

 

➢ Parallel and Distributed Computing: It powers parallel processing and distributed computing, 

making it highly efficient even on large datasets. 

 

➢ Tree Pruning: XGB employs an advanced tree condensing algorithm to create simpler trees, 

reducing computational complexity and increasing model generalization (Chen and He, 

2014). 

 

➢ Customizable Loss Functions: Users can define custom loss functions, enabling the model to 

be shaped to specific objectives, such as ranking, survival analysis, and more (Chen and He, 

2014). 
 

 

2.5.7 Mean Decrease of Impurity (MDI) 
 

The concept of Mean Decrease of Impurity (MDI) is  a powerful tool for evaluating feature 

importance in decision tree-based models (Breiman, 2017, 2001).  

 

MDI is a concept established in the decision tree algorithm, with a particular focus on ensemble 

learning methods. Individual decision trees, when combined into an ensemble, yield robust and high-

performing models. MDI, therefore, serves as a quantitative measure to evaluate the importance of 

each feature in constructing these decision trees (Breiman, 2017). The core idea behind MDI is to 

assess the reduction in impurity when a specific feature is used to split the data at a node. The impurity 

is typically measured using metrics such as Gini impurity or information gain (Breiman, 2017). By 

calculating the mean decrease in impurity across all the decision trees in the ensemble, MDI provides 

a feature importance score for each variable (Breiman, 2017). 

 

The insights derived from MDI are important in various aspects of machine learning: 

 

➢ Feature Selection: MDI aids in feature selection by ranking features based on their 

importance. This process not only simplifies models but also leads to better interpretability 

and, in some cases, improved generalization. 
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➢ Model Interpretability: Understanding the contribution of each feature through MDI enhances 

the interpretability of machine learning models.  

 

➢ Anomaly Detection: MDI can be applied in anomaly detection to identify features with 

unexpected or significant deviations in their importance, potentially signalling data quality 

issues or unusual patterns. 

 

➢ Model Validation: Consistency in MDI values across different subsets of data can be 

indicative of model robustness and reliability. 
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3. PART II: STUDIES PERFORMED AT THE TEST SITE   
 

The second part of this thesis comprises three distinct studies conducted within the Portonovo-Trave 

Cliffs test site. The initial two studies delineate the geomorphological evolution of the area, 

examining it through various spatial and temporal resolutions. Conversely, the final study searches 

into the significance of driving forces by employing a Machine Learning (ML) approach. 

 

The following works are enumerated, explaining their publication status and briefly synthesizing the 

key aspects related to methodologies and findings: 
 

1. Quantitative Characterization of Coastal Cliff Retreat and Landslide Processes at 

Portonovo-Trave Cliffs (Conero, Ancona, Italy) Using Multi-Source Remote Sensing 

Data:  

This study involves the computation of cliff top retreat at Portonovo-Trave cliffs over the last 

forty years (1978-2021) through the utilization of combined remote sensing technologies such 

as UAV and historical orthophotos. Dem Of Difference (DODs) analysis completes DSAS to 

confirm the determined geomorphological evolution. The findings identify the Trave sector 

as the most active part of the coastline. The outcomes of this research have been published in 

the journal Remote Sensing (MDPI) with the reference https://doi.org/10.3390/rs15174120. 

 

Fullin, N., Duo, E., Fabbri, S., Francioni, M., Ghirotti, M., Ciavola, P., 2023. Quantitative 

Characterization of Coastal Cliff Retreat and Landslide Processes at Portonovo – Trave Cliffs 

( Conero , Ancona , Italy ) Using Multi-Source Remote Sensing Data. 

 

 

2. Comparing Multiple High Accuracy UAV-SfM Derived Point Clouds for 

Geomorphological Change Detection at Portonovo-Trave Cliffs (Conero, Ancona, 

Italy):  

This study focuses on comparing two UAV surveys conducted in 2021 and 2022 at the 

Portonovo-Trave cliffs. The resulting point clouds are examined, and the annual 

geomorphological evolution is discussed. The outcomes reveal the presence of localized 

notching not identified in previous analyses, particularly in the Mezzavalle sector, 

underscoring the significance of integrating high spatial and temporal resolution data. The 

Trave sector remains notably highlighted as the most active part of the coastline. This work 

is currently in draft form and awaits revision by the research group. 
 

3. Detection of Cliff Top Erosion Drives through Machine Learning Algorithms between 

Portonovo and Trave Cliffs (Ancona, Italy):  

In this research, the computation of cliff top erosion between 1978 and 2022 in the Portonovo-

Trave region is accomplished. Topographic, marine, and geological parameters are extracted 

along Digital Shoreline Analysis System (DSAS) transects. Machine learning algorithms, 

including Random Forest (RF) and XGBoost (XGB), are employed to assess the importance 

of each driving factor relative to erosion. The study highlights cliff height as the most critical 

factor correlated with cliff top retreat. This work is ready for submission to an academic 

journal. 

 
 

 

 

https://doi.org/10.3390/rs15174120
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3.1 Quantitative characterization of coastal cliff retreat and landslide processes at Portonovo-

Trave cliffs (Conero, Ancona, Italy) using multi-source remote sensing data. 
 

 

3.1.1 Introduction 

High coasts represent about 75% of the world’s coastline (Williams and Pranzini, 2018) and can be 

composed by both soft and hard rocks, with soft rocks usually characterized by an uniaxial 

compressive strength (UCS) ≤ 5 MPa and hard rocks by UCS > 5 MPa (Sunamura, 2015).  

The study of cliffed areas, with particular focus on coastal retreat and slope failures, involves several 

factors such as geological, geomorphological and structural settings (Sunamura T., 1992; Trenhaile, 

2012), wave action (Brideau et al., 2009; Budetta et al., 2000; Kennedy et al., 2011; Naylor et al., 

2010; Piacentini et al., 2021; Sunamura, 2015; Sunamura T., 1992; Trenhaile, 1987), sediment input 

(Kennedy and Milkins, 2015; Komar and Shih, 1993), cliff topography (Robinson, 1980; Sunamura, 

1991), beach width (Everts, 1991) and energy contents of waves (Poate et al., 2018).  

In particular, geological structures can play a key role in controlling the morphology and stability of 

high coastlines (Prémaillon et al., 2021; Stead and Wolter, 2015), changing asymmetrically the values 

of shear strength and uniaxial compressive strength along the cliff. Furthermore, wave action and sea 

level rise can lead to the creation of coastal notches and progressively to the collapse of large parts 

of the cliffs (Fazio et al., 2019; Sunamura, 2015). 

In this already complex scenario, it must be considered the effect of climate change which tends to 

modify the frequency and intensity of instability factors, such as storminess, storm energy and sea 

level rise. In fact, although the role of such phenomena is well known in coastal failures and retreats 

(even in case of single major events, Brooks and Spencer, 2016) (H.-O. Pörtner, D.C. Roberts, M. 

Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, 

A. Okem, 2022), their prediction is becoming more and more difficult. Examples of the effect of sea 

level rise in coastal areas has been presented by Bruun 1962 (Bruun, 1962) and Ashton et al., 2011 

(Ashton et al., 2011). Diversely from the model proposed by Bruun (Bruun, 1962) for sandy coast, 

Ashton et al.,(Ashton et al., 2011) demonstrated how, in case of high rocky coastline, the rate of sea-

level rise results in increased profile of slopes.  

In the last decades, along with these new environmental challenges, new technologies have been 

developed and adapted for more accurate analysis. In particular, for cliffs, Terrestrial Laser Scanning 

(TLS) (Caputo et al., 2018; Esposito et al., 2020; Matano et al., 2015; Rosser et al., 2005a), 

orthophotos (Del Río et al., 2020; Warrick et al., 2017), UAV (Esposito et al., 2017; Francioni et al., 

2018a; Koukouvelas et al., 2020; Martino and Mazzanti, 2014; Westoby et al., 2012) and Persistent 

Scatterer Interferometry Synthetic Aperture Radar (PSInSAR)(Mateos et al., 2017) were successfully 

used for monitoring their temporal and morphometric evolution. 

The use of aerial photographs can be very useful for the assessment and evolution of cliff behavior 

along wide coastal sections. However the spatial and temporal resolution of aerial photography is 

often not suitable to gather significant results (Del Río et al., 2020). The adoption of more recent 

survey techniques (when available) for reconstructing coastal topography, such as Aiborne and 

Terrestrial Laser Scanning (ALS/TLS) and UAV, remarkably improve the evaluation of short- to 

medium-term cliff erosion processes and rates (Calligaro et al., 2013; Koukouvelas et al., 2020; 

Piacentini et al., 2021; Young, 2018). TLS has very high accuracy, but it may be difficult to be used 

in coastal areas because of the inaccessibility of many slopes. The use of ALS overcomes the problem 

connected with the TLS by, on the other hand, it may be very expensive. As for the TLS and ALS, 

the UAV can be used to derive DEMs of the investigated areas and, although the lower accuracy of 

the products(Casella et al., 2020; Duo et al., 2021; Seymour et al., 2018; Turner et al., 2016), they 

represent a low-cost solution to acquire data at local and large scale, also in inaccessible areas, 

constituting one of the best cost-effective choice in coastal monitoring (Godfrey et al., 2020). In some 
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cases, the combination of the above mentioned techniques become very important (although 

challenging) to obtain a more complete dataset (in terms of spatial and temporal data) (Cenci et al., 

2018; Colica et al., 2023; Del Río et al., 2020; Francioni et al., 2018a; Martino and Mazzanti, 2014).     

In this context, this paper aims to study erosion processes in the area between Portonovo and Trave 

(Ancona, Italy, Fig.1) through the combined use of aerial photography, UAV photogrammetry and 

LiDAR data. It is important to note that these remote seng techniques played an outstanding role, 

giving the possibility to study the entire area decreasing the risk for surveyor. The integration of these 

remote sensing techniques with conventional geological and geomorphological surveys allowed to 

recognize the coastline sectors with higher retreat values and, at the same time, to explore the potential 

and more important factors contributing to the retreat. In particular, we have considered geological, 

geomorphological, structural, meteorological and marine factors.  

The cliff top retreat analysis has been carried out through the Digital Shoreline Analysis System 

(DSAS) (Thieler et al., 2009) and DoD calculations. The DSAS was applied to orthophotos spanning 

from 1978 to 2021. A DSM of the area was created from a UAV survey conducted in 2021 and 

compared with 2012 LiDAR data DTM for the DoD calculations. 

 

 

3.1.2 Study Area Description 

The study area is located in the central Adriatic coast, a few kilometers south of Ancona, between 

Portonovo and Trave in the Conero promontory (Fig.22). This area is characterized by high cliffs 

ranging from tens to hundred meters in elevation and slopes from almost flat to 80° of steepness. 

From a geological point of view, the Conero promontory belongs to the central sector of the present-

day foredeep basin and foreland ramp of the Outer Northern Apennine fold and thrust belt (Calamita 

et al., 1999; Cello and Coppola, 1989; Coltorti et al., 1987; Iaccarino et al., 2008). In the study area 

Neogenic formations from Miocene to present time outcrop. These formations, Schlier, Formazione 

a Colombacci, Formazione di Sapigno, Orizzonte del Trave and Argille Azzurre (Coltorti and Sarti, 

2011) are mainly composed by marls, clays, sandstones and gypsum. The bedrock is often covered 

by landslide deposits, well recognizable along the whole study area (Montanari et al., 2016). 

The structural setting of the area is characterized by the presence of two principal thrusts with typical 

Apennine lineaments NW-SE oriented, well known in literature (Coltorti and Sarti, 2011). The first 

one is well exposed between Portonovo and Mezzavalle and brings the Schlier Fm. on top of the 

Colombacci Fm.; the second thrust, close to the Trave, brings the Sapigno Fm. over the Argille 

Azzurre Fm. 

From the geomorphological point of view, intense processes of erosion and many landslides 

characterize this part/sector of the coastline, giving a badland-like appearance to these slopes.  

The landslides are well documented in the landslide database of Istituto Superiore per la Ricerca e 

Protezione Ambientale (ISPRA) IdroGEO, occurring mostly in Trave sector 

(https://idrogeo.isprambiente.it/app/iffi/). The study area is characterized by composite landslides, 

rock rotational slide, clay/silt rotational slide, rock fall, rock block topple and earthflow (Hungr et al., 

2014). Landslides identified in the study area are active or re-activated state of activity (Cruden, D.M., 

Varnes, 1996). 

 Their crown is prevalently located along the morphological edge that separates the inland from the 

coast. The area interested by landslide phenomena is estimated to be approximately 280000 m2. 

With regard to the pedology and soil cover these have been documented and described by the Parco 

Nazionale del Conero authority 

(https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.p

df). The soil covering the marls and calcareous bedrock is called regosoil or lithosoil Xerorthents 

typic and lithic. Unluckily, no information was reported about the different depth of this level along 

the coastline. 

https://idrogeo.isprambiente.it/app/iffi/
https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.pdf
https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.pdf
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Further available data from Corine Land Cover (https://land.copernicus.eu/pan-european/corine-

land-cover) of 1990 and 2018 were checked in order to find information regarding land use change 

and vegetation. 

It has been founded that the area corresponding to the Trave sector was classified from 1990 with the 

code 141 as “Green urban areas” and the other wo sectors with the code 311 as “Broad-leaved forest”. 

From 2018 the Trave sector was classified with the code 323 “Sclerophyllous vegetation”, while the 

other two sectors remained under the code 311 as “Broad-leaved forest”.    

According to morphology and geological characteristics, the coastline has been divided in three 

different sectors (Fig. 23) defined from South to North: Sector “1”, named Portonovo, is E-O/NW-

SE oriented and stretches from Portonovo to the beginning of the Mezzavalle sector. This sector is 

mainly characterized by the Schlier Fm.. Sector “2”, called Mezzavalle, is approximately NW-SE 

oriented and mainly covered by landslide deposits. Sector “3”, entitled Trave, approximately N-

S/NW-SE oriented, is characterized by high and steep cliffs (± 200 meters) along which tectonized 

flyschoid formation (Argille Azzurre Fm.) largely outcrop. 

 
Figure 22: a) Location map of the study area. b) Satellite image showing the study area delimited by 

a red line (image taken from GeoEye satellite database, 2020). 

 

 

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 23: Geological setting of the study area (Coltorti M., 2011) and “Sectors”: 1) Portonovo; 2) 

Mezzavalle; 3) Trave. Bedrock legend: SAA (Scaglia Rossa Fm., Upper Cretaceous-Medium 

Eocene); VAS (Scaglia Variegata Fm., Medium Eocene-Upper Eocene), SCC (Scaglia Cinerea Fm., 

Upper Eocene-Upper Oligocene), BIS ( Bisciaro Fm., Lower Miocene), SCH (Schlier Fm., Lower 

Miocene-Upper Miocene), GNOa (Sapigno Fm. Upper Miocene), FCO (Colombacci Fm., Upper 

Miocene), Tv (Trave horizon, Lower Pliocene), FAA (Argille Azzurre Fm., Lower Pliocene-Lower 

Pleistocene). The Trave horizon is a natural stratum that forms a ridge outcropping from the sea in 

the northern section of the study area. 
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The coastline object of this study overlooks on the northern-central Adriatic Sea (Bisci, Carlo; 

Cantalamessa, Gino; de Marco, Rocco; Spagnoli, Federico; Tramontana, 2021). The Adriatic sea is a 

microtidal environment (Bisci, Carlo; Cantalamessa, Gino; de Marco, Rocco; Spagnoli, Federico; 

Tramontana, 2021) and this sector is characterized by two different prevalent seas, reigning sea 

coming from S-SE ( Sirocco ), namely the most frequent direction of wave storm events and conjoined 

winds and dominant sea from NE (Bora), the direction of wave storm with major intensity (Acciarri 

et al., 2021; Perini, L.; Calabrese, L.; Marco, D.; Valentini, A.; Ciavola, P.; Armaroli, 2011). 

Additionally, it is possible identify along the coast of this region a littoral drift moving northwards 

(Grottoli et al., 2015).  

 

 

3.1.3 Materials and Methods 

 

With the aim of quantifying morphodynamical processes acting on these cliffs, we have performed 

an interdisciplinary study which includes: 

Fieldwork. 

The analysis of meteorological and marine data. 

Cliff-top retreat in different periods, using the DSAS tool for ArcGis. 

(https://www.arcgis.com/home/index.html).  

DoD between an available 2012 Lidar data and a 2021 DSM extracted from UAV photographs, to 

improve our understanding of cliffs retreat rate and validate results from multitemporal orthoimages 

analysis.  

 

3.1.3.1 Fieldwork and GIS Topographic Analysis  

 

During the fieldwork a geological survey of the area was performed with the goal of improving the 

details of the existing maps/information integrated through the use of a pocket penetrometer and a 

Schmidt hammer according with ISRM guidelines (Ulusay, 2014). This allowed to gather values of 

uniaxial compressive strength (UCS) both for deposits and bedrock in the three studied sectors. 

Furthermore, to improve the information about rock mass quality along the coastline the rock mass 

classification “geological strength index” (GSI) was perfomed (Hoek et al., 2005; Marinos and Hoek, 

2018, 2001; Marinos et al., 2005; Marinos, 2017). Starting from the 2012 DTM provided by Marche 

region in GIS environment, an elevation model was carried out working in the symbology of the raster 

and a slope model was created thanks the tool slope. 

Furthermore, the beach width in the different sectors was extracted in GIS, starting from an 

orthophoto taken on 28/29 September 2021. Profiles spaced 30 meters, for a total of 104, were traced 

perpendicularly respect the shoreline and width measured along their length between the berm crest 

and the cliff base. Then, all the values obtained were stored in a table and a mean value for each sector 

identified. 

 

3.1.3.2 Analysis of Meteo and Marine Data  

 

The analysis of marine data was implemented using the 1994-2019 wave hindcast produced by CNR-

ISMAR for the Adriatic Sea in the framework of a collaboration between the University of Ferrara, 

the CNR-ISMAR and the Autorità di Bacino del Fiume Po (ADBPO). This was part of the Research 

Programme Venezia 2021, coordinated by CORILA, with the contribution of the Provveditorato for 

the Public Works of Veneto, Trentino Alto Adige and Friuli Venezia Giulia (Benetazzo et al., 2022). 

The wave dataset is based on the WaveWatch3 (WW3) numerical model implemented for the Adriatic 

Sea using a grid with spatial resolution ~2.5 km using high resolution (~80 m) bathymetry from 

https://www.arcgis.com/home/index.html
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EMODnet. The model was forced with an edited version of ERA5 to correct the bias due to the 

general underestimation of the wind intensity on the Mediterranean Sea of the original dataset. The 

wave dataset is provided in NETCDF format (i.e. 1 file for each year, hourly data). The 2018 high-

resolution bathymetry from ARPAE was used to extract the 20 m depth bathymetric contour as source 

to extract coastal points as reference positions for the analysis. A set of coastal points were defined 

in front of the Mezzavalle-Trave area (Fig. 24). 

 

 

Figure 24: Coastal points defined in front of the area of interest. The points are positioned on the 20 

m depth contour of the bathymetric dataset provided by ARPAE. 

 

The significant wave height (hs) timeseries was extracted from the gridded data of the CNR-ISMAR 

datasets for each defined coastal points using the nearest point method. The yearly timeseries were 

merged. Independent extremes were identified through a Peak-over-Threshold analysis where the 

threshold was calculated as quantile of the provided timeseries, and the independence criteria was 

based on a time window.  

The analysis was implemented using the python library pyextremes 

(https://georgebv.github.io/pyextremes/). 

Regarding the rainfall data, these were retrieved from Sistema Informativo Regionale Protezione 

Civile Marche. The data are available on Regione Marche website 

(https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Progetti-e-Pubblicazioni/Annali-

Idrologici#Annali-Idrologici---Parte-1) from 1990 and are related to the meteorological station 

“Ancona Torrette” with a daily sample frequency and without gaps. From 2003, another station was 

used “Ancona Regione RT-1638”, data are available in the website after registration 

(http://app.protezionecivile.marche.it/sol/indexjs.sol?lang=it) with a sample frequency of 15 minutes 

and no gaps in the record. Both stations are ca 5-8 km norther from the cliffs object of this study. 

 

3.1.3.3 UAV Survey and Data Elaboration 

Because of the extension of the study area (about 1.5 km2), the UAV data acquisition was 

accomplished in two consequent days, 28/29 September 2021 using a commercial drone DJI Phantom 

Vision 3+ Pro equipped with a camera: FC300X (focal length: 3.61 mm; pixel size: 1.56 × 1.56 μm).  

Flights were conducted at a constant elevation of 120 m covering the top cliff, and 60-70 m covering 

the beach area, using automated flight plans created using the “Drone deploy” opensource application 

(https://www.dronedeploy.com/). Front and side overlap between each photo was ~70% and flight 

speed 8-10 m/s. 

https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Progetti-e-Pubblicazioni/Annali-Idrologici#Annali-Idrologici---Parte-1
https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Progetti-e-Pubblicazioni/Annali-Idrologici#Annali-Idrologici---Parte-1
http://app.protezionecivile.marche.it/sol/indexjs.sol?lang=it
https://www.dronedeploy.com/
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The UAV survey was supported by an RTK-GNSS survey using a Trimble RTK-DGPS R8 (i.e., stop 

and go technique; horizontal accuracy of 8 mm and vertical accuracy of 15 mm) which was used to 

acquire the position of 22 ground control points (GCPs). These were made of white and red wooden 

square targets, measuring 60 × 60 cm, and distributed within the study area. The Universal 

Transversal Mercatore WGS84 zone 33N was used as coordinate system and the ellipsoidal height 

was converted to orthometric height using national grids using the software “Convergo” 

(https://www.cisis.it/?page_id=3214). Estimate error during the RTK-GNSS survey was approx 6 cm 

horizontally and vertically. 

“Agisoft Metashape” (version 1.5.1 https://www.agisoft.com) was used to manage and process UAV 

data and GCP coordinates. Using the procedure suggested by different authors (Brunetta et al., 2021; 

Duo et al., 2021; Fabbri et al., 2021b; Gindraux et al., 2017; Talavera et al., 2021) sit was possible to 

create the DSM and orthophoto of the surveyed area. 

 

3.1.3.4 Morphological analysis   

 

Although the DSAS tool was created to analyse the shoreline movements, its use in cliff retreat studies 

is widely documented in the literature (Brooks et al., 2012; Gómez-Pazo et al., 2021; Hapke and 

Plant, 2010; Lollino et al., 2021).  

The study was performed using orthophoto acquired in 1978, 1998, 2007, 2010 and 2021. The first 

four (1978, 1998, 2007 and 2010) are available on institutional websites 

(http://www.pcn.minambiente.it/viewer/index.php,http://wms.cartografia.marche.it/geoserver/Ortof

oto/wms). The 2021 orthophoto is the one extracted from UAV photographs. Spatial resolutions of 

such orthophotos are reported in Table 6. 

