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COMPLETE SYMPLECTIC QUADRICS AND KONTSEVICH SPACES OF CONICS IN

LAGRANGIAN GRASSMANNIANS

ELSA CORNIANI AND ALEX MASSARENTI

Abstract. A wonderful compactification of an orbit under the action of a semi-simple and simply connected group

is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor
is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic
matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich
spaces parametrizing conics in Lagrangian Grassmannians.

1. Introduction

The wonderful compactification of a symmetric space was introduced by C. De Concini and C. Procesi in [DCP83].
Later on, D. Luna gave a more general definition of wonderful variety and then he proved that, according to his
definition, all wonderful varieties are spherical [Lun96].

Let G be a reductive group, and B Ă G a Borel subgroup. A spherical variety is a variety admitting an action
of G with an open dense B-orbit. For wonderful varieties we require in addition the existence of an open orbit
whose complementary set is a simple normal crossing divisor D1 Y ¨ ¨ ¨YDr, where the Di are the G -invariant prime
divisors in X . The number r is called the rank of X . Note that G has 2r orbits in X given by all the possible
intersections among the Di. The unique closed orbit is

Şr

i“1
Di.

Apart from their role in group theory, wonderful varieties proved themselves important in enumerative geometry
and recently also in birational geometry. We refer to [BL11], [Per14], [Pez18] for comprehensive treatments of these
topics.

Classical examples of wonderful varieties are the spaces of complete quadrics and of complete collineations. These
spaces have been studied both from the geometrical and enumerative point of view [Sem48], [Sem51], [Sem52],
[Tyr56], [Vai82], [Vai84], [KT88], [LLT89], [Tha99]. An aspect that will be fundamental in this paper is that spaces
of complete quadrics and collineations play a role in the study of other moduli spaces such as Hilbert schemes
and Kontsevich spaces of stable maps [Alg56], [Pie82], [Cav16]. The birational geometry of the spaces of complete
quadrics and collineations, mostly from the point of view of Mori theory, has recently been studied in [Hue15],
[Mas20a], [Mas20b].

The spaces of complete collineations and quadrics have been constructed, as a sequence of blow-ups, by I.
Vainsencher in [Vai84], [Vai82], and a similar construction for complete skew-forms has been carried out by M.
Thaddeus in [Tha99]. In this paper we construct the wonderful compactification of the space of symmetric and
symplectic matrices. More precisely, we summarize our main results in Propositions 3.6, 3.13, and Theorem 3.19
as follows:

Theorem 1.1. Let PN be the projective space parametrizing 2r ˆ 2r symmetric matrices modulo scalar, consider
the following Spp2rq-action:

Spp2rq ˆ PN ÝÑ PN

pM,Zq ÞÝÑ MZM t

and denote by X2r Ă PN the closure of the Spp2rq-orbit of the identity. Then X2r admits a stratification

Y1 Ă Y2 Ă . . . Yr Ă X2r

where the variety Yk parametrizes matrices in X2r of rank at most k, dimpYkq “ 2rk ` k ´ k2 ´ 1 for k “ 1, . . . , r,
and dimpX2rq “ rpr ` 1q.

Furthermore, consider the following sequence of blow-ups

S2r :“ X
pr´1q
2r Ñ X

pr´2q
2r Ñ X

pr´3q
2r Ñ ¨ ¨ ¨ Ñ X

p1q
2r Ñ X

p0q
2r :“ X2r
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where X
pkq
2r Ñ X

pk´1q
2r is the blow-up of the strict transform of Yk in X

pk´1q
2r for k “ 1, . . . , r ´ 1. Denote by

Ek Ă S2r the exceptional divisor over Yk for k “ 1, . . . , r ´ 1, and by S
pr´1q
r pV2r´1

2
q the strict transform of the

divisor Yr Ă X2r. Then E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q are smooth and intersect transversally. Furthermore, the

closures of the orbits of the Spp2rq-action on S2r induced by the Spp2rq-action above are given by all the possible

intersections among E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q and S2r itself. Therefore S2r is wonderful.

We will call S2r the space of complete symplectic quadrics of dimension 2r ´ 2. By Proposition 3.13 Yk is
the intersection of X2r with the secant variety SeckpV2r´1

2
q that is the closure of the union of the pk ´ 1q-planes

generated by k general points on the Veronese variety V
2r´1

2
of degree two and dimension 2r ´ 1.

Note that the formula for the dimension of Yk in Theorem 1.1 yields that V
2r´1

2
is entirely contained in X2r,

while for r ě 2 the orbit closure X2r intersects SeckpV2r´1

2
q in a proper subvariety. Furthermore, by Proposition

3.15 we have that set-theoretically SeckpV2r´1

2
qXX2r “ SecrpV

2r´1

2
qXX2r for k ě r. Interestingly, this means that

if M is a symmetric 2r ˆ 2r matrix that is a limit of a family of symplectic matrices then either 1 ď rankpMq ď r

or rankpMq “ 2r.
For instance, by Proposition 3.16 X4 is the Grassmannian Gp1, 4q of lines in P4. In this case by Theorem 1.1

we have that S4 is the blow-up of Gp1, 4q along the Veronese 3-fold V3
2 Ă Gp1, 4q. This is a wonderful variety of

rank two. As remarked in [Was96] wonderful varieties of rank two are a building block in the theory of spherical
varieties. The wonderful compactification S4 is the sixth variety in [Was96, Table C], and will be a central character
throughout the whole paper.

Remark 1.2. The use of wonderful compactifications in enumerative geometry dates back to the solution of M.
Chasles to a problem posed by J. Steiner asking how many conics in the plane are tangent to five given general
conics [Kle80]. Steiner’s answer, which then turned out to be wrong, was 65 “ 7776. Later on Chasles computed
the right number which is 3264.

Although enumerative problems are not within the scope of this paper, we give a simple application of our
construction in enumerative geometry. It is well known that there are 92 quadric surfaces in P3 that are tangent
to nine general lines [BFS20, Remark 4.3]. The points of S4 in a divisor of class 2H ´E1, where H is the pull-back
of the hyperplane class of X4, correspond to the symplectic quadrics in P3 that are tangent to a general line. We
have that p2H ´ E1q6 “ 40. From the enumerative point of view this means that there are exactly 40 symplectic
quadrics in P3 that are tangent to six general lines.

The variety X2r is singular for r ě 3. The wonderful variety S2r may be seen as an incarnation, in the singular
setting, of the process producing a wonderful compactification from a conical one in [MP98]. Furthermore, by
Proposition 3.18 S2r provides a resolution of a variety with conical singularities as remarked in [MP98, Section
3.3].

In Section 4 and 5 we take advantage of the spherical structure of S2r to study its birational geometry from the
point of view of Mori theory. Roughly speaking, a Mori dream space is a projective varietyX whose cone of effective
divisors EffpXq admits a well-behaved decomposition into convex sets, called Mori chamber decomposition, and
these chambers are the nef cones of birational models of X . These varieties, introduced by Y. Hu and S. Keel in
[HK00], are named so because they behave in the best possible way from the point of view of the minimal model
program. In general, to determine whether or not a variety is a Mori dream space, and in case to study in detail its
Mori chamber decomposition is a hard problem. This has been done for instance when X is obtained by blowing-up
points in a projective space [Muk01], [CT06], [AM16], [AC17], [BM21], [LP17].

Spherical varieties are Mori dream spaces, we refer to [Per14] for a comprehensive treatment of these topics.
Cox rings were first introduced by D. A. Cox for toric varieties [Cox95], and then his construction was generalized
to projective varieties in [HK00]. These algebraic objects are basically universal homogeneous coordinate rings of
projective varieties, defined as the direct sum of the spaces of sections of all isomorphism classes of line bundles
on them. We have that a normal Q-factorial projective variety X , over an algebraically closed field, with finitely
generated Picard group is a Mori dream space if and only if its Cox ring is finitely generated [HK00, Proposition
2.9]. Summing-up the results in Propositions 4.5, 4.7, 5.10 and Theorem 5.12 we have the following:

Theorem 1.3. Fix homogeneous coordinates rz0,0 : ¨ ¨ ¨ : zn,ns on PN , and consider the blow-up f : S2r Ñ X2r Ă PN

with exceptional divisors E1, . . . , Er´1 in Theorem 1.1. For i “ 1, . . . , r we define the divisors Di as the strict
transforms in S2r of the divisor given by the intersection of

det

¨
˚̋

z0,0 . . . z0,i´1

...
. . .

...

z0,i´1 . . . zi´1,i´1

˛
‹‚“ 0
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with X2r, and let H be the pull-back of the hyperplane section of X2r Ă PN to S2r.
The Picard rank of S2r is ρpS2rq “ r and PicpS2rq is generated by H,E1, . . . , Er´1. Furthermore, the effective

cone EffpS2rq is generated by E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q, the nef cone NefpS2rq is generated by D1, . . . , Dr, and

the Cox ring of S2r is generated by the sections of E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q, D1, . . . , Dr.

Finally, the Mori chamber decomposition of the EffpS4q has three chambers, and the Mori chamber decomposition
of the EffpS6q has nine chambers.

We refer to Proposition 5.10 and Theorem 5.12 for a detailed description of the Mori chamber decompositions.
In Section 6 we investigate the birational geometry of Kontsevich moduli spaces of conics in Lagrangian Grass-

mannians. These spaces are denoted by Mg,npX, βq where X is a projective scheme and β P H2pX,Zq is the

homology class of a curve in X . A point in Mg,npX, βq corresponds to a holomorphic map α from an n-pointed
genus g curve C to X such that α˚prCsq “ β. If X is a homogeneous variety then there exists a smooth, irreducible
Deligne-Mumford stack M0,npX, βq whose coarse moduli space is M0,npX, βq [FP97]. When X is a Lagrangian
Grassmannian the class β is then completely determined by its degree and we will write β “ drLs, where rLs is the
class of a line in the Plücker embedding. The Mori theory of the spaces M0,npX, βq, especially when the target
variety is a projective space or a Grassmannian, has been widely investigated in a series of papers [CS06], [Che08],
[CHS08], [CHS09], [CC10], [CC11], [CM17].

On the Kontsevich space M0,0pLGpr, 2rq, 2q of conics in the Lagrangian Grassmannian, LGpr, 2rq parametrizing
Lagrangian subspaces of a 2r-dimensional symplectic vector space, we consider the divisor classes: ∆r of maps
with reducible domain, T r of conics tangent to a fixed hyperplane section of LGpr, 2rq, Hr

σ2
of conics intersecting

a fixed codimension two Schubert variety Σr2 Ă LGpr, 2rq, and Dr
unb which we now define. A stable map α : P1 Ñ

LGpr, 2rq induces a rank two subbundle Eα Ă OP1 b K2r. If r “ 2 we define Dunb as the closure of the locus of
maps rP1, αs P M0,0pLGp2, 4q, 2q such that Eα ‰ OP1p´1q‘2. If r ě 3 there is a trivial subbundle O

‘r´2

P1 Ă Eα

which induces a pr ´ 2q-dimensional subspace Hα Ă P2r´1. We define Dr
unb as the closure of the locus of maps

rP1, αs P M0,0pLGpr, 2rq, 2q such that Hα intersects a fixed pr ` 1q-dimensional subspace of P2r´1.
The main results in Lemma 6.6, Proposition 6.11, Theorem 6.14, Remark 6.13 and Corollary 6.17 can be

summarized in the following statement:

Theorem 1.4. Let M0,0pLGpr, 2rq, 2q be the Kontsevich space of conics in the Lagrangian Grassmannian LGpr, 2rq,
parametrizing Lagrangian subspaces of a 2r-dimensional symplectic vector space, with r ě 2.

The effective cone EffpM0,0pLGpr, 2rq, 2qq is generated by ∆r and Dr
unb, and the nef cone NefpM0,0pLGpr, 2rq, 2qq

is generated by Hr
σ2

and T r.

The Mori chamber decomposition of EffpM0,0pLGpr, 2rq, 2qq has three chambers as displayed in the following
picture:

Dr
unb

Hr
σ2

T r

∆
r

where Hr
σ2

„ 1

2
p∆r`2Dr

unbq and T r „ ∆r`Dr
unb. Furthermore, if r ě 2 then MovpM0,0pLGpr, 2rq, 2qq is generated

by T r and Dr
unb while MovpM0,0pLGp2, 4q, 2qq is generated by T r and Hr

σ2
.

The divisor Hr
σ2

induces a birational morphism

fHr
σ2

:M0,0pLGpr, 2rq, 2q Ñ ČChowpLGpr, 2rq, 2q

which is an isomorphism away form the locus Qrp1q of double covers of a line in LGpr, 2rq, and contracts Qrp1q so

that the locus of double covers with the same image maps to a point, where ČChowpLGpr, 2rq, 2q is the normalization
of the Chow variety of conics in LGpr, 2rq.

The divisor T r induces a morphism

fT r :M0,0pLGpr, 2rq, 2q Ñ M0,0pLGpr, 2rq, 2, 1q

which is an isomorphism away from ∆r and contracts the locus of maps with reducible domain rC1 Y C2, αs to
αpC1 X C2q, where M0,0pLGpr, 2rq, 2, 1q is the moduli space of weighted stable maps to LGpr, 2rq.

The birational model Xr corresponding to the chamber delimited by Hr
σ2

and Dr
unb is a fibration Xr Ñ SGpr ´

2, 2rq with fibers isomorphic to the Grassmannian Gp2, 4q parametrizing plane in P4, where SGpr ´ 2, 2rq is
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the symplectic Grassmannian parametrizing isotropic subspaces of dimension r ´ 2. Moreover, Dr
unb contracts

M0,0pLGpr, 2rq, 2q onto SGpr ´ 2, 2rq.

Finally, M0,0pLGpr, 2rq, 2q is Fano for 2 ď r ď 6, weak Fano, that is ´KM0,0pLGpr,2rq,2q is nef and big, for r “ 7,

and ´KM0,0pLGpr,2rq,2q is not ample for r ě 8.

Moreover, Proposition 6.8, Remarks 1.2, 6.13 and Corollary 6.18 provide additional information for the case
r “ 2.

Theorem 1.5. The following Spp4q-action

Spp4q ˆM0,0pLGp2, 4q, 2q ÝÑ M0,0pLGp2, 4q, 2q
pM, rC,αsq ÞÝÑ rC,^2M ˝ αs

induces on M0,0pLGp2, 4q, 2q a structure of spherical variety. Furthermore, there exists an isomorphism

ϕ :M0,0pLGp2, 4q, 2q Ñ S4

where S4 is the wonderful compactification of the space of symplectic quadrics of P3, mapping a smooth conic
C Ă LGp2, 4q to the quadric

Ť
rLsPC L Ă P3. The Cox ring CoxpM0,0pLGp2, 4q, 2qq is generated by the sections of

∆2, D2

unb, H
2
σ2
, T 2.

The moduli space M0,0pLGp2, 4q, 2q identifies with the blow-up of Gp1, 4q along the Veronese V3
2 . With this iden-

tification the morphism associated to H2
σ2

is the blow-down and ČChowpLGp2, 4q, 2q – Gp1, 4q, while the morphism

associated to T 2 is induced by the strict transform on S4 of the linear system of quadrics containing V3
2 , and its

image is a 6-fold of degree 40 in P14 isomorphic to M0,0pLGp2, 4q, 2, 1q.

Finally, PsAutpM0,0pLGp2, 4q, 2qq – AutpM0,0pLGp2, 4q, 2qq – PSpp4q where PSpp4q is the projective symplectic

group, and PsAutpM0,0pLGp2, 4q, 2qq is the group of birational self-maps of M0,0pLGp2, 4q, 2q inducing automor-
phisms in codimension one.

Organization of the paper. Throughout the paper we will work over an algebraically closed field K of charac-
teristic zero. In Section 2, as a warm-up we prove some of the main results in [Vai82], [Vai84], using the techniques
based on tangent cones computations that we will then apply to the more involved case of symplectic quadrics.
In Section 3 we construct the wonderful compactification S2r of the space of symmetric and symplectic 2r ˆ 2r

matrices. In Section 4 we study the Picard rank, the effective and the nef cones of S2r. In Section 5 we compute
the Mori chamber decomposition of the effective cone of S4 and S6. Finally, in Section 6, taking advantage of the
theory of complete symplectic quadrics, we investigate the birational geometry of Kontsevich spaces of conics in
Lagrangian Grassmannians.

