
Early modified gravity in light of the H0 tension and LSS data

Matteo Braglia,1, 2, 3, ∗ Mario Ballardini,1, 2, 3, † Fabio Finelli,2, 3, ‡ and Kazuya Koyama4, §

1Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna,
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We present a model of Early Modified Gravity (EMG) consisting in a scalar field σ with a non-
minimal coupling to the Ricci curvature of the type M2

pl + ξσ2 plus a cosmological constant and
a small effective mass and demonstrate its ability to alleviate the H0 tension while providing a
good fit to Cosmic Microwave Background (CMB) anisotropies and Baryon Acoustic Oscillations
(BAO) data. In this model the scalar field, frozen deep in the radiation era, grows around the
redshift of matter-radiation equality because of the coupling to non-relativistic matter. The small
effective mass, which we consider here as induced by a quartic potential, then damps the scalar field
into coherent oscillations around its minimum at σ = 0, leading to a weaker gravitational strength
at early times and naturally recovering the consistency with laboratory and Solar System tests of
gravity. We analyze the capability of EMG with positive ξ to fit current cosmological observations
and compare our results to the case without an effective mass and to the popular early dark energy
models with ξ = 0. We show that EMG with a quartic coupling of the order of λ ∼ O(eV4/M4

pl)
can substantially alleviate the H0 tension also when the full shape of the matter power spectrum is
included in the fit in addition to CMB and Supernovae (SN) data.

I. INTRODUCTION

The long-standing success of the cosmological ΛCDM
model has been challenged in the recent years by the
growing discrepancy between direct measurements of
the Hubble constant H0 and its inference from CMB
anisotropies data [1]. The most recent measurements
range from H0 = (67.36±0.54) km s−1Mpc−1 for ΛCDM
and Planck 2018 data release [2] and H0 = (73.5 ± 1.4)
km s−1Mpc−1 [3] for SH0ES, showing a 4.1σ tension on
the H0 parameter. However, the tension is not restricted
to these two data sets. With the recent progress, it is
now clear that, rather than being only between Planck
and SH0ES, the H0 tension is in general between indi-
rect, or early time, measurements obtained by inferring
H0 assuming a model (usually ΛCDM) and analyzing it
with cosmological data such as the CMB [2] or the com-
bination of clustering and weak lensing data with BAO
and Big Bang Nucleosynthesis ones [4], and direct, or late
time, measurements of H0, which are instead model inde-
pendent. A number of H0 probes belonging to the latter
class are in tension with estimates from CMB up to ∼ 4σ
level, see [1] for a review. Another independent determi-
nation of H0, important for this paper, is obtained with
the strong-lensing time delay by the H0LiCOW team [5],
i.e. H0 =

(
73.3+1.7

−1.8

)
km s−1Mpc−1, which is in a 3.2σ

tension with CMB (see however [6] and [7] for implica-
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tions on Early time solutions of the H0 tension). By com-
bining SH0ES and H0LiCOW measurements the estimate
H0 = (73.4± 1.1) km s−1Mpc−1 is obtained, raising the
tension with CMB to the 4.9σ level. Given the relevance
of this tension, several groups have investigated whether
it might be due to unaccounted effects such as uncertain-
ties in calibration [8–11] or in the luminosity functions of
SNIa [8–14].

Although unaccounted systematic effects might alter
its statistical significance, these discrepant determina-
tions of H0 spark interest towards new physics beyond
ΛCDM [15]. This point of view has stimulated the pro-
posal of a wealth of physical mechanisms leading to a
large H0 through modifications of both the early [16–21]
and the late time [22–29] expansion history of the Uni-
verse. The former ones, however, seem to be preferred
over since reduce the value of the comoving size of the
sound horizon at baryon drag rs, without spoiling the
fit to CMB and BAO data [30–32]. Two well studied
frameworks to modify the early time dynamics of the
Universe and inject the required energy into the cosmic
fluid to lower rs with respect to the ΛCDM one are modi-
fied gravity (MG) [33–45] and Early Dark Energy (EDE)
models [46–63]1.