 

Table 6: Spatial resolution of the orthophotos used for the cliff top retreat analysis. 

 

    Date (yr)  1978 1998 2007 2010 2021 

    Cell size (m) 1.28 x 1.28 1 x 1 0.5 x 0.5  0.5 x 0.5      0.1 x 0.1  

 

 

The DSAS analysis is based on the comparison of different cliff top edge mapped over the years. The 

comparison is made using the cliff tops edges and a baseline as reference line. Cliff top edges was 

manually mapped on the orthophotos, keeping the same visual scale on all the photos (Scale 1:3000) 

and using the limit between vegetation and bare slope as edge of the cliff (Fig.25a). The accuracy of 

manual mapping was defined following the example of Crowell et al. (1991), Fletcher et al. (2003) 

and Del Río and Gracia (2013) (Crowell et al., 1991; Del Río and Gracia, 2013; Fletcher et al., 2003). 

The approach used is based on the use of the Spatial Adjustment tool in ArcGIS (Buchanan et al., 

2020; Cenci et al., 2013; Fabbri et al., 2021b; Virdis et al., 2012); the cliff top edge is mapped 4 

different times and the difference between each line is then calculated measuring the offset between 

a couple of line per time, along several perpendicular thick profiles. Once each couple of the data set 

(for each image) were tested, the highest error was taken as reference. For what concerns DSAS 

calculations, as reference line and base line, we have used the shoreline, which was mapped in the 

2021 orthophoto, thanks to the different color between the sand and the sea. The same procedure 

described before was used to calculate the error in the digitalization of the shoreline. Hence, a 100 m 

buffer of this line was performed in GIS environment (being sure that the buffer was beyond the cliff 

top edges) (Fig.25b). Starting from this baseline, the software creates a series of transects. In this case 

we have defined a distance between each transects of 10 meters, for a total of 310 transects. An 

example of transects created during the DSAS analysis is shown in Figure 25c. Along them, the 

software verifies the changes in the cliff top edges and calculates the Net Shoreline Movement (NSM, 

https://www.cisis.it/?page_id=3214
https://www.agisoft.com/
http://www.pcn.minambiente.it/viewer/index.php
http://wms.cartografia.marche.it/geoserver/Ortofoto/wms
http://wms.cartografia.marche.it/geoserver/Ortofoto/wms
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the total movement measured in meters) and the End Point Rate (EPR, the rate of movement 

calculated in meters per years). Hence, Confidence of End Point Rate (ECI or EPRunc in newer 

versions of DSAS) was calculated. This is an index which takes into consideration the uncertainty of 

lines (accuracy error) as a factor for calculating the EPR confidence. 

 

Figure 25: Methodology followed in DSAS elaboration. a) We used as cliff top the edge between 

vegetated slope and the bare cliff (showed by the red line). b) The baseline (the blue line), i.e. the line 

from which all the transects origin, was created using a buffer of the identified shoreline, with the 

aim of obtaining transects as much perpendicular as possible respect to the coastline. c) Image 

showing the baseline (in green) and the transects (in violet) obtained by DSAS elaboration. 

     

Considering the available information about waves (1994-2019) and precipitation (1990 to current), 

it was decided to perform DSAS analysis using 1998-2007 and 2010–2021 time spans, in order to 

have a temporal correspondence between computed erosion processes and external drives (Fig. 26). 

A further analysis was also undertaken for the period 1978-2021 (although no wave and precipitation 

were available until 1990) to verify the coastal retreat in the whole 40 years and compare such results 

with other periods.  

Finally, to further verify the results of DSAS analysis, a DoD analysis was carried out. The use of 

DoD is becoming a common practice in geosciences (Gómez-Pazo et al., 2021; Jaboyedoff et al., 

2012b; Williams, 2012). In this case we have used the 2012 airborne Lidar (near infrared and green) 

DTM with a cell size of 4x4 m given by Marche Region and the 2021 UAV extracted DSM with a 

cell size of 0,25x0,25 m. The accuracy of UAV extracted DSM product was computed checking the 

differences between control points coordinates acquired through RTK-DGPS and the coordinates of 

same points on UAV’s extracted DSM, computing the mean error and the RMSE. In particular, we 

have found a planimetric mean error of 31 cm with RMSE of 12 cm and a vertical mean error of 5 
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cm with a RMSE of 6 cm (Committee and others, 1998). The 2012 airborne Lidar has a vertical 

RMSE < 10 cm and a planimetric RMSE <10 cm, as reported by the Marche Region. The two rasters 

were compared after a resample, keeping the coarsest resolution through the GIS tools resample and 

clip. Vegetated areas were excluded from the analysis and the UAV DSM was resampled at the same 

resolution of the Lidar based DTM. The raster calculator was used to compute the differences between 

the two rasters in elevation. Statistical analysis on resulting data was performed for each sector, 

obtaining mean, maximum and minimum values of variation for each sector.  

  

 

 

Figure 26: Picture showing distribution of different data through time. The overlap window is 

between 1998 and 2021.  

 

3.1.4 Results 

 

3.1.4.1 Fieldwork and GIS analysis 

The geological and structural surveys highlighted the main differences between the 3 sectors.  

Moving from Portonovo to Trave we found different geological formations, i.e. Schlier Fm. / Sapigno 

Fm. / Argille Azzurre Fm. and., Colombacci Fm. with different geotechnical characteristics as 

evidenced by the values of GSI and UCS gathered through pocket penetrometer and a Schmidt 

hammer (Table 7). Rock mass classification together with UCS, have been shown as factors of 

unneglectable importance in coastal cliff erosion, predisposing slopes to more frequent failures 

(Budetta et al., 2000; Prémaillon et al., 2018; Sunamura, 2015). We have therefore considered that 

GSI and UCS represent the more suitable geotechnical parameters to characterize, according to the 

lithotypes outcropping in the area, soil or weak rocks. 
 

Table 7: Range of GSI and UCS values for the 3 sectors. 
 

 GSI (Flysch) UCS (MPa) 

PORTONOVO 50-60 30-35 

MEZZAVALLE / 0.5-5 

TRAVE 15-30 5-30 

 

We obtained the smallest values of UCS along the Mezzavalle sector, which is basically characterized 

by landslide deposits (for them the GSI classification it is not applicable). In the Portonovo sector we 

obtained the highest values of GSI and UCS. In the Trave sector these values are very variable and 
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depend on the structural features present which determine high fracturing degree, as in corresponding 

to the tectonic contact between the Sapigno Fm. and the Argille Azzurre Fm. (Figure 27a) which gave 

rise to a completely fractured zone in the Argille Azzurre Fm. itself (Figure 27b). 

 

Figure 27: At Trave sector. a) The Sapigno Fm., composed by gypsum, is thrusted on the younger 

Argille Azzurre Fm.. The trend of coastline in this picture is N-NW/S-SE and the attitude of the fault 

plane is 205/40 in Dip Direction and Dip convention. b) Outcrop of the Argille Azzurre Fm. 

composed of marls, completely fractured in blocks of few centimeters. 

 

Furthermore, thematic maps developed in GIS using LiDAR data show that, among the three sectors, 

the Trave sector is characterized by the steepest and highest cliffs (Fig.28). The mean beach width 

computed of the three sectors was 6.7 m, 23.5 m and 7.6 m for Portonovo, Mezzavalle and Trave 

respectively. 
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Figure 28: a) Values of slope and b) elevation: Trave sector shows the highest values for both the 

considered parameters. 
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3.1.4.2 Analysis of Meteo and Marine Data 
 

Data from CNR-ISMAR are displayed in Fig. 29 along with the results of the POT analysis (threshold: 

99.5 percentile; independence criteria: 48 hours) for the significant wave height (hs) for the coastal 

point CP005. Here, the hindcasted over-threshold events between 1994 and 2019 are reported. The 

average number of events per year is 4.5, which is in line with the expected range (3-5) for traditional 

POT analysis. It is not possible to identify any kind of trend in the rate of storminess in the whole 

period considered, it can be only noted that after 2012 the number of events with hs > 4,5 m is higher 

respect the period before (1994-2012). 

Regarding the rainfall data, the annual average precipitation recorded between 1990 and 2021 is 664 

mm. It is possible to identify two years where precipitation exceeded mean values, 2010 (with 1034 

mm) and 2014 (with 966 mm), and two years with dryer conditions, 2011 and 2012, with 433 mm 

and 447 mm of precipitation, respectively (Fig. 29). 
 

 

Figure 29: Summary of wave and rainfall parameters: a) POT analysis of CNR-ISMAR data between 

1994-2019 for the significant wave height (hs) for coastal point CP005, showing the identified events. 

The peak value is highlighted by a red dot. b) Precipitation recorded by the stations “Ancona 

Torrette” and “Ancona Regione RT-1638” in the period 1990-2021. 
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3.1.4.3 Morphological analysis  

 

Digitalization of the cliff top and the shoreline has been performed and maximum Root Mean Square 

Error (RMSE) of this operation calculated. In particular, it has been found that the maximum RMSE 

for cliff top digitalization is obtained for 1978 ortophoto, with a value of 3,89 m. Shoreline 

digitalization was performed on 2021 orthophoto and resulted in a RMSE of 0.85 m. 

Considering the whole period 1978-2021 (Fig.30), Trave sector is the portion with the highest mean 

value of EPR, Portonovo sector show a similar behavior while Mezzavalle sector shows a marginally 

positive value. Moreover, focusing on specific area within each sector, values of almost -1 m/yr of 

EPR are reached between transects 21-31 and 251-291 in Portonovo and Trave sector respectively. 

ECI computed for this time span is 0.16 m. 

Furthermore, the analysis shows that in the period 1998-2007 (Fig.31) cliff top retreat was more 

concentrated in Trave sector, where we calculated an average mean EPR three times higher than the 

value obtained for Portonovo and Mezzavalle sectors in the same period. The highest values of EPR 

were recorded between transects 26 and 44 in Portonovo sector, with values around -2 m/yr and 

between transects 266 and 286 in Trave sector where we reached the value of -3 m/yr in the EPR. 

ECI in this time span is 0.79 m. 

During the period 2010-2021 (Fig.32), Trave sector resulted to have the highest negative values of 

EPR, very similar to Portonovo sector and 4 time higher than in Mezzavalle sector. Between transects 

226-236 (Trave sector) the EPR overcame -2 m/yr. ECI for this period is 0.62 m. All the values 

regarding mean EPR and ECI are illustrated in Table 8, while NSM values are represented in Fig. 

30,31,32. 

 

Table 8: DSAS results for each period analyzed. Mean EPR and ECI are reported. 
 

Periods Portonovo Mezzavalle Trave 
 

EPR (m/yr) ECI (m) EPR (m/yr) ECI (m) EPR (m/yr) ECI (m) 

1978-

2021 

-0.20 0.16 0.09 0.16 -0.25 0.16 

1998-

2007 

-0.21 0.79 -0.27 0.79 -0.72 0.79 

2010-

2021 

-0.40  0.62 -0.09 0.62 -0.42 0.62 

 

For what concern the DoD analysis (Fig. 33) Portonovo sector presents a negative mean value of 

variation from 2012 to 2021 of -2.2 m in elevation. The highest negative value recorded was -16.3 m 

between transects 51-57 in the middle part of Portonovo sector, where landslides deposits nowadays 

overly the bedrock.  

The DoDs analysis allows to compare the 2012 DTM and the 2021 DSM and highlights difference in 

elevation between this period. Negative values indicate the loss of material, while positive values, 

accumulation. Mezzavalle sector displays negative mean values of DoDs of – 1,4 m, the maximum 

height difference is -12.6 m in southern part of the area, between transects 87-94, were Schlier Fm. 

outcrops. In the rest of the sector no other clear difference was recorded, except for a single pixel 

value that shows increase for 6.4 m and associated probably with the presence of vegetation yet 

(Fig.33). In Trave sector a negative mean variation of -3.7 m was recorded for the whole area, with 

the highest value of -31.2 m, between transects 289-301 near Trave rock. Others negative height 

differences greater than -10 m were recorded close the edge of cliff top, from transect 230 to 282. 

Evident areas characterized by positive (accumulation) values were not found. This is probably 

related to sea action which tend to remove landslide deposits. 
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The uncertainty of the DoD was computed propagating the uncertainty of the input DEMs, by 

applying the root of the sum of the square (Brasington et al., 2003) and obtaining values of 11.18 cm 

for z and 15,62 cm for planimetric component. Furthermore we refined this result multiplying the 

error values for a t-value of 1.96 (Duo et al., 2021; Wheaton et al., 2010) obtaining an uncertainty of 

21.98 cm for z and 30.61 cm for planimetric component.   

Figure 30: NSM values calculated along transects, referred to the period 1978-

2021: Portonovo and Trave sector showed the highest values of retreat. a) 

computed transects for the whole study area. b) Focus at Portonovo sector. c) 

Focus at Mezzavalle sector. d) Focus at Trave sector. 
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Figure 31: NSM values calculated along transects, referred to the period 1998-2007: Trave sector 

results the most active sector. a) computed transects for the study area. b) Focus at Portonovo sector. 

c) Focus at Mezzavalle sector. d) Focus at Trave sector. 
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Figure 32: NSM values calculated along transects, referred to the period 2010-2021: Portonovo and 

Trave sectors result the sectors most affected by retreating of the cliff top edge. a) computed transects 

for the study area. b) Focus at Portonovo sector. c) Focus at Mezzavalle sector. d) Focus at Trave 

sector. 
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Figure 33: Results of DoDs comparison in the period 2021-2012. Every sector is displayed in detail 

in scale 1:10.000. Analysis shows that the biggest height differences were recorded in Trave sector. 

a) computed DoDs for the study area. b) Focus at Portonovo sector. c) Focus at Mezzavalle sector. 

d) Focus at Trave sector. 
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3.1.5 Discussion 

 

Results from DSAS analysis show how this coastline is geomorphologically an active area. The 

average retreat rate calculated in the period 1978-2021 was - 0.25 m/yr. More specifically, in the three 

sector we can summarize the following outcome. 

Trave sector shows the highest rate of cliff retreat, in the period 1998-2007 where the mean is -0.72 

m/yr (almost 3 times higher than the average retreat calculate in the whole area). Mezzavalle sector 

results to be the one with less retreat rate during all the time spans. Despite this, the latter sector is 

mainly characterized by landslide deposits with poor geotechnical properties and, it is well known as 

geotechnical properties play a key role in cliff erosion/retreat (Prémaillon et al., 2018). Portonovo 

sector shows an intermediate behavior between the other two sectors, more similar to Trave, 

exhibiting in the period 2010-2021 a retreat rate doubled respect the entire period 1978-2021. Many 

authors has drawn attention to the range of coastal cliff retreat (Gómez-Pazo et al., 2021; Prémaillon 

et al., 2018; Sunamura T., 1992; Woodroffe, 2002) focusing especially on weak rocks, and obtaining 

average values of -0,25 m/yr (Prémaillon et al., 2018). Interestingly, while average retreat gathered 

by other authors is perfectly comparable with our values, the Trave sector shows values nearly 3 times 

higher than the mean value reported in GlobR2C2 (Prémaillon et al., 2018). Looking to other Italian 

case studies we can see that in Punta Caleo headland (Campania region), a retreat of 15 m over 30 

years was founded (0.5 m/yr). In the close locality of Torre la Punta (1 km far from Punta Caleo), a 

retreat rate of 0.8 m/yr was assessed, showing how the rate of erosion can suddenly vary in the same 

coastal areas (Budetta et al., 2000). Regarding other cases in Adriatic Sea, in Torre dell’Orso (Apulia 

region) the rate of erosion (in fine limestones) was found between 0.08 m/yr and 0.12 m/yr (Delle 

Rose and Parise, 2005; Lollino et al., 2021), while in the Abruzzo region (on Pleistocene clay-sand-

sandstone-conglomerate marine sequence) the retreat rate ranged between  0.15 m/yr and 1 m/yr 

(Miccadei et al., 2019). In the area between Gabicce and Pesaro, few kilometers on the North of our 

case study (characterized by similar lithologies), a mean retreat rate of 0.16 m/yr was calculated in 

the last 6000 year (Colantoni et al., 2004). Considering the much smaller time span considered in our 

study these values cannot be compared.   

In relation to what discussed above, information about precipitation, waves, geology, and land cover 

has been examined in order to understand the main factors controlling such erosion processes. 

Although a complete time overlap between precipitation and wave data it is not present, the coverage 

is enough only in the 1998-2021 temporal window (Fig. 26) to understand potential correlation 

between these factors and cliff retried. It has been above commented that the highest rate of retreat 

has been measured in the Trave sector in the period 1998-2007. Considering that extreme events for 

precipitations and waves, respectively, it results that there is no correlation between the highest rate 

of cliff retried measured in the period 1998-2007 in the Trave sector and these two parameters. It is 

difficult with the available data to perfectly match cliff top retreat occurrence and singular 

meteo/marine events, because orthophotos are yearly distributed and even marine data are not 

completely reliable cause they come from an hindcast elaboration. Yet, performing an extreme value 

analysis of marine data will be useless without the possibility to assess with photos the effect of waves 

on the slopes. The same issue is related even to rainfall data. From the September 2003 it is possible 

to have information on the precipitation every 15 minutes; however, the lack of data does not allow 

a cause-consequence analysis that correlate the main raining events and landslide triggering. As 

numerous authors has demostrated, soft-rock cliff recession is an episodic and localized phenomenon 

(Sunamura, 2015). For example, on September 14, 1944, a storm on Long Island, New York, cut back 

a cliff made of glacial deposits by a horizontal distance of more than 12m in a single day (Davies et 

al., 1974).  At Santa Cruz, during storms in January 1983, waves eroded around 14 m of the bluff top 

in Miocene mudstone-siltstone cliffs. Due to this, it is challenging to constrain which events and 
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drives can have a greater impact on the cliffs without a complete dataset (Griggs and Savoy, 1985). 

Since this, other parameters have to be used to understand possible correlations.  

Other important features that have to be taken into account are: beaches width, geotechnical properties 

and slope cliff elevation/steepness (Everts, 1991; Prémaillon et al., 2018; Wolters and Müller, 2008) 

Regarding the beach width, it has been noted that Mezzavalle sector has the widest beach, followed 

by Portonovo and Trave sectors with almost the same beach width mean.  

The sector with highest geotechnical properties is Portonovo sector while the one with the lowest 

values is Mezzavalle (made prevalently by landslide deposits).  

The geological survey shows that the Trave sector is the area more interested by tectonic features, 

with two main thrusts present (Fig. 34). Furthermore, Trave sector is the one with highest cliff 

elevation and steepness. Clearly, such highly fractured remarkably decrease the geotechnical 

properties (lower values of GSI) of rock masses and their stability (Brideau et al., 2009). This is also 

confirmed by the landslide inventory of ISPRA, where most of the landslide documented occurred in 

Trave sector (https://idrogeo.isprambiente.it/app/iffi/). 

Additionally, as observed on the California coast, fracture spacing play a very important role in retreat 

rates. (Benumof and Griggs, 1999; Moore et al., 1999). 

Another important aspect to be discussed is related to the land cover of the study area. No information 

was reported about the different depth of soil cover along the coastline, but many considerations can 

be made. The fieldwork has pointed out that the landslide deposits outcropping in Portonovo sector 

are more granular than those present in Mezzavalle (composed meanly by clays). This, combined 

with the higher steepness of the Portonovo and Trave sector, leads to hypothesize that the soil cover 

depth in Mezzavalle sector could be higher than the others sectors (pedogenesis is usually more prone 

to develop in flatter area (Brosens et al., 2020)). This can also be linked with the resulted higher 

occurrence of flow like landslides in Mezzavalle sector, reported by IdroGEO in the areas behind the 

active cliffs. 

Another issue to be discussed is related to the presence of vegetation in the three sectors. The analysis 

of UAV photographs highlighted that the Trave sector, compared with the other sectors, presents in 

the cliff top a lower vegetation rate and a different land cover (in agreement with Corine Land Cover, 

which define the vegetation on that sector as Sclerophyllous vegetation). 

From a geomorphological point of view this evidence can give us more insight regarding the process 

acting on the cliff. In fact, it is possible to state that with a lower vegetation rate, run-off processes 

can be more severe, increasing the instability of the rock mass. These observations agree with what 

showed by the DoDs analysis, where the sector with the major negative differences (loss of material) 

is the Trave one. Observing the shape and distribution of the area with higher DoD values, it is also 

possible to notice that these are mainly localized along the cliff-top. This evidence, combined with 

the lack of evidence of detectable notches at the cliff base, lead us to think that the erosive process is 

more influenced by slope processes than marine forcing. Dods analysis showed even that Mezzavalle 

sector presents the lowest variation and Portonovo an intermediate behavior between the other two. 

This datum completely agrees with the results gathered from the DSAS analysis: area with positive 

difference (accumulation) is very minor less wide and this is probably related to the capacity of the 

sea to quickly remove slope collapsed material. 

The integration of DSAS and DoDs analysis guarantee confirmed areas with major failures/erosions 

activity. These results confirm as the continuation of multitemporal survey can represent a good 

method in monitoring the evolution of this coastline. 
 

 

 

 

 

https://idrogeo.isprambiente.it/app/iffi/
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Figure 34: The geological structure of Trave cliff (GNOa (Sapigno Fm. Upper Miocene) and FAA 

(Argille Azzurre Fm., Lower Pliocene-Lower Pleistocene)). The main thrusts are highlighted with red 

lines, the red arrows indicate the sense of movement between hangingwall and footwall. In orange 

secondary thrusts with a lower slip. The trend of coastline in this picture is N/S and the average 

attitude of the fault planes identified is 200/45 in Dip Direction and Dip convention. 

 

3.1.6 Conclusions 

This study presents the first-time attempt of quantifying morphodynamical processes acting on 

Portonovo-Mezzavalle-Trave cliffs.  

It has been performed an interdisciplinary study which include fieldworks, analysis of meteorological 

and marine data, geological and land cover information, and cliff-top retreat in different periods, 

using the DSAS tool for ArcGis. Moreover, to improve our understanding of cliffs retreat rate and 

validate results from multitemporal orthoimages analysis, we performed a DoD between available 

2012 DTM data and a 2021 DSM extracted from UAV photographs.  

The results gathered from the study can be summarized as follow: 
 

➢ The coastal area that shows the highest variation in all the time spans considered is Trave 

sector, showing NSM maximum retreat of -43.5 m and a maximum height difference of -31 

m. 

➢ Comparing different time periods, it results an augmented cliff top erosion trend the last 20 

years if compared to the whole period of analysis (1978-2021). 

➢ The Trave sector shows values of retreat nearly 3 times higher than the mean value reported 

in GlobR2C2 (Prémaillon et al., 2018). 
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We conclude that the higher retreat rate localized at Trave sector is related to a combination of factors:  

➢ Mechanical properties of the rockmass are decreased due to the presence of tectonic 

disturbances, that increase fracture intensity and resulting in a decreasing GSI.  