Acknowledgments. We thank very much Alex Casarotti, Massimiliano Mella, Giorgio Ottaviani and Jason Starr
for useful discussions, and the referee for many helpful comments that helped us to improve the exposition and
correct a mistake about the sphericity of M0,0pLGpr, 2rq, 2q for r ą 2 in a first version of the paper.

The second named author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le
loro Applicazioni of the Istituto Nazionale di Alta Matematica "F. Severi" (GNSAGA-INDAM).

2. Complete quadrics

Let V be a K-vector space of dimension n ` 1, and let PN with N “
`
n`2

2

˘
´ 1 be the projective space

parametrizing quadratic forms on Pn “ PpV q up to a scalar multiple.
The line bundle OPnp2q induces an embedding

ν : Pn ÝÑ PN

rx0 : ¨ ¨ ¨ : xns ÞÝÑ rx20 : x0x1 : ¨ ¨ ¨ : x2ns

The image Vn2 “ νpPnq Ă PN is the Veronese variety of dimension n and degree 2n. We will denote by rz0,0 : ¨ ¨ ¨ :
zn,ns the homogeneous coordinates on PN , where zi,j corresponds to the product xixj .

Secant varieties. Given an irreducible and reduced non-degenerate variety X Ă PN , and a positive integer h ď N

we denote by SechpXq the h-secant variety of X . This is the subvariety of PN obtained as the closure of the union
of all ph´ 1q-planes xx1, ..., xhy spanned by h general points of X .

A point p P PN can be represented by an pn` 1q ˆ pn` 1q symmetric matrix Z. The Veronese variety Vn2 is the
locus of rank one matrices. More generally, p P SechpVn2 q if and only if Z can be written as a linear combination
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of h rank one matrices that is if and only if rankpZq ď h. If p “ rz0,0 : ¨ ¨ ¨ : zn,ns then we may write

(2.1) Z “

¨
˚̋

z0,0 . . . z0,n
...

. . .
...

z0,n . . . zn,n

˛
‹‚

Then, the ideal of SechpVn2 q is generated by the ph ` 1q ˆ ph ` 1q minors of Z.
By [Mas20a, Lemma 3.3] the SLpn` 1q-action

SLpn` 1q ˆ Pn ÝÑ Pn

pM, rvsq ÞÝÑ rMvs

induces the SLpn` 1q-action on PN given by

(2.2)
SLpn` 1q ˆ PN ÝÑ PN

pM,Zq ÞÝÑ MZM t

The orbit closures of the action (2.2) are precisely the secant varieties SechpVn2 q. Now, let us recall the notion
of spherical and wonderful variety.

Definition 2.3. A spherical variety is a normal variety X together with an action of a connected reductive affine
algebraic group G , a Borel subgroup B Ă G , and a base point x0 P X such that the B-orbit of x0 in X is a dense
open subset of X .

Let pX,G ,B, x0q be a spherical variety. We distinguish two types of B-invariant prime divisors: a boundary
divisor of X is a G -invariant prime divisor on X , a color of X is a B-invariant prime divisor that is not G -invariant.
We will denote by BpXq and CpXq respectively the set of boundary divisors and colors of X .

For instance, any toric variety is a spherical variety with B “ G equal to the torus. For a toric variety there are
no colors, and the boundary divisors are the usual toric invariant divisors.

Definition 2.4. A wonderful variety is a smooth projective variety X with the action of a semi-simple simply
connected group G such that:

- there is a point x0 P X with open G orbit and such that the complement XzG ¨ x0 is a union of prime divisors
E1, ¨ ¨ ¨ , Er having simple normal crossing;

- the closures of the G -orbits in X are the intersections
Ş
iPI Ei where I is a subset of t1, . . . , ru.

As proven by D. Luna in [Lun96] wonderful varieties are in particular spherical. Note that PN is not a wonderful
compactification of SLpn ` 1q{H , where H is the stabilizer of the identity matrix with respect to the SLpn ` 1q-
action in (2.2), since for instance the orbit closure SecnpVn2 q is a non smooth divisor. In order to get a wonderful
compactification we must consider the space of complete quadrics that we now describe. The space of complete
quadrics is the closure of the graph of the rational map

PpSym2 V q 99K PpSym2
Ź2

V q ˆ ¨ ¨ ¨ ˆ PpSym2
Źn

V q
Z ÞÝÑ p^2Z, . . . ,^nZq

By [Vai82, Theorem 6.3] the space of complete quadrics can be constructed as a sequence of blow-ups as follows.

Construction 2.5. Let us consider the following sequence of blow-ups:

- Qpnq1 is the blow-up of Qpnq0 :“ PN along the Veronese variety Vn2 ;
- Qpnq2 is the blow-up of Qpnq1 along the strict transform of Sec2pVn2 q;
...

- Qpnqi is the blow-up of Qpnqi´1 along the strict transform of SecipV
n
2 q;

...

- Qpnqn´1 is the blow-up of Qpnqn´2 along the strict transform of Secn´1pVn2 q.

Let fi : Qpnqi Ñ Qpnqi´1 be the blow-up morphism. We will denote by E
q
i both the exceptional divisor of fi

and its strict transforms in the subsequent blow-ups. We will denote by Qpnq the last blow-up Qpnqn´1 and by
f : Qpnq Ñ PN the composition of the fi.

Then for any i “ 1, . . . , n´1 the variety Qpnqi is smooth, the strict transform of Seci`1pVn2 q in Qpnqi is smooth,
and the divisor Eq

1
YE

q
2

Y ¨ ¨ ¨ YE
q
i in Qpnqi is simple normal crossing. Furthermore, the variety Qpnq is isomorphic

to the space of complete pn ´ 1q-dimensional quadrics.

In particular, Qpnq is a wonderful compactification of the homogeneous space SLpn ` 1q{SOpn ` 1q. We now
recall some facts about the varieties SechpVn2 q.
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Remark 2.6. Recall that SechpVn2 q identifies with the variety parametrizing pn` 1q ˆ pn` 1q symmetric matrices
modulo scalar of rank at most h. An argument similar to the one used to estimate the dimension of the spaces of
matrices, not necessarily symmetric, of rank at most h in [Har95, Example 12.1] shows that

dimpSechpVn2 qq “
2nh´ h2 ` 3h´ 2

2

for h ď n. Furthermore, identifying SechpVn2 q with the variety parametrizing pn` 1q ˆ pn` 1q symmetric matrices
modulo scalar of corank at least n ` 1 ´ h, by [HT84, Proposition 12(b)] we get that the degree of SechpVn2 q is
given by

degpSechpVn2 qq “
n´hź

i“0

`
n`1`i

n`1´h´i

˘
`
2i`1

i

˘ .

In particular, for h “ n we get n` 1, and for h “ 1 we get 2n.

Proposition 2.7. The tangent cone of SechpVn2 q at a point p P SeckpVn2 qzSeck´1pVn2 q for k ď h is a cone with

vertex of dimension
`
n`2

2

˘
´ 1 ´ pn´k`1qpn´k`2q

2
over Sech´kpVn´k

2
q. In particular, for k ă h we have

multSeckpVn
2

qzSeck´1pVn
2

q SechpVn2 q “
n´hź

i“0

`
n´k`1`i
n`1´h´i

˘
`
2i`1

i

˘

and SingpSechpVn2 qq “ Sech´1pVn2 q.

Proof. We compute the tangent cone of SechpVn2 q at

pk “

ˆ
Ik,k 0k,n`1´k

0n`1´k,k 0n`1´k,n`1´k

˙

where Ik,k is the kˆk identity matrix. Consider the affine chart z0,0 ‰ 0 and the change of coordinates zi,i ÞÑ zi,i´1

for i “ 1, . . . , k ´ 1, zi,j ÞÑ zi,j if i ‰ j. Then the matrix Z in (2.1) takes the following form
¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

1 z0,1 . . . z0,k´1 z0,k . . . z0,n
z0,1 z1,1 ´ 1 . . . z1,k´1 z1,k . . . z1,n
...

...
. . .

...
...

. . .
...

z0,k´1 z1,k´1 . . . zk´1,k´1 ´ 1 zk´1,k . . . zk´1,n

z0,k z1,k . . . zk´1,k zk,k . . . zk,n
...

...
. . .

...
...

. . .
...

z0,n z1,n . . . zk´1,n zk,n . . . zn,n

˛
‹‹‹‹‹‹‹‹‹‹‚

Recall that SechpVn2 q Ď PN is cut out by the ph` 1q ˆ ph` 1q minors of Z. Now, the lowest degree terms of these
minors are given by the ph ` 1 ´ kq ˆ ph ` 1 ´ kq minors of the following matrix

¨
˚̋

zk,k . . . zk,n
...

. . .
...

zk,n . . . zn,n

˛
‹‚

Therefore, the tangent cone TCpkSechpVn2 q is contained in the cone C over Sech´kpVn´k
2

q with vertex the linear
subspace of PN given by tzk,k “ ¨ ¨ ¨ “ zk,n “ zk`1,k`1 “ ¨ ¨ ¨ “ zk`1,n “ ¨ ¨ ¨ “ zn,n “ 0u. Now, Remark 2.6 yields

dimpCq “

ˆ
n` 2

2

˙
´ 1 ´

pn ´ k ` 1qpn´ k ` 2q

2
` dimpSech´kpVn´k

2
qq ` 1 “ dimpSechpVn2 qq

and hence TCpkSechpVn2 q “ C. Finally, to get the formula for the multiplicity it is enough to observe that

multpk SechpVn2 q “ multpk TCpkSechpVn2 q “ degpSech´kpVn´k
2

qq

and to apply the formula for the degree of the secant varieties of Vn2 in Remark 2.6. �

We will need the following result on fibrations with smooth fibers on a smooth base.

Proposition 2.8. Let f : X Ñ Y be a surjective morphism of varieties over an algebraically closed field with
equidimensional smooth fibers. If Y is smooth then X is smooth as well.
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Proof. By [Sch10, Theorem 3.3.27] the morphism f : X Ñ Y is flat. Finally, since all the fibers of f : X Ñ Y are
smooth and of the same dimension [Mum99, Theorem 3’, Chapter III, Section 10] yields that X is smooth.

However, a direct proof is at hand and we present it in what follows. Since the problem is local on both X and
Y we may assume that X Ă KN is an affine variety cut out by polynomials g1, . . . , ga, Y “ Km, and f : X Ñ Y

is given by fpxq “ pf1pxq, . . . , fmpxqq.
Consider a point p P X . Without loss of generality we may assume that fppq “ 0. Then the fiber X0 of f

through p is given by

f´1p0q “ tx P KN | g1pxq “ ¨ ¨ ¨ “ gapxq “ f1pxq “ ¨ ¨ ¨ “ fmpxq “ 0u.

Now, sinceX0 is smooth at p there are b ď a polynomials among g1, . . . , ga and l ď m polynomials among f1, . . . , fm
such that b` l “ m `N ´ dimpXq and the vectors

p∇g1qppq, . . . , p∇gbqppq, p∇f1qppq, . . . , p∇flqppq

are linearly independent. Now, l ď m yields b ě N ´ dimpXq. On the other hand, X is irreducible of codimension
N ´ dimpXq and hence b ď N ´ dimpXq. We conclude that b “ N ´ dimpXq and the vectors

p∇g1qppq, . . . , p∇gN´dimpXqqppq

are linearly independent. So X is smooth at p. �

Notation 2.9. We will denote by SechpVn2 qi the strict transform of SechpVn2 q in Qpnqi for h ą i. Furthermore, as
already said in Construction 2.5, for simplicity of notation we will denote by Eqi both the exceptional divisor of fi
and its strict transforms in the subsequent blow-ups.

In the following we will analyze the geometry of the SLpn`1q-orbits in the blow-ups Qpnqi in Construction 2.5.

Proposition 2.10. For any i “ 0, . . . , n´1 the variety Qpnqi is smooth and the divisors Eq
1
, . . . , E

q
i are smooth and

intersect transversally in Qpnqi. Furthermore, the strict transform Seci`1pVn2 qi of Seci`1pVn2 q in Qpnqi is smooth
and the intersections among Seci`1pVn2 qi, Eq

1
, . . . , E

q
i are transversal. The closures of the orbits of the SLpn ` 1q-

action on Qpnqi induced by (2.2) are given by all the possible intersections of Eq
1
, . . . , E

q
i , Seci`1pVn2 qi, . . . , SecnpVn2 qi

and Qpnqi itself.
In particular, the variety Qpnq is smooth, the divisors Eq

1
, . . . , E

q
n´1

, SecnpVn2 qn´1 are smooth and the intersec-
tions among them are transversal, the closures of the orbits of the SLpn` 1q-action on Qpnq induced by (2.2) are
given by all the possible intersections of the divisors Eq

1
, . . . , E

q
n´1

, SecnpVn2 qn´1 and Qpnq itself. Hence, Qpnq is
wonderful.

Proof. We will proceed as follows. For i “ 0, 1 we will prove the statement for any n. Then we will prove that if
for i ă j the statement holds for any n then it also holds for i “ j and any n. This will prove the statement for
any n ě 1 and i “ 0, . . . , n´ 1.

For i “ 0 we have Qpnq0 – PN , there are no exceptional divisors, and the closures of the orbits of the action
(2.2) are the secant varieties of Vn2 . Therefore, for i “ 0 the statements holds for any n. Even though we could use
the case i “ 0 as the first step of the proof, to get acquainted with the arguments we will apply, we develop in full
detail the case i “ 1 as well.

The variety Qpnq1 is the blow-up of PN along the Veronese variety Vn2 . Hence it is smooth. By Proposition 2.7
Sec2pVn2 q is smooth away from Vn2 and Sec2pVn2 q1 X E

q
1

Ñ Vn2 is a fibration whose fibers are isomorphic to V
n´1

2
.

Hence, Proposition 2.8 yields that Sec2pVn2 q1 XE
q
1

is smooth and since dimpSec2pVn2 q1 XE
q
1

q “ n`n´1 “ 2n´1 “
dimpSec2pVn2 q1q ´ 1 we conclude that Sec2pVn2 q1 is smooth and the intersection Sec2pVn2 q1 X E

q
1

is transversal.
Now, via the action of SLpn` 1q in (2.2) we can translate any fiber of Eq

1
over Vn2 to any other fiber. Fix one

such fiber Eq
1,p. By Proposition 2.7 we have that SechpVn2 q1 XE

q
1,p “ Sech´1pVn´1

2
q and the action of SLpn` 1q in

(2.2) restricts on Eq
1,p to the corresponding action of SLpnq. This proves the statement about the orbits for Qpnq1

for any n ě 1.
Assume that for any i ă j the statement holds for any n. Since Qpnqj´1 and SecjpV

n
2 qj´1 Ă Qpnqj´1 are smooth

the blow-up Qpnqj of Qpnqj´1 along SecjpV
n
2 qj´1 is smooth as well. Furthermore, since all the intersections among

SecjpV
n
2 qj´1, E

q
1
, . . . , E

q
j´1

in Qpnqj´1 are transversal we have that all the intersections among Eq
1
, . . . , E

q
j in Qpnqj

are transversal as well.
Now, consider an intersection of the following form Secj`1pVn2 qj X E

q
j1

X ¨ ¨ ¨ X E
q
jt

. By Proposition 2.7 the
restriction of the blow-down morphism

Secj`1pVn2 qj X E
q
j1

X ¨ ¨ ¨ X E
q
jt

Ñ E
q
j1

X ¨ ¨ ¨ X E
q
jt´1

X SecjtpVn2 qjt´1
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has fibers isomorphic to Secj´jt`1pVn´jtqj´jt . Since both Eqj1 X¨ ¨ ¨XEqjt´1
XSecjtpV

n
2 qjt´1 and Secj´jt´1pVn´jtqj´jt

are smooth Proposition 2.8 yields that Secj`1pVn2 qj X E
q
j1

X ¨ ¨ ¨ X E
q
jt

is smooth as well. Moreover, note that

dimpSecj`1pVn2 qj X E
q
j1

X ¨ ¨ ¨ X E
q
jt

q “ dimpEqj1 X ¨ ¨ ¨ X E
q
jt´1

X SecjtpVn2 qjt´1q ` dimpSecj´jt`1pVn´jtqj´jtq

and

dimpEqj1 X ¨ ¨ ¨ X E
q
jt´1

X SecjtpVn2 qjt´1q “
2njt ´ j2t ` 3jt ´ 2

2
´ pt´ 1q

yield that dimpSecj`1pVn2 qj X E
q
j1

X ¨ ¨ ¨ X E
q
jt

q is given by

2njt´j2t `3jt´2

2
´ pt´ 1q ` 2pn´jtqpj´jt`1q´pj´jt`1q2`3pj´jt`1q´2

2
“

2npj`1q´pj`1q2`3pj`1q´2

2
´ t “ dimpSecj`1pVn2 qjq ´ t

and hence the intersection Secj`1pVn2 qj X E
q
j1

X ¨ ¨ ¨ X E
q
jt

is transversal.