In this paper, we extend the model with a scalar field
on-minimally coupled to the Ricci scalar of the form
F (σ) = M2

pl + ξσ2 in presence of a cosmological con-

stant Λ [41, 42], by providing it with a small effective

1 See also Refs. [64–66] for ways to constrain EDE or more in
general Dark Energy models with a time varying equation of
state based on the reconstruction of the Universe expansion from
the density growth factor redshift dependence.
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mass. For the sake of simplicity we consider a quartic
potential, i.e. V (σ) = λσ4/4, as effective mass: in this
Early Modified Gravity (EMG) model, the scalar field
starts to move around the redshift of matter-radiation
equality driven by the coupling to non-relativistic mat-
ter, and then rolls faster when the effective mass become
larger than the Hubble parameter and ends in a regime
of coherent oscillations around the minimum of the po-
tential. The choice of a quartic potential is dictated by
the fact that coherent oscillations of σ are in conformal
time and therefore tractable by an Einstein-Boltzmann
code, without ad-hoc modifications, see e.g. Ref. [67].
Thanks to the fast rolling of σ towards the bottom of the
potential, the tight constraints on Geff from laboratory
experiments and Solar System measurements on post-
Newtonian parameters are automatically satisfied by the
small cosmological values of σ within the EMG model,
as it happens in the range of ξ < 0 in the massless case
where σ is decreased just by coupling to non-relativistic
matter [37, 41, 42]. The small effective mass and the
consequent naturally achieved consistency of cosmology
with laboratory and Solar System constraints are par-
ticularly important for positive values of the coupling,
since σ would grow for ξ > 0 for λ = 0, and therefore we
mainly focus on this range in this paper.

In our EMG model, we consider the two possible
dimensionless couplings for a cosmological scalar field,
which rule the coupling to the Ricci scalar (ξ) and its
self-interaction (λ), respectively. Note that our model
differs from previously introduced ones also named Early
Modified Gravity [68–70].

Another interesting feature of this EMG is that the
effective Newtonian constant Geff grows with time, as
opposed to nearly massless models [37, 41–43], implying
a weaker gravity at early times. As we show in this pa-
per, such an effect implies different predictions on Large
Scale Structure (LSS) observables that can help disen-
tangle EMG and EDE. The latter models have indeed
been recently claimed not to be able to solve the H0 ten-
sion when LSS data are included in the analysis [71–73].
As we show in this paper, the suppression of the matter
power spectrum induced by the positive coupling helps
us obtain a value for H0 larger than EDE with ξ = 0,
thanks to a better fit to LSS data.

Our paper is organized as follows. We introduce our
model and describe in details its background evolution,
as well as its imprints on CMB and LSS observables in
Sec. II. We describe the dataset and the methodology
used in our MCMC exploration in Sec. III, present our
results in Sec. IV and compare them with existing works
on the EDE and NMC models in Sections V and VI,
before concluding in Sec. VII. We collect the tables with
the results of our MCMC analysis in Appendix A.

II. THE MODEL

The model we consider is described by the following
action:

S =

∫
d4x
√
−g
[
F (σ)

2
R− gµν

2
∂µσ∂νσ − Λ− V (σ)

]
+ Sm , (1)

where F (σ) = M2
pl + ξσ2, R is the Ricci scalar, and Sm

is the action for matter fields. In the following, we con-
sider a quartic potential for the scalar field of the form
V (σ) = λσ4/4, where λ is a dimensionless constant.
With these conventions, our model reduces to the NMC
model considered in Ref. [42] for λ = 0 and to the Rock
’n’ Roll (RnR) model of Ref. [48] for ξ = 0. Since the
latter is an example of Early Dark Energy models, we
refer to it as EDE