➢ The steepness and elevation of this sector which is the highest in the entire investigated 

coastline (both are landslide-predisposing factors and finally). 

➢ One of the lowest values of beach width, that increases the role of wave action. 

➢ Variations of vegetation rate and land cover may affect the run-off and the erosion in the upper 

slope.   
 

Different is the situation at Mezzavalle sector: it is characterized by the lowest values of geotechnical 

properties, the highest values of beach width and by value of elevation of the cliff much lower than 

the Trave sector. The Mezzavalle sector is the area with the lowest rate of cliff retreat.  

Portonovo sector shows an intermediate behavior between the other two, more similar to Trave sector. 

Precipitations and waves data don’t seem to have correlation with the different erosional process in 

the different sectors. In fact, there is no correlation between years of high rate of precipitation and 

waves data and the high rate of cliff retreat measured in the Trave sector between 1998-2007. From 

a geomorphological perspective, the data gathered in the study let us to hypothesize that the evolution 

of this coastline is more controlled by slope factors than marine drives, leading to a progressive 

retrogression of the cliff-top edge. 
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3.2 Comparing Multiple High Accuracy UAV-SfM Derived Point Clouds for 

Geomorphological Change Detection at Portonovo-Trave cliffs (Conero, Ancona, Italy). 
 

 

3.2.1 Introduction 

 

Rocky coastal regions are increasingly susceptible to the impacts of human activities and the 

associated infrastructure (Martínez et al., 2007; Small and Nicholls, 2003). Moreover, these areas 

face a growing vulnerability to natural hazards exacerbated by climate change, including the risk of 

rising sea levels and potentially heightened storm events (Coco and Ciavola, 2017; Del Río and 

Gracia, 2009; Gómez-Pazo et al., 2021; Alan S. Trenhaile, 2010). The evolution of rocky coasts is 

influenced by several factors, such as geological, geomorphological, and structural characteristics 

(Sunamura T., 1992; Trenhaile, 2012), wave dynamics (Brideau et al., 2009; Budetta et al., 2000; 

Kennedy et al., 2011; Naylor et al., 2010; Piacentini et al., 2021; Sunamura, 2015; Sunamura T., 

1992; Trenhaile, 1987), sediment inputs (Kennedy and Milkins, 2015; Komar and Shih, 1993), cliff 

topography  (Robinson, 1980; Sunamura, 1991), beach width (Everts, 1991), and the energy content 

of waves (Poate et al., 2018). 

 

Continuous monitoring over time to document the ongoing changes in these coastal areas can 

significantly contribute to assess risk assessment, hazard mitigation, and coastal management 

(Esposito et al., 2017; Godfrey et al., 2020; Rosser et al., 2005a). However, obtaining the necessary 

data from rocky coastlines, characterized by steep and unstable slopes as well as high cliffs, has 

historically presented challenges. In recent decades, in response to these environmental challenges, 

new technologies have been developed and adapted to facilitate more accurate analysis (Caputo et 

al., 2018; Del Río et al., 2020; Esposito et al., 2020, 2017; Francioni et al., 2018a; Koukouvelas et 

al., 2020; Martino and Mazzanti, 2014; Matano et al., 2015; Rosser et al., 2005a; Warrick et al., 2017; 

Westoby et al., 2012). 

 

Unmanned aerial vehicles (UAVs) offer promising opportunities for monitoring these coastal areas, 

as they can operate at low altitudes and cross challenging terrain (Westoby et al., 2012). When 

combined with Structure-from-Motion (SfM) photogrammetric techniques, UAVs enable high-

precision analyses at relatively affordable costs (Brunetta et al., 2021; Buchanan et al., 2020; Duo et 

al., 2021; Westoby et al., 2018). Furthermore, in cases of landslides, other commonly used techniques, 

such as satellite imagery, often prove inadequate in providing the required level of information 

(Koukouvelas et al., 2020). To address these challenges, assessments based on high-resolution 

imagery collected from UAVs in combination with ground control points (GCPs) measured using a 

Global Navigation Satellite System (GNSS) have been increasingly employed (Vanneschi et al., 

2017). This approach is becoming more prevalent, thanks to technological advancements, including 

autopilot systems, high-quality digital cameras, miniature and accurate global positioning systems, 

and improvements in SfM software (Lucieer et al., 2013). Examining an area through UAV imagery 

poses intrinsic complexity, attributed to various factors like dense vegetation, untextured surfaces, 

diverse slopes, water-filled areas, and more (Alexiou et al., 2021). Among these factors, vegetation 

stands out as the most crucial element impeding a clear ground view when employing UAV-based 

photogrammetry methods (Dandois and Ellis, 2010). Anyway, UAV found in the recent past high-

quality application on determining bare cliff characteristics and evolution (Casagli et al., 2017; Fazio 

et al., 2019; Fullin et al., 2023; He et al., 2022; Koukouvelas et al., 2020; Melis et al., 2020).  

 

UAV derived Digital surface (DSM) or terrain (DTM) models, known as DEMs, find widespread 

application in various geomorphic contexts for conducting spatial assessments, both static and 
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dynamic (Earlie et al., 2015; Jaboyedoff et al., 2012b; Piacentini et al., 2021; Turner et al., 2016). 

Wheaton et al. (2010) (Wheaton et al., 2010) standardized these methods for determining notable 

variations in elevation and volume between DEMs, incorporating evaluations of uncertainty. This can 

be applied even using point clouds products (Esposito et al., 2020, 2018; Lague et al., 2013; Matano 

et al., 2014).  

 

In this context, the present study aims to investigate the one-year evolution in the area spanning from 

Portonovo to Trave (Ancona, Italy, Fig. 35) through the utilization of UAV photogrammetry-derived 

products. UAVs have played an important role, even in ground truth operations, offering the 

possibility to inspect the entire cliffs without introducing additional risks. The change detection 

between two Digital Surface Models (DSMs) generated in 2021 and 2022 using UAV technology 

underscores the significance of this approach in the context of rocky coastal environments. 

Comparing these remote sensing techniques with prior studies has allowed for the identification of 

coastline segments experiencing higher rates of evolution with enhanced spatial resolution, permitting 

to recognize processes that were before ignored using other remote sensing techniques.  
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3.2.2 Study Area Description 

 

The study area, positioned on the central Adriatic coast between Portonovo and Trave in the Conero 

promontory, a few kilometers north of Conero promontory (Fig. 35), exhibits distinctive 

characteristics. This region features high cliffs ranging from tens to hundreds of meters in elevation 

and slopes varying from nearly flat to steep inclinations of up to 80°/90°. The particular stretch of 

coastline under investigation overlooks the northern-central Adriatic Sea (Bisci et al., 2021). The 

Adriatic sea is a microtidal environment (Bisci et al., 2021)  and it experiences two predominant 

winds: the Sirocco from the S-SE and the Bora from the NE (Acciarri et al., 2021; Perini et al., 2011). 

Moreover, a littoral drift moving northwards is presumed along this coastal area (Grottoli et al., 2015).  

 

The coastline morphology has led to its division into three sectors, progressing from South to North 

(Fig 35): 

 

➢ Sector “1” (Portonovo) with an E-O/NW-SE orientation, characterized by the Schlier Fm.;  

➢ Sector “2” (Mezzavalle), approximately NW-SE oriented and predominantly covered by 

landslide deposits; 

➢ Sector “3” (Trave), approximately N-S/NW-SE oriented, featuring high and steep cliffs (± 

200 meters) with tectonized flyschoid formations (Argille Azzurre Fm.). 

  

 

In terms of geological attributes, the Conero promontory is situated in the central sector of the present-

day foredeep basin and foreland ramp of the Outer Northern Apennine fold and thrust belt (Calamita 

et al., 1999; Cello and Coppola, 1989; Coltorti et al., 1987; Iaccarino et al., 2008). The study area 

includes Neogenic formations dating from the Miocene to the present, including the Schlier, 

Formazione a Colombacci, Formazione di Sapigno, Orizzonte del Trave, and Argille Azzurre 

(Coltorti and Sarti, 2011) These formations primarily consist of marls, clays, sandstones, and gypsum, 

often masked by landslide deposits observed throughout the study area (Montanari et al., 2016). 

Geologically, the structural setting in the area is marked by two principal thrusts, both NW-SE 

oriented, resulting in the exposure of different formations in specific sectors. Intense erosion 

processes and numerous landslides contribute to a badland-like appearance along this part of the 

coastline. In particular, the Portonovo sector displays the activation of landslides in the upper 

sedimentary cover, causing cliff top retreats. The Mezzavalle sector is mainly comprised of landslide 

deposits, with occasional bedrock outcroppings near the morphological edge separating inland from 

the cliff. The Trave sector exhibits a high incidence of active landslides with various kinematic 

mechanisms, indicating a predisposition to landslide movements due to multiple thrusts cutting 

through the rock mass. 

 

Landslide occurrences are well-documented in the landslide database of the Istituto Superiore per la 

Ricerca e Protezione Ambientale (ISPRA) IdroGEO, primarily concentrated in the Trave sector 

(https://idrogeo.isprambiente.it/app/iffi/). The study area experiences diverse landslide types, 

including rotational slides, earthflows, falls/topples, and complex movements, categorized by their 

activity state (Cruden, D.M., Varnes, 1996). The crown of these landslides is predominantly situated 

along the morphological edge separating inland from the coast, with the affected area estimated to be 

approximately 280,000 m2. 

Pedological and soil cover perspectives were also addressed. Official documents from the Parco 

Nazionale del Conero 

(https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.p

df) describe the soil covering the marls and calcareous bedrock as regosoil or lithosoil Xerorthents 
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typic and lithic. Unfortunately, no information is available regarding the varying depth of this soil 

level along the coastline. 

 

To further comprehend land use changes and vegetation, data from Corine Land Cover 

(https://land.copernicus.eu/pan-european/corine-land-cover) for 1990 and 2018 were examined. In 

1990, the Trave sector was classified as "Green urban areas" (code 141), while the other two sectors 

were classified as "Broad-leaved forest" (code 311). By 2018, the Trave sector was classified as 

"Sclerophyllous vegetation" (code 323), whereas the other two sectors remained under the code 311 

as "Broad-leaved forest." 

 

 

  

 
Figure 35: Satellite image showing the study area delimited by a violet line (image taken from 

GeoEye satellite database, 2020). 3 sectors are identified: 1) Portonovo; 2) Mezzavalle; 3) Trave. 
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3.2.3 Materials and Methods 

 

With the aim of quantifying morphological evolution between 2021-2022 on these cliffs, we have 

performed the following methodology: 

➢ 2 distinct UAV survey with nearly 1 year of delay  

➢ Change detection between 2021 and 2022 UAV derived point clouds.  

 

3.2.3.1 UAV Surveys and Data Elaboration 

 

Surveys were completed in two separate fieldworks, the first on the end of September 2021 and the 

second in the beginning of October 2022, trying to fly always in the morning in order to keep almost 

the same light condition (Tziavou et al., 2018). 

 

3.2.3.1.1 28/29 September 2021 survey  

 

Because of the extension of the study area (about 1.5 km2), the UAV data acquisition was 

accomplished in two consequent days, 28/29 September 2021 using a commercial drone DJI Phantom 

Vision 3+ Pro equipped with a camera: FC300X (focal length: 3.61 mm; pixel size: 1.56 × 1.56 μm).  

Flights were conducted at a constant elevation of 120 m covering the top cliff, and 60-70 m covering 

the beach area, using automated flight plans created using the “Drone deploy” opensource application 

(https://www.dronedeploy.com/). Front and side overlap between each photo was ~70% and flight 

speed 8-10 m/s. 

The UAV survey was supported by an NRTK-GNSS survey using a Trimble RTK-DGPS R8 (i.e., 

stop and go technique; horizontal accuracy of 8 mm and vertical accuracy of 15 mm) which was used 

to acquire the position of 22 ground control points (GCPs). These were made of white and red wooden 

square targets, measuring 60 × 60 cm, and distributed within the study area. The Universal 

Transversal Mercatore WGS84 zone 33N was used as coordinate system and the ellipsoidal height 

was converted to orthometric height using national grids using the software “Convergo” 

(https://www.cisis.it/?page_id=3214). Estimate error during the NRTK-GNSS survey was approx 6 

cm horizontally and vertically. 

“Agisoft Metashape” (version 1.5.1 https://www.agisoft.com) was used to manage and process UAV 

data and GCP coordinates. Using the procedure suggested by different authors (Brunetta et al., 2021; 

Duo et al., 2021; Fabbri et al., 2021b; Gindraux et al., 2017; Talavera et al., 2021) it was possible to 

create the DSM and orthophoto of the surveyed area. 

 

3.2.3.1.2 06/07 October 2022 Survey  

 

The UAV data acquisition was accomplished in two consequent days, 06/07 October 2022, covering 

the extension of the study area (about 1.5 km2). The drone used for the survey was a DJI Mavic 2 

Pro. Characteristics of the drone camera were: 20 megapixel resolution; 28 mm focal length with 

f/2.8 to f/11 aperture and maximum image size of 5472×3648 px. 

In order to get the same photographs ground resolution, the flights were conducted at a constant 

elevation, 120 m above the area, using programmed flight plans created through the BLY3D software 

of Aermatica3D application (https://www.aermatica.com/app-bly3d/). Photographs overlap was kept 

at 80% and flight speed at 8 m/s. 

Trimble RTK-DGPS R8 (i.e., stop and go technique; horizontal accuracy of 8 mm and vertical 

accuracy of 15 mm) was used to support the UAV survey with an NRTK-GNSS measure to acquire 

the position of 13 Ground Control Points (GCPs), based on the national net of Leica. These were 

white and red wooden square targets, measuring 60 × 60 cm, uniformly distributed within the study 

https://www.dronedeploy.com/
https://www.cisis.it/?page_id=3214
https://www.agisoft.com/
https://www.aermatica.com/app-bly3d/
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area. The Universal Transversal Mercatore WGS84 zone 33 N was used as coordinate system and the 

ellipsoidal height was converted to orthometric height using national grids in the software 

“Convergo” ( https://www.cisis.it/?page_id=3214 ). Estimate error during the NRTK-GNSS survey 

was approx. 3 cm horizontally and vertically. 

GCP coordinates and UAV data were managed and processed using "Agisoft Metashape" (version 

1.5.1, available at https://www.agisoft.com ). The Digital Surface Model (DSM) and orthophoto of 

the surveyed region were produced following existing methods (Brunetta et al., 2021; Duo et al., 

2021; Fabbri et al., 2021a; Gindraux et al., 2017; Talavera et al., 2021). 

 

 

 

3.2.3.3 Change detection analysis   

  

Change detection is becoming a common practice in geosciences (Gómez-Pazo et al., 2021; 

Jaboyedoff et al., 2012b; Williams, 2012). In this case we have performed this analysis using two 

points clouds extracted by UAV survey in September 2021 and October 2022 in the software 

CloudCompare ( https://www.danielgm.net/cc/ ). Georeferencing error between the 2 clouds was 

extracted through the CloudCompare tool Cloud-to-Cloud (C2C) that highlighted different errors 

along the whole coastline. In fact, due to the continuous activity of Trave Cliffs, in the October 2022 

less GCPs were ubicated close this sector. Hence, it was decided to study separately the surveys, by 

dividing the cloud in Trave (hereafter Trave-Cloud (TC)) from the clouds of 2021 and 2022 from the 

other part (hereafter Portonovo-Mezzavalle-Cloud (PMC)) with different georeferencing error. 

In order to reduce this existing error in TC, multitemporal point clouds underwent alignment using 

the iterative closest point (ICP) best-fit algorithm implemented in CloudCompare. This alignment 

method, known as ICP best-fit, offers a rapid and faithful approach that can help in aligning clouds 

where it is not possible to safely positioning GCPs across extensive areas with complex morphology 

or steep inclines. Furthermore, it mitigates uncertainty arising from matching point clouds exhibiting 

variable densities (Fey and Wichmann, 2017). 

Within the ICP algorithm, one point cloud remains fixed as the reference while the other is adjusted 

to achieve the optimal alignment with the reference. Through iterative processes, the algorithm refines 

the transformation, involving translation and rotation, to minimize the distance between the moving 

and reference point clouds. 

At the end of this process for both the clouds TC and PMC the Multiscale Model to Model Cloud 

Comparison (M3C2) algorithm within CloudCompare was used. 

The M3C2 algorithm facilitated the assessment of differences between two point clouds by measuring 

the spatial distance between points within a 3D space, enabling the identification and characterization 

of volumetric and morphological alterations, as showed by Lague et al. in 2013 (Lague et al., 2013).  

The M3C2 algorithm considered surface roughness and alignment errors between clouds, while also 

allowing for the determination of the analysis scale, contingent upon the density of the sub-sampled 

cloud (Lague et al., 2013). We utilized the automatically estimated values provided by the plug-in, 

except for the co-registration errors specifically related to the comparison between the point clouds, 

also known as the level of detection (LOD) (Esposito et al., 2020). 

These values were introduced differently according to the results obtained by C2C for TC and PMC. 

Specifically, the decision was made to employ a value equivalent to twice the standard deviation (2σ) 

derived from C2C histograms as the Level of Detection (LOD) for each respective cloud (Lague et 

al., 2013; Taylor and Thompson, 1982; Wheaton et al., 2010). Vegetation was removed masking the 

clouds and through segmentation tool. 

  

https://www.cisis.it/?page_id=3214
https://www.agisoft.com/
https://www.danielgm.net/cc/
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3.2.3.4 Volume variation analysis 

 

The study area was divided into seven segments (labeled as a, b, c, d, e, f, g) to effectively document 

the erosion and accretion that emerged between 2021 and 2022 (Fig. 36). Each segment was isolated 

from the M3C2 clouds, with segments a, b, c, d, e, and f attributed to PMC, and segment g to TC. 

Volume variations were determined by isolating significant changes (according to LOD) within the 

2022 cloud data through M3C2 analysis and subsequently comparing these variations with the 2021 

point cloud. The CloudCompare tool, specifically the "Volume 2.5D" feature, was employed to 

calculate the volumetric changes using a grid size of 0.10 meters. Uncertainty in volumetric variation 

was computed according to Nourbakhshbeidokhti et al. (2019). A more detailed representation of the 

observed evolution was made defining four distinct detailed sections (Fig. 36). 

 

 
Figure 36: 2022 UAV derived orthophoto showing the segment identified by a red line. 4 sections 

are displayed in violet in the tract with a higher computed change. 

 

3.2.4. Results 

 

3.2.4.1 UAV derived points clouds  

 

2021 and 2022 dense clouds had respectively a mean point density of 19 points for square meters 

(p/m2) and 67 p/m2.  

The C2C histograms retrieved from TC and PMC products are reported in Figure 37. 

Hence the values added into the M3C2 plugin for co-registration were respectively 0.70 m and 0.80 

m for PMC and TC (Taylor and Thompson, 1982). 
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Figure 37: Histograms of PMC (a) and TC (b) C2C analysis. 

 

 

3.2.4.2 Change Detection and Volume Variation Analysis 

 

The analysis conducted between 2021 and 2022 delineates the detection of changes across diverse 

coastal sections, synthesized in the Figures 38,39,40,41. The four sections extracted as reported in 

Figure 36 are reported in Figure 42.   

All values acquired from the volume variation analysis have been collected within Table 9 for the 

convenience of presenting the results. 

 

Table 9: Volume variations computed for each sector are reported together with their uncertainty.  

 
 

Volume variation (m3) Uncertainty (m3)  
 

Positive Negative 
 

a) / 11.67 0.74 

b) / 4.36 0.40 

c) 56.94 24.24 12.24 and 1.68 

d) / 111.25 9.89 

e) / 43.18 4.35 

f) / 512.41 50.81 

g) / 105.26 8.88 
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Summarizing the outcomes for each segment: 

In area a), minimal changes were recorded (Fig. 38), with slightly over 10 m3 being eroded from the 

cliffs according to volume analysis. Examining the shape of these removed sections suggests they 

may have detached as small falls or toppled fragments. No accretion was detected on the beach or 

talus of these cliffs above the LOD (Limit of Detection). Picture a) shows a slight linear increase in 

the volume of the beach upon the cliff's southern side, potentially indicating a storm berm, but given 

its data's proximity to the LOD, it could be affected by noise. 

Segment b) displayed a similarly modest evolution, with less than 5 m3 eroded (Fig. 38), solely in 

erosion. The small sections involved in this movement might also be categorized as results of falls or 

toppling. Considering their lower position, marine action might have contributed to the detachment 

of these volumes. 

Area c) exhibited an evolution involving both accretion and erosion (Fig. 39), notably prominent in 

the southern part of this segment. It showcased a local increase in beach height exceeding 1.5 m and 

a substantial notch in the cliffs, particularly depicted in section A-A' (Fig. 42a). The volume removed 

from the cliff was quantified at 24 m3, while beach accretion ranged between 50 and 60 m3. 

Segment d) demonstrated a significant notching at the northern cliff base (Fig. 39), as also illustrated 

in section B-B' (Fig. 42b). Although appreciable volumetric accretion was not measured here, erosion 

of approximately 110 m3 was detected, primarily affecting patches of the cliff at low elevations, 2-4 

m above sea level. 

Area e) recorded the most substantial morphological evolution at the cliff base (Fig. 40), particularly 

in the southern part of the segment. Similar to d), the areas affected by erosion are situated closer to 

sea level, indicating a potential link between wave action and the observed erosion. Volume loss was 

estimated at around 40 m3 of material. 

Area f) evidenced the highest recorded erosion along the entire coastline (Fig. 40), reaching values 

of 500 m3. This erosion concentrated on both the cliff base and face, potentially involving landslides 

such as falls or topplings. Additionally, a possible slide was detected in the northern part of this area, 

with section C-C' (Fig. 42c) highlighting the change observed between 2021 and 2022. 

Area g), akin to d) and f), displayed significant erosion, up to 100 m3, concentrating on both the cliff 

face and base (Fig. 41). Section D-D' (Fig. 42d) emphasized a zone where two distinct landslides 

occurred, one at the top of the active cliff and another close to the base. This indicates that the material 

might not have been deposited immediately off the cliff but could have been reworked and relocated 

either offshore or elsewhere along the coastline (as potentially observed in c)). 
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Figure 38: M3C2 results are displayed in the pictures showing M3C2 distance above and significant 

changes below for each area. Segment a) it is shown in 38a) and 38aa), then part b) it is shown in 

38b) and 38bb). 
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Figure 39: M3C2 results are displayed in the pictures showing M3C2 distance above and significant 

changes below for each area. Segment c) it is shown in 39c) and 39cc), then part b) it is shown in 

39d) and 39dd). 
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Figure 40: M3C2 results are displayed in the pictures showing M3C2 distance above and significant 

changes below for each area. Segment e) it is shown in 40e) and 40ee), then part f) it is shown in 40f) 

and 40ff). 
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Figure 41: M3C2 results are displayed in the pictures showing M3C2 distance above and significant 

changes below for each area. Segment g) it is shown in 41g) and 41gg). 