In the following we prove the claim about the orbit closures. If an orbit closure in Qpnqi is not contained in
the exceptional divisor Eqi then it is the strict transform of an orbit closure in Qpnqi, and hence it is given as an
intersection among Eq

1
, . . . , E

q
i´1

, Seci`1pVn2 qi, . . . , SecnpVn2 qi.

Now, let us analyze the orbit closures in the exceptional divisor Eqi . The fibers of Eqi over SecipV
n
2 qi´1 are

projective spaces of dimension

Nn´i “

ˆ
n´ i` 2

2

˙
´ 1.

Moreover, SLpn` 1q acts transitively on fibers that lie over the same orbit in Qpnqi´1. Note that by Lemma 2.7
SechpVn2 qi intersects each of these Nn´i-dimensional projective spaces along Sech´ipV

n´i
2

q, and the SLpn`1q-action
on Qpnqi in (2.2) induces the corresponding SLpn´ i` 1q-action on the fibers of Eqi . Finally, the statement on the
orbit closures in Qpnqi´1 follows then from the statement on the orbit closures in Qpn´ iq0. �

3. Complete symmetric symplectic forms

From now on we will consider the case n`1 “ 2r even. Let Spp2rq be the symplectic group of 2rˆ2r symplectic
matrices, that is

Spp2rq “ tM P HompV, V q |M tΩM “ Ωu

where

(3.1) Ω “

ˆ
0 Ir,r

´Ir,r 0

˙

is the standard symplectic form. Over an algebraically closed field of characteristic zero the symplectic group is a
non-compact, irreducible, simply connected, simple Lie group.

Remark 3.2. Let us write a 2r ˆ 2r matrix M as

M “

ˆ
A B

C D

˙

where A,B,C,D are four r ˆ r matrices. The condition of being symplectic translates then into the following
system of equations $

’’&
’’%

´CtA `AtC “ 0r,r;

´CtB `AtD “ Ir,r;

´DtA `BtC “ ´Ir,r;
´DtB `BtD “ 0r,r.

Considering the transformation

(3.3)

ˆ
A B

C D

˙
ÞÑ

ˆ
A ´ Ir,r B

C D ´ Ir,r

˙

we get the following relations for the tangent space of Spp2rq at the identity

A “ ´Dt, B “ Bt, C “ Ct.

Hence, the tangent space of Spp2rq at the identity is the Lie algebra spp2r,Kq consisting of 2rˆ 2r matrices of the
form ˆ

A B

C ´At

˙

with C and B symmetric. In particular, dimpSpp2rqq “ r2 ` 2
rpr`1q

2
“ rp2r ` 1q.
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Remark 3.4. By [Ou12, Section 1] the Borel subgroup of the symplectic group can be described as follows:

B “
! ˆ

A 0r,r
B A´t

˙
with AtB “ BtA

)

where A P GLprq is lower triangular and B is a general r ˆ r matrix. Now, Spp2rq is a subgroup of SLpn` 1q
and the SLpn` 1q-action (2.2) restricts to the following Spp2rq-action:

(3.5)
Spp2rq ˆ PN ÝÑ PN

pM,Zq ÞÝÑ MZM t

We denote by O2r the Spp2rq-orbit of the identity in PN and by X2r “ O2r Ď PN its closure.

Proposition 3.6. Let Yk “ Ok Ă PN be the closure of the Spp2rq-orbit of the matrix

Ik “

ˆ
Ik,k 0k,2r´k

02r´k,k 02r´k,2r´k

˙

via the action in (2.2). If k ď r then

dimpYkq “ rp2r ` 1q ´
kpk ´ 1q

2
´ rpr ´ kq ´

rpr ` 1q

2
´

pr ´ kqpr ´ k ` 1q

2
´ 1 “ 2rk ` k ´ k2 ´ 1.

Finally, dimpY2rq “ rpr ` 1q.

Proof. Our aim is to compute the dimension of the stabilizer H Ă Spp2rq of Ik. Consider the incidence correspon-
dence

I “ tpM,λq |MIkM
t “ λIku Ď Spp2rq ˆK˚

Spp2rq K˚

ψφ

Note that the fibers of ψ are isomorphic subgroups of Spp2rq. We will compute the dimension of H1 “ ψ´1p1q and
then the dimension of H “ φpIq will be given by

(3.7) dimpHq “ dimpIq “ dimpH1q ` 1.

Consider first the case k ď r. Subdivide as usual the matrices in Spp2rq in four r ˆ r blocks and write the matrix
whose orbit we want to study as ˆ

Zk 0r,r
0r,r 0r,r

˙

where Zk is the following r ˆ r matrix

Zk “

ˆ
Ik,k 0k,r´k

0r´k,k 0r´k,r´k

˙
.

Now, we have ˆ
A B

C D

˙ ˆ
Zk 0r,r
0r,r 0r,r

˙ ˆ
At Ct

Bt Dt

˙
“

ˆ
AZkA

t AZkC
t

CZkA
t CZkC

t

˙
.

Subdivide the matrix A in blocks as follows

A “

ˆ
Ak,k Ak,r´k

Ar´k,k Ar´k,r´k

˙
.

Thenˆ
Ak,k Ak,r´k

Ar´k,k Ar´k,r´k

˙ ˆ
Ik,k 0k,r´k

0r´k,k 0r´k,r´k

˙ ˆ
Atk,k Atr´k,k

Atk,r´k Atr´k,r´k

˙
“

ˆ
Ak,kA

t
k,k Ak,kA

t
r´k,k

Ar´k,kA
t
k,k Ar´k,kA

t
r´k,k

˙
.

Therefore, considering the transformation (3.3) we get the following relations for the tangent space of H1 at the
identity

Ak,k “ ´Atk,k, Ar´k,k “ 0r´k,k.

Moreover, subdividing C as we did for A, we get that the matrix
ˆ

Ak,k Ak,r´k

Ar´k,k Ar´k,r´k

˙ ˆ
Ik,k 0k,r´k

0r´k,k 0r´k,r´k

˙ ˆ
Ctk,k Ctr´k,k

Ctk,r´k Ctr´k,r´k

˙
“

ˆ
Ak,kC

t
k,k Ak,kC

t
r´k,k

Ar´k,kC
t
k,k Ar´k,kC

t
r´k,k

˙

must be zero. This yields the following further relations for the tangent space of H1 at the identity

Ck,k “ 0k,k, Cr´k,k “ 0r´k,k.
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Plugging-in the relations for the tangent space at the identity of Spp2rq in Remark 3.2 we get that the tangent
space at the identity of H1 is given by matrices of the form

ˆ
A B

C ´At

˙

where B “ Bt and C “ Ct. Note that C “ Ct, Ck,k “ 0k,k, Cr´k,k “ 0r´k,k yield Ck,r´k “ 0k,r´k and

Cr´k,r´k “ Ctr´k,r´k. Hence A depends on kpk´1q
2

`kpr´kq`pr´kq2 parameters, B depends on rpr`1q
2

parameters

and C depends on pr´kqpr´k`1q
2

parameters. Then by (3.7) we get

dimpHq “
kpk ´ 1q

2
` kpr ´ kq ` pr ´ kq2 `

rpr ` 1q

2
`

pr ´ kqpr ´ k ` 1q

2
` 1

and

dimpYkq “ dimpSpp2rqq ´ dimpHq “ rp2r ` 1q ´ dimpHq

yields the formula in the statement.
Finally, consider the case k “ 2r, and let H Ă Spp2rq be the stabilizer of the identity matrix. The equality

ˆ
A B

C D

˙ ˆ
Ir,r 0r,r
0r,r Ir,r

˙ ˆ
At Ct

Bt Dt

˙
“

ˆ
AAt `BBt ACt `BDt

CAt `DBt CCt `DDt

˙
“

ˆ
λIr,r 0r,r
0r,r λIr,r

˙

for some λ P K˚ yields, applying as usual the transformation (3.3), the following system of equations
$
&
%

´CtpA ´ Ir,rq ` pA ´ Ir,rqtC “ 0r,r;

´CtBt ` pA ´ Ir,rqtpD ` Ir,rq “ pD ´ Ir,rqtpA ´ Ir,rq ´BtC;

´pD ´ Ir,rqtB `BtpD ´ Ir,rq “ 0r,r.

Note that if M P H taking the determinants on both sides of MTΩM “ λΩ we see that λ can only take finitely
many values. Hence, by Remark 3.2 we have the following relations for the tangent space of H at the identity

A “ ´Dt, B “ Bt, C “ Ct, C “ ´Bt, A “ ´At.

Therefore, the tangent space consists of matrices of the following form
ˆ

A B

´Bt ´At

˙

with B “ Bt and A “ ´At. We conclude that

dimpHq “
rpr ` 1q

2
`
rpr ´ 1q

2
“ r2

and hence dimpY2rq “ rp2r ` 1q ´ r2 “ rpr ` 1q. �

Corollary 3.8. The projective variety X2r is irreducible and its dimension is given by dimpX2rq “ rpr ` 1q.

Proof. The variety X2r is the closure of an Spp2rq-orbit, so it is irreducible. Since X2r “ Y2r the formula for its
dimension follows from Proposition 3.6. �

Example 3.9. Consider the case r “ 1. Then Corollary 3.8 yields dimpX2q “ 2 and hence X2 “ P2. Moreover,
O2 “ P2zC where C Ă P2 is the conic parametrizing rank one matrices.

Remark 3.10. We work out equations for X2r. The points of the orbit O2r represent symmetric matrices having a
scalar multiple that is symplectic, that is ZtΩZ “ λΩ for some λ P K˚. The matrix N “ ZtΩZ is skew-symmetric
and so Ni,i “ 0 for i “ 0, . . . , 2r ´ 1. Furthermore, for any i “ 0, . . . , 2r ´ 2 we must have

Ni,i`1 “ ¨ ¨ ¨ “ Ni,r`i´1 “ Ni,r`i`1 “ ¨ ¨ ¨ “ Ni,2r´1 “ 0.

This gives 2r ´ i ´ 2 quadratic equations for any i “ 0, . . . , r ´ 1, and 2r ´ i ´ 1 quadratic equations for any
i “ r, . . . , 2r ´ 1. Moreover, we must have

N0,r “ N1,r`1 “ ¨ ¨ ¨ “ Nr´1,2r´1

and hence we get r ´ 1 additional quadratic equations. Summing-up we get

r´1ÿ

i“0

p2r ´ i´ 2q `
2r´1ÿ

i“r

p2r ´ i´ 1q ` r ´ 1 “ p2r ` 1qpr ´ 1q

quadratic equations for X2r in PN .



COMPLETE SYMPLECTIC QUADRICS AND KONTSEVICH SPACES OF CONICS IN LAGRANGIAN GRASSMANNIANS 11

Now, we explicitly compute these equations. Consider a general symmetric matrix Z “ pzi,jqi,j“0,...,2r´1 with
zi,j “ zj,i and the standard symplectic form Ω. Then

ci,j :“ pZ ¨ Ωqi,j “
2r´1ÿ

k“0

zi,kΩk,j “

#
zi,j´r for j ě r;

´zi,j`r for j ă r;

and so

Ni,j :“ pZ ¨ Ω ¨ Zqi,j “
2r´1ÿ

k“0

ci,kzk,j “
r´1ÿ

k“0

ci,kzk,j `
2r´1ÿ

k“r

ci,kzk,j “
r´1ÿ

k“0

´zi,k`rzk,j ` zi,kzk`r,j .

Summing-up, the equations#
Nl,r`l ´Nl`1,r`l`1 “ 0 for l “ 0, . . . , r ´ 2;

Ni,j “ 0 for i “ 0, . . . , 2r ´ 2, j ą i, j ‰ r ` i;

can be explicitly written as follow"řr´1

k“0
´zl,k`rzk,r`l ` zl,kzk`r,r`l ` zl`1,k`rzk,r`l`1 ´ zl`1,kzk`r,r`l`1 “ 0 for l “ 0, . . . , r ´ 2;řr´1

k“0
´zi,k`rzk,j ` zi,kzk`r,j “ 0 for i “ 0, . . . , 2r ´ 2, j ą i, j ‰ r ` i.

Now, our aim is to construct a wonderful compactification of the space of complete symmetric symplectic forms.

Construction 3.11. Set ShpV2r´1

2
q :“ SechpV2r´1

2
q XX2r. Let us consider the following sequence of blow-ups:

- X
p1q
2r is the blow-up of X

p0q
2r :“ X2r along the Veronese variety V

2r´1

2
Ă X2r;

- X
p2q
2r is the blow-up of X

p1q
2r along the strict transform of S2pV2r´1

2
q;

...

- X
piq
2r is the blow-up of X

pi´1q
2r along the strict transform of SipV

2r´1

2
q;

...

- X
pr´1q
2r is the blow-up of X

pr´2q
2r along the strict transform of Sr´1pV2r´1

2
q.

Let fi : X
piq
2r Ñ X

pi´1q
2r be the blow-up morphism. We will denote by Ei both the exceptional divisor of fi and

its strict transforms in the subsequent blow-ups. We set S2r :“ X
pr´1q
2r and we indicate with f : S2r Ñ X2r the

composition of the fi.

Let M2r,2rpKq be the space of 2r ˆ 2r matrices. Following [dlCb16] we define the operator

ΦΩ : M2r,2rpKq ÝÑ M2r,2rpKq
A ÞÑ Ω´1ATΩ

Definition 3.12. A matrix A P M2r,2rpKq is symplectically congruent to a matrix B P M2r,2rpKq if there exists
a symplectic matrix Q such that QAQT “ B.

By [dlCb16, Theorem 21] a matrix A P M2r,2rpKq is symplectically congruent to a diagonal matrix if and only
if A is symmetric and AΦΩpAq is diagonalizable.

Proposition 3.13. The quadratic equations in Remark 3.10 cut out X2r set-theoretically. Furthermore Yi “
SecipV

2r´1

2
q XX2r, set-theoretically, and there is a stratification

Y1 Ă Y2 Ă ¨ ¨ ¨ Ă Yr´1 Ă Yr Ă Y2r “ X2r.

In particular, dimpSecipV
2r´1

2
q XX2rq “ 2ri` i´ i2 ´ 1 for i “ 1, . . . , r and Yr is a divisor in X2r.

Proof. Let Z be a symmetric matrix satisfying the equations in Remark 3.10. Then we have two cases:

(i) N0,r “ ¨ ¨ ¨ “ Nr´1,2r´1 “ λ P K˚;
(ii) N0,r “ ¨ ¨ ¨ “ Nr´1,2r´1 “ 0.

Consider (i). Then ZtΩZ “ λΩ and detpZq ‰ 0. Moreover,

ZΦΩpZq “ ZΩ´1ZtΩ “ ´ZtΩZΩ “ ´λΩ2 “ λI2r,2r

and by [dlCb16, Theorem 21] Z is symplectically congruent to a diagonal matrix.
In case (ii) ZtΩZ is the zero matrix. So detpZq “ 0, and ZΦΩpZq is the zero matrix as well. Again, [dlCb16,

Theorem 21] yields that Z is symplectically congruent to a diagonal matrix.
So if Z is a symmetric matrix satisfying the equations in Remark 3.10 there is a symplectic matrix Q such that

QZQt “ D with D diagonal. Our aim is to prove that D can be moved to a matrix of the form Ik, where k is the
rank of D, with the action of the symplectic group.
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LetDα “ diagpα1, . . . , α2rq be a diagonal matrix satisfying the equations in Remark 3.10. Then either αiαr`i “ 0

for all i “ 1, . . . , r, or αiαr`i “ λ P K˚ for all i “ 1, . . . , r. Write

Dα “

ˆ
Dα1,...,αp

0r,r
0r,r Dαp`1,...,αp`q

˙

with p ` q ď r, where Dα1,...,αp
is an r ˆ r diagonal matrix with the αi appearing on the diagonal, and similarly

for Dαp`1,...,αp`q
. Note that up to permuting the upper and lower diagonal simultaneously we may assume that

α1, . . . , αp are the first p entries on the diagonal of Dα1,...,αp
, and αp`1, . . . , αp`q are the last q entries on the

diagonal of Dαp`1,...,αp`q
.

Now, set p ` q “ r. Let A,B,C,D be r ˆ r matrices defined as follows:

- the first p entries on the diagonal of A are ai P K˚ for i “ 1, . . . , p, and the other entries are zero;
- the last q entries on the diagonal of B are ´b´1

i P K˚ for i “ p` 1, . . . , p` q, and the other entries are zero;
- the last q entries on the diagonal of C are bi P K˚ for i “ p` 1, . . . , p` q, and the other entries are zero;
- the first p entries on the diagonal of D are a´1

i P K˚ for i “ 1, . . . , p, and the other entries are zero.

Consider the matrix

P “

ˆ
A B

C D

˙

and note that P is symplectic. Furthermore, by taking ai, bj such that a2i “ αi for i “ 1, . . . , p, and b´2

j “ αj for

j “ p` 1, . . . , p` q we have P tIrP “ Dα when p` q “ r.
If p ` q ă r by permuting the upper diagonal of Ip`q, we transform Ip`q into the matrix I˚

p`q whose entries
on the diagonal are pI˚

p`qqi,i “ 1 for i “ 1, . . . , p, pI˚
p`qqi,i “ 0 for i “ p ` 1, . . . , p ` s, pI˚

p`qqi,i “ 1 for i “
p ` s ` 1, . . . , p ` s ` q, and pI˚

p`qqi,i “ 0 for i “ p ` s ` q ` 1, . . . , 2r, where p ` s ` q “ r. In this case consider

r ˆ r diagonal matrices A,B,C,D such that

- the first p entries on the diagonal of A are ai P K˚ for i “ 1, . . . , p, pAqi,i “ 1 for i “ p` 1, . . . , p` s, pAqi,i “ 0

for i “ p` s ` 1, . . . , p` s` q;
- the first p` s entries on the diagonal of B are zero, followed by ´b´1

p`1
, . . . ,´b´1

p`q;

- the first p` s entries on the diagonal of C are zero, followed by bp`1, . . . , bp`q;

- the first p entries on the diagonal of D are a´1

i P K˚ for i “ 1, . . . , p, pDqi,i “ 1 for i “ p ` 1, . . . , p ` s,

pDqi,i “ 0 for i “ p ` s` 1, . . . , p` s ` q;

and set

P “

ˆ
A B

C D

˙
.

Then P is symplectic and by taking again ai, bj such that a2i “ αi for i “ 1, . . . , p, and b´2

j “ αj for j “ p`1, . . . , p`q

it holds P
t
I˚
p`qP “ Dα.

Furthermore, when Dα is of maximal rank we consider the diagonal symplectic matrix

P “ diagpa1, . . . , ar, a
´1

1
, . . . , a´1

r q.

Note that taking ai P K˚ such that a2i “ αiµ
´1, with µ2 “ λ, for i “ 1, . . . , r, we get that P tI2r,2rP is a scalar

multiple of Dα. Consider the matrices

Ψt “

ˆ
Ir,r 0r,r
0r,r Tr,r

˙
; Λt “

¨
˝

Ik,k 0 0k,2r´k´1

0 t 01,2r´k´1

02r´k´1,k 02r´k´1,1 02r´k´1,2r´k´1

˛
‚ for k “ 1, . . . , r ´ 1

where Tr,r “ diagpt, . . . , tq. By the first part of the proof we have that tΨtutPK˚ is a family of matrices in O2r, and
limtÞÑ0 Ψt “ Ir. Furthermore, tΛtutPK˚ is a family of matrices in Ok`1, and limtÞÑ0 Λt “ Ik for k “ 1, . . . , r ´ 1.

Summing-up we proved that if Z is a symmetric matrix for rank k with 1 ď k ď r or k “ 2r satisfying the
equations in Remark 3.10 then Z can be symplectically transformed into the matrix Ik, and hence it lies in Ok. �

Remark 3.14. Proposition 3.13 yields that the Veronese variety V
2r´1

2
is contained in X2r. On the other hand,

for h ě 2 the secant variety SechpV2r´1

2
q is not contained in X2r.

Proposition 3.15. For any k ě r we have that X2r X SecrpV2r´1

2
q “ X2r X SeckpV2r´1

2
q

Proof. Assume there is a matrix M P X2r X SeckpV2r´1

2
q of rank r ă k ă 2r ´ 1. Arguing as in the proof

of Proposition 3.13 we can move M with the action of Spp2rq in a diagonal matrix Dk of rank k, and Dk P
X2r X SeckpV2r´1

2
q. However, Dk does not satisfy the equation Nj,r`j ´ Nj`1,r`j`1 “ 0 for X2r in Remark 3.10.

A contradiction. �
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We analyze in detail the geometry of the objects we introduced in the first non trivial case, namely r “ 2.

Proposition 3.16. The variety X4 is isomorphic to the Grassmannian Gp1, 4q Ă P9 of lines in P4. Furthermore,
V3
2 Ă X4, and S2pV3

2 q Ă X4 is an irreducible and reduced divisor singular along V3
2 . In particular, the equations in

Remark 3.10 cut out X4 scheme-theoretically, and S2pV3
2 q “ Y2 scheme-theoretically.

Proof. Consider homogeneous coordinates zi,j on P9 and identify them with the entries of a general 4ˆ4 symmetric

matrix Z. The change of variables z0,0 ÞÑ z1,2, z0,1 ÞÑ z0,1, z0,2 ÞÑ
z1,4´z2,3

2
, z0,3 ÞÑ z0,2, z1,1 ÞÑ z1,3, z1,2 ÞÑ

z0,3, z1,3 ÞÑ
z1,4`z2,3

2
, z2,2 ÞÑ z3,4, z2,3 ÞÑ z0,4, z3,3 ÞÑ z2,4 transforms the five equations in Remark 3.10 into the

standard Plücker equations cutting out Gp1, 4q in P9.
By Remark 3.14 we have V3

2 Ă X4. We can compute the tangent cones of S2pV3
2 q Ă X4 at a point representing a

rank one matrix, and at a point representing a rank two matrix using the equations for X4 in Remark 3.10 together
with the equations cutting out Sec2pV3

2 q. In the first case we get a cone with a 3-dimensional vertex over V2
1 which

in particular is irreducible and reduced, and in the second case we get a 5-dimensional linear space. Finally, since by
Proposition 3.13 Y2 has dimension five we conclude that the equations in Remark 3.10 together with the equations
cutting out Sec2pV3

2 q define Y2 scheme-theoretically. �

Remark 3.17. The variety X4 – Gp1, 4q has been studied in relation to moduli spaces of rank two vector bundles
over a smooth quadric [OS94, Table I].

Proposition 3.18. The tangent cone TCpkpX2rq of X2r at a point pk P SkpV2r´1

2
qzSk´1pV2r´1

2
q for k “ 1, . . . , r´1

is a cone with vertex of dimension kp2r`1´kq´1 over X2pr´kq. Moreover, X2r is smooth along SrpV2r´1

2
qzSr´2pV2r´1

2
q,

and the equations in Remark 3.10 define X2r scheme-theoretically.
The tangent cone TCpkpShpV2r´1

2
qq of ShpV2r´1

2
q at a point pk P SkpV2r´1

2
qzSk´1pV2r´1

2
q for k “ 1, . . . , r´1, k ă

h is a cone with vertex of dimension kp2r ` 1 ´ kq ´ 1 over Sh´kpV
2pr´kq´1

2
q. Moreover, the equations in Remark

3.10 together with the equations cutting out SechpV2r´1

2
q define ShpV2r´1

2
q scheme-theoretically.

In particular, X2r is smooth along SrpV2r´1

2
qzSr´2pV2r´1

2
q and SrpV2r´1

2
q is a divisor in X2r.

Proof. Let pk “ ppi,jqi,j“0,...,2r´1,iďj be the point representing the standard matrix of rank k with pi,i “ 1 for
i “ 0, . . . , k ´ 1 and pi,j “ 0 otherwise.

We proceed by induction on r. The base case r “ 2 is in Proposition 3.16. We will use the equations in Remark
3.10 to compute TCpkX2r. Consider the change of coordinates zi,i ÞÑ zi,i´z0,0 for i “ 1, . . . , k´1, and set z0,0 “ 1.
Note that the lowest degree terms of the equations in Remark 3.10 after this change of coordinates are obtained by
removing from ZtΩZ “ λΩ the rows and columns indexed by 0, . . . , k´1, r, . . . , r`k´1. Therefore, we get a cone
with vertex of dimension kp2r ` 1 ´ kq ´ 1 over X2pr´kq which by induction hypothesis is irreducible and reduced
since the equations in Remark 3.10 define X2pr´kq scheme-theoretically. Now, kp2r ` 1 ´ kq ` dimpX2pr´kqq “
dimpX2rq yields that this is the tangent cone TCpkX2r, and hence the equations in Remark 3.10 define X2r

scheme-theoretically. Note that at the points representing Ir and I2r,2r the equations in Remark 3.10 yield a linear
subspace of the same dimension of X2r.

Now, consider ShpV2r´1

2
q. Note that TCpkShpV2r´1

2
q is contained in TCpkX2r X TCpkSechpV2r´1

2
q. By the

previous computation of TCpkX2r and the computation of TCpkSechpV2r´1

2
q in Proposition 2.7, we conclude

that TCpkX2r X TCpkSechpV2r´1

2
q is a cone with vertex of dimension kp2r ` 1 ´ kq ´ 1 over ShpV

2pr´kq´1

2
q “

Sech´kpV
2pr´kq´1

2
qXX2pr´kq. Again by induction this is an irreducible and reduced cone which by the computation

of the dimension of ShpV2r´1

2
q in Proposition 3.13 must coincide with TCpkSh. Hence the equations in Remark

3.10 together with the equations cutting out SechpV2r´1

2
q define ShpV2r´1

2
q scheme-theoretically. �

Now, we are ready to prove the main result of this section. We will denote by S
piq
h pV2r´1

2
q the strict transform

of ShpV2r´1

2
q in X

piq
2r .

Theorem 3.19. For any i “ 1, . . . , r ´ 1 the strict transform S
piq
i`1

pV2r´1

2
q of Si`1pV2r´1

2
q in X

piq
2r is smooth.

Moreover, the variety S2r is smooth and the exceptional divisors E1, . . . , Er´1 Ă S2r are smooth as well.
The closures of the orbits of the Spp2rq-action on S2r induced by the action in (3.5) are given by all the possible

intersections among E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q and X

piq
2r itself.

In particular, the variety S2r with boundary divisors E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q is wonderful.

Proof. For every r in X
p0q
2r we have S

p0q
1

pV2r´1

2
q “ V

2r´1

2
which is smooth. We will assume that S

pj´1q
j pV2r´1

2
q

is smooth for every r and for every j ă i and prove that also S
pi´1q
i pV2r´1

2
q in X

pi´1q
2r is smooth. We have
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S
pi´1q
i pV2r´1

2
q “ Sec

pi´1q
i pV2r´1

2
q XX

pi´1q
2r , so we consider S

pi´1q
i pV2r´1

2
q inside Qp2r´1qpi´1q. By Proposition 2.10,

for every r and for every i “ 0, . . . , 2r ´ 1 the varieties Qp2r ´ 1qpi´1q, Sec
pi´1q
i pV2r´1

2
q, Eq

1
, . . . , E

q
i´1

are smooth.

Now, S
pi´1q
i pV2r´1

2
q is smooth away from E

q
1
, . . . , E

q
i´1

. Moreover, by Proposition 3.18 for every k “ 1, . . . , i´1,

S
pi´1q
i pV2r´1

2
qXEqk Ñ S

pk´1q
k pV2r´1

2
q is a fibration with fibers isomorphic to S

pi´k´1q
i´k pV

2pr´kq´1

2
q which is smooth by

induction. Proposition 2.8 yields that S
pi´1q
i pV2r´1

2
q XE

q
k is smooth for k “ 1, . . . , i´ 1. Now, since by Proposition

3.13 we have

dimS
pk´1q
k pV2r´1

2
q ` dimS

pi´k´1q
i´k pV

2pr´kq´1

2
q “ 2ri` i´ i2 ´ 2 “ dimS

pi´1q
i pV2r´1

2
q ´ 1

we get that S
pi´1q
i pV2r´1

2
q is smooth as well.

By Proposition 3.18 for every r, in X
p1q
2r we have that E1 XS

p1q
2

pV2r´1

2
q Ñ V

2r´1

2
is a fibration with fibers isomor-

phic to V
2pr´1q´1

2
and then by Proposition 2.8 E1XS

p1q
2

pV2r´1

2
q is smooth of dimension 4r´4 “ dimpS

p1q
2

pV2r´1

2
qq´1.

More generally, consider intersections of the form S
piq
i`1

pV2r´1

2
q X Ej1 X ¨ ¨ ¨ X Ejt , for 1 ď j1 ă ¨ ¨ ¨ ă jt ď i. By

Proposition 3.18, the restriction of the blow-down morphism

S
piq
i`1

pV2r´1

2
q X Ej1 X ¨ ¨ ¨ X Ejt Ñ Ej1 X ¨ ¨ ¨ X Ejt´1

X S
pjt´1q
jt

pV2r´1

2
q

has fibers isomorphic to S
pi´jtq
i`1´jt

pV
2pr´jtq´1

2
q. Now, by Proposition 2.8 S

piq
i`1

pV2r´1

2
qXEj1 X ¨ ¨ ¨XEjt is smooth since

we proved before that S
pi´jtq
i`1´jt

pV
2pr´jtq´1

2
q is smooth and Ej1 X ¨ ¨ ¨ XEjt´1

XS
pjt´1q
jt

pV2r´1

2
q is smooth by induction.

Moreover,

dimpS
piq
i`1

pV2r´1

2
q X Ej1 X ¨ ¨ ¨ X Ejtq “ dimpEj1 X ¨ ¨ ¨ X Ejt´1

X S
pjt´1q
jt

pV2r´1

2
qq ` dimpS

pi´jtq
i`1´jt

pV
2pr´jtq´1

2
qq

and by induction dimpEj1 X¨ ¨ ¨XEjt´1
XS

pjt´1q
jt

pV2r´1

2
qq “ 2rjt`jt´j2t ´1´pt´1q. This yields, using Proposition

3.13, that

(3.20) dimpS
piq
i`1

pV2r´1

2
q X Ej1 X ¨ ¨ ¨ X Ejtq “ 2rpi ` 1q ` pi` 1q ´ pi` 1q2 ´ 1 ´ t “ dimpS

piq
i`1

pV2r´1

2
qq ´ t.

Now, consider the variety S2r as a subvariety of the variety Qp2r ´ 1qr´1 in Construction 2.5. By Proposition
3.18 S2r is smooth away from the exceptional divisors. Furthermore, the exceptional divisor Eqi in Construction

2.5 intersects S2r in the exceptional divisor Ei in Construction 3.11. By Proposition 3.18 Ei Ñ S
pi´1q
i pV2r´1

2
q is a

fibration with S2pr´iq as fiber. Hence Eqi X S2r is a smooth divisor in S2r and therefore S2r is smooth.
Now, consider an intersection of the form Ej1 X ¨ ¨ ¨ X Ejt and the fibration

Ej1 X ¨ ¨ ¨ X Ejt Ñ Ej1 X . . . Ejt´1
X S

pjt´1q
jt

pV2r´1

2
q.