 

 

 
Figure 42: Extracted sections are shown to highlights the main changes in the coastline (Figure 36). 

The topography of 2021 is represented in red while the one of 2022 in green. All the profile are seen 

from south to north. 
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3.2.5 Discussion 

 

The findings obtained from the change detection analysis emphasized the dynamic nature of the entire 

coastal region. Specifically, sections d), f), and g) exhibited a notably higher volumetric loss 

compared to other areas, while segment c) displayed accretion above the LOD threshold, distinct 

from the rest. Across this stretch of rocky coast, an average erosion rate of 0.29 m3 yr-1 per meter of 

coastline was observed, with segment f) demonstrating a maximum erosion rate of 2.04 m3 yr-1. These 

values, when compared to documented ones in different contexts such as California (Alessio and 

Keller, 2020; Swirad and Young, 2021), Japan (Obanawa and Hayakawa, 2018) and even in  

Mediterran (Giuliano et al., 2022) were lower.  

     A comparison between the outcomes of this study and those from Fullin et al. (2023) is of interest. 

The repeated UAV surveys conducted in this research offered a higher temporal resolution and finer 

detail compared to the preceding analysis. However, due to the intricate nature of the study area and 

its hazardous configurations, especially in the Trave sector, repeating the UAV surveys with an 

identical arrangement of Ground Control Points (GCPs) was unfeasible. Consequently, the spatial 

resolution in this study was lower than in other applications (Brunetta et al., 2021; Fabbri et al., 2021b; 

Turner et al., 2016; Westoby et al., 2018). Additionally, the use of two different flights at varying 

altitudes (September 2021) and an automated flight (October 2022) may have introduced 

discrepancies in the final data products (Aicardi et al., 2016; Eisenbeiss and Sauerbier, 2011; Tziavou 

et al., 2018). Nonetheless, the analysis results have provided new insights compared to previous work. 

Within the timeframe of 2021-2022, clear cliff top retreats were not distinctly evident, and notching 

was observed at the base of cliffs in contrast to Fullin et al. (2023), where lower spatial resolution 

hindered such analysis. Particularly notable was the detection of notching in the Mezzavalle sector, 

despite the absence of significant cliff top retreats over the past four decades. This discrepancy might 

be attributed to processes that are not readily discernible from orthophotos. Moreover, even if sections 

of the cliff collapse, it may not necessarily result in a retreat of the boundary between the bare cliff 

and vegetation, making detection impossible without higher resolution data. Thus, comprehensive 

understanding of cliff evolution necessitates utilizing high-temporal and high-spatial resolution 

products (Bernatchez et al., 2021; Lim et al., 2005; Rosser et al., 2005b). 

The data from this analysis confirm that a majority of the removed coastline material originates from 

the Trave sector (particularly segments f) and g)), consistent with existing literature (Fullin et al., 

2023). This eroded material has a dual origin: from the base of cliffs due to notching and from various 

landslide processes, mainly topples and falls. A potential landslide was identified in segment f), as 

depicted in the lower part of section C-C’ (Fig. 42c). However, establishing a clear pattern 

interconnecting these landslide events (e.g., notching leading to landslides) remains challenging. 

Although in section D-D’, two distinct landslides were identified along the same slice, without 

knowledge of their chronological order, reconstructing the evolution of the instability process is 

infeasible. 

Furthermore, accretion was observed in segment c) across a considerable portion of the beach, 

contrasting with the prevalent erosion in the northern segments (especially f) and g)). This observation 

suggests a potential along-coast transport of sediments from north to south in this region, in 

opposition to findings near Portonovo, indicating a northward drift (Grottoli et al., 2015). Further 

investigation is necessitated to establish if this material is locally generated or transported from the 

Esino or Musone rivers, despite their respective distances of 20 and 10 kilometers from this area. 

Thus, this study underscores the significance of recurrent UAV surveys and their resultant data 

products, both for the high spatial resolution achievable and their ease of repetition. In handling a 

complex and unsafe environment such as this study area, equipping UAVs with Real-Time Kinematic 

(RTK) GPS for GCP disposition would be advantageous. Processes identified in this analysis were 

previously unobserved due to the application of techniques with lower spatial resolutions (Fullin et 
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al., 2023). Advancing understanding of these cliffs evolution could imply the installation of cameras 

in various locations to continuously capture images over time. This approach could facilitate the 

identification of causes behind erosion and discrete landslide events, alongside external triggering 

conditions (Godfrey et al., 2020). In areas densely covered with vegetation, combining UAV 

techniques with Lidar surveys could yield Digital Terrain Model (DTM) products (Swirad and 

Young, 2021).    

  

3.2.6 Conclusions 

 

This research attempts to quantify morphodynamic processes impacting the Portonovo-Mezzavalle-

Trave cliffs during the period between 2021 and 2022, employing UAV-derived products. Two UAV 

surveys were conducted in September 2021 and October 2022, yielding respective Digital Surface 

Models (DSMs). Change detection analysis covering the entire coastline was executed using 

CloudCompare software.  

The outcomes of this study can be succinctly summarized as follows: 

 

➢ An average erosion rate of 0.29 m3 yr-1 per meter of coastline was observed. 

➢ A maximum erosion rate of 2.04 m3 yr-1 was computed for segment f) in Trave sector. 

➢ Notch erosion was identified in segments c), d), e) and f) corresponding even in the 

Mezzavalle sector where no erosion was previously identified (Fullin et al., 2023). 

➢ Accretion on beach height and width was noted in segment c), differently from the other parts 

here studied. 

➢ Segments a) and b) in Portonovo sector showed a limited erosion if compared with the other 

areas. 

 

The loss of volume in the area is attributed to both landslides and notch erosion. UAV-derived 

products facilitated a more accurate comprehension of the cliff's evolutionary dynamics. The 

utilization of high spatial and temporal resolution data is imperative for a comprehensive 

understanding of processes within these intricate environments.  
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3.3 Detection of cliff top erosion drives through machine learning algorithms between 

Portonovo and Trave cliffs (Ancona, Italy). 
 

 

3.3.1 Introduction:  

 

The coastal environment holds significant importance due to its high population density and 

extensive human activities (Martínez et al., 2007; Small and Nicholls, 2003). Approximately 52 to 

80 percent of coastlines worldwide are characterized by high coasts (Emery and Kuhn, 1982; 

Williams and Pranzini, 2018; Adam P. Young and Carilli, 2019). Despite numerous studies 

presented over the years, the intricate processes governing coastal evolution remain not well-

understood (Naylor et al., 2010). 

The morphological evolution of coastal cliffs results from a complicated interplay of various 

processes, including the influence of waves and their spectrum (Kennedy et al., 2011; Poate et al., 

2018; Sunamura, 2015), beach width and sediments balance (Everts, 1991; Kennedy and Milkins, 

2015; Komar and Shih, 1993; Moses and Robinson, 2011), as well as the slope and roughness of the 

seabed. These factors play fundamental roles in shaping nearshore dynamics in proximity to cliffs 

(Robinson, 1980; Sunamura, 1991). 

Moreover, the intrinsic nature of the cliff slope itself plays a decisive role in the evolution of rocky 

coasts (Sunamura, 2015; Troiani et al., 2020). Therefore, it is essential to consider the lithotype and 

structural attributes of both the cliff and the shore platform (Naylor and Stephenson, 2010) in 

combination with ongoing rock mass processes such as brittle rock fracturing, creeping, and 

damage (Brideau et al., 2009; Donati et al., 2020; Marmoni et al., 2023; Stead and Wolter, 2015). 

Recent innovations in remote sensing technology have ushered in an era of higher spatial and 

temporal resolution topographic data, thanks to a plethora of innovative techniques now routinely 

employed, including Unmanned Aerial Vehicles (UAV) and Terrestrial Laser Scanning (TLS) 

(Caputo et al., 2018; Esposito et al., 2017; Francioni et al., 2018b, 2018a; Lim et al., 2005; Loiotine 

et al., 2021; Matano et al., 2015; Rosser et al., 2013, 2005b). These advancements have paved the 

way for numerous works aimed at recognizing local and regional processes occurring on cliffs 

(Gómez-Pazo et al., 2021; Jaud et al., 2019; Piacentini et al., 2021; Prémaillon et al., 2021; Young 

et al., 2021) often merging marine and slope stability perspectives (Bergillos et al., 2022; Earlie et 

al., 2015; Lollino et al., 2021). In this regard, numerical slope stability modelling can provide 

further insights into the current and future evolution of rocky coasts (He et al., 2022; Lollino et al., 

2021; Mantovani et al., 2013; Styles et al., 2011). 

While several authors have qualitatively classified hazards and risks on rocky coasts (Anfuso et al., 

2013; Budetta et al., 2000; Del Río and Gracia, 2009; Di Luccio et al., 2023; Tursi et al., 2023), 

there remains a lack of research aimed at quantifying the specific significance of individual factors 

within the evolution process.  

Combined with remotely sensed data, some efforts have been made to automatically assess the 

importance of each factor in driving instability using both Bayesian and Machine Learning (ML) 

algorithms on a regional scale (Dickson and Perry, 2016; Hapke and Plant, 2010; He et al., 2021). 

Nevertheless, there is currently a lack of site-specific applications of ML algorithms that employ a 

comprehensive set of quantified parameters to determine their relevance in instability and erosion 

processes affecting cliffs.  

In this study, we examined a segment of rocky coast located in the eastern part of Italy (Ancona). 

We employed an integrated methodology that effectively combined field and remote sensing data. 

A Digital Surface Model (DSM), generated from a UAV survey conducted in 2022, was used to 

extract topographic parameters, while geomechanical data were collected during fieldwork. Cliff 

top erosion was computed in the time span 1978-2022 thanks to the USGS tool DSAS (Digital 
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Shoreline Analysis System) (Himmelstoss et al., 2018). These quantified datasets were subjected to 

an ML analysis, using XGB (Chen and He, 2014) and RF (Breiman, 2001) algorithms to obtain 

MDI, resulting in an output that ranks the significance of each driving factor concerning cliff top 

erosion. ML findings were further validated using Limit Equilibrium Method (LEM) codes (Stead 

and Coggan, 2012). 

The results described represent the initial step of research aiming at the investigation of the 

potential of ML in forecasting the relative importance of various factors affecting a cliff top erosion 

process.   

 

3.3.1.1 Setting  

 

The area object of this study is located south of Ancona, between the sites of Portonovo and Trave in 

the Conero promontory with an area of approximately 1.5 km2 (Fig.43). The coastline here is facing 

the Adriatic Sea, through high cliffs with an elevation that can exceed two hundred meters. Together 

with the San Bartolo promontory, these cliffs make up the only rocky coastline from Central Italy to 

Trieste that faces the Adriatic Sea. 

The rocky coasts are primarily composed of Neogenic rocks, mainly marls, clays, sandstones, and 

gypsum (Cello and Coppola, 1989; Coltorti and Sarti, 2011) and, are partially covered by landslide 

deposits (Montanari et al., 2016). Two principal thrusts outcrop in this coastal sector, having a typical 

Apenninic orientation NW-SE (Coltorti and Sarti, 2011) bringing Miocenic formations upon 

Pliocenic rocks.  

In this study, we divided the area of study into three different sectors according to geological 

characteristics (Fullin et al., 2023): Sector “1” Portonovo, here the cliffs are composed by marls of 

the Schlier Fm., Sector “2” Mezzavalle where cliffs are made of landslide deposits and Sector “3” 

Trave, with cliffs constituted by tectonized flyschoid formations (Fig.48). 

The landslides have been extensively documented in the landslide database IdroGEO 

(https://idrogeo.isprabiente.it/app/iffi/). These landslides exhibit various kinematics, including 

composite landslides, rock rotational slides, clay/silt rotational slides, rock falls, rock block topples, 

and earthflows (Hungr et al., 2014). It should be noted that the landslides identified in this area are 

either currently active or in a reactivated state (Cruden, D.M., Varnes, 1996). 

Regarding soil composition and coverage, comprehensive documentation is available through the 

Parco Nazionale del Conero authority 

(https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.p

df). The soil that lies on top of the marls and calcareous bedrock is known as "regosoil" or "lithosoil 

Xerorthents typic and lithic." Unfortunately, there is a lack of information available about the 

different depths of this soil layer along the shore. 

The Adriatic sea is classified as a microtidal environment (Bisci et al., 2021) and within this region, 

there are two predominant wave directions: the first is from the south-southeast (Scirocco), which 

corresponds to the most common direction of storm events and associated winds. The second 

prevailing storms are from the northeast (Bora), representing the dominant sea, namely the direction 

https://idrogeo.isprabiente.it/app/iffi/
https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.pdf
https://www.regione.marche.it/natura2000/public/allegati_blog/1682/File%20non%20disponibile.pdf
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of wave storms with greater intensity (Acciarri et al., 2021). A littoral drift observed along this coastal 

area is moving in a northward direction (Grottoli et al., 2015).  

 

Figure 43: Map displaying the position of the study area: a) Satellite image showing the study area 

and the three sectors called Portonovo, Mezzavalle and Trave. (image taken from GeoEye satellite 

database, 2020). b) Collocation of the study area respect to Italy. 
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3.3.2 Methodology 

 

It is possible to resume the paper’s methodology in 5 steps (Fig. 44): 1) Fieldwork, 2) Data analyses 

and surveys, 3) Parameters extraction, 4) Machine learning analysis and 5) Slope stability analysis.  

 

 

Figure 44: Workflow sketch: 1) Fieldwork; 2) Data analyses and surveys. 3) Parameters extraction. 

4) Machine learning analysis. 5) Slope stability analysis.  
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3.3.2.1 Fieldwork  

 

Fieldwork was performed to collect and map information regarding geological and mechanical 

characteristics of the exposed lithotypes. 

According to ISRM guidelines (Barton, 1978), in situ uniaxial compressive strength (UCS) values, 

both for soil deposits and rocks were determined (Barton, 1978). The rock masses outcropping along 

the coastline were classified by means of the “Geological Strength Index” (GSI) for heterogeneous 

rock masses (Hoek et al., 2005; Marinos, 2017). Approximately every 10 meters along the cliff base, 

outcrops were analysed, and geomechanical parameters were recorded. Subsequently, all this data 

was compiled, categorized, and represented as polygons in a GIS environment. This approach allowed 

for the subdivision of the coastline on geomechanically homogeneous areas on which subsequent 

analyses will be performed. 

 

3.3.2.2 Data analyses and surveys 

 

The UAV data acquisition was accomplished in two consequent days, 06/07 October 2022, covering 

the extension of the study area (about 1.5 km2). The drone used for the survey was a DJI Mavic 2 Pro. 

Characteristics of the drone camera were: 20 megapixel resolution; 28 mm focal length with f/2.8 to 

f/11 aperture and maximum image size of 5472×3648 px. 

In order to get the same ground resolution of the photographs, the flights were conducted at a constant 

elevation, 120 m above the area, using programmed flight plans created through the BLY3D software 

of Aermatica3D application (https://www.aermatica.com/app-bly3d/). Photographs overlap was kept 

at 80% and flight speed at 8 m/s. 

Trimble RTK-DGPS R8 (i.e., stop and go technique; horizontal accuracy of 8 mm and vertical 

accuracy of 15 mm) was used to support the UAV survey with an NRTK-GNSS measure to acquire 

the position of 13 Ground Control Points (GCPs), based on the national net of Leica. These were 

white and red wooden square targets, measuring 60 × 60 cm, uniformly distributed within the study 

area. The Universal Transversal Mercatore WGS84 zone 33 N was used as coordinate system and the 

ellipsoidal height was converted to orthometric height using national grids in the software 

“Convergo” ( https://www.cisis.it/?page_id=3214 ). Estimate error during the NRTK-GNSS survey 

was approx. 3 cm horizontally and vertically. 

GCP coordinates and UAV data were managed and processed using "Agisoft Metashape" (version 

1.5.1, available at https://www.agisoft.com ). The Digital Surface Model (DSM) and orthophoto of 

the surveyed region were produced following existing methods (Brunetta et al., 2021; Duo et al., 

2021; Fabbri et al., 2021a; Gindraux et al., 2017; Talavera et al., 2021). 

 

3.3.2.3 Parameters extraction: Cliff top retreat analysis and transects identification. 

 

Cliff top retreat was determined through the application of DSAS analysis. Specifically designed for 

analyzing shoreline movements, this tool's frequent inclusion in literature attests to its common use 

in studies focusing on cliff retreat (Brooks et al., 2012; Gómez-Pazo et al., 2021; Hapke and Plant, 

2010; Lollino et al., 2021).  

1978 and 2022 orthophotos were used for the study. The 1978 version is publicly accessible on the 

"Regione Marche" website at http://wms.cartografia.marche.it/geoserver/Ortofoto/wms. The 2022 

orthophotos were generated using UAV photos, and the spatial resolutions of these orthophotos are 

respectively 1.28 m for the 1978 one and 0.1 m for the 2022 one.  

 

https://www.aermatica.com/app-bly3d/
https://www.cisis.it/?page_id=3214
https://www.agisoft.com/
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The cliff top edges were delineated in both orthophotos, and the linear distance between the distinct 

cliff top edges and a baseline (transects) was measured. The 2022 orthophoto was resampled to a 

cell size of 1.28 m, consistent with the 1978 orthophoto. Subsequently, a uniform visual scale 

(1:3000) was applied to both photos. The mapping of cliff top edges on the orthophotos involved a 

manual process, relying on the boundary between vegetation and bare slope to define the edge of 

the cliff. The cliff top edge was calculated separately 4 times, and the variations between each line 

were identified (Buchanan et al., 2020; Cenci et al., 2013; Virdis et al., 2012) to account for 

digitalization errors. The manual mapping process was performed according to established 

methodologies outlined in existing literature (Crowell et al., 1991; Del Río and Gracia, 2013; 

Fletcher et al., 2003). Additional specifics regarding the adopted procedure can be found in Fullin et 

al., 2023. 

 

To calculate georeferencing error between the two orthophotos the subsequent procedure has been 

followed. We selected scattered control points within the coastline for 1978 orthophoto, 

georeferenced by regional authority using benchmark topographic, and compared these control 

points with the 2022 product, georeferenced using GCPs. We calculated the Euclidean distance 

between the matched control points, assigning an uncertainty value to each one based on this 

horizontal distance. We used inverse distance-weighted interpolation in ArcGIS to interpolate our 

uncertainty as a continuous grid at a resolution of 50 meters per pixel across the research region, 

because the uncertainty is not constant across orthophotos (Bloom et al., 2023). 

 

Shoreline has been used as reference line to obtain the baseline (with a 100 m buffer). The 2022 

orthophoto was used for mapping and the shoreline was identified by the color changing between 

the sand and the sea. A series of transects is generated starting from this baseline crossing the two 

cliff edges detected and computing the linear distance between them. In this case we have defined a 

distance between each transects of 10 meters, for a total of 310 transects. In order to obtain coastal 

profiles, it was used a smoothing factor of 100 to avoid any crosscut between these lines and 

keeping each transect as much perpendicular to the coastline as possible. Net Shoreline Movement 

(NSM, the total movement measured in meters) and the End Point Rate (EPR, the rate of movement 

calculated in meters per years) along these transects were calculated, together with Confidence of 

End Point Rate (ECI or EPRunc in newer versions of DSAS), an index which takes into account the 

uncertainty of lines (accuracy error) as a factor for calculating the EPR confidence. 

DSAS analysis was conducted for the period 1978-2022 to assess coastal retreat over the entire 40-

year span, given that these were the most recent and older orthophotos available for the area. 

 

 

3.3.2.4 Machine learning analysis:  Parameters. 

 

For Machine Learning analyses we considered a list of 13 parameters, as detailed in Table 10. To 

acquire topographical data, we utilized the 2022 DSM in a GIS environment. Transects generated 

from DSAS enabled the extraction of profiles corresponding to the 2022 topography, from which 

morphological elements like Cliff Height, Cliff Slope, Aspect, Beach and Talus width, and Cliff 

base slope were derived. Geomorphological edges were manually identified on these profiles, and 

the corresponding values were recorded in a table (Appendix 1), associating transect numbers with 

the relevant information. The geological/geomorphological parameters taken into account included 

UCS, GSI, Cliff Top Retreat, the presence of boulders on the cliff base, beach erosion, and the 

existence of vegetation on the cliff top. UCS and GSI data were collected during fieldwork and 

subsequently imported into the GIS environment. Polygons were utilized to represent the variations 

in parameters, and the values within each polygon were recorded in a table, aligned with the 
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existing DSAS transects (see Appendix 1). The DSAS tool was employed to measure cliff top 

retreat, and the automatically computed values were stored for each corresponding transect. 

The occurrence of boulders at the cliff base was identified using the 2022 orthophoto. A value of 1 

was assigned when boulders were present along the transect, and 0 when they were not. Beach 

erosion data for the period between 2008 and 2019 were calculated by Regione Marche as part of 

the Gestione Integrata delle Zone Costiere (GIZC) project (https://www.regione.marche.it/Regione-

Utile/Paesaggio-Territorio-Urbanistica-Genio-Civile/Difesa-della-costa#Piano-GIZC-2019) and 

made available in a .kmz file, which can be freely downloaded from their website. The .kmz file 

was imported into a GIS environment and buffered along the shoreline to capture values along the 

created transects. This data, along with beach width, holds significance in representing wave impact 

(Earlie et al., 2018; Everts, 1991; Sunamura T., 1992). The presence of vegetation at the cliff top 

was analyzed in a manner similar to boulder occurrence. Additionally, two marine parameters were 

computed by considering the angle between the normal of the 2022 shoreline and the wave fronts 

(Emery and Kuhn, 1982). The direction of dominant wave fronts, Bora and Scirocco (Bisci et al., 

2021), were chosen according to Rete Ondametrica Nazionale (RON) data 

(https://www.mareografico.it/). 

The selection of drives presented in Table 10 is not an exhaustive catalog of all potential factors 

influencing cliff failure. The choice is based on reviews of previous studies  (Dickson and Perry, 

2016; Hapke and Plant, 2010; Sunamura, 2015; Trenhaile, 2012) and field data. 

 

Table 10. Summary of parameters used in ML analyses.  

 

Drives Description Mapping Method Data type 

Cliff height The height of the cliff 

above sea level. It can 

influence slope 

stability (Dickson and 

Perry, 2016; Wolters 

and Müller, 2008) 

Data were extracted 

from 

2022 DSM sampling 

the highest point of 

the active cliff 

Number 

Cliff slope The slope of the active 

cliff wall. It can affect 

the frictional 

resistances 

It was manually 

computed on the 

extracted profile in 

GIS environment, 

starting from the 

highest point of the 

active cliff down to 

the cliff base  

Number 

Aspect The exposure of the 

cliff wall might be 

changing the erosion 

rate through 

differential weathering 

rates and different 

exposure to winds 

(Dickson and Perry, 

2016) 

It was automatically 

computed in GIS 

environment. The 

aspect was reported 

measured in degree 

clockwise respect to 

Nord 

Number  

https://www.mareografico.it/
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UCS (MPa) The uniaxial 

compressive strength 

measured at the cliff 

base is related to cliff 

retreat (Prémaillon et 

al., 2018; Sunamura 

T., 1992) 

It was collected during 

the fieldwork using a 

Pocket Penetrometer 

and a Schmidt 

Hammer 

Number  

GSI Classification of the 

rockmass which takes 

in account the quality 

of discontinuities that 

controls cliff erosion 

(Earlie et al., 2015) 

It was obtained during 

the fieldwork using 

the most updated 

versions of the 

classification for 

complex formation 

(Marinos, 2017) 

Number  

Cliff top retreat Values of the cliff top 

retreat computed in 

the period 1978-2022, 

target value for the 

ML analysis 

It was computed in 

GIS environment 

using the tool DSAS 

of USGS 

Number  

Beach and talus width The corridor that 

separates the cliff base 

from the sea. This 

parameter determines 

if the cliff wall might 

be hit by waves  

(Everts, 1991) 

It was manually 

measured on GIS 

environment for every 

transect, starting from 

the cliff base until the 

shoreline 

Number  

Cliff base slope The slope of the space 

between the sea and 

the cliff base. It can 

affect wave run-up 

(Stockdon et al., 2006) 

It was manually 

measured on GIS 

environment for every 

transect on the tract 

starting from the cliff 

base until the 

shoreline 

Number  

Boulders at cliff base Boulders at the base of 

the cliff can reduce the 

erosive power of 

waves, in fact they are 

used even as 

revetment (Goda, 

2010) 

It was manually added 

for each transect 

looking at the 2022 

orthophoto 

Binary (0 absence, 1 

presence) 

Beach retreat 

(GIZC) 

Beach retreat between 

2008-2019 computed 

by Regione Marche in 

the project Gestione 

The values reported in 

the GIZC were 

reported by a buffer in 

the shoreline and the 

Number  
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Integrata Zone 

Costiere (GIZC)  

values attributed for 

each transect 

Vegetation at cliff top Trees and their roots 

in the upper part of the 

cliff can give more 

cohesion to soil or 

remove it when they 

are uprooted 

It was manually added 

for each transect using 

the 2022 orthophoto 

Binary (0 absence, 1 

presence) 

Angle between 

shoreline and NE 

storms (Bora) 

The angle between the 

normals of the 

shoreline and the wave 

front (Emery and 

Kuhn, 1982). The 

direction of Bora wave 

front was choosen 

according to RON 

data* 

It was manually 

measured on GIS 

environment for every 

transect  

Number  

Angle between 

shoreline and SE 

storms (Scirocco) 

The angle between the 

normals of the 

shoreline and the wave 

front (Emery and 

Kuhn, 1982). The 

direction of Scirocco 

wave front was 

choosen according to 

RON data* 

It was manually 

measured on GIS 

environment for every 

transect  

Number  

 * https://www.mareografico.it/ 

 

3.3.2.5 Application of machine learning models 

  

To discern the primary factors influencing cliff erosion, we adopted two Machine Learning (ML) 

models: the Random Forest (RF) Ensemble Model (Tin Kam Ho, 1995) and eXtreme Gradient 

Boosting (XGB) (Chen and He, 2014) (code is included in Appendix 2). These models categorized 

two classes – erosion or non-erosion – based on whether the values were greater or less than 0. 

RF (Azar et al., 2014; Breiman, 2001) consists of different Decision Trees (Quinlan, 1993) that 

operate together as an ensemble (Fig. 45). The concept of RF is that many uncorrelated trees, 

operating as the voting population, will outperform any of the individual trees. Indeed, one of the 

most important aspects of RF is the uncorrelation between trees. While some trees may be wrong, 

many others in the class prediction are correct. So, a set of trees can move in the right direction due 

to the uncorrelatedness of the trees. Another advantage of RF is the simplicity of extraction of the 

most important features in a prediction. The relative importance of each feature on prediction can be 

calculated by measuring how much the tree node reduces impurity to all trees in the forest using that 

feature, as described in Equation 23: 

 

𝑁𝑘
𝑖 = 𝑤𝑘𝐶𝑘 − 𝑤𝑙𝑒𝑓𝑡(𝑘)𝐶𝑙𝑒𝑓𝑡(𝑘) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑘)𝐶𝑟𝑖𝑔ℎ𝑡(𝑘)   Eq. 23 

https://www.mareografico.it/
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where 𝑤𝑘 is the weighted number of samples in node 𝑘 as a fraction of total weighted number of 

samples, 𝐶𝑘 is the impurity in node 𝑘, and 𝑙𝑒𝑓𝑡(𝑘) and 𝑟𝑖𝑔ℎ𝑡(𝑘) are its respective children’s nodes. 

To get a complete map of which features are important for the final classification, we compute a 

score for each feature after the training phase (Equation 24) and normalize the results so that the 

sum of all importances equals 1. 

 

    𝐹𝐼𝑖 =
∑ 𝑁𝑘

𝑖
𝑘: 𝑛𝑜𝑑𝑒 𝑘 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑁𝑗
𝑖

𝑗∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
      Eq. 24 

 

 

 

 

Figure 45: Representation of Random Forest ( image from https://ken-

hoffman.medium.com/random-forest-hyperparameters-explained-8081a93ce23d ). 
 

XGB (Chen and Guestrin, 2016; Chen et al., 2018) is built on the concept of Gradient Boosting 

(Friedman, 2001)(Fig. 46). Each weak learner that composes the ensemble (i.e., Decision Tree) maps 

input data to one of its leaves that contains a class. The XGB algorithm minimizes a regularized loss 

function (difference between the predicted and target outputs). XGB is trained iteratively. Trees are 

individually added to the ensemble and adjusted to correct prediction errors from previous models. 

XGB uses a gradient descent algorithm (Ruder, 2016) to minimize loss when adding new weaker 

models. 

In Equation 25 we can see the result of XGB as the sum of previous output 𝐾𝑛−1(𝑋) and the result of 

function ℎ𝑛  trained to predict result 𝑟𝑚−1  multiplied by the regularization term 𝛼𝑛 . The 𝑟𝑖  term 

represent the output of the 𝑖𝑡ℎ  weaker learner. In Equation 26 we can see how to compute the 

regularization term (𝛼𝑖) where 𝑂𝑖  and 𝐾𝑖−1(𝑋𝑖) are the target output and prediction of the model 

respectively. Equation 27 is the differentiable loss function. As for RF, it is possible to obtain the 

feature importance from XGB by measuring how much the tree nodes which use a feature reduce 

impurity across all trees in the model. 

 

             𝐾𝑛(𝑋) = 𝐾𝑛−1(𝑋) + 𝛼𝑛ℎ𝑛(𝑋, 𝑟𝑚−1)       Eq.25 

 

𝑎𝑟𝑔𝑚𝑖𝑛𝛼 = ∑ 𝐿𝑛
𝑖=1 (𝑂𝑖 , 𝐾𝑖−1(𝑋𝑖) + 𝛼ℎ𝑖(𝑋𝑖, 𝑟𝑖−1))       Eq. 26 

 

https://ken-hoffman.medium.com/random-forest-hyperparameters-explained-8081a93ce23d
https://ken-hoffman.medium.com/random-forest-hyperparameters-explained-8081a93ce23d
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                    𝐿𝑜𝑠𝑠(𝑂, 𝐾(𝑋))                    Eq. 27 

 

 

 

Figure 46: Representation of eXtreme Gradient Boosting (Image created by Michele Fraccaroli). 
 

The simulations were performed splitting the dataset in  80% of training and 20% of test (Guyon and 

others, 1997). Oversampling was used to avoid inconsistency due to the difference between the size 

of the two addressed classes (Bej et al., 2021) and a grid search approach was used for the tuning of 

hyperparameters (Liashchynskyi and Liashchynskyi, 2019) owing to the moderate size of the dataset.   

  

  

3.3.2.6 Slope stability numerical modelling  

 

The stability of Trave sector, i.e. the area most affected by erosion processes in the time span 1978-

2022 and with the highest elevation, has been investigated by 2D Limit Equilibrium Method (LEM). 

Ten topographic sections were extracted (Fig. 47) from Lidar data provided by Regione Marche in 

2012 (Fullin et al., 2023), and the Factor of Safety (FS) was calculated for each of them. 
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Figure 47: Extracted sections are highlighted in violet and numbered.  
 

In particular, the slope stability conditions were investigated using the Morgenstern-Price method 

implemented in the Slide2 code (https://www.rocscience.com/), on 2012 sections, i.e. pre-erosional 

retreat, in order to calculate their F.S. (Morgenstern and Price, 1965) (Appendix 3).  
 

The input parameters were derived from the field surveys (UCS and GSI classification for complex 

formation (Marinos, 2017)). The Geological Strength Index (GSI) provides a method of relating 

geological field observations to the quality of the rock mass. This classification is based on the 

density of jointing and amount of weathering/alteration observed in the rock mass. As part of the 

Hoek–Brown Failure Criterion, GSI can be extended to determine strength and material 

characteristics of in situ rock masses. The analyses were run assigning to the slope materials the 

Hoek-Brown (H-B) failure criterion (Cai and Kaiser, 2007). GSI was estimated in situ for the 

different formations and ranges between 50 and 20 and mi (material constant for the intact rock) 

and γ  (specific weight) were derived from typical values quoted for each lithotype (Brown, 2008). 

D is a factor which depends upon the degree of disturbance to which the rock mass has been 

subjected by blast damage and stress relaxation. It varies from 0 for undisturbed in situ rock masses 

to 1 for very disturbed rock masses. Values of D different from zero indicate disturbed tectonic 

conditions. Representative values of the materials used in the analyses are listed in Table 11), 

grouped on the basis of GSI values. The models assume dry conditions of the slopes, as there is a 

lack of available data regarding the water table. 
 

 

 

 

 

 

 

 

 

 

https://www.rocscience.com/
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Table 11: List of the parameters used for numerical modeling (refer to Figure 51 for the number of 

the transects reported). 

 

LITHOLOGY  γ  

(KN/m3) 

 GSI   mi   D   UCS 

(MPa)  

Argille 

Azzurre Fm. 

(228-265) 

24 35 7 0 25 

Faulted rocks  

(266-276) 

23 25 4 0.6 20 

Argille 

Azzurre Fm. 

(277-290) 

24 35 7 0 25 

Argille 

Azzurre Fm. 

(291-310) 

24 45 7 0 30 

Orizzonte del 

Trave  

25 50 17 0 50 
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3.3.3 Results  

3.3.3.1 Fieldwork 

 

A revised geological-geomorphological setting of the study area was generated based on the field 

survey findings (Fig. 48). The Portonovo sector is characterized by the outcropping of the Schlier 

Fm. mostly covered by landslides deposits. The cliff top retreat is here mainly ascribing to landslides 

in the upper portion of the slope, with vertical or sub-vertical faces in corresponding with the crown 

portion of the landslide (Fig.49a). 

 

Figure 48: Geological-geomorphological setting of the study area and “Sectors”: 1) Portonovo; 2) 

Mezzavalle; 3) Trave. Bedrock legend: SCH (Schlier Fm., Lower Miocene-Upper Miocene), GNOa 

(Sapigno Fm. Upper Miocene), FCO (Colombacci Fm., Upper Miocene), Tv (Trave horizon, Lower 

Pliocene), FAA (Argille Azzurre Fm., Lower Pliocene-Lower Pleistocene). 
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Mezzavalle sector is principally composed by landslide deposit (Fig. 49b), only close the 

morphological edge that separate inland from the steep cliff, it is possible to observe the bedrock 

outcropping in landslides scars. The Trave sector presents the higher numbers of active landslides of 

different type, mainly falls, block toppling, earth flow and complex. An important feature that 

characterizes this sector is the high fracturing degree of the rock mass (Fig. 49c), it occurs in 

corresponding with many thrusts which cut the rock mass, so diminishing the mechanical 

characteristics of the rock mass and predisposing it to landslides.  

 

 

Figure 49: Pictures portraying the different configurations of the cliff base. a) Portonovo sector b) 

Mezzavalle sector c) Trave sector. 

  

The UCS values gathered through pocket penetrometer and Schmidt hammer are reported in Table 

12. Rock mass quality, expressed by the GSI value, and UCS are factors of crucial importance in 

coastal cliff erosion processes (Budetta et al., 2000; Prémaillon et al., 2018; Sunamura, 2015). 

Therefore, we decided that GSI and UCS were the most suitable geotechnical parameters to be 

used, according to the lithotypes outcropping in the area (soil or weak rocks). Because weak rock 

masses consist of alternating layers of marls and layers of calcareous marls, an average UCS value 

was computed across various levels in order to obtain a single representative value for each site.  

Since landslide deposits make up the cliffs in Mezzavalle, a GSI of zero was assigned to them in 

order to represent GSI numerically along the entire coastline, even in areas where the rock is not 

outcropping. This was done to explicit GSI values along the whole coastline, to highlight that these 

deposits are weathered, and with lower mechanical resistance than the nearby rocks (as reported 

even by UCS). 
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Table 12: Range of GSI and UCS values for the 3 sectors according to different transects. 

 

SECTOR TRANSECTS GSI UCS (MPa) 

PORTONOVO 1-79 50 35 

MEZZAVALLE 80-184 0 5 

185-215 0 1 

TRAVE 216-227 45 30 

228-265 35 25 

266-276 25 20 

277-290 35 25 

291-310 45 30 

 

3.3.3.2 Cliff top retreat analysis  

 

 

The maximum Root Mean Square Error (RMSE) for the digitalization of the cliff top and the 

shoreline was calculated. An RMSE of 3.89 meters was recorded for cliff-top digitalization using 

the 1978 orthophoto, while shoreline digitalization in the 2022 orthophoto yielded an RMSE of 1.65 

meters. Georeferencing error for the UAV orthophotos using GCPs resulted in a horizontal 

uncertainty of 5 cm. The horizontal uncertainty between UAV 2022 orthophoto and 1978 

orthophoto was computed as described in Bloom et al., 2023 and it is reported in Figure 50. 
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Figure 50: Horizontal georeferencing uncertainty measured betweeen 1978 and 2022 Orthophotos. 
The cliff top erosion in whole period 1978-2022 was considered in this analysis: Trave sector is the 

portion with the highest mean value of EPR, Portonovo sector shows a similar behavior while 

Mezzavalle sector shows a marginally negative value (Tab. 13). Moreover, focusing on specific area 

within each sector, values of almost -0.6 m/yr and -1.2 m/yr of EPR are reached between transects 

61-66 and 251-288 in Portonovo and Trave sector respectively (Fig. 51). ECI computed for this time 

span is 0.09 m. 

 

 

Table 13: DSAS results for each period analyzed. Mean EPR and ECI are reported. 

 

Periods  Portonovo Mezzavalle Trave 
 

 EPR (m/yr) ECI (m) EPR (m/yr) ECI (m) EPR (m/yr) ECI (m) 

1978-2022  -0.24 0.09 -0.09 0.09 -0.25 0.09 
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Figure 51: NSM values calculated along transects, referred to the period 1978-2022: Portonovo and 

Trave sector showed the highest values of retreat. Computed transects a) at Portonovo sector b) 

Mezzavalle sector c) at Trave sector. 
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3.3.3.3 Machine learning 

 

The parameters shown in Table 10 were extracted for each transect acquired via DSAS elaboration, 

yielding a table with 310 lines correspondent the number of transects and 13 columns denoting the 

extracted or derived parameters (Appendix 1). This data was processed through two ML algorithm, 

RF and XGB as described in methodology. 

Each algorithm gave two different graphs: a confusion matrix and a table with feature importance. 

RF analysis gave a test score of 0.95 on test data and a confusion matrix showing only 4 false 

predictions (Fig. 52, 3b). The feature significance graph (Fig. 52, 3a) revealed that "Cliff height" is 

the most important parameter for class prediction, with a relative relevance twice that of the other 

drivers. 

Then, analysis was performed using XGB algorithm, giving a test score of 0.95 on test data. The 

confusion matrix (Fig. 52, 3d) for XGB revealed 4 erroneous predictions, and the feature importance 

graph (Fig. 52, 3c) revealed the same order of RF algorithm driving importance. Even in this analysis, 

"Cliff Height" was shown to be the most relevant characteristic in class recognition, although with a 

magnitude less than twice that of the others. 
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Figure 52: ML results and analysis performed using RF and XGB algorithms. 1) Sketch displaying 

the parameters used in the analysis. 2) Illustration of the ML algorithm used. 3) Picture illustrating 

ML results. 3a) Graph showing feature importance resulting from RF algorithm. 3b) Confusion 

matrix of RF elaboration. 3c) Graph illustrating the feature importance extracted using XGB 

algorithm.  3d) Confusion matrix of XGB analysis. 
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3.3.3.4 Slope stability 

  

Numerical modeling outputs are reported for easiness in Table 14, summarizing FS and cliff height 

values obtained. Values of FS below 1 are present for section 6 and 8, and the range of values obtained 

is from 4.37 to 0.91. Notably, these are indicative of the greater and lower cliff heights, respectively. 

 

Table 14: Results from LEM analysis along the extracted sections. 

 

SECTION FS Cliff Height 

(m) 

1 2.04 37 

2 1.86 42 

3 1.52 50 

4 1.12 73 

5 1.21 80 

6 0.91 120 

7 1.14 97 

8 0.98 60 

9 2.26 50 

10 4.37 25 

 

The graph in Figure 53 shows as it exists a dependency between FS decrease and cliff height 

increase ( R2 = 0.84 ). Section n. 6 with a FS of 0.91 cross the slope between transects 280-290 

where values of retreat above 40 m in the period 1978-2022 were computed.  
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Figure 53: Graph comparing FS and Cliff Height values in the ten extracted sections. The number 

below the dot refers to the section number. 
 

3.3.4 Discussion 

 

This research aimed to show a multidisciplinary approach to the study of coastal cliff retreat based 

on the use of DSAS, ML analysis and numerical modelling. The cliff top retreat analysis closely 

corroborate with the results gathered by precedent research Fullin et al., 2023. Notably, this analysis 

reaffirms that the Trave sector remains the most precarious and unstable segment, manifesting higher 

NSM in certain transects when compared to the Portonovo sector. Only the mean EPR shows similar 

patterns for these latter two sectors. Nevertheless, the Mezzavalle sector continues to exhibit a distinct 

lack of evolution when compared with the others. However, it is necessary to emphasize that further 

research, employing enhanced spatial resolution techniques, is required to discern the seasonal 

variations in the evolution of these cliffs, predominantly constituted by landslide deposits. Coastal 

cliff retreat on weak rocks calculated on other works showed an average retreat similar with what 

calculated in our area , with the exception of the Trave sector, where the erosion rate is three times 

higher than the average in GlobR2C2 (Gómez-Pazo et al., 2021; Prémaillon et al., 2018; Sunamura 

T., 1992; Woodroffe, 2002). Still, in Adriatic sea mean EPR values similar to the ones estimated in 

our research were found in two areas in the Puglia Region (0.08 m/yr and 0.12 m/yr)  (Delle Rose 

and Parise, 2005; Lollino et al., 2021), two areas in the Abruzzo Region (0.15 m/yr and 1 m/yr) 

(Miccadei et al., 2019) and in the Marche Region (0.16 m/yr) (Colantoni et al., 2004).   

Numerous works have attempted to comprehend the drivers behind cliff retreat (Brooks et al., 2012; 

Hursta et al., 2016; Limber et al., 2018; Prémaillon et al., 2018; Sunamura, 2015, 1977; Alan S 

Trenhaile, 2010; Trenhaile, 2019, 2012). In this context we presented in this research a new and 
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innovative approach to investigate cliff top erosion. Few attempts were made in a  similar manner: 

Dickson and Perry 2016 (Dickson and Perry, 2016) focused on different ML techniques, as 

classification and regression trees (CART), maximum entropy models (MAXENT) and boosted 

regression trees (BRT) and applied to wide scales to identify more dangerous areas, He et al. 2021 

(He et al., 2021) used RF algorithm and support vector machine (SVM), multilayer perceptron (MLP) 

and deep learning neural network (DLNN) models to evaluate the role of discontinuities orientation 

in landslide processes. None of these attempts focused on a so site-specific case considering this 

plethora of drives and proposing a particular methodology to assess the importance of the different 

factors in erosion.  ML applications similar to the ones presented in this research have previously 

demonstrated their efficacy in various scientific domains (Fadja et al., 2022; Fraccaroli et al., 2021; 

Kardani et al., 2021; Loggenberg et al., 2018; Parsa, 2021; Zeng et al., 2022). The robustness of 

results and the absence of overfitting in relation to the training dataset are ensured by the high-test 

scores achieved through ML analysis, coupled with the utilization of grid search, oversampling 

techniques and bagging. 

In the context of the parameters chosen for the ML algorithms, it is important to acknowledge that 

the compilation of driving factors presented herein does not represent an exhaustive inventory 

encompassing all imaginable elements influencing cliff failure. The selection of these factors has 

been guided by comprehensive reviews of prior research (Hapke and Plant, 2010; Ogawa et al., 2016; 

Sunamura, 2015; Trenhaile, 2012), on-site investigations, and the practical constraints inherent in 

fieldwork. It is worth noting that future research endeavors may consider expanding the analysis to 

encompass marine drivers. A study of nearshore bathymetry, followed by numerical wave 

propagation modeling to derive significant wave height values at the cliff base, could be performed 

(Bergillos et al., 2022; Booij et al., 1999; Sunamura T., 1992). Consequently, we intend to make the 

ML code we employed available on GitHub (https://github.com/micheleFraccaroli/Machine-

Learning-for-Coastal-Retreat). This will facilitate the potential application of our methodology by 

other researchers to diverse sites, permitting the assessment of its consistency and the incorporation 

of additional parameters in other contexts. 

The most significant result from both Mean Decrease in Impurity (MDI) studies emphasizes the 

importance of cliff height in connection to cliff top erosion. This linkage between these two 

parameters has previously been documented in the literature (Barton et al., 2020; Barton and Shen, 

2018; Dickson and Perry, 2016; Quinn et al., 2010; Wolters and Müller, 2008). To further investigate 

retreat mechanism and the role of cliff height, numerical modeling of the slopes was undertaken. 