By Proposition 3.18 this fibration has fibers isomorphic to S2pr´jtq. By the previous part of the proof we have that

dimpEj1 X . . . Ejt´1
X S

pjt´1q
jt

pV2r´1

2
qq ` dimpS2pr´jtqq “ r2 ` r ´ t “ dimpS2rq ´ t

and hence the intersection Ej1 X ¨ ¨ ¨ X Ejt is transversal. Note also that considering the fibration

Spr´1q
r pV2r´1

2
q X Ej1 X ¨ ¨ ¨ X Ejt Ñ Ej1 X ¨ ¨ ¨ X Ejt´1

X S
pjt´1q
jt

pV2r´1

2
q

and (3.20) we get that the intersection S
pr´1q
r pV2r´1

2
q X Ej1 X ¨ ¨ ¨ X Ejt is transversal as well.

Finally, for the claim about the orbit closures it is enough to recall that the Spp2rq-action on S2r is the restriction
of the SLp2rq-action on Qp2r ´ 1qr´1 in (2.2) and to use the statement about the orbit closures in Proposition
2.10. �

Proposition 3.21. We have that
multSrpV2r´1

2
q S2r´1pV2r´1

2
q “ r.

Moreover, if HX2r
is the hyperplane section of X2r, we have that SrpV

2r´1

2
q „ 2HX2r

.

Proof. We will compute the tangent cone of SrpV2r´1

2
q at the point pr “ ppi,jqi,j“0,...,2r´1, where pi,i “ 1 for

i “ 0, . . . , r ´ 1 and pi,j “ 0 otherwise.
Consider the change of coordinates zi,i ÞÑ zi,i ´ z0,0 ans set z0,0 “ 1. By Remark 3.10 the tangent space of X2r

at pr is cut out by a set of linear equations and among these equations we have tzi,j “ 0u for i, j “ r, . . . , 2r ´ 2,
and zi,i “ zi`1,i`1 for i “ r, . . . , 2r ´ 2.

Now, the tangent cone of Sec2r´1pV2r´1

2
q is cut out by the determinant of the bottom right r ˆ r submatrix of

the matrix Z in (2.1). Note that substituting the relations on the zi,j above in this determinant we get zr2r´1,2r´1.

By Proposition 3.15 Sec2r´1pV2r´1

2
q and SecrpV

2r´1

2
q cut out on X2r the same divisor set-theoretically. The

previous computation yields that Sec2r´1pV2r´1

2
q cuts out SecrpV2r´1

2
q XX2r on X2r with multiplicity r.
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Now, recall that by Remark 2.6 degpSec2r´1pV2r´1

2
qq “ 2r. Let D be the divisor SecrpV

2r´1

2
q X X2r. Finally

Sec2r´1pV2r´1

2
q XX2r „ 2rHX2r

yields D „ 2HX2r
. �

Remark 3.22. In the case r “ 2 we worked out explicitly the quadratic polynomial cutting out S2pV3
2 q in X4 and

we got that S2pV3
2 q “ X4 X tz0,3z1,2 ` z21,3 ´ z0,1z2,3 ´ z1,1z3,3 “ 0u.

4. Divisors on S2r

Let X be a normal projective Q-factorial variety over an algebraically closed field of characteristic zero. We
denote by N1pXq the real vector space of R-Cartier divisors modulo numerical equivalence. The nef cone of X is
the closed convex cone NefpXq Ă N1pXq generated by classes of nef divisors.

The stable base locus BpDq of a Q-divisor D is the set-theoretic intersection of the base loci of the complete
linear systems |sD| for all positive integers s such that sD is integral

(4.1) BpDq “
č

są0

BpsDq.

The movable cone of X is the convex cone MovpXq Ă N1pXq generated by classes of movable divisors. These are
Cartier divisors whose stable base locus has codimension at least two in X . The effective cone of X is the convex

cone EffpXq Ă N1pXq generated by classes of effective divisors. We have inclusions NefpXq Ă MovpXq Ă EffpXq.
We refer to [Deb01, Chapter 1] for a comprehensive treatment of these topics.

In this section we will study the Picard rank and the cones of effective and nef divisors of the wonderful
compactification S2r . We will need the following result.

Lemma 4.2. Let SOp2rq be the special orthogonal group. Then

SOp2rq X Spp2rq – GLprq.

In particular, SOp2q – GLp1q – K˚.

Proof. Consider the bilinear symmetric form given by the matrix J “

ˆ
0r,r Ir,r
Ir,r 0r,r

˙
. Set N “

ˆ
Ir,r ξIr,r
1

2
Ir,r ´ ξ

2
Ir,r

˙
,

with ξ2 “ ´1. Note that N tJN “ I2r,2r and N tΩN “ ´ξΩ. Therefore, we may prove the statement for the
intersection SOJ p2rq XSpp2rq, where SOJp2rq is the group of determinant one matrices which are orthogonal with
respect to J .

Let M “

ˆ
A B

C D

˙
P GLp2rq be a general 2r ˆ 2r invertible matrix, where A,B,C,D are r ˆ r matrices. Now,

M P SOJ p2rq X Spp2rq if and only if
$
’’’&
’’’%

AtC “ 0r,r;

AtD “ Ir,r;

BtC “ 0r,r;

BtD “ 0r,r;

that is

$
’&
’%

D “ A´t;

C “ 0r,r;

B “ 0r,r;

and hence

SOp2rq X Spp2rq – SOJp2rq X Spp2rq “
! ˆ

A 0r,r
0r,r A´t

˙
for A P GLprq

)
– GLprq.

For the last claim in the case r “ 1 it is enough to note that SOp2q X Spp2q “ SOp2q. In fact every 2 ˆ 2 matrix
with determinant one is symplectic. �

Proposition 4.3. Let O2r Ă X2r be the orbit of the identity. Then PicpO2rq – Z{2Z.

Proof. The group G “ Spp2rq is semi-simple and simply connected. If H Ă G is the stabilizer of the identity then
[ADHL15, Theorem 4.5.1.2] yields that PicpG{Hq – XpHq, where XpHq is the group of characters of H . We have
that

H “ tM P Spp2rq,MM t “ λM I2r,2r, for some λM P K˚u.

Then, for a general element M P H we have
#
MM t “ λMI2r,2r;

M tΩM “ Ω;
ñ λMM

´1ΩM “ Ω ñ λMΩM “ MΩ.

Let v be an eigenvector of Ω with eigenvalue µ. Then

λMΩMv “ MΩv “ Mµv “ µMv.
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Setting y “ Mv we have Ωy “ pλ´1

M µqy and so y is an eigenvector of Ω with eigenvalue λ´1

M µ. The characteristic
polynomial of Ω is PΩpλq “ pλ´ ξqrpλ` ξqr where ξ2 “ ´1. Therefore the only eigenvalues of Ω are ξ and ´ξ. So

#
µ “ ˘ξ;

λ´1

M µ “ ˘ξ;
ñ λ´1

M “ ˘1 ñ λM “ ˘1

and there is a morphism of groups

ϕ : H ÝÑ Z{2Z

M ÞÝÑ λM

The morphism ϕ is surjective. Indeed we have ϕpI2r,2rq “ 1, and if S “

ˆ
0r,r ξIr,r
ξIr,r 0r,r

˙
then StΩS “ Ω, SSt “

´I2r,2r, S P H and ϕpSq “ ´1. This yields an exact sequence

(4.4) 1 Ñ H Ñ H Ñ Z{2Z Ñ 1

where H “ tM P Spp2rq,MM t “ I2r,2ru, and we can write H “ H Y SH.

As in Lemma 4.2, we consider the bilinear form J “

ˆ
0r,r Ir,r
Ir,r 0r,r

˙
, which is congruent to the bilinear form I2r,2r

via the matrix N “

ˆ
Ir,r ξIr,r
1

2
Ir,r ´ ξ

2
Ir,r

˙
, where ξ2 “ ´1. Set HJ “ tM P Spp2rq,MJM t “ Ju and HJ “ tM P

Spp2rq,MJM t “ λMJ, for some λM P K˚u. There is an isomorphism

α : H ÝÑ HJ

M ÞÝÑ NMN´1

such that αpHq “ HJ , S̃ :“ αpSq “

ˆ
0 ´2Ir,r

1

2
Ir,r 0

˙
and HJ “ HJ Y S̃HJ . Take B P HJ and consider

α´1pBq P H . By the first part of the proof there is a morphism of groups HJ Ñ Z{2Z mapping B to λα´1pBq, and
fitting in the following exact sequence

1 Ñ HJ Ñ HJ Ñ Z{2Z Ñ 1

Since HJ{HJ is abelian the commutator rHJ , HJ s of HJ is contained in HJ . By the proof of Lemma 4.2 we have

that an element h P HJ is of the form h “

ˆ
A 0r,r
0r,r A´t

˙
for A P GLprq. Then h´1 “

ˆ
A´1 0r,r
0r,r At

˙
for A P GLprq.

Furthermore S̃´1 “

ˆ
0r,r 2Ir,r

´ 1

2
Ir,r 0r,r

˙
. Therefore

rS̃, hs “ S̃hS̃´1h´1 “

ˆ
0r,r ´2Ir,r
1

2
Ir,r 0r,r

˙ ˆ
A 0r,r
0r,r A´t

˙ ˆ
0r,r 2Ir,r

´ 1

2
Ir,r 0r,r

˙ ˆ
A´1 0r,r
0r,r At

˙
“

ˆ
A´tA´1 0r,r
0r,r AAt

˙
.

Setting B “ A´tA´1, we have B´t “ pA´tA´1q´t “ AAt with B P GLprq symmetric. So rHJ , HJ s is the subgroup
of HJ – GLprq generated by symmetric matrices and since by [Bos86, Theorem 1] all rˆ r matrices can be written
as product of symmetric matrices we get rHJ , HJ s “ HJ .

Then, H{rH,Hs – HJ{rHJ , HJ s – HJ{HJ – H{H and by the exact sequence (4.4) we have H{H – Z{2Z.
Finally, by [Bur65, Lemma 22.2] XpHq – XpH{rH,Hsq, and hence PicpG{Hq – XpHq – Z{2Z. �

Now, we are ready to compute the Picard rank and the colors of the wonderful variety S2r.

Proposition 4.5. The Picard rank of S2r is ρpS2rq “ r.

Proof. As before set G “ Spp2rq and let H be the stabilizer of the identity. By Theorem 3.19 the variety S2r

is wonderful with boundary divisors E1, . . . , Er´1, S
pr´1q
r pV2r´1

2
q. By [Bri07, Proposition 2.2.1] there is an exact

sequence
0 Ñ Zr Ñ PicpS2rq Ñ PicpG{Hq Ñ 0

Hence, Proposition 4.3 yields that the Picard rank of S2r is r. �

For i “ 1, . . . , r we define the divisors Di as the strict transforms in S2r of the divisor given by the intersection
of

det

¨
˚̋

z0,0 . . . z0,i´1

...
. . .

...

z0,i´1 . . . zi´1,i´1

˛
‹‚“ 0
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with X2r.

Proposition 4.6. The set of boundary divisors of S2r is tE1, . . . , Er´1, S
r´1
r pV2r´1

2
qu while the set of colors of S2r

is tD1, . . . , Dru.

Proof. The claim on the set of boundary divisors follows from Theorem 3.19. We compute the colors. We first

prove that Dr Ď S2r is stabilized by the Borel subgroup. Consider a matrix Z “

ˆ
Z0,0 Z0,1

Z0,1 Z1,1

˙
where the Zi,j are

r ˆ r matrices. Let M “

ˆ
A 0r,r
B A´t

˙
P B, then

Z̄ “ M ¨ Z ¨M t “

ˆ
AZ0,0A

t AZ0,0B
t `AZ0,1A

´1

BZ0,0A
t `A´tZ0,1A

t BZ0,0B
t `A´tZ0,1B

t `BZ0,1A
´1 `A´tZ1,1A

´1

˙

and detpZ̄0,0q “ detpAZ0,0A
tq “ detpAq2 detpZ0,0q where detpAq ‰ 0 since A P GLprq. Therefore, Dr is stabilized

by the Borel subgroup.
We focus now on the block Z̄0,0 of the matrix Z̄. We divide the matrices A and Z0,0 respectively in blocks Aj,k,

Wj,k of matrices jˆk as follows A “

ˆ
Ai,i Ai,r´i

Ar´i,i Ar´i,r´i

˙
and Z0,0 “

ˆ
Wi,i Wi,r´i

Wr´i,i Wr´i,r´i

˙
. Recall that by Remark

3.4 the matrix A is lower triangular. We have Z̄0,0 “

ˆ
W̄i,i W̄i,r´i

W̄r´i,i W̄r´i,r´i

˙
with W̄i,i “ Ai,iWi,iA

t
i,i. The divisor

Di is defined by detpWi,iq “ 0 and since detpAq “ detpAi,iqdetpAr´i,r´iq ‰ 0 we get that Di is stabilized by B for
i “ 1, . . . r.

As noticed in [ADHL15, Remark 4.5.5.3], if pX,G ,B, x0q is a spherical wonderful variety with colors D1, . . . , Ds

the big cell XzpD1 Y ¨ ¨ ¨ YDsq is an affine space. Therefore, it admits only constant invertible global functions and
PicpXq is generated by D1, . . . , Ds.

Therefore, in order to conclude that we found all the colors of S2r it is enough to recall that by Proposition 4.5
S2r has Picard rank r. �

In the following we will denote by H the pull-back in S2r of the hyperplane section of X2r. By Proposition 4.5
H,E1 . . . , Er´1 generate PicpS2rq.

Proposition 4.7. The extremal rays of EffpS2rq are generated by E1, . . . , Er´1, S
r´1
r pV2r´1

2
q and the extremal rays

of NefpS2rq are generated by D1, . . . , Dr.

Proof. By [ADHL15, Proposition 4.5.4.4] and Proposition 4.6 EffpS2rq is generated by E1, . . . , Er´1, S
r´1
r pV2r´1

2
q

and D1, . . . , Dr.
Note that by Constructions 2.5 and 3.11 there as an inclusion i : S2r Ñ Qp2r ´ 1qr´1 inducing an isomorphism

of the Picard groups. By [Hue15, Section 2] the linear system on Qp2r ´ 1qr´1 that restricts to the linear system
of Di on S2r induces a birational morphism Qp2r ´ 1qr´1 Ñ Wi whose exceptional locus is contained in the union
of the exceptional divisors in Construction 2.5. Therefore, Di induces a birational morphism S2r Ñ Zi and hence
Di lies in the interior of the effective cone of S2r for any i “ 1, . . . , r. This proves that the effective cone of S2r is
generated by E1, . . . , Er´1, S

r´1
r pV2r´1

2
q. Finally, by [Bri89, Section 2.6] D1, . . . , Dr generate the extremal rays of

the nef cone. �

In order to study the birational geometry of S2r we will need the following result.

Proposition 4.8. Let Hr
i be the divisor in X2r Ă PN cut out by the determinant of the iˆ i top left submatrix of

the matrix Z in (2.1). The tangent cone of Hr
i at a point of SkpV2r´1

2
qzSk´1pV2r´1

2
q for i “ 2, . . . , r and k ă i is

a cone with vertex of dimension kp2r ` 1 ´ kq over Hr´k
i´k .

Proof. It is enough to note that the tangent cone of Hr
i at the point pk “ ppi,jqi,j“0,...,2r´1, where pi,i “ 1 for

i “ 0, . . . , k ´ 1 and pi,j “ 0 otherwise, is cut out by

det

¨
˚̊
˚̋

zk,k zk,k`1 . . . zk,i´1

zk,k`1 zk`1,k`1 . . . zk`1,i´1

...
...

. . .
...

zk,i´1 zk`1,i´1 . . . zi´1,i´1

˛
‹‹‹‚“ 0

and by the equations for the tangent cone of X2r in the proof of Proposition 3.18. �
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5. Birational geometry of S2r

The stable base locus of an effective Q-divisor on a normal Q-factorial projective variety X has been defined in
(4.1). Since stable base loci do not behave well with respect to numerical equivalence [Laz04, Example 10.3.3], we
will assume that h1pX,OXq “ 0 so that linear and numerical equivalence of Q-divisors coincide.

Then numerically equivalent Q-divisors on X have the same stable base locus, and the pseudo-effective cone
EffpXq of X can be decomposed into chambers depending on the stable base locus of the corresponding linear
series. The resulting decomposition is called stable base locus decomposition.