Particularly, ten sections were extracted in Trave sector, where the greatest height and NSM were 

recorded. In this context, LEM approach, considering circular surfaces of slip was judged appropriate, 

as the slope can be approximated as isotropic continua with respect to its lithological properties (Stead 

and Coggan, 2012). The simulation results align with the ML findings, confirming the link between 

FS and cliff height. However, it is remarkable that in many sections, the calculated Safety Factor 

(SRF) remains near 1 or below. This agrees with the frequent, almost daily, activity observed in these 

slopes, characterized by isolated falls or toppling events. Any perturbations, either resulting from 

changes in pore pressure, seismic activity, or clay shrinkage, can trigger landslide events. Previous 

research on rocky coastlines has undertaken numerical slope modeling, taking into account the 

evolving notches at various locations on the cliffs (e.g., base, middle, particularly in cases of 

pronounced lithological contrasts) to elucidate the stress-strain response within the changed 

topographic configuration (Lollino et al., 2021; Styles et al., 2011). To complete these objectives, 

further research such as laboratory testing, borehole explorations, and more sophisticated software 

such as Finite Element Methods (FEM) are required.  The present study did not pursue this line of 

investigation; instead, it focused on assessing correlation between cliff height and retrieved FS, just 

to underpin or not ML finding. Furthermore, implicit within the cliff height parameter lies the 

geological complexity of the slope. Although geological structural information is embedded in the 

https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat
https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat
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parameters of Geological Strength Index (GSI) and Unconfined Compressive Strength (UCS), it is 

essential to consider that these parameters were gathered at the cliff base because of logistical 

difficulty (e.g. operator’s safety) in accessing the slope itself.  

This study serves as a site-specific analysis employing an ML approach to discern the significance of 

diverse parameters in cliff top retreat. If successfully replicated in other locations, this methodology 

holds the potential to play a role in informing engineering design solutions. It offers valuable insights 

into which specific factors, among the multitude of influencing variables, permit targeted 

interventions to mitigate instability. 

 

3.3.5 Conclusion 

 

In this study, a segment of rocky coast located in the eastern part of Italy (Ancona, AN) was examined. 

An integrated methodology was employed wherein marine, geological, and remote sensing data were 

effectively combined. A Digital Surface Model (DSM), generated from a UAV survey conducted in 

2022, was used to extract topographic parameters and compute cliff top erosion in the time span 1978-

2022. Geomechanical data were collected during fieldwork. These datasets were subjected to an ML 

analysis, resulting in an output that ranks the significance of each individual driving factor concerning 

cliff top erosion. Then slope stability analysis was performed along 10 sections to check the 

consistency of ML results analyzing the relation between FS and cliff height. 

 The main achievements of this research can be summarized as follows: 

1. Cliff top retreat calculations spanning the period from 1978 to 2022 reaffirm the findings of 

previous research Fullin et al., 2023, indicating notably higher values of NSM in the Trave 

sector. 

2. The Mean Decrease in Impurity (MDI) analysis, conducted utilizing Random Forest (RF) and 

XGBoost (XGB) ML algorithms, identified cliff height as the parameter most strongly 

associated with cliff top erosion. 

3. Limit Equilibrium Method (LEM) modeling corroborate the presence of a correlation between 

FS and cliff height. 

 

Subsequent investigations will require the use of more refined remote sensing techniques (e.g. fixed 

cameras), involving both heightened spatial and temporal resolutions. Furthermore, a thorough 

analysis of marine parameters (e.g. significant wave height, high resolution bathymetry) could be 

conducted in various additional site cases to evaluate the efficacy of the algorithms. 

A GitHub repository containing the machine learning (ML) code employed for this analysis has been 

made available to facilitate the reproducibility of this study in different locations 

(https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat). 

If successfully applied to diverse settings, this methodology carries the potential to contribute to the 

proposal of solutions for coastal instabilities cases. It provides valuable insights into the specific 

factors, among the myriad influencing variables, that imply precise interventions to ease instability 

processes. 

  

https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat
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4. PART III: DISCUSSION AND CONCLUSIONS  
 

4.1 General discussion 
 

 

This PhD thesis has focused on examining a specific site to identify the primary factors driving 

erosion along the cliffs of the Portonovo-Trave rocky coast in the Marche region. 

 

Three main phases of research were conducted. Initially, the study involved analyzing cliff erosion 

by utilizing orthophotos, Lidar, and UAV surveys at distinct intervals. Subsequently, the data from 

drone surveys were combined to assess the annual evolution of the cliff. Finally, the last study applied 

ML algorithms in conjunction with geomorphological analysis and LEM methods to investigate the 

role of various factors in the erosion process. 

 

The initial analysis revealed significant morphodynamical activity in the area. Over the period 1978-

2021, the average retreat rate measured at -0.25 m/yr, with the Trave sector exhibiting the highest 

retreat rate between 1998-2007, nearly three times greater than the area's average. The Mezzavalle 

sector displayed the lowest retreat rate, even if primarily characterized by landslide deposits with 

poor geotechnical properties (Prémaillon et al., 2018). The Portonovo sector showed an intermediate 

behavior, resembling Trave in retreat rate during the period of 2010-2021, doubling compared to the 

entire 1978-2021 span. 

Comparing these data with existing literature highlighted Trave sector values significantly higher 

than reported averages, aligning with similar Italian case studies (Budetta et al., 2000; Colantoni et 

al., 2004; Delle Rose and Parise, 2005; Lollino et al., 2021; Miccadei et al., 2019; Prémaillon et al., 

2018).  

The analysis of precipitation, waves, geology, and land cover aimed to clarify the primary factors 

driving erosion. However, correlating extreme events for precipitation and waves with the highest 

retreat rate in the Trave sector between 1998-2007 proved challenging due to limited data availability 

and the episodic nature of soft-rock cliff recession (Sunamura, 2015).  

Hence, important considerations involved beach width, geotechnical properties, slope elevation, and 

steepness (Everts, 1991; Prémaillon et al., 2018; Wolters and Müller, 2008). 

A detailed analysis across different sectors revealed distinct patterns and characteristics. Notably, 

Mezzavalle had the widest beach, while the Portonovo sector exhibited better geotechnical properties. 

The Trave sector, marked by tectonic features, elevated cliff height, and steepness, presented lower 

geotechnical properties (Benumof and Griggs, 1999; Brideau et al., 2009; Moore et al., 1999).  

These observations align with the findings of the DoDs analysis, where the Trave sector emerges as 

the area experiencing the most significant negative differences, indicating material loss. Moreover, 

an examination of the configuration and distribution of areas showing higher DoD values reveals their 

predominant localization along the cliff-top. This evidence, coupled with the absence of detectable 

notches at the cliff base, leads to the implication that slope processes might exert a more pronounced 

influence on the erosive dynamics than marine factors. The DoDs analysis further illustrates that the 

Mezzavalle sector displays the least variation, while Portonovo exhibits an intermediate behavior 

between the other two sectors. This evidence aligns well with the outcomes derived from the DSAS 

analysis, where areas displaying positive differences (accumulation) are notably narrower. This 

phenomenon is likely linked to the sea's efficacy in quickly removing collapsed material from the 

slopes. 
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The combination of DSAS and DoDs analyses certifies delineated regions experiencing substantial 

failures or erosion activity. These findings emphasize the practicality of sustained multitemporal 

surveys as an effective methodology for monitoring the ongoing evolution of this coastline. 

 

The second study, involving a comparative analysis between the September 2021 UAV survey and a 

subsequent 2022 assessment, has significantly enriched our understanding of current morphodynamic 

processes. The increased resolution of the available data from this comparison has facilitated a deeper 

understanding of the dynamics of this rocky coast. Notably, the observed average erosion rate stood 

at 0.29 m3 yr-1 per meter of coastline, with segment f) displaying a maximum erosion rate of 2.04 m3 

yr-1. These values, although slightly lower, align with findings from different contexts (Alessio and 

Keller, 2020; Giuliano et al., 2022; Obanawa and Hayakawa, 2018; Swirad and Young, 2021). 

     An interesting comparison between the outcomes of this study and the preceding research (Fullin 

et al., 2023) unveils the advancements achieved. The repeated UAV surveys conducted in this study 

provided enhanced temporal resolution and finer detail compared to the previous analysis. However, 

complexities inherent in the study area, particularly in the Trave sector, posed challenges in 

replicating UAV surveys with identical Ground Control Points (GCPs). Consequently, the spatial 

resolution in this study was somewhat limited compared to other applications (Brunetta et al., 2021; 

Fabbri et al., 2021b; Turner et al., 2016; Westoby et al., 2018). Moreover, variations in flight 

technique between the surveys conducted in September 2021 and October 2022 might have 

contributed to some discrepancies in the final data products (Aicardi et al., 2016; Eisenbeiss and 

Sauerbier, 2011; Tziavou et al., 2018). Anyway, results obtained by this analysis had brought new 

insights compared to the precedent work. Notably, within the timeframe of 2021-2022, distinct cliff 

top retreats were not prominently evident. Interestingly, notching was observed at the base of cliffs 

in deviation from the previous study (Fullin et al., 2023), where lower spatial resolution 

disadvantaged the analysis. The detection of notching in the Mezzavalle sector, despite the absence 

of significant cliff top retreats over several decades, suggests underlying processes that may not be 

readily detectable from orthophotos alone. Moreover, cases of cliff collapse may not necessarily 

manifest as a retreat in the boundary between the exposed cliff and vegetation, rendering detection 

challenging without higher resolution data. Hence, reaching a comprehensive insight of cliff 

evolution requires the utilization of high-temporal and high-spatial resolution data (Bernatchez et al., 

2021; Lim et al., 2005; Rosser et al., 2005b). 

The insights gathered from this analysis affirm that a significant portion of the coastal material 

removal originates primarily from the Trave sector, notably segments f) and g) as highlighted in the 

first study (Fullin et al., 2023). The erosion of this material stems from a dual origin: one arising from 

the base of cliffs due to notching, while the other results from diverse landslide processes, 

predominantly topples and falls. A translational slide was identified within segment f), specifically 

delineated in the lower part of section C-C’ (Fig. 42c). However, establishing a pattern of landslide 

occurrences linking notching and subsequent landslides, remains a challenging endeavor. Despite the 

identification of two distinct landslides in section D-D’, the reconstruction of the chronological order 

of these events proves to be impracticable without precise temporal information, impeding a 

comprehensive understanding of the instability process's evolution. 

Additionally, interesting observations of accretion in segment c) across a substantial beach area 

contrast completely with prevalent erosion in the northern segments, especially segments f) and g). 

This variance suggests a potential transport of sediments along the coastline from north to south, 

contrary to findings near Portonovo indicating a northward drift (Grottoli et al., 2015). Supplementary 

research is needed to determine if this material is locally generated or transported. 

Consequently, this study underscores the fundamental importance of recurrent UAV surveys and their 

resultant products, principally due to the high spatial resolution and the ease of repetition they offer. 

In traversing the complexities and hazards of this study area, using UAVs equipped with Real-Time 



“COMBINED TECHNIQUES STUDY FOR THE IDENTIFICATION OF MAIN DRIVES IN COASTAL CLIFF 

PROCESSES BETWEEN PORTONOVO AND TRAVE (ANCONA, ITALY)” PhD Thesis FULLIN NICOLA  

 

 

125 

 
 

Kinematic (RTK) GPS would be advantageous. Advancing understanding of these cliffs’ evolution 

could involve the installation of cameras in various locations to continuously capture images over 

time. Such an approach could significantly help in detecting erosion causes and discrete landslide 

events, together with external triggering conditions (Godfrey et al., 2020). UAV techniques with 

Lidar surveys could generate DTM in vegetation heavily covered ranges (Swirad and Young, 2021). 

Combining techniques hold great potential in unraveling the complexities of coastal erosion 

processes. 

 

The final study introduces a novel methodological approach, employing Machine Learning (ML) 

algorithms to identify the primary factors driving erosion along cliffs. Initially, a new analysis of cliff 

top erosion spanning the period from 1978 to 2022 was conducted using DSAS. The results of this 

cliff top retreat analysis closely match with the findings of the first investigation (Fullin et al., 2023). 

Remarkably, this confirms the vulnerability of the Trave sector as the most unstable area, displaying 

higher NSM in specific transects compared to the Portonovo sector. Moreover, the mean EPR exhibits 

similar patterns for these latter two sectors. However, the Mezzavalle sector continues to showcase a 

distinct lack of erosion in comparison to the others, surely due to the loss of enhanced spatial 

resolution, necessary to discern seasonal variations in the evolution of these cliffs.  

Then, a new and innovative methodology aimed at examining cliff top erosion dynamics is presented. 

Few prior attempts searched into similar approaches, they were principally centered on different ML 

techniques and scales (Dickson and Perry, 2016; He et al., 2021). ML applications akin to those 

presented in this study have previously exhibited their effectiveness across diverse scientific domains 

(Fadja et al., 2022; Fraccaroli et al., 2021; Kardani et al., 2021; Loggenberg et al., 2018; Parsa, 2021; 

Zeng et al., 2022). The reliability of the results and the absence of overfitting concerning the training 

dataset are sustained by the high-test scores derived from the ML analysis. This robustness is further 

fortified by the application of techniques such as grid search, oversampling, and bagging, ensuring a 

rigorous and comprehensive evaluation of the data. Within the context of the parameters utilized for 

the ML algorithms, it is crucial to acknowledge that the compilation of driving factors outlined in this 

study does not represent an exhaustive inventory about all possible elements influencing cliff failure. 

The selection of these factors was guided by complete reviews of prior research (Hapke and Plant, 

2010; Ogawa et al., 2016; Sunamura, 2015; Trenhaile, 2012), inspections, and the practical 

constraints inherent the field topography. It is important that future research works could consider 

expanding the analysis to include marine drives. Surveying nearshore bathymetry, combined with 

numerical wave propagation modeling to get significant wave height values at the cliff base, could 

led to a more comprehensive analysis (Bergillos et al., 2022; Booij et al., 1999; Sunamura T., 1992). 

To facilitate further research, we share the ML code used in this study on GitHub 

(https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat) and in appendix. 

The principal outcome derived from both Mean Decrease in Impurity (MDI) studies highlights the  

correlation between cliff height and cliff top erosion, a linkage well-documented in literature (Barton 

et al., 2020; Barton and Shen, 2018; Dickson and Perry, 2016; Quinn et al., 2010; Wolters and Müller, 

2008). 

To examine deeper into the retreat mechanisms, numerical modeling of the slopes was undertaken. 

Specifically, ten sections were delineated within the Trave sector, where the greatest height and NSM 

were recorded by the previous analyses. In this context, the Limit Equilibrium Methos LEM, was 

employed, considering circular surfaces of slip, and the material approximated as an isotropic 

continuum,  with regard to its mechanical properties (Stead and Coggan, 2012). The direct correlation 

between FS and cliff height obtained with the LEM simulation results, corroborate the ML analysis 

results. In numerous sections, the calculated Safety Factor either stay close around 1 or falls below it. 

This aligns with the observed frequent, almost daily, activity characterized by isolated falls or 

toppling events within these slopes. Minimal variations in external factors can potentially trigger 

https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat
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landslides. Prior research has investigated rocky coastlines stability using numerical slope modeling, 

considering the evolving notches at various cliff locations to illustrate the stress-strain response within 

the altered topographic configuration (Lollino et al., 2021; Styles et al., 2011). To comprehensively 

achieve these objectives, further research involving laboratory testing, borehole explorations, and 

numerical modeling such as Finite Element (FEM) is needed. In this work we focus on assessing the 

correlation between cliff height and retrieved FS. The results corroborated and, in some way, 

reinforce the ML outcomes. Furthermore, the geological complexity of the slope has to be taken into 

account. The geomechanical information of the rockmass are included into the parameters GSI and 

UCS, it should be emphasized that they were determined at the bottom of the cliff. Consequently, 

their possible changes along the slope should not be ignored, and the importance of the cliff height 

parameter extends to this aspect as well. 

This investigation serves as a site-specific study employing an ML approach to recognize the 

significance of diverse parameters in cliff-top retreat. If successfully replicated in other locations, this 

methodology could hold the potential to play a role in engineering design solutions. It offers valuable 

insights into which specific factors, among the multitude of influencing variables, to consider for 

landslide mitigation. 

 

4.2 Final conclusions and future developments 
 

The findings from these studies can be summarized around three focal points: the erosion mechanism, 

the spatial distribution of erosion along this particular coastline, and the underlying factors that 

contribute to its cliff retreat. 

 

A comprehensive understanding of the mechanism driving the cliffs’ retreat was proposed but more 

data are needed to underpin our findings. Despite an extensive collection of information and 

numerous analyses, a comprehensive coherence among the analyses is hindered by the different 

methodologies employed. Assessments employing DSAS and DoD techniques indicate significant 

cliff tops evolution, notably in the Portonovo and Trave sectors, with retreat values reaching 

approximately 50 meters. Conversely, analyses utilizing UAV datasets in 2021 and 2022 reveal 

detectable evidence of notching in different coastal areas, along with landslides, but without a marked 

increase in localized cliff top retreat. 

These different outcomes can be ascribed to variations in temporal and spatial resolutions employed 

in the analyses: A 40-year analysis effectively captures the long-term evolution of cliffs with lower 

spatial resolution, in contrast, annual analyses employing high-density point clouds reveal slight 

alterations unnoticed by preceding studies but confined to a limited timeframe. Consequently, 

determining whether the primary erosion mechanism hinges on notching and the collapse of overlying 

material or recurrent cliff landslides followed by sea-induced base material elimination remains 

uncertain solely based on the acquired data and morphological analyses. 

For example, notching erosion at the Mezzavalle sector might have occurred without a perceptible 

top retreat, as material collapsing onto the notch may slightly shift forward without visibly 

manifesting in orthophoto-based observations. Consequently, stating the dominance of one 

mechanism over another or its prevalence in one sector over another would be erroneous based on 

current evidence. What is discernible is the occurrence of both mechanisms along these cliffs, 

however their comprehension necessitates of further research. 

Following this study, a strong recommendation, ever considering site conditions and economic 

constraints, would be the periodic execution of UAV surveys post-storm events, or the installation of 

fixed cameras. Given the discrete nature of cliff dynamics, a continuous visual surveillance system 

could enhance temporal comprehension of ongoing processes, fostering more comprehensive 
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discussions compared to relying solely on sporadic information and efficiently monitoring erosion 

processes (Dematteis et al., 2022; Lucieer et al., 2014; Mazzanti et al., 2020; Redweik et al., 2009). 

 

The findings regarding the distribution of erosion align well across conducted studies. These analyses 

consistently identify the Trave sector as the most dynamically active area along the coastline. Across 

various observation scales, a significantly higher rate of evolution was observed here if compared to 

Portonovo and Mezzavalle sectors. However, in Mezzavalle, while both the DSAS study and the 

annual change detection corroborate each other, neither indicates a retreat of the cliff top in that 

specific sector. Nevertheless, the annual analysis does reveal the presence of notching in certain 

sections, suggesting likely erosion at the base due to wave impact.  

Concerning the Portonovo sector, the change detection analysis shows minimal alterations, with only 

sporadic occurrences of landslide movements, such as topples and falls, without clear indications of 

significant changes at the base. DSAS analysis demonstrates a retreat, particularly at the cliff top. 

Emphasizing the spatial occurrence of erosion helped over investigating deeper into the underlying 

causes affecting this rocky coastline section. 

The alignment between the findings of the current study and those reported in similar areas 

underscores the effectiveness of geomatics and remotely sensed techniques in facilitating the 

monitoring of these intricate environments. 

 

The investigation into erosion causes involved the application of a novel methodology tailored for 

studies on rocky coasts. The coastline was divided into 10-meter spaced transects, each providing 13 

parameters related to geology, topography, and marine influence. The selection of these parameters 

was based on existing literature, taking into account their recognized influence on cliff erosion 

dynamics. (Dickson and Perry, 2016; Sunamura T., 1992; Trenhaile, 2012). Machine learning (ML)  

algorithms were utilized to determine the relative significance of these parameters concerning 

erosion, as computed by the DSAS method. The assessment involved evaluating 40 years of cliff top 

retreat through the MDI technique using RF and XGB algorithms. The analysis revealed a robust 

association between erosion and slope height, a correlation previously acknowledged in the field of 

slope stability (Bar and Barton, 2017; Wolters and Müller, 2008).         

However, this specific finding had not been previously attained using the employed methodology, 

signifying a notable advancement in research. 

Although the analysis focused on a single site and the selected parameters represent the most relevant 

factors in cliff erosion, it is important to note that they are subject to potential modification or 

enhancement to better suit different contexts.  

The code employed in this study is openly available on GitHub, enabling other researchers to adapt 

it for their case studies. This inclusive approach aims to expand the database of cases, thereby 

improving forecasting capabilities and its relevance in decision-making processes related to coastal 

instability issues. This effort allows for the refinement and validation of the methodology's 

effectiveness, contributing to more informed decisions in addressing challenges associated with 

coastal instability. 

 

The primary findings from this doctoral thesis can be summarized as follows: 

 

➢ The analysis of cliff top retreat spanning from 1978 to 2022 indicates notably increased values 

of Net Shoreline Movement (NSM) within the Trave sector, recording up to 50 meters of 

retreat along specific transects. This trend is confirmed by the Difference of Digital Surface 

Models (DoD) between 2012-2021 and change detection between 2021-2022, indicating a 

height discrepancy of -31 meters and an erosion rate of 2.04 cubic meters per year, 

respectively. 
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➢ The DSAS analysis suggests relative stability in the Mezzavalle sector. Nevertheless, change 

detection carried out using Unmanned Aerial Vehicle (UAV) derived products between 2021-

2022 reveals significant evolution, due to notching erosion, in specific segments. In contrast, 

the Portonovo sector lacks detectable notching but experiences small landslide events. The 

DSAS analysis identifies an evolution primarily linked to cliff top retreat for this sector. These 

findings emphasize the importance of high-resolution spatial and temporal data in 

comprehending these dynamics. They shed light on the distinct erosion patterns among 

sectors, underscoring the importance of employing advanced analysis techniques and 

comprehensive datasets to understand and address coastal erosion phenomena effectively. 

 

➢ The Mean Decrease in Impurity (MDI) analysis, employing Random Forest (RF) and 

XGBoost (XGB) Machine Learning (ML) algorithms, identifies cliff height as the parameter 

most strongly correlated with cliff top erosion in this site. The validation through Limit 

Equilibrium Method (LEM) numerical modeling further confirms a relationship between 

Factor of Safety (FS) and cliff height. This methodology, innovative within this thematic 

domain, is openly shared through code available at 

(https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat) to apply  this 

analysis on different sites. 

 

  

https://github.com/micheleFraccaroli/Machine-Learning-for-Coastal-Retreat
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APPENDIX 
 APPENDIX 1: PARAMETERS EXTRACTED (Data starts from transect 1 to 310) 
 

Cliff 
height 

(m) 

Cliff 
slope 

(°) 

Aspect 
(°) 

UCS 
(MPa) 

GSI Cliff 
top 

retreat 
(m) 

Beach 
and 
talus 
width 
(m) 

Cliff 
base 
slope 

(°) 

Boulders 
at cliff 
base 

Beach 
retreat 
(GIZC) 

Angle 
between 
shoreline 
and Bora 

(°) 

Angle 
between 
shoreline 

and 
Scirocco 

(°) 

Vegetation 
at cliff top 

12 44 20 35 50 -6.71 25 6 1 -1 89 1 1 

15 51 20 35 50 -4.32 11 13 1 -1 89 1 0 

16 58 20 35 50 -4.27 18 9 1 -1 89 1 0 

21 80 20 35 50 -7.50 15 11 1 -1 89 1 0 

16 45 20 35 50 -3.98 8 7 1 -1 89 1 0 

13 59 20 35 50 -2.90 16 5 1 -1 89 1 0 

24 70 20 35 50 -8.31 9 12 1 -1 89 1 1 

25 73 20 35 50 -7.60 8 10 1 -1 89 1 1 

16 56 20 35 50 -5.36 7 8 0 -1 89 1 0 

15 53 20 35 50 -4.55 9 9 0 -1 89 1 0 

9 48 20 35 50 -4.68 9 9 0 -1 89 1 0 

11 42 20 35 50 -4.21 8 14 0 -1 89 1 0 

11 46 20 35 50 -4.25 8 10 0 -1 89 1 0 

14 63 20 35 50 -6.18 10 11 0 -1 89 1 0 

18 59 20 35 50 -6.64 7 12 0 -1 89 1 0 

23 57 20 35 50 -7.10 5 11 0 -1 89 1 0 

26 62 20 35 50 -4.73 5 11 0 -1 89 1 0 

25 56 20 35 50 -8.56 3 18 0 -1 89 1 0 

22 57 20 35 50 -8.08 4 20 0 -1 89 1 0 

20 69 30 35 50 -6.55 8 14 0 0.58 89 1 0 

17 60 30 35 50 -5.51 8 11 0 0.58 89 1 0 

17 60 30 35 50 -3.11 6 14 0 0.58 89 1 1 

21 59 30 35 50 -3.20 3 18 0 0.58 89 1 1 

34 57 30 35 50 -4.74 3 18 0 0.58 89 1 1 

47 49 30 35 50 -5.02 4 26 1 0.58 89 1 1 

61 53 30 35 50 -3.10 10 22 1 0.58 89 1 1 

55 50 30 35 50 -9.62 6 18 1 0.58 89 1 1 

45 54 30 35 50 -4.38 8 11 1 0.58 89 1 1 

28 44 30 35 50 -6.08 10 11 1 0.58 89 1 1 

18 42 30 35 50 -3.40 6 14 1 0.58 89 1 1 

27 57 30 35 50 -6.55 5 11 1 0.17 89 1 1 

20 52 30 35 50 -4.47 7 15 0 0.17 89 1 1 

12 57 30 35 50 -12.13 7 8 0 0.17 89 1 0 

13 49 30 35 50 -12.53 6 14 0 0.17 89 1 0 

14 42 30 35 50 -11.55 4 14 0 0.17 89 1 0 

14 34 30 35 50 -17.07 4 14 0 0.17 89 1 0 

16 36 30 35 50 -20.37 5 17 0 0.17 89 1 0 

19 45 30 35 50 -14.89 2 26 1 0.17 89 1 0 
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20 50 30 35 50 -24.22 5 11 1 0.17 89 1 0 

18 67 30 35 50 -12.31 5 17 1 0.17 89 1 1 

14 62 30 35 50 -14.99 3 18 1 0.17 89 1 1 

21 60 30 35 50 -10.88 7 12 1 0.17 89 1 1 

25 65 30 35 50 -16.69 10 31 1 0.17 84 5 1 

28 66 30 35 50 -11.27 4 14 1 0.17 84 5 1 

24 68 30 35 50 -12.88 6 18 1 0.17 84 5 1 

46 65 30 35 50 -19.80 8 14 1 0.17 84 5 1 

30 58 30 35 50 -18.12 6 18 1 0.17 84 5 1 

32 52 30 35 50 -15.40 4 11 1 0.17 84 5 1 

32 60 30 35 50 -18.79 7 16 1 0.17 84 5 1 

32 60 30 35 50 -19.99 7 16 1 0.17 84 5 0 

32 53 30 35 50 -19.09 3 18 1 0.45 84 5 0 

32 54 30 35 50 -20.96 6 18 1 0.45 84 5 0 

28 62 30 35 50 -16.30 6 18 1 0.45 84 5 0 

32 59 30 35 50 -21.31 7 8 1 0.45 84 5 0 

32 56 30 35 50 -25.27 8 14 1 0.45 84 5 0 

29 58 30 35 50 -10.34 9 12 1 0.45 84 5 0 

28 52 30 35 50 -4.10 8 14 1 0.45 84 5 0 

7 70 30 35 50 -6.04 7 11 1 0.45 84 5 1 

10 62 30 35 50 -3.97 5 17 1 0.45 84 5 1 

11 51 30 35 50 -4.01 0 0 1 0.45 84 5 1 

20 54 30 35 50 -24.03 3 18 1 0.45 84 5 1 

33 50 30 35 50 -26.83 9 18 1 0.45 84 5 1 

41 58 30 35 50 -22.77 7 8 1 0.45 84 5 0 

30 49 30 35 50 -21.90 5 11 1 0.45 84 5 0 

30 52 30 35 50 -22.68 9 12 1 0.45 84 5 0 

23 56 30 35 50 -15.43 7 16 1 0.45 84 5 0 

12 60 30 35 50 -4.24 2 26 1 0.45 84 5 0 

15 49 30 35 50 -5.10 0 0 1 -3.08 84 5 0 

21 60 30 35 50 -10.38 7 12 1 -3.08 84 5 1 

29 53 30 35 50 -20.45 7 15 1 -3.08 84 5 0 

28 46 30 35 50 -17.71 5 11 1 -3.08 84 5 0 

20 62 30 35 50 -10.42 6 14 1 -3.08 84 5 0 

10 56 30 5 0 -7.83 4 14 1 -3.08 84 5 0 

8 55 30 5 0 -7.80 4 11 1 -3.08 84 5 0 

8 54 30 5 0 -15.73 5 11 1 -3.08 84 5 0 

8 50 30 5 0 -15.07 7 8 1 -3.08 84 5 0 

8 52 30 5 0 -11.88 10 8 1 -3.08 84 5 0 

8 61 30 5 0 -10.99 14 3 0 -3.08 84 5 0 

9 56 30 5 0 -10.59 14 6 0 -3.08 84 5 0 

9 52 30 5 0 -13.21 14 6 0 -3.08 84 5 0 

7 49 30 5 0 -12.71 11 6 0 -3.08 84 5 0 

8 45 30 5 0 -9.55 12 5 0 -3.08 84 5 0 

8 59 30 5 0 -11.66 15 6 0 -3.08 84 5 0 



“COMBINED TECHNIQUES STUDY FOR THE IDENTIFICATION OF MAIN DRIVES IN COASTAL CLIFF 

PROCESSES BETWEEN PORTONOVO AND TRAVE (ANCONA, ITALY)” PhD Thesis FULLIN NICOLA  

 

 

159 

 
 

6 41 30 5 0 -10.36 7 2 0 -12.1 84 5 0 

7 50 30 5 0 -9.48 18 3 0 -12.1 84 5 0 

8 60 30 5 0 -8.91 18 3 0 -12.1 84 5 0 

11 68 30 5 0 -7.88 13 4 0 -12.1 84 5 0 

11 70 30 5 0 -7.41 15 5 0 -12.1 84 5 0 

13 60 30 5 0 -9.50 8 7 0 -12.1 84 5 0 

15 70 30 5 0 -10.43 17 5 0 -12.1 84 5 0 

12 68 30 5 0 -8.99 12 7 0 -12.1 84 5 0 

10 52 30 5 0 -8.74 11 5 0 -12.1 84 5 0 

16 58 30 5 0 -14.58 20 6 0 -12.1 84 5 1 

20 77 30 5 0 -11.09 22 7 0 -12.1 84 5 1 

18 70 30 5 0 -9.95 20 6 0 -12.1 84 5 0 

13 61 30 5 0 -11.60 19 6 0 -12.1 84 5 0 

12 60 30 5 0 -9.85 21 4 0 -12.1 69 20 0 

13 66 30 5 0 -6.31 17 5 0 -12.1 69 20 0 

14 70 30 5 0 -10.95 17 6 0 -9.34 69 20 0 

14 67 30 5 0 -10.96 20 6 0 -9.34 69 20 0 

14 64 30 5 0 -6.51 20 4 0 -9.34 69 20 0 

11 58 30 5 0 -3.73 22 4 0 -9.34 69 20 0 

11 58 30 5 0 -10.09 22 4 0 -9.34 69 20 0 

14 63 30 5 0 -9.09 23 5 0 -9.34 69 20 0 

13 59 30 5 0 -6.15 22 3 0 -9.34 69 20 0 

11 60 30 5 0 -4.44 23 3 0 -9.34 69 20 1 

8 63 30 5 0 0.27 21 5 0 -9.34 69 20 0 

5 40 30 5 0 1.19 20 5 0 -9.34 69 20 0 

5 41 30 5 0 2.80 22 3 0 -9.34 69 20 0 

4 32 30 5 0 2.34 26 3 0 -9.34 69 20 0 

4 32 30 5 0 2.65 22 3 0 -6.21 69 20 0 

4 32 30 5 0 1.89 27 3 0 -6.21 69 20 0 

3 20 30 5 0 1.92 26 3 0 -6.21 69 20 0 

3 17 30 5 0 1.33 26 2 0 -6.21 69 20 0 

4 26 30 5 0 2.28 25 3 0 -6.21 69 20 0 

5 35 40 5 0 2.42 24 3 0 -6.21 69 20 0 

7 42 40 5 0 2.31 27 3 0 -6.21 69 20 0 

5 36 40 5 0 1.46 26 2 0 -6.21 69 20 0 

6 42 40 5 0 1.37 27 3 0 -6.21 69 20 0 

5 35 40 5 0 1.04 27 3 0 -6.21 69 20 0 

4 41 40 5 0 -0.88 24 3 0 -6.21 69 20 0 

4 27 40 5 0 -0.61 27 3 0 -6.21 69 20 0 

3 30 40 5 0 -0.36 27 3 0 -6.21 69 20 0 

2.5 11 40 5 0 0.14 19 3 0 -6.21 69 20 0 

3 22 40 5 0 -0.05 28 3 0 -6.21 69 20 0 

5 41 40 5 0 0.53 25 3 0 -6.21 69 20 0 

5 35 40 5 0 1.68 21 4 0 -6.21 69 20 0 

5 35 40 5 0 0.78 20 4 0 -6.21 69 20 0 
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7 43 40 5 0 1.30 17 5 0 -6.21 69 20 0 

3 30 40 5 0 0.89 20 4 0 -6.21 69 20 0 

5 40 40 5 0 1.13 22 4 0 -6.21 69 20 0 

5 41 40 5 0 -0.04 16 5 0 -6.21 69 20 0 

6 42 40 5 0 0.64 17 5 0 -6.21 69 20 0 

4 17 40 5 0 1.57 13 5 0 -6.21 69 20 0 

4 23 40 5 0 2.38 12 5 0 -6.21 69 20 0 

8 51 40 5 0 2.13 14 6 0 -6.21 69 20 0 

8 61 40 5 0 2.75 19 7 0 -6.21 69 20 0 

7 40 40 5 0 2.23 19 6 0 -6.21 69 20 0 

6 35 40 5 0 2.25 18 5 0 -6.21 69 20 1 

5 30 40 5 0 1.46 16 5 0 -9.21 69 20 0 

5 45 40 5 0 2.13 17 7 0 -9.21 69 20 0 

8 55 40 5 0 -0.19 18 7 0 -9.21 57 32 0 

8 48 40 5 0 1.46 21 6 0 -9.21 57 32 0 

6 35 40 5 0 2.81 21 5 0 -9.21 57 32 0 

5 37 40 5 0 2.38 17 6 0 -9.21 57 32 0 

5 37 40 5 0 2.62 16 7 0 -9.21 57 32 0 

5 41 40 5 0 3.76 14 6 0 -9.21 57 32 0 

6 33 40 5 0 0.23 10 8 0 -9.21 57 32 0 

7 38 40 5 0 -1.17 11 8 0 -9.21 57 32 0 

9 41 40 5 0 -1.12 13 8 0 -9.21 57 32 0 

10 56 40 5 0 -1.68 20 6 0 -6.8 57 32 0 

10 47 40 5 0 -0.44 17 8 0 -6.8 57 32 0 

10 62 40 5 0 -0.91 21 7 0 -6.8 57 32 0 

12 65 40 5 0 -1.49 22 5 0 -6.8 57 32 1 

7 48 40 5 0 0.05 20 7 0 -6.8 57 32 0 

7 42 40 5 0 2.62 17 7 0 -6.8 57 32 0 

7 40 40 5 0 0.60 17 7 0 -6.8 57 32 0 

8 43 40 5 0 0.25 19 7 0 -6.8 57 32 0 

8 43 40 5 0 0.29 20 7 0 -6.8 57 32 0 

9 47 40 5 0 1.95 19 7 0 -6.8 57 32 0 

8 45 40 5 0 2.01 20 6 0 -6.8 57 32 0 

8 48 40 5 0 2.56 16 8 0 -6.8 57 32 0 

9 45 40 5 0 1.56 17 7 0 -6.8 57 32 0 

8 54 40 5 0 -1.39 16 8 0 -6.8 57 32 0 

10 47 40 5 0 -0.31 15 9 0 -6.8 57 32 0 

13 37 50 5 0 -1.17 17 8 0 -6.8 57 32 0 

13 39 50 5 0 -2.89 15 9 0 -4.21 57 32 0 

12 56 50 5 0 -4.90 17 10 0 -4.21 57 32 0 

11 63 50 5 0 -7.24 16 11 0 -4.21 57 32 0 

11 55 50 5 0 -5.35 16 9 0 -4.21 57 32 0 

12 73 50 5 0 -8.34 20 10 0 -4.21 57 32 0 

12 42 50 5 0 -9.12 13 9 0 -4.21 57 32 0 

11 45 50 5 0 -5.51 16 7 0 -4.21 57 32 0 
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9 48 50 5 0 -5.59 21 9 0 -4.21 57 32 0 

9 54 50 5 0 -4.46 18 6 0 -4.21 57 32 0 

9 52 50 5 0 -3.59 21 7 0 -4.21 57 32 0 

8 37 50 5 0 4.68 16 7 0 -4.21 57 32 0 

8 51 50 5 0 5.38 21 7 0 -4.21 57 32 0 

5 30 50 5 0 5.10 18 5 0 -4.21 57 32 0 

5 35 50 5 0 7.45 14 6 0 -4.21 57 32 0 

7 39 50 5 0 0.19 21 6 0 -4.21 57 32 0 

11 58 50 5 0 -4.19 27 6 0 -4.21 57 32 0 

10 54 50 5 0 -6.68 25 7 0 -4.21 57 32 0 

6 52 50 5 0 -5.24 23 5 0 -4.21 57 32 0 

7 56 50 5 0 -1.67 22 6 0 -4.21 57 32 0 

8 56 50 1 0 1.09 17 7 0 -2.73 57 32 0 

5 41 50 1 0 1.78 14 6 0 -2.73 57 32 0 

8 50 50 1 0 2.81 15 7 0 -2.73 57 32 0 

8 50 50 1 0 2.45 14 8 0 -2.73 57 32 0 

6 45 50 1 0 5.46 14 6 0 -2.73 57 32 0 

5 39 50 1 0 5.76 16 6 0 -2.73 48 41 0 

7 48 50 1 0 1.40 12 7 0 -2.73 48 41 0 

7 46 50 1 0 -2.28 13 7 0 -2.73 48 41 0 

5 43 50 1 0 -0.90 11 6 0 -2.73 48 41 0 

5 35 50 1 0 -2.45 11 8 0 -2.73 48 41 0 

5 32 50 1 0 -2.55 10 7 0 -2.73 48 41 0 

4 31 50 1 0 -0.91 13 5 0 -2.73 48 41 0 

5 40 50 1 0 -0.96 13 7 0 -2.73 48 41 0 

5 37 50 1 0 0.23 14 6 0 -2.73 48 41 0 

5 33 50 1 0 -0.34 14 5 0 -1.71 48 41 0 

5 28 50 1 0 -1.94 19 5 0 -1.71 48 41 0 

5 37 50 1 0 -2.55 18 6 0 -1.71 48 41 0 

5 36 50 1 0 -2.30 17 7 0 -1.71 48 41 0 

6 46 50 1 0 -3.28 15 6 0 -1.71 48 41 0 

8 38 50 1 0 -10.86 14 6 0 -1.71 48 41 0 

16 75 50 1 0 -15.14 24 7 0 -1.71 48 41 0 

17 74 60 1 0 -17.59 21 8 0 -1.71 48 41 0 

9 49 60 1 0 -16.59 19 6 0 -1.71 48 41 0 

12 58 60 1 0 -16.69 20 7 0 -1.71 48 41 0 

11 52 60 1 0 -17.34 18 6 0 -1.71 48 41 0 

19 63 60 1 0 -14.19 21 8 0 -1.71 48 41 0 

24 53 60 1 0 -11.30 23 7 0 -1.71 48 41 1 

25 49 60 1 0 -18.32 23 7 0 -1.71 48 41 0 

31 46 60 1 0 -19.95 21 5 0 -0.86 48 41 0 

25 48 60 1 0 -7.32 22 8 0 -0.86 48 41 0 

14 53 60 30 45 -1.78 18 6 0 -0.86 48 41 0 

11 52 60 30 45 -0.36 14 8 0 -0.86 48 41 1 

9 54 60 30 45 1.64 15 7 0 -0.86 48 41 0 
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12 51 60 30 45 0.03 14 8 0 -0.86 48 41 0 

12 50 60 30 45 0.93 15 9 0 -0.86 48 41 0 

10 51 60 30 45 1.09 20 7 0 -0.86 48 41 1 

20 50 60 30 45 -3.89 19 8 0 -0.86 48 41 0 

21 46 60 30 45 -5.62 20 7 0 -0.86 48 41 0 

14 47 60 30 45 1.43 14 6 0 -0.86 48 41 0 

16 54 60 30 45 -1.70 18 8 0 -0.86 48 41 1 

19 63 60 30 45 -4.49 16 10 0 -0.86 48 41 0 

25 59 60 30 45 -7.18 19 9 0 -0.86 48 41 0 

29 52 60 30 45 -15.08 21 8 0 -0.86 48 41 0 

36 51 60 25 35 -23.80 17 10 0 -0.86 48 41 0 

28 59 70 25 35 -14.51 19 9 0 -0.86 33 56 0 

31 52 70 25 35 -7.74 22 10 0 -0.86 33 56 0 

44 54 70 25 35 -1.78 23 10 0 -0.86 33 56 0 

40 50 70 25 35 -4.02 22 10 0 -0.86 33 56 0 

32 65 70 25 35 -2.83 23 10 0 -3.63 33 56 0 

31 71 70 25 35 -1.50 19 12 0 -3.63 33 56 0 

32 64 70 25 35 -2.14 20 9 0 -3.63 33 56 0 

29 58 70 25 35 -3.34 17 7 0 -3.63 33 56 0 

25 72 70 25 35 -4.50 20 11 0 -3.63 33 56 0 

23 77 70 25 35 -11.53 20 14 0 -3.63 48 56 0 

27 80 70 25 35 -8.44 17 12 0 -3.63 33 56 0 

30 79 70 25 35 -7.73 23 23 1 -3.63 33 56 0 

32 77 70 25 35 -8.84 16 21 1 -3.63 33 56 0 

37 72 70 25 35 -17.58 25 19 1 -3.63 33 56 0 

45 65 70 25 35 -26.59 22 22 0 -3.63 33 56 0 

37 73 70 25 35 -15.11 16 11 0 -3.63 33 56 1 

30 70 70 25 35 -11.06 15 8 0 -3.63 33 56 0 

25 68 70 25 35 -11.62 16 11 0 -3.63 33 56 0 

24 71 70 25 35 -9.36 15 11 0 -3.63 40 49 0 

22 75 70 25 35 -11.63 15 11 1 -3.63 40 49 0 

25 73 70 25 35 -7.67 17 19 0 -3.63 40 49 0 

34 72 70 25 35 -6.31 18 9 0 -3.63 40 49 0 

26 54 70 25 35 -4.89 14 16 0 -3.63 40 49 0 

36 59 70 25 35 -20.45 13 15 0 4.59 40 49 0 

49 54 70 25 35 -22.73 11 10 1 4.59 40 49 0 

52 54 70 25 35 -33.24 31 38 1 4.59 40 49 0 

58 53 70 25 35 -45.54 34 30 1 4.59 40 49 0 

60 55 70 25 35 -36.33 35 34 1 4.59 40 49 0 

63 57 70 25 35 -29.15 22 32 1 4.59 40 49 0 

54 60 70 25 35 -19.40 36 36 1 4.59 40 49 0 

50 60 70 25 35 -12.85 34 37 1 4.59 40 49 0 

55 51 70 25 35 -17.82 15 8 1 4.59 40 49 0 

54 70 70 25 35 -13.41 30 40 1 4.59 40 49 0 

54 72 60 25 35 -10.89 33 35 1 4.59 40 49 0 
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75 57 60 25 35 -22.44 40 31 1 4.59 40 49 0 