Remark 5.1. Recall that two divisors D1, D2 are said to be Mori equivalent if BpD1q “ BpD2q and the following
diagram of rational maps is commutative

X

XpD1q XpD2q

Ă

φD2
φD1

where the horizontal arrow is an isomorphism. Therefore, the Mori chamber decomposition is a, possibly trivial,
refinement of the stable base locus decomposition.

Let X be a normal Q-factorial variety with free and finitely generated divisor class group ClpXq. Fix a subgroup
G of the group of Weil divisors on X such that the canonical map G Ñ ClpXq, mapping a divisor D P G to its
class rDs, is an isomorphism. The Cox ring of X is defined as

CoxpXq “
à

rDsPClpXq

H0pX,OXpDqq

where D P G represents rDs P ClpXq, and the multiplication in CoxpXq is defined by the standard multiplication
of homogeneous sections in the field of rational functions on X . If CoxpXq is finitely generated as an algebra over
the base field, then X is said to be a Mori dream space. A perhaps more enlightening definition, especially for the
relation with the minimal model program, is the following.

Definition 5.2. A normal projective Q-factorial variety X is called a Mori dream space if the following conditions
hold:

- Pic pXq is finitely generated, or equivalently h1pX,OXq “ 0,
- Nef pXq is generated by the classes of finitely many semi-ample divisors,
- there is a finite collection of small Q-factorial modifications fi : X 99K Xi, such that each Xi satisfies the

second condition above, and Mov pXq “
Ť
i f

˚
i pNef pXiqq.

The collection of all faces of all cones f˚
i pNef pXiqq above forms a fan which is supported on MovpXq. If two

maximal cones of this fan, say f˚
i pNef pXiqq and f˚

j pNef pXjqq, meet along a facet, then there exist a normal
projective variety Y , a small modification ϕ : Xi 99K Xj, and hi : Xi Ñ Y , hj : Xj Ñ Y small birational
morphisms of relative Picard number one such that hj ˝ϕ “ hi. The fan structure on MovpXq can be extended to
a fan supported on EffpXq as follows.

Definition 5.3. Let X be a Mori dream space. We describe a fan structure on the effective cone EffpXq, called
the Mori chamber decomposition. We refer to [HK00, Proposition 1.11] and [Oka16, Section 2.2] for details. There
are finitely many birational contractions from X to Mori dream spaces, denoted by gi : X 99K Yi. The set Excpgiq
of exceptional prime divisors of gi has cardinality ρpX{Yiq “ ρpXq ´ ρpYiq. The maximal cones C of the Mori

chamber decomposition of EffpXq are of the form: Ci “
@
g˚
i

`
NefpYiq

˘
,Excpgiq

D
. We call Ci or its interior C

˝

i a
maximal chamber of EffpXq.

If X is a Mori dream space, satisfying then the condition h1pX,OXq “ 0, determining the stable base locus
decomposition of EffpXq is a first step in order to compute its Mori chamber decomposition.

Remark 5.4. By the work of M. Brion [Bri93] we have that Q-factorial spherical varieties are Mori dream spaces.
An alternative proof of this result can be found in [Per14, Section 4]. In particular, by Theorem 3.19 the wonderful
compactification S2r is a Mori dream space.

Remark 5.5. Recall that by [HK00, Proposition 2.11] given a Mori Dream Space X there is an embedding
i : X Ñ TX into a simplicial projective toric variety TX such that i˚ : PicpTXq Ñ PicpXq is an isomorphism
inducing an isomorphism EffpTXq Ñ EffpXq. Furthermore, the Mori chamber decomposition of EffpTXq is a

refinement of the Mori chamber decomposition of EffpXq. Indeed, if CoxpXq – KrT1,...,Tss
I

where the Ti are
homogeneous generators with non-trivial effective PicpXq-degrees then CoxpTXq – KrT1, . . . , Tss.
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Since the variety TX is toric, the Mori chamber decomposition of EffpTXq can be computed by means of the
Gelfand–Kapranov–Zelevinsky, GKZ for short, decomposition [ADHL15, Section 2.2.2]. Let us consider the family
W of vectors in PicpTXq given by the generators of CoxpTXq, and let ΩpWq be the set of all convex polyhedral
cones generated by some of the vectors in W . By [ADHL15, Construction 2.2.2.1] the GKZ chambers of EffpTXq
are given by the intersections of all the cones in ΩpWq containing a fixed divisor in EffpTXq.

Remark 5.6. Let pX,G ,B, x0q be a projective spherical variety. Consider a divisor D on X , and let fD be
the, unique up to constants, section of OXpDq associated to D. We will denote by linKpG ¨ Dq Ď CoxpXq the
finite-dimensional vector subspace of CoxpXq spanned by the orbit of fD under the action of G that is the smallest
linear subspace of CoxpXq containing the G -orbit of fD.

By [ADHL15, Theorem 4.5.4.6] if G is a semi-simple and simply connected algebraic group and pX,G ,B, x0q
is a spherical variety with boundary divisors E1, . . . , Er and colors D1, . . . , Ds then CoxpXq is generated as a
K-algebra by the canonical sections of the Ei’s and the finite dimensional vector subspaces linKpG ¨Diq Ď CoxpXq
for 1 ď i ď s.

Definition 5.7. Let X be a normal projective Q-factorial variety. We say that X is weak Fano if ´KX is nef and
big.

By [BCHM10, Corollary 1.3.2] a weak Fano variety is a Mori dream space.

Remark 5.8. Let Y be a smooth and irreducible subvariety of a smooth variety X , and let f : BlYX Ñ X be the
blow-up of X along Y with exceptional divisor E. Then for any divisor D P PicpXq in PicpBlYXq we have

rD „ f˚D ´ multY pDqE

where rD Ă BlYX is the strict transform of D, and multY pDq is the multiplicity of D at a general point of Y .

Corollary 5.9. The Cox ring of S2r is generated by the sections of D1, . . .Dr, E1, . . . , Er´1, S
pr´1q
r pV2r´1

r q.

Proof. This follows from Proposition 4.6 and Remark 5.6. �

Our aim is to study the Mori chamber decomposition of the wonderful compactification S2r. Since S2 – P2 the
first interesting case is for r “ 2.

Proposition 5.10. For the variety S4 we have that PicpS4q is generated by D1, E1. Furthermore, D1 „ H,

D2 „ 2H ´E1, S
p1q
2

pV3
2 q „ 2H ´ 2E1, and CoxpS4q is generated by the sections of D1, D2, E1, S

p1q
2

pV3
2 q. The Mori

chamber decomposition of EffpS4q has three chambers as displayed in the following picture:

E1

D1

D2

S
p1q
2

pV3

2
q

and the movable cone coincides with the nef cone generated by D1 and D2.

Proof. Since S4 is the blow-up of a smooth variety along a smooth subvariety the relations D2 „ 2H ´ E1,

S
p1q
2

pV3
2 q „ 2H ´ 2E1 follow from Propositions 3.18, 3.21, 4.8 and Remark 5.8.

The statement on the generators of the Cox ring follows from Corollary 5.9. Furthermore, by Remarks 5.5
and 5.6 the Mori chamber decomposition of EffpS4q is a, possibly trivial, coarsening of the decomposition in the
statement. On the other hand, by Proposition 4.7 we know that H and 2H ´ E1 generate NefpS4q while E1 and
2H ´ 2E1 generate EffpS4q. So no ray can be removed and the above decomposition coincides with the Mori
chamber decomposition of EffpS4q. �

Next, we consider the case r “ 3.

Lemma 5.11. For the variety S6 the Picard group PicpS6q is generated by H,E1, E2, and we have the following
relations: D1 „ H, D2 „ 2H ´ E1, D3 „ 3H ´ 2E1 ´ E2 and S2

3pV5
2 q „ 2H ´ 2E1 ´ 2E2.
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Proof. Recall, that the first blow-up f1 : X
p1q
6

Ñ X6 in Construction 3.11 is the blow-up of X6 along the Veronese
variety V5

2 which by Proposition 3.18 is the singular locus of X6. Hence, in this case we can not use Remark 5.8
to compute the discrepancies of the relevant divisors with respect to E1. In order to do this we consider the line
L “ tz1,1 ´ z0,1 “ z1,1 ´ z2,2 “ z0,2 “ z0,3 “ z0,4 “ z0,5 “ z1,2 “ z1,3 “ z1,4 “ z1,5 “ z2,3 “ z2,4 “ z2,5 “ z3,3 “

z3,4 “ z3,5 “ z4,4 “ z4,5 “ z5,5 “ 0u and let rL be its strict transform in X
p1q
6

. Slightly abusing the notation we

will denote by Di also the strict transform in X
p1q
6

of the divisor H3
i in Proposition 4.8 for i “ 1, 2, 3 and by H the

pull-back of the hyperplane section to X
p1q
6

. Clearly, D1 „ H .
Now, let us write D2 „ 2H ´ aE1. Note that the line L intersects V5

2 just at the point p “ r1 : 0 ¨ ¨ ¨ : 0s, and
by Remark 3.10 and Proposition 3.18 L Ă X6. By Proposition 3.18 the tangent cone of X6 at p is a cone over

X4 – Gp1, 4q with 5-dimensional vertex and rL intersects E1 just at the point q “ r1 : 0 : 0 : 0 : 1 : 0 : ¨ ¨ ¨ : 0s of X4.

Hence rL ¨E1 “ 1. The divisor H3
2 intersects L in p and in another point not lying on V5

2 . Moreover, by Proposition

4.8 the tangent cone of H3
2 at p is a hyperplane section of X4 not passing through q. Then rL ¨ D2 “ 1. By the

projection formula we have

1 “ rL ¨ D2 “ 2rL ¨H ´ arL ¨ E1 “ 2L ¨ H3

1 ´ a “ 2 ´ a

and hence a “ 1. So we may write D2 „ 2H ´ E1.
Now, write D3 „ 3H ´ bE1. The divisor H3

3 intersects L in p with multiplicity two and in another point not
lying on V5

2 . By Proposition 4.8 the tangent cone of H3
3 at p is a quadratic section of X4 not passing through q.

Hence

1 “ rL ¨ D3 “ 3rL ¨H ´ arL ¨ E1 “ 3L ¨ H3

1 ´ a “ 3 ´ a

and a “ 2. Then D3 „ 3H ´ 2E1.

We will denote by S3 the strict transform of S3pV5
2 q in X

p1q
6

. Let R Ă X4 – Gp1, 4q be a general line. Note that
R is contracted by the blow-down morphism and hence

1 “ R ¨ D2 “ 2R ¨H ´R ¨E1 “ ´R ¨ E1

yields R ¨ E1 “ ´1. By Proposition 3.21 we may write S3 „ 2H ´ cE1 and since by Proposition 3.18 the tangent
cone of S3pV5

2 q at a point of V5
2 is a quadratic section of X4 we have R ¨ S3 “ 2. This yields

2 “ R ¨ S3 “ 2R ¨H ´ cR ¨ E1 “ ´cR ¨E1 “ c

and S3 „ 2H ´ 2E1.

Now, by Proposition 3.18 the morphism f2 : S6 Ñ X
p1q
6

in Construction 3.11 is the blow-up of a smooth variety
along a smooth subvariety. So we can apply Remark 5.8 in order to compute the discrepancies of the divisors with
respect to E2. Finally, again by Proposition 3.18 we get the claim. �

Theorem 5.12. The Cox ring of S6 is generated by the sections of D1, D2, D3, E1, E2, S
p2q
3

pV5
2 q. The Mori chamber

decomposition of the effective cone of S6 has nine chambers as displayed in the following 2-dimensional section of
EffpS6q:

S
p2q
3

pV5

2
q

E2

E1

D3

D2

D1

P

where P „ 3H ´ E1 ´ E2 and MovpS6q is generated by D1, D2, D2 and P .

Proof. The computation of the movable cone follows from [ADHL15, Proposition 3.3.2.3], Proposition 4.6 and
Remark 5.6, and the statement on the generators of CoxpS6q follows from Corollary 5.9.

Furthermore, by Lemma 5.11, Proposition 4.6 and Remarks 5.5, 5.6 the Mori chamber decomposition of EffpS6q
is a, possibly trivial, coarsening of the decomposition in the statement.
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Note that the stable base loci of a divisor in the interior of chamber delimited by S
p2q
3

pV5
2 q, P, E1; S

2
3pV5

2 q, P,D3;

S
p2q
3

pV5
2 q, D3, E2; D2, D3, D1, E2; E1, D1, E2,; P,D1, E1 are respectively given by S

p2q
3

pV5
2 q Y E1; S

2
3pV5

2 q; E2 Y

S
p2q
3

pV5
2 q; E2; E1 YE2; E1. Furthermore, since Mori chambers are convex the stable base locus chamber delimited

by D2, D3, D1, E2 must be divided in two Mori chambers by the wall joining D2 and E2. Hence the decomposition
in the statement gives the Mori chamber decomposition of EffpS6q outside of the movable cone.

Finally, note that the only modifications we could perform inside the movable cone are removing the wall joining
D1 and D3 and adding a wall joining D2 and P . However, both these modifications are not allowed since by
Proposition 4.7 the chamber delimited by D1, D2, D3 is the nef cone of S6. �

6. Moduli spaces of conics in Lagrangian Grassmannians

An n-pointed rational pre-stable curve pC, px1, ..., xnqq is a projective, connected, reduced rational curve with
at most nodal singularities of arithmetic genus zero, with n distinct and smooth marked points x1, ..., xn P C. We
will refer to the marked and the singular points of C as special points.

Let X be a homogeneous variety. A map pC, px1, ..., xnq, αq, where α : C Ñ X is a morphism from an n-pointed
rational pre-stable curve to X , is stable if any component E – P1 of C contracted by α contains at least three
special points.

Now, let us fix a class β P H2pX,Zq. By [FP97, Theorem 2] there exists a smooth, proper, and separated
Deligne-Mumford stack M0,npX, βq parametrizing isomorphism classes of stable maps rC, px1, ..., xnq, αs such that

α˚rCs “ β. Furthermore, by [KP01, Corollary 1] the coarse moduli space M0,npX, βq associated to the stack

M0,npX, βq is a normal, irreducible, projective variety with at most finite quotient singularities of dimension

dimpM0,npX, βqq “ dimpXq ` β ¨ c1pTXq ` n´ 3.

The variety M0,npX, βq is called the moduli space of stable maps, or the Kontsevich moduli space of stable maps
of class β from a rational pre-stable n-pointed curve to X .

Kontsevich spaces of conics in Grassmannians. We will denote by M0,0pGpk, nq, 2q the moduli space of degree two
stable maps to the Grassmannian Gpk, nq parametrizing k-planes in Pn embedded via the Plücker embedding. Now,
following [CC10, Section 2] we are going to describe divisor classes on M0,0pGpk, nq, 2q. Fix projective subspaces
Πn´k,Πn´k´2 Ă Pn of dimension n ´ k and n´ k ´ 2, and consider the Schubert cycles

σ
k,n
1,1 “ tW P Gpk, nq | dimpW X Πn´kq ě 1u;

σ
k,n
2

“ tW P Gpk, nq | dimpW X Πn´k´2q ě 0u.

Let π : M0,1pGpk, nq, 2q Ñ M0,0pGpk, nq, 2q be the forgetful morphism and ev : M0,1pGpk, nq, 2q Ñ Gpk, nq the
evaluation morphism. We define

Hk,n
σ1,1

“ π˚ev
˚σ1,1, H

k,n
σ2

“ π˚ev
˚σ2.

Furthermore, we will denote by T k,n the class of the divisor of conics that are tangent to a fixed hyperplane section
of Gpk, nq.

Let Dk,n
deg be the class of the divisor of maps rC,αs P M0,0pGpk, nq, 2q such that the projection of the span of the

linear spaces parametrized by αpCq from a fixed subspace of dimension n ´ k ´ 2 has dimension less than k ` 2.