68 58 60 25 35 -15.81 30 36 0 4.59 40 49 0 

66 59 60 20 25 -8.56 32 34 0 4.59 40 49 0 

78 58 60 20 25 -13.68 30 36 0 4.59 40 49 0 

78 53 60 20 25 -11.51 30 45 0 4.59 40 49 0 

76 53 60 20 25 -15.57 8 27 0 4.59 40 49 0 

87 54 60 20 25 -28.31 11 20 0 4.59 40 49 0 

100 52 60 20 25 -42.26 11 10 0 4.59 40 49 0 

90 51 60 20 25 -43.69 12 18 0 4.59 40 49 0 

100 52 60 20 25 -53.28 14 16 0 4.59 40 49 0 

105 49 60 20 25 -46.10 19 26 0 2.39 21 68 0 

85 50 60 20 25 -36.13 14 16 0 2.39 21 68 0 

54 57 90 20 25 -9.06 13 32 0 2.39 21 68 0 

58 60 90 25 35 -10.66 11 28 0 2.39 21 68 0 

71 57 90 25 35 -14.47 15 33 0 2.39 21 68 0 

75 59 90 25 35 -17.75 17 35 0 2.39 21 68 1 

82 60 90 25 35 -22.56 15 34 0 2.39 21 68 1 

102 54 90 25 35 -36.88 5 22 0 2.39 21 68 1 

105 55 90 25 35 -33.35 16 32 0 2.39 21 68 1 

110 55 90 25 35 -31.17 16 32 0 2.39 21 68 1 

125 53 90 25 35 -36.50 14 30 0 2.39 21 68 1 

117 53 90 25 35 -28.05 12 18 0 2.39 21 68 0 

105 52 90 25 35 -19.40 13 13 0 2.39 21 68 0 

100 51 90 25 35 -11.37 12 22 0 2.39 21 68 0 

92 50 90 25 35 -3.72 11 42 0 2.39 21 68 0 

86 51 100 25 35 -0.67 10 11 0 2.39 21 68 0 

82 54 100 30 45 9.49 12 9 0 2.39 21 68 0 

80 54 100 30 45 9.88 10 11 0 2.39 21 68 0 

74 55 100 30 45 9.76 12 14 0 2.39 21 68 0 

64 68 100 30 45 12.00 12 11 0 2.39 21 68 0 

67 66 100 30 45 10.81 12 18 0 2.39 21 68 0 

64 67 100 30 45 -0.92 13 15 0 2.39 21 68 0 

60 72 100 30 45 3.69 12 18 0 2.39 2 89 0 

52 78 100 30 45 6.14 14 16 0 2.39 2 89 0 

52 78 100 30 45 -0.78 14 15 0 2.39 2 89 0 

48 80 100 30 45 -12.44 14 16 0 2.39 2 89 0 

46 78 100 30 45 -16.29 14 8 0 2.39 2 89 0 

45 79 100 30 45 -17.66 15 11 0 2.39 2 89 0 

41 76 110 30 45 -14.43 14 16 0 2.39 2 89 0 

37 73 110 30 45 -10.47 20 14 0 2.39 2 89 0 

33 65 110 30 45 -6.47 11 15 0 2.39 2 89 0 

28 66 110 30 45 -4.68 8 11 0 2.39 2 89 0 

24 62 110 30 45 -3.49 7 8 0 2.39 2 89 0 

15 48 110 30 45 -7.26 10 9 0 2.39 2 89 0 

10 42 110 30 45 -9.28 16 3 0 2.39 2 89 0 
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5 40 110 30 45 -8.20 23 2  2.39 2 89 0 

4 42 110 30 45 -12.22 25 1 0 2.39 2 89 0 
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APPENDIX 2: MACHINE LEARNING CODE 
 

import sys 

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 

from sklearn.model_selection import cross_val_score, GridSearchCV, RandomizedSearchCV, KFold, StratifiedKFold 

import numpy as np 

from sklearn.impute import SimpleImputer 

from skopt import BayesSearchCV 

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split, KFold, cross_val_score 

import pickle 

import time 

from imblearn.over_sampling import SMOTE 

import matplotlib.pyplot as plt 

import argparse 

import tqdm 

 

 

class CoastalAnalysis: 

    def __init__(self, data_path, output_path, oversamp, hpo, test_size, target): 

        self.data_path = data_path 

        self.output_path = output_path 

        self.oversample = oversamp 

        self.hpo = hpo 

        self.test_size = test_size 

        self.target = target 

     

    # Utility functions ----------------------------------------------------------------------------------------  

    def preprocessing(self, df, feature_to_drop, strategy_missing_values, missing_values): 

        features = df 

        try: 

            features = features.drop(columns=feature_to_drop) 

            features = features.drop(columns=self.target) 

        except Exception as e: 

            print(e) 

        target = df[self.target] 

        target = target.fillna(0) 

 

        if strategy_missing_values == "zero": 

            features = features.fillna(0) 

            # imp = SimpleImputer(missing_values=missing_values, strategy='constant', fill_value=0) 

            # features = imp.fit_transform(features) 

        elif strategy_missing_values == "mean": 

            imp = SimpleImputer(missing_values=missing_values, strategy='mean') 

            features = imp.fit_transform(features) 

        elif strategy_missing_values == "median": 

            imp = SimpleImputer(missing_values=missing_values, strategy='median') 

            features = imp.fit_transform(features) 

        elif strategy_missing_values == "nan": 

            features = features.fillna(missing_values) 

 

        return features, target 

 

    def hyperparameter_optimization(self, pipeline, parameters, X_train, y_train, X_test, y_test, filename, n_iter=None): 

        start = time.time() 

 

        if self.hpo == 'grid_search': 
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            grid_obj = GridSearchCV(estimator=pipeline, 

                                    param_grid=parameters, 

                                    refit=True, 

                                    #cv=cv, 

                                    return_train_score=False, 

                                    scoring='accuracy', 

                                    verbose=0 

                                    ) 

             

            grid_obj.fit(X_train, y_train, ) 

 

        elif self.hpo == 'random_search': 

            grid_obj = RandomizedSearchCV(estimator=pipeline, 

                                        param_distributions=parameters, 

                                        n_iter=n_iter, 

                                        #cv=cv, 

                                        refit=True, 

                                        scoring='accuracy', 

                                        return_train_score=False, 

                                        verbose=0 

                                        ) 

            grid_obj.fit(X_train, y_train, ) 

 

        elif self.hpo == 'bayes_search': 

            grid_obj = BayesSearchCV( 

                estimator=pipeline, 

                search_spaces=parameters, 

                scoring='accuracy', 

                # cv=cv, 

                n_iter=n_iter, 

                verbose=0 

            ) 

            grid_obj.fit(X_train, y_train, ) 

        else: 

            print('enter search method') 

            return 

 

        estimator = grid_obj.best_estimator_ 

 

        print("##### Results") 

        print("Score best parameters: ", grid_obj.best_score_) 

        print("Best parameters: ", grid_obj.best_params_) 

        # print("Cross-validation Score Accuracy: ", cvs.mean()) 

        print("Test Score: ", estimator.score(X_test, y_test)) 

        print(classification_report( 

            y_test, estimator.predict(X_test), target_names=["0", "1"])) 

 

        print("Time elapsed: ", time.time() - start) 

        cm = confusion_matrix(y_test, estimator.predict(X_test)) 

        disp = ConfusionMatrixDisplay(cm, display_labels=["0", "1"]) 

        disp.plot() 

        plt.savefig(filename) 

 

        results = [grid_obj.best_score_, estimator.score( 

            X_test, y_test), time.time() - start]  # ,result.shape[0]] 

        return results, estimator 

 

    def print_decision_rules(self, rf, features_names): 

        f = open("decision_path_forest_exp_v3.txt", "w") 
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        for tree_idx, est in enumerate(rf.estimators_): 

            tree = est.tree_ 

            assert tree.value.shape[1] == 1  # no support for multi-output 

 

            f.write('--------------/nTREE: {}\n'.format(tree_idx)) 

 

            iterator = enumerate(zip( 

                tree.children_left, tree.children_right, tree.feature, tree.threshold, tree.value)) 

            for node_idx, data in iterator: 

                left, right, feature, th, value = data 

 

                # left: index of left child (if any) 

                # right: index of right child (if any) 

                # feature: index of the feature to check 

                # th: the threshold to compare against 

                # value: values associated with classes 

 

                # for classifier, value is 0 except the index of the class to return 

                class_idx = np.argmax(value[0]) 

 

                if left == -1 and right == -1: 

                    f.write('{} LEAF: return class={}\n'.format( 

                        node_idx, class_idx)) 

                else: 

                    # f.write('{} NODE: if feature[{}] < {} then next={} else next={}\n'.format(node_idx, feature, th, left, 

right)) 

                    f.write('{} NODE: if {} < {} then next={} else next={}\n'.format( 

                        node_idx, features_names[feature], th, left, right)) 

        f.close() 

         

    def plot_feature_importances(self, clf, feature_names, filename): 

        features_imp = [] 

        plt.figure(figsize=(150, 100)) 

        importances = clf.feature_importances_ 

        importances = importances[:30] 

        indices = np.argsort(importances) 

        plt.title('Feature Importances', fontsize=90) 

        plt.barh(range(len(indices)), 

                importances[indices], color='b', align='center') 

        plt.yticks(range(len(indices)), [feature_names[i] 

                                        for i in indices], fontsize=70, ma='left') 

        plt.xlabel('Relative Importance (MDI)', fontsize=80) 

        plt.xticks(importances[indices], fontsize=70, rotation=45) 

        plt.savefig(filename) 

 

        for i in indices: 

            if importances[i] != 0: 

                features_imp.append(feature_names[i]) 

 

        return features_imp 

    # ----------------------------------------------------------------------------------------------------------  

     

    # Dataset --------------------------------------------------------------------------------------------------  

    def dataset_preparation(self, feature_to_drop): 

        data = pd.read_excel(self.data_path) 

        missing_values = [" "] 

        label = [] 
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        X, y = self.preprocessing(data, feature_to_drop=feature_to_drop, strategy_missing_values="zero", 

missing_values=missing_values) 

 

        features = list(X.columns) 

        for i in y: 

            if i < 0: 

                label.append(0) 

            else: 

                label.append(1) 

 

        if self.oversample: 

            oversample = SMOTE() 

            X, label = oversample.fit_resample(X, label) 

 

        X_train, X_test, y_train, y_test = train_test_split(X, label, test_size=self.test_size) 

 

        return X_train, X_test, y_train, y_test, features 

    # ----------------------------------------------------------------------------------------------------------  

     

    # Machine Learning Models ---------------------------------------------------------------------------------- 

    def RandomForest(self, feature_to_drop, model_name="RF"): 

        saved_model_name = self.output_path + model_name + ".pickle" 

        rf_grid = { 

            'criterion': ["gini", "entropy"], 

            'max_depth': [2, 5, 7, 9, 11, None], 

            'max_features': ["log2", "sqrt"], 

            'n_estimators': [100, 150, 200], 

            'min_samples_leaf': [1, 2], 

            'min_samples_split': [2, 5], 

        } 

         

        X_train, X_test, y_train, y_test, features = self.dataset_preparation( 

            feature_to_drop) 

         

        path_cm = self.output_path + "CM_rf.png" 

        clf = RandomForestClassifier() 

        res, est = self.hyperparameter_optimization( 

            clf, rf_grid, X_train, y_train, X_test, y_test, path_cm) 

 

        with open(saved_model_name, 'wb') as handle: 

            pickle.dump(est, handle) 

 

        path_fi = self.output_path + "FI_rf.png" 

        f_i = self.plot_feature_importances(est, features, path_fi) 

         

    def XGBoost(self, feature_to_drop, model_name="XGBoost"): 

        saved_model_name = self.output_path + model_name + ".pickle" 

        xgb_grid = { 

            "learning_rate": [0.1, 0.2, 0.3, 0.05, 0.4], 

            "max_depth": [3, 4, 5, 6, 7, 8, 9], 

            "n_estimators": [50, 100, 130, 150] 

        } 

         

        X_train, y_train, X_test, y_test, features = self.dataset_preparation(feature_to_drop) 

 

        path_cm = self.output_path + "CM_xg.png" 

        clf = GradientBoostingClassifier() 

        res, est = self.hyperparameter_optimization( 

            clf, xgb_grid, X_train, y_train, X_test, y_test, path_cm) 
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        with open(saved_model_name, 'wb') as handle: 

            pickle.dump(est, handle) 

 

        path_fi = self.output_path + "FI_xg.png" 

        f_i = self.plot_feature_importances( 

            est, features, path_fi) 

 

if __name__ == "__main__": 

    parser = argparse.ArgumentParser() 

    parser.add_argument("d", type=str, help="Dataset path") 

    parser.add_argument("out", type=str, help="Output path") 

    parser.add_argument("aug", type=bool, help="Oversample the dataset: True | False") 

    parser.add_argument("tsize", type=float, help="Size of the test set") 

    parser.add_argument("hpo", type=str, help="Type of hyper-parameter optimization. Choice between: 'grid_search' | 

'random_search' | 'bayes_search'") 

    parser.add_argument("t", type=str, help="Target feature") 

    parser.add_argument("m", type=str, help="Model: RF for random forest or XG for XGBoost") 

     

    args = parser.parse_args() 

     

    ca = CoastalAnalysis(args.d, args.out, args.aug, args.hpo, args.tsize, args.t) 

    #feature_to_drop = ['transetto', 'Hs (m)', 'Q-SLOPE'] 

    feature_to_drop = [] 

    if args.m == "RF": 

        ca.RandomForest(feature_to_drop) 

    elif args.m == "XG": 

        ca.RandomForest(feature_to_drop) 

    else: 

        print("model not found") 
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APPENDIX 3: LEM RESULTS  
 

General Settings 
 

Units of Measurement: Metric Units 

Time Units:           days 

Permeability Units:   meters/second 

Data Output:          Standard 

Failure Direction:    Left to Right                        

                                                                                                                     

 

 

Analysis Option 

 

Slices Type                                                                Vertical 

Analysis Methods Used  GLE/Morgenstern-Price 
with interslice force function 
(Half Sine)  

 Number of slices:                                                             50  

 Tolerance:                                                                    0.005  

 Maximum number of iterations:                                                 75  

 Check malpha < 0.2:                                                           Yes  

 Check tensile effective normal stresses in 
the first:                        

 25%  

 Create Interslice boundaries at 
intersections with water tables and piezos:  

 Yes  

 Minimum lambda (Spencer, GLE, Sarma):                                         -0.1  

 Maximum lambda (Spencer, GLE, Sarma):                                         6  

 Initial trial value of FS:                                                    3  

 Maximum slice base angle [deg]:                                               80  

 Steffensen Iteration:                                                         Yes  
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Groundwater Analysis 

                                                                             

Groundwater Method:                                                           Water Surfaces  

 Pore Fluid Unit Weight [kN/m3]:                                               9.81  

 Use negative pore pressure cutoff:                                            Yes  

 Maximum negative pore pressure [kPa]:                                         0  

 Advanced Groundwater Method:                                                  None  

Random Numbers  

All Open Scenarios  

 Pseudo-random Seed:                                                           10116  

 Random Number Generation Method:                                              Park and Miller v.3  

                                                                                                                                                      

  

 

Surface Options 

Surface Type:                                  Circular  

 Search Method:                                 Auto Refine Search  

 Divisions along slope:                         20  

 Circles per division:                          10  

 Number of iterations:                          10  

 Divisions to use in next iteration:            50%  

 Composite Surfaces:                            Disabled  

 Minimum Elevation:                             Not Defined  

 Minimum Depth:                                 Not Defined  

 Minimum Area:                                  Not Defined  

 Minimum Weight:                                Not Defined  

 

 

 

Seismic Loading 

Advanced seismic analysis:                     No  

 Staged pseudostatic analysis:                  No  
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Materials 

Argille Azzurre Trave 

Strength Type                                   Generalized Hoek-Brown 

Unit Weight [kN/m3]                            24 

Unconfined Compressive Strength 
(intact) [kPa] 

30000 

GSI                                            45 

mi                                             7 

Disturbance                                    0 

Water Surface                                  Assigned per scenario 

Ru Value                                       0 

 

 

Formazione a Colombacci 

  

Strength Type                                   Generalized Hoek-Brown 

Unit Weight [kN/m3]                            24 

Unconfined Compressive Strength 
(intact) [kPa] 

25000 

GSI                                            35 

mi                                             7 

Disturbance                                    0 

Water Surface                                  Assigned per scenario 

Ru Value                                       0 

 

 

Orizzonte del Trave 

Strength Type                                   Generalized Hoek-Brown 

Unit Weight [kN/m3]                            25 

Unconfined Compressive Strength 
(intact) [kPa] 

50000 

GSI                                            50 

mi                                             17 

Disturbance                                    0 

Water Surface                                  Assigned per scenario 

Ru Value                                       0 
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Argille Azzurre Mezzavalle Trave 

 

Strength Type                                   Generalized Hoek-Brown 

Unit Weight [kN/m3]                            24 

Unconfined Compressive Strength 
(intact) [kPa] 

25000 

GSI                                            35 

mi                                             7 

Disturbance                                    0 

Water Surface                                  Assigned per scenario 

Ru Value                                       0 

 

Fault 

Strength Type                                   Generalized Hoek-Brown 

Unit Weight [kN/m3]                            20 

Unconfined Compressive Strength 
(intact) [kPa] 

20000 

GSI                                            25 

mi                                             4 

Disturbance                                    0.6 

Water Surface                                  Assigned per scenario 

Ru Value                                       0 
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Global Minimums 

Section 1  

Method:  gle/morgenstern-price 

FS                                             2.039940 

 Center:                                        164.817, 49.652  

 Radius:                                        52.504  

 Left Slip Surface Endpoint:                    113.637, 37.935  

 Right Slip Surface Endpoint:                   137.505, 4.811  

 Resisting Moment:                              485193 kN-m  

 Driving Moment:                                237846 kN-m  

 Resisting Horizontal Force:                    5824.27 kN  

 Driving Horizontal Force:                      2855.11 kN  

 Total Slice Area:                              249.786 m2  

 Surface Horizontal Width:                      23.8682 m  

 Surface Average Height:                        10.4653 m  

 

 

Section 2  

Method:  gle/morgenstern-price 

FS                                             1.865810 

 Center:                                        163.449, 184.185  

 Radius:                                        186.745  

 Left Slip Surface Endpoint:                    -17.680, 138.733  

 Right Slip Surface Endpoint:                   130.423, 0.383  

 Resisting Moment:                              2.33083e+07 kN-m  

 Driving Moment:                                1.24923e+07 kN-m  

 Resisting Horizontal Force:                    96290.5 kN  

 Driving Horizontal Force:                      51607.9 kN  

 Total Slice Area:                              4699.94 m2  

 Surface Horizontal Width:                      148.104 m  

 Surface Average Height:                        31.7341 m 
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Section 3  

Method:  gle/morgenstern-price 

FS                                             1.529450 

 Center:                                        122.779, 137.909  

 Radius:                                        150.476  

 Left Slip Surface Endpoint:                    -26.878, 122.232  

 Right Slip Surface Endpoint:                   183.080, 0.044  

 Resisting Moment:                              1.85897e+07 kN-m  

 Driving Moment:                                1.21545e+07 kN-m  

 Resisting Horizontal Force:                    93014.6 kN  

 Driving Horizontal Force:                      60815.8 kN  

 Total Slice Area:                              6863.47 m2  

 Surface Horizontal Width:                      209.958 m  

 Surface Average Height:                        32.6897 m  

 

 

Section 4  

Method: gle/morgenstern-price 

FS                                             1.120510 

 Center:                                        78.492, 71.418  

 Radius:                                        57.680  

 Left Slip Surface Endpoint:                    21.516, 62.435  

 Right Slip Surface Endpoint:                   69.116, 14.506  

 Resisting Moment:                              521780 kN-m  

 Driving Moment:                                465665 kN-m  

 Resisting Horizontal Force:                    6486.34 kN  

 Driving Horizontal Force:                      5788.76 kN  

 Total Slice Area:                              613.896 m2  

 Surface Horizontal Width:                      47.6006 m  

 Surface Average Height:                        12.8968 m  
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Section 5  

Method:  gle/morgenstern-price 

FS                                             1.213030 

 Center:                                        47.828, 87.199  

 Radius:                                        54.697  

 Left Slip Surface Endpoint:                    -5.221, 73.872  

 Right Slip Surface Endpoint:                   38.245, 33.347  

 Resisting Moment:                              382995 kN-m  

 Driving Moment:                                315734 kN-m  

 Resisting Horizontal Force:                    5265.95 kN  

 Driving Horizontal Force:                      4341.15 kN  

 Total Slice Area:                              469.543 m2  

 Surface Horizontal Width:                      43.4661 m  

 Surface Average Height:                        10.8025 m  

 

 

 

 

Section 6  

Method:  gle/morgenstern-price 

FS                                             0.911701 

 Center:                                        79.237, 115.222  

 Radius:                                        52.287  

 Left Slip Surface Endpoint:                    28.427, 102.880  

 Right Slip Surface Endpoint:                   48.957, 72.595  

 Resisting Moment:                              121515 kN-m  

 Driving Moment:                                133284 kN-m  

 Resisting Horizontal Force:                    1404.03 kN  

 Driving Horizontal Force:                      1540.02 kN  

 Total Slice Area:                              161.739 m2  

 Surface Horizontal Width:                      20.5296 m  

 Surface Average Height:                        7.87831 m  
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Section 7  

Method:  gle/morgenstern-price 

FS                                             1.144810 

 Center:                                        48.017, 116.083  

 Radius:                                        111.682  

 Left Slip Surface Endpoint:                    -61.973, 96.719  

 Right Slip Surface Endpoint:                   47.746, 4.401  

 Resisting Moment:                              5.86048e+06 kN-m  

 Driving Moment:                                5.11915e+06 kN-m  

 Resisting Horizontal Force:                    38297.2 kN  

 Driving Horizontal Force:                      33452.8 kN  

 Total Slice Area:                              3579.63 m2  

 Surface Horizontal Width:                      109.719 m  

 Surface Average Height:                        32.6254 m  

 

 

 

Section 8  

Method:  gle/morgenstern-price 

FS                                             0.985903 

 Center:                                        118.635, 101.728  

 Radius:                                        103.879  

 Left Slip Surface Endpoint:                    25.203, 56.329  

 Right Slip Surface Endpoint:                   39.540, 34.388  

 Resisting Moment:                              120685 kN-m  

 Driving Moment:                                122411 kN-m  

 Resisting Horizontal Force:                    649.801 kN  

 Driving Horizontal Force:                      659.093 kN  

 Total Slice Area:                              71.3441 m2  

 Surface Horizontal Width:                      14.3374 m  

 Surface Average Height:                        4.9761 m  
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Section 9  

Method:  gle/morgenstern-price 

FS                                             2.262740 

 Center:                                        110.489, 71.762  

 Radius:                                        89.512  

 Left Slip Surface Endpoint:                    24.694, 46.234  

 Right Slip Surface Endpoint:                   52.494, 3.579  

 Resisting Moment:                              1.74286e+06 kN-m  

 Driving Moment:                                770242 kN-m  

 Resisting Horizontal Force:                    11158.7 kN  

 Driving Horizontal Force:                      4931.49 kN  

 Total Slice Area:                              446.207 m2  

 Surface Horizontal Width:                      27.7992 m  

 Surface Average Height:                        16.0511 m  

 

 

Section 10  

Method:  gle/morgenstern-price 

FS                                             4.370590 

 Center:                                        69.945, 40.945  

 Radius:                                        39.213  

 Left Slip Surface Endpoint:                    33.042, 27.684  

 Right Slip Surface Endpoint:                   62.505, 2.445  

 Resisting Moment:                              599059 kN-m  

 Driving Moment:                                137066 kN-m  

 Resisting Horizontal Force:                    11762.9 kN  

 Driving Horizontal Force:                      2691.38 kN  

 Total Slice Area:                              250.371 m2  

 Surface Horizontal Width:                      29.4632 m  

 Surface Average Height:                        8.49774 m  
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Global Minimum Support Data 

No Supports Present  

 