Next we define the divisor class Dk,n
unb. A stable map α : P1 Ñ Gpk, nq induces a rank k ` 1 subbundle

Eα Ă OP1 bKn`1. If k “ 1 we define Dk,n
unb as the closure of the locus of maps rP1, αs P M0,0pGpk, nq, 2q such that

Eα ‰ OP1p´1q‘2. If k ě 2 there is a trivial subbundle O
‘k´1

P1 Ă Eα which induces a pk ´ 2q-dimensional subspace
Hα Ă Pn. In this way we get a map

ξ : M0,0pGpk, nq, 2q 99K Gpk ´ 2, nq
rP1, αs ÞÑ Hα

We define Dk,n
unb “ ξ˚OGpk´2,nqp1q that is Dk,n

unb is the closure of the locus of maps rP1, αs P M0,0pGpk, nq, 2q such
that Hα intersects a fixed pn ´ k ` 1q-dimensional subspace of Pn.

Finally, we denote by ∆k,n the boundary divisor parametrizing stable maps with reducible domain.
The connection between M0,0pGp1, 3q, 2q and the space of complete quadrics Qp3q is due to [Hue15, Lemma 21]

which states that there is a finite morphism of degree two

(6.1) φ :M0,0pGp1, 3q, 2q Ñ Qp3q

which maps a smooth conic C Ă Gp1, 3q to the quadric surface
Ť

rLsPC L Ă P3.
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Kontsevich spaces of conics in Lagrangian Grassmannians. The Lagrangian Grassmannian LGpr, 2rq Ă Gpr ´
1, 2r´ 1q parametrizes r-dimensional subspaces of K2r which are isotropic with respect to the standard symplectic

form Ω in (3.1). By [Tev05, Section 2.1] LGpr, 2rq is an irreducible variety of dimension rpr`1q
2

and of Picard
rank one. Moreover, the restriction of the Plücker embedding of Gpr ´ 1, 2r ´ 1q yields the minimal homogeneous
embedding of LGpr, 2rq.

In this section we will study the moduli space M0,0pLGpr, 2rq, 2q parametrizing conics in LGpr, 2rq. Let E be
the universal quotient bundle on Gpr ´ 1, 2r ´ 1q. The Lagrangian Grassmannian LGpr, 2rq Ă Gpr ´ 1, 2r ´ 1q

is the zero locus of a section of
Ź2

E which has first Chern class pr ´ 1qc1pOGpr´1,2r´1qp1qq. Hence the canonical

bundle of LGpr, 2rq is given by ωLGpr,2rq – OLGpr,2rqp´r ´ 1q, and dimpM0,0pLGpr, 2rq, 2qq “ r2`5r´2

2
.

Remark 6.2. We recall some facts about the cohomology of LGpr, 2rq. For details we refer to [BKT03, Section
3]. Consider a flag F 1 Ă F 2 Ă ¨ ¨ ¨ Ă F r Ă K2r, where F j are isotropic subspaces of K2r of dimension j. Let Dr
be the set of strict partitions λ “ pλ1, . . . , λlq with 0 ă λl ă ¨ ¨ ¨ ă λ1 ď r and denote by |λ| “ λ1 ` ¨ ¨ ¨ ` λl the
weight of λ. For each λ P Dr there is a codimension |λ| Schubert variety Σrλ Ď LGpr, 2rq defined by

Σrλ :“ tW P LGpr, 2rq, dimpW X F r`1´λiq ě i, i “ 1, . . . , lu.

The class of the Schubert variety Σrλ in the cohomology ring H˚pLGpr, 2rq,Zq will be denoted by σrλ. We have that

H˚pLGpr, 2rq,Zq “
à

λPDr

Z ¨ σrλ

with the following relations:

(6.3) pσri q2 ` 2

r´iÿ

k“1

p´1qkσri`kσ
r
i´k “ 0

where by convention σr0 “ 1 and σri “ 0 for i ă 0.

Now, we define divisor classes onM0,0pLGpr, 2rq, 2q. We denote by ∆r, the boundary divisor parametrizing stable

maps with reducible domain, this is the restriction to M0,0pLGpr, 2rq, 2q of the divisor ∆r´1,2r´1 on M0,0pGpr ´
1, 2r ´ 1q, 2q.

Fix an isotropic subspace F r´1 of dimension r ´ 1, and consider the divisor Hr
σ2

“ π˚ev
˚σr2 , where π :

M0,1pLGpr, 2rq, 2q Ñ M0,0pLGpr, 2rq, 2q is the forgetful morphism, ev : M0,1pLGpr, 2rq, 2q Ñ LGpr, 2rq is the
evaluation morphism, and σr2 is the Schubert cycle corresponding to the Schubert variety

Σr2 :“ tW P LGpr, 2rq, dimpW X F r´1q ě 1u.

By Remark 6.2, in LGpr, 2rq the only Schubert cycle of codimension two is σr2 , so by [Opr05, Theorem 1] we get
that ∆r and Hr

σ2
generate the Picard group of M0,0pLGpr, 2rq, 2q. Furthermore, we have that both the divisors

Hr´1,2r´1
σ1,1

and Hr´1,2r´1
σ2

of M0,0pGpr ´ 1, 2r ´ 1q, 2q restrict to Hr
σ2

on M0,0pLGpr, 2rq, 2q. Then, also Dr´1,2r´1

deg

and Dr´1,2r´1

unb restrict to the same divisor Dr
unb on M0,0pLGpr, 2rq, 2q.

Finally, we will denote by T r the restriction of the divisor T r´1,2r´1 to M0,0pLGpr, 2rq, 2q, this is the class of
the divisor of conics that are tangent to a fixed hyperplane section of LGpr, 2rq.

Proposition 6.4. Consider the subspaces H “ tx2 “ ¨ ¨ ¨ “ xr´1 “ xr`2 “ ¨ ¨ ¨ “ x2r´1 “ 0u and Πr´3 “ tx0 “
¨ ¨ ¨ “ xr`1 “ 0u in P2r´1. There is an embedding

i : LGp2, Hq ãÑ LGpr, 2rq
L ÞÑ xL,Πr´3y

which induces an embedding j : M0,0pLGp2, 4q, 2q Ñ M0,0pLGpr, 2rq, 2q. Moreover, the pull-back map j˚ :

PicpM0,0pLGpr, 2rq, 2qq Ñ PicpM0,0pLGp2, 4q, 2qq is an isomorphism.

Proof. Since Πr´3 is the projectivization of an isotropic subspace of K2r, and disjoint from H , the map i is
well-defined. By [Opr05, Theorem 1] the Picard group of M0,0pLGpr, 2rq, 2q is generated by ∆r and Hr

σ2
.

Furthermore, we have that i˚pσr2q “ σ2
2 and then j˚pHr

σr
2

q “ H2

σ2

2

. Finally, since j˚p∆rq “ ∆2 we conclude that

the pull-back map is an isomorphism. �

Lemma 6.5. Let C1, C2 Ă Gp1, 3q be two smooth conics corresponding to the rulings
Ť

rLsPC1
L and

Ť
rLsPC2

L of

a smooth quadric Q Ă P3. The following are equivalent:

(a) C1 is contained in LGp2, 4q but C2 is not;
(b) the lines in the ruling

Ť
rLsPC1

L are Lagrangian while the general line in the ruling
Ť

rLsPC2
L is not;

(c) the matrix of Q has a scalar multiple that is symplectic.
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Proof. The actions of Spp4q on M0,0pLGp2, 4q, 2q in (6.7) and on S4 in (3.5) are compatible. Therefore, it is enough
to prove that the equivalence of the conditions in statement holds for a particular smooth quadric.

Consider the quadric Q “ tx20 ` x21 ´ x22 ´ x23 “ 0u Ă P3. If MQ is the matrix of Q we have M t
QΩMQ “ ´Ω, and

hence iMQ is symplectic.
Now, one of the rulings of Q is given by the following lines

Ls,t “ xpt,´s,´t, sq, ps, t, s, tqy

with rs : ts P P1. Note that Ls,t is Lagrangian with respect to Ω for all rs : ts P P1.
Fix homogeneous coordinates rZ0 : ¨ ¨ ¨ : Z5s on P5. The Lagrangian Grassmannian LGp2, 4q is cut out on

the Grassmannian Gp1, 3q by the hyperplane H “ tZ1 ` Z4 “ 0u. Via the Plücker embedding the ruling Ls,t
corresponds to the conic given by the image of the following morphism

P1 ÝÑ Gp1, 3q
ps, tq ÞÝÑ rt2 ` s2 : 2st : t2 ´ s2 : ´s2 ` t2 : ´2st : ´t2 ´ s2s

which therefore is contained in H X Gp1, 3q “ LGp2, 4q. The other ruling of Q is given by

Ru,v “ xpu,´v, u, vq, pv, u,´v, uqy

with ru : vs P P1. The corresponding conic is given by the image of

P1 ÝÑ Gp1, 3q
pu, vq ÞÝÑ ru2 ` v2 : ´2uv : u2 ´ v2 : v2 ´ u2 : ´2uv, u2 ` v2s

which is not contained in H XGp1, 3q “ LGp2, 4q. Hence, the general line in the ruling Ru,v is not Lagrangian. �

Lemma 6.6. The following Spp4q-action on M0,0pLGp2, 4q, 2q

(6.7)
Spp4q ˆM0,0pLGp2, 4q, 2q ÝÑ M0,0pLGp2, 4q, 2q

pM, rC,αsq ÞÝÑ rC,^rM ˝ αs

gives to M0,0pLGp2, 4q, 2q a structure of spherical variety.

Proof. By Lemma 6.5 a ruling of the quadric Q “ tx20 `x21 ´x22 ´x23 “ 0u yields a conic in LGp2, 4q. Let B Ă Spp4q
be the Borel subgroup of the symplectic group in Remark 3.4. Note that dimpBq “ 6. The stabilizer of Q in B is
given by ˆ

A2,2 02,2
B2,2 A´t

2,2

˙ ˆ
I2,2 02,2
02,2 ´I2,2

˙ ˆ
At2,2 Bt2,2
02,2 A´1

2,2

˙
“

ˆ
At2,2A2,2 A2,2B

t
2,2

B2,2A
t
2,2 B2,2B

t
2,2 ´A´t

2,2A
´1

2,2

˙

So, we get B2,2 “ 02,2 and At2,2A2,2 “ I2,2. Then

StabBpQq “

$
’’&
’’%
M “

¨
˚̊
˝

a 0 0 0

0 b 0 0

0 0 1

a
0

0 0 0 1

b

˛
‹‹‚; with a2 “ b2 “ 1

,
//.
//-

and dimpStabBpQqq “ 0. �

Proposition 6.8. The restriction of the map in (6.1) to M0,0pLGp2, 4q, 2q yields an isomorphism

(6.9) ϕ :M0,0pLGp2, 4q, 2q Ñ S4

where S4 is the wonderful compactification of the space of symplectic quadrics of P3.

Proof. By Lemma 6.5 the restriction of the map in (6.1) to M0,0pLGp2, 4q, 2q yields a 1-to-1 morphism which is

surjective since both M0,0pLGp2, 4q, 2q and S4 are 6-dimensional.

Finally, since S4 is smooth and M0,0pLGp2, 4q, 2q is normal Zariski’s main theorem [Mum99, Chapter 3, Section
9] yields that the morphism in (6.9) is an isomorphism. �

Lemma 6.10. The divisor classes ∆2, D2

unb and the divisor classes H2
σ2
, T 2 are respectively the classes of the

boundary divisors and the colors of the spherical variety M0,0pLGp2, 4q, 2q.

Proof. The actions (6.7) and (3.5) are equivariant with respect to the map ϕ in (6.9). So boundary divisors and
colors of M0,0pLGp2, 4q, 2q are mapped by ϕ to boundary divisors and colors of S4 respectively. By Proposition

4.6, in S4 the colors are D1, D2 and the boundary divisors are E1, S
p1q
2

pV3
2 q. Moreover, ∆2, D2

unb are stabilized
by the Spp4q-action in (6.7) and choosing the flag of isotropic linear subspaces tx0 “ x1 “ 0u Ă tx0 “ 0u we
see that H2

σ2
, T 2 are stabilized by the action of the Borel subgroup of Spp4q in Remark 3.4. Moreover, it is
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straightforward to see that the inverse image via the morphism ϕ in (6.9) of S
p1q
2

pV3
2 q, E1, D1, D2 are divisors of

classes ∆2, D2

unb, H
2
σ2
, T 2. Now, assume to have another boundary divisor in M0,0pLGp2, 4q, 2q. Then, ϕ maps this

divisor to a boundary divisor of S4, but the only boundary divisors of S4 are S
p1q
2

pV3
2 q, E1. Then, the only boundary

divisors of M0,0pLGp2, 4q, 2q are ∆2, D2

unb, and similarly the only colors of M0,0pLGp2, 4q, 2q are H2
σ2
, T 2. �

We denote by M0,0pLGpr, 2rq, 2, 1q the moduli space of weighted stable maps to LGpr, 2rq. In this space degree
one tails of a stable map are replaced by their attaching point. We refer to [MM07] for the construction of moduli
of weighted stable maps.

Proposition 6.11. The divisors ∆r, Dr
unb generate the effective cone of M0,0pLGpr, 2rq, 2q, and the divisors

Hr
σ2
, T r generate the nef cone of M0,0pLGpr, 2rq, 2q.

The divisor Hr
σ2

induces a birational morphism

fHr
σ2

:M0,0pLGpr, 2rq, 2q Ñ ČChowpLGpr, 2rq, 2q

which is an isomorphism away form the locus Qrp1q of double covers of a line in LGpr, 2rq, and contracts Qrp1q so

that the locus of double covers with the same image maps to a point, where ČChowpLGpr, 2rq, 2q is the normalization
of the Chow variety of conics in LGpr, 2rq.

The divisor T r induces a morphism

fT r :M0,0pLGpr, 2rq, 2q Ñ M0,0pLGpr, 2rq, 2, 1q

which is an isomorphism away from ∆r and contracts the locus of maps with reducible domain rC1 Y C2, αs to
αpC1 X C2q. Hence, fT r contracts the divisor ∆r onto LGpr, 2rq Ă M0,0pLGpr, 2rq, 2, 1q.

Proof. By [ADHL15, Proposition 4.5.4.4] and Lemma 6.10 the effective cone of M0,0pLGp2, 4q, 2q is generated by
∆2, D2

unb, H
2
σ2
, T 2. Consider the isomorphism ϕ in (6.9). We have

ϕ˚E1 “ D2

unb, ϕ
˚S

p1q
2

pV3

2 q “ ∆2, ϕ˚D1 “ H2

σ2
, ϕ˚D2 “ T 2.

Now, the relations among the boundary divisors and the colors of S4 in Proposition 5.10 yield the following relations
in the Picard group of M0,0pLGp2, 4q, 2q:

(6.12) H2

σ2
„

∆2 ` 2D2

unb

2
, T 2 „ ∆2 `D2

unb

and the statement in the case r “ 2 follows from Propositions 4.7 and 6.8.
Now, consider the case r ą 2. Since T r is the pull-back of T r´1,2r´1 via the embedding M0,0pLGpr, 2rq, 2q ãÑ

M0,0pGpr ´ 1, 2r ´ 1q, 2q [CC10, Theorem 3.8] yields that T r induces a morphism

fT r :M0,0pLGpr, 2rq, 2q Ñ M0,0pLGpr, 2rq, 2, 1q

which is an isomorphism away from ∆r and contracts the locus of maps with reducible domain rC1 Y C2, αs to
αpC1 X C2q. Hence, fT r contracts the divisor ∆r onto LGpr, 2rq Ă M0,0pLGpr, 2rq, 2, 1q. So ∆r generates an
extremal ray of the effective cone, and T r generates an extremal ray of the nef cone.

Similarly, [CC10, Proposition 3.7] yields the morphism fHr
σ2

: M0,0pLGpr, 2rq, 2q Ñ ČChowpLGpr, 2rq, 2q, and

hence Hr
σ2

generates the other extremal ray of the nef cone.

Now, following the proof of [CC10, Lemma 3.4] we define the class of a curve Γ in M0,0pLGpr, 2rq, 2q whose

deformations cover the whole of M0,0pLGpr, 2rq, 2q. Consider a general hyperplane section Z of LGp2, 4q Ă P4, and
a general line in this hyperplane section. The planes containing the line cut out a pencil of conics on Z Ă LGp2, 4q.
Hence we get a rational curve C Ă M0,0pLGp2, 4q, 2q parametrizing these conics. Let Γ be the image of C via the
embedding in Proposition 6.4. Then Hr

σ2
¨ Γ “ 1, and ∆r ¨ Γ “ 2 since there are two reducible conics in a general

pencil of conics in the quadric surface Z. Now, by (6.12) we get that Dr
unb ¨Γ “ 0, and by [BDPP13, Theorem 2.2]

we conclude that Dr
unb generates the other extremal ray of the effective cone. �

Remark 6.13. Note that Qrp1q is a divisor in M0,0pLGpr, 2rq, 2q if and only if r “ 2. By Proposition 6.8 we have

M0,0pLGp2, 4q, 2q – S4 which by Proposition 3.16 is the blow-up of Gp1, 4q along the Veronese V3
2 . In this case

fH2
σ2

:M0,0pLGp2, 4q, 2q Ñ ČChowpLGp2, 4q, 2q

is nothing but the blow-down morphism S4 Ñ Gp1, 4q. Indeed, since LGp2, 4q Ă P4 is a quadric hypersurface and
hence does not contain any plane we have that all planes in P4 cut out a conic on LGp2, 4q. Hence, we may identify
the Chow variety of conics in LGp2, 4q with Gp2, 4q – Gp1, 4q.
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Furthermore, by Proposition 5.10 the morphism

fT 2 : M0,0pLGp2, 4q, 2q Ñ M0,0pLGp2, 4q, 2, 1q

is induced by the strict transform of the restriction to Gp1, 4q of the linear system of quadrics in P9 containing V3
2 .

In this way we realize M0,0pLGp2, 4q, 2, 1q as a 6-fold of degree 40 in P14 which is singular along a 3-fold isomorphic
to LGp2, 4q.

Theorem 6.14. The Mori chamber decomposition of EffpM0,0pLGpr, 2rq, 2qq has three chambers as displayed in
the following picture:

Dr
unb

Hr
σ2

T r

∆
r

where Hr
σ2

„ 1

2
p∆r ` 2Dr

unbq and T r „ ∆r `Dr
unb. Furthermore, MovpM0,0pLGpr, 2rq, 2qq is generated by T r and

Dr
unb if r ą 2, while MovpM0,0pLGp2, 4q, 2qq is generated by T 2 and H2

σ2
. The Cox ring CoxpM0,0pLGp2, 4q, 2qq is

generated by the sections of ∆2, D2
unb, H

2
σ2
, T 2.

The birational model Xr corresponding to the chamber delimited by Hr
σ2

and Dr
unb is a fibration Xr Ñ SGpr ´

2, 2rq with fibers isomorphic to Gp2, 4q, where SGpr´2, 2rq is the symplectic Grassmannian parametrizing isotropic
subspaces of dimension r ´ 2. Finally, Dr

unb contracts M0,0pLGpr, 2rq, 2q onto SGpr ´ 2, 2rq.

Proof. First consider the case r “ 2. The statement on the generators of the Cox ring follows from Proposition 6.11
and Remark 5.6. Furthermore, by Remarks 5.5 and 5.6 the Mori chamber decomposition of EffpM0,0pLGp2, 4q, 2qq
is a, possibly trivial, coarsening of the decomposition in the statement. Since by Proposition 6.11 the effective cone
EffpM0,0pLGp2, 4q, 2qq is generated by ∆2 and D2

unb, and H2
σ2
, T 2 generate NefpM0,0pLGp2, 4q, 2qq no ray can be

removed, and the Mori chamber decomposition is as in the statement. The relations Hr
σ2

„ 1

2
p∆r ` 2Dr

unbq and
T r „ ∆r `Dr

unb follow from the proof of Proposition 6.4 and (6.12).
Now, consider the case r ą 2. By Proposition 6.11 the wall-crossing of T r induces a divisorial contraction, and a

divisor inside the chamber delimited by T r and Hr
σ2

is ample. By Proposition 6.11 the wall-crossing of Hr
σ2

yields
a birational contraction whose exceptional locus is the variety Qrp1q of double covers of a line in LGpr, 2rq.

Next, we will construct the birational model ofM0,0pLGpr, 2rq, 2q corresponding to the chamber delimited byHr
σ2

and Dr
unb. Let H Ă P2r´1 be an pr`1q-plane containing an isotropic pr´1q-plane Π Ă P2r´1. Then Π “ ΠK Ą HK.

So HK Ă H . Now, the pr ` 1q-planes containing their orthogonal are in bijection with the pr ´ 3q-planes of P2r´1

that are isotropic. The variety parametrizing such pr´3q-planes is the symplectic Grassmannian SGpr´2, 2rq. Let
Ur be the universal bundle on SGpr ´ 2, 2rq, UK

r Ă Ur its orthogonal, and Qr “ Ur{UK
r the quotient bundle. Then

Qr has rank four, and we may consider the relative Lagrangian Grassmannian LGp2,Qrq Ñ SGpr´ 2, 2rq, and the
relative Hilbert scheme Hilb2pLGp2,Qrqq Ñ SGpr ´ 2, 2rq. Note that since LGp2, 4q does not contain planes the
fibers of Hilb2pLGp2,Qrqq Ñ SGpr ´ 2, 2rq are isomorphic to Gp2, 4q. Indeed, we can associate to a plane in P4

the conic it cuts out on LGp2, 4q. Set Xr :“ Hilb2pLGp2,Qrqq Ñ SGpr ´ 2, 2rq. Note that

dimpXrq “ dimpSGpr ´ 2, 2rqq ` 6 “ 2r2 ´ 4r ´
3pr ´ 2q2 ´ r ` 2

2
` 6 “

r2 ` 5r ´ 2

2
“ dimpM0,0pLGpr, 2rq, 2qq

and there is a birational transformation M0,0pLGpr, 2rq, 2q 99K Xr inducing an isomorphism between the comple-

ment of Qrp1q in M0,0pLGpr, 2rq, 2q and the complement of the locus of double lines in Xr. Since r ą 2 both these
loci are in codimension greater that one. Furthermore, Hr

σ2
induces a morphism on Xr associating to a conic the

reduced curve on which it is supported. Hence, this morphism is birational and contracts the locus of double lines.
Finally Dr

unb induces on Xr the fibration Xr Ñ SGpr ´ 2, 2rq. Indeed, this fibration yields the rational fibration

M0,0pLGpr, 2rq, 2q 99K SGpr ´ 2, 2rq associating to a stable map that is not 2-to-1 onto a line the orthogonal of
the pr` 1q-plane in P2r´1 generated by the pr ´ 1q-planes parametrized by the image of the map. Hence, the cone
generated by Hr

σ2
and Dr

unb is the nef cone of Xr.

Finally, the claim about the movable cones follows from Remark 6.13 since H2
σ2

induces a divisorial contraction,

while for r ą 2 the divisor H2
σ2

yields a small contraction and Dr
unb induces a non trivial fibration. �

We now study the positivity of the anti-canonical divisor of M0,0pLGpr, 2rq, 2q.
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Proposition 6.15. Let M0,0pLGpr, 2rq, 2q be the smooth Deligne-Mumford stack of degree two stable maps to

LGpr, 2rq, H
r

σ2
, T

r
,∆

r
, D

r

unb the divisors on M0,0pLGpr, 2rq, 2q corresponding to Hr
σ2
, T r,∆r, Dr

unb respectively.

The anti-canonical divisor of the stack M0,0pLGpr, 2rq, 2q is given by

´K
M0,0pLGpr,2rq,2q “ 5H

r

σ2
`
r ´ 7

2
D
r

unb

for r ą 2, while ´K
M0,0pLGp2,4q,2q “ 5H

2

σ2
´ 5D

2

unb. Furthermore, the anti-canonical divisor of M0,0pLGp2, 4q, 2q

is given by

´KM0,0pLGpr,2rq,2q “ 5Hr
σ2

`
r ´ 7

2
Dr
unb

for r ą 2, while for r “ 2 we have that

´KM0,0pLGp2,4q,2q “ 5H2

σ2
´ 2D2

unb.

Proof. We will compute the canonical divisor of M0,0pLGpr, 2rq, 2q using the formula in [dJS17, Theorem 1.1].
Hence, we need the Chern classes c1pTLGpr,2rqq, c2pTLGpr,2rqq, where TLGpr,2rq is the tangent bundle of LGpr, 2rq.

Recall that TLGpr,2rq – Sym2pS_q, where S is the universal bundle.
Let us pretend that S_ “ L1 ‘ ¨ ¨ ¨ ‘Lr splits as direct sum of line bundles. We will then use Whitney’s formula

along with the splitting principle to compute the Chern classes of Sym2pS_q. Set c1pLiq “ αi for i “ 1, . . . , r.
Then

cpS_q “
rź

i“1

p1 ` αiq

and hence

(6.15) c1pS_q “ α1 ` ¨ ¨ ¨ ` αr, c2pS_q “ α1α2 ` ¨ ¨ ¨ ` α1αr ` α2α3 ` ¨ ¨ ¨ ` αr´1αr.

Furthermore

Sym2pS_q “ Lb2

1
‘ pL1 b L2q ‘ ¨ ¨ ¨ ‘ pL1 b Lrq ‘ Lb2

2
‘ ¨ ¨ ¨ ‘ Lb2

r

yields

cpSym2pS_qq “ p1 ` 2α1qp1 ` α1 ` α2q . . . p1 ` α1 ` αrqp1 ` 2α2q . . . p1 ` 2αrq “

1 ` pr ` 1q
řr

i“1
αi ` r2`r´2

2

řr

i“1
α2
i ` pr2 ` 2rqpα1α2 ` ¨ ¨ ¨ ` αr´1αrq ` ¨ ¨ ¨ “

1 ` pr ` 1q
řr

i“1
αi ` r2`r´2

2
p
řr

i“1
αiq

2 ` pr ` 2qpα1α2 ` ¨ ¨ ¨ ` αr´1αrq ` ¨ ¨ ¨ “

1 ` pr ` 1qc1pS_q ` r2`r´2

2
c1pS_q2 ` pr ` 2qc2pS_q ` . . .

where in the last equality we plugged-in the formulas in (6.15). Recall that c1pS_q “ σr1 , c2pS_q “ σr2 and that by
(6.3) we have pσr1q2 “ 2σr2 . Hence

c1pTLGpr,2rqq “ pr ` 1qσr1 , c2pTLGpr,2rqq “ pr2 ` 2rqσr2 .

Now, plugging-in these formulas in [dJS17, Theorem 1.1] we get

K
M0,0pLGpr,2rq,2q “ ´

2r ` 6

4
H
r

σ2
`
r ´ 7

4
∆
r
.

Let π : M0,0pLGpr, 2rq, 2q Ñ M0,0pLGpr, 2rq, 2q be the canonical morphism from M0,0pLGpr, 2rq, 2q to its coarse

moduli space. Note that π : M0,0pLGpr, 2rq, 2q Ñ M0,0pLGpr, 2rq, 2q is an isomorphism in codimension one for all
r ą 2, while for r “ 2 it is ramified on the divisor D2

unb. When r “ 2 the stack has non trivial inertia along the

divisor D
2

unb since a general stable map in D
2

unb has automorphism group Z{2Z. Taking this into account we get

that π˚D2

unb “ 2D
2

unb, and hence Theorem 6.14 yields ∆
r

“ 2H
r

σ2
´ 2D

r

unb if r ą 2, and ∆
2

“ 2H
2

σ2
´ 4D

2

unb. So,

in terms of H
r

σ2
and D

r

unb the canonical divisor of the stack is given by

K
M0,0pLGpr,2rq,2q “ ´5H

r

σ2
´
r ´ 7

2
D
r

unb

if r ą 2 , and K
M0,0pLGp2,4q,2q “ ´5H

2

σ2
` 5D

2

unb. Furthermore, when r ą 2 the formula above gives the expression

of the canonical divisor of M0,0pLGpr, 2rq, 2q in the statement since M0,0pLGpr, 2rq, 2q and M0,0pLGpr, 2rq, 2q are
isomorphic in codimension one for r ą 2.

However, when r “ 2 we have that

K
M0,0pLGp2,4q,2q “ π˚KM0,0pLGp2,4q,2q `D

2

unb.
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Let us write KM0,0pLGp2,4q,2q “ ´5H2
σ2

` aD2
unb. Recalling that π˚D2

unb “ 2D
2

unb we get

´5H
2

σ2
` 5D

2

unb “ K
M0,0pLGp2,4q,2q “ π˚p´5H2

σ2
` aD2

unbq `D
2

unb “ ´5H
2

σ2
` p2a` 1qD

2

unb.

Hence, a “ 2 and KM0,0pLGp2,4q,2q “ ´5H2
σ2

` 2D2
unb. �

Remark 6.16. Since ωGp1,4q “ OGp1,4qp´5q and codimGp1,4qpV3
2 q “ 3 the formula KM0,0pLGp2,4q,2q “ ´5H2

σ2
`2D2

unb

can also be deduced from the description of M0,0pLGp2, 4q, 2q as the blow-up of Gp1, 4q along V3
2 in Proposition

6.8.

Corollary 6.17. The moduli space M0,0pLGpr, 2rq, 2q is Fano for 2 ď r ď 6, weak Fano for r “ 7, and
´KM0,0pLGpr,2rq,2q is not ample for r ě 8.

Proof. By Propositions 6.14 and 6.15 we have that ´KM0,0pLGpr,2rq,2q is a multiple of Hr
σ2

if r “ 7. Furthermore,

´KM0,0pLGpr,2rq,2q lies in the interior of NefpM0,0pLGpr, 2rq, 2qq for 2 ď r ď 6, while for r ě 8 we have that

´KM0,0pLGpr,2rq,2q lies in the interior of the cone generated by Hr
σ2

and Dr
unb. �

Finally, the following result on automorphisms of M0,0pLGp2, 4q, 2q is at hand.

Corollary 6.18. The automorphism group of M0,0pLGp2, 4q, 2q is given by

PsAutpM0,0pLGp2, 4q, 2qq – AutpM0,0pLGp2, 4q, 2qq – PSpp4q

where PSpp4q is the projective symplectic group, and PsAutpM0,0pLGp2, 4q, 2qq is the group of birational self-maps

of M0,0pLGp2, 4q, 2q inducing automorphisms in codimension one.

Proof. By Propositions 3.16, 6.8 we have that M0,0pLGp2, 4q, 2q is isomorphic to the blow-up of Gp1, 4q along the

Veronese V3
2 . Let ϕ P AutpM0,0pLGp2, 4q, 2qq be an automorphism. Then either φ preserves the two extremal rays

of EffpM0,0pLGp2, 4q, 2qq in Theorem 6.14 or it swaps them. In the second case φ must swap also the extremal

rays of NefpM0,0pLGp2, 4q, 2qq but this is not possible since for instance T 2 has more sections than H2
σ2

. Therefore,

φ stabilizes the exceptional divisor D2

unb of the blow-up and then it induces an automorphism φ of Gp1, 4q that
stabilizes V3

2 .
Now, the automorphism group of Gp1, 4q is isomorphic to PGLp5q and all these automorphisms are induced by

automorphisms of the ambient projective space P9 [Cow89, Theorem 1.1]. The restriction of φ to V3
2 yields an

automorphism φ|V3

2

of P3. Since φ is an automorphism of Gp1, 4q, which we interpret as the closure of the space

of symplectic and symmetric matrices modulo scalar, the restriction φ|V3

2

P PGLp4q must map symplectic matrices

to symplectic matrices. Hence, φ|V3

2

P PSpp4q. So, we get a morphism of groups

χ : AutpM0,0pLGp2, 4q, 2qq Ñ PSpp4q
φ ÞÑ φ|V3

2

which is surjective. Now, if φ|V3

2

is the identity it must be the restriction of the identity automorphism of the

ambient projective space P9 in which both V3
2 and Gp1, 4q are embedded. Since Gp1, 4q and M0,0pLGp2, 4q, 2q are

birational we get that φ|V3

2

must come from the identity of AutpM0,0pLGp2, 4q, 2qq, and hence χ is an isomorphism.

Finally, since by Proposition 6.8 and Corollary 6.17 M0,0pLGp2, 4q, 2q is a smooth Fano variety the result on

PsAutpM0,0pLGp2, 4q, 2qq follows from [Mas20a, Proposition 7.2]. �
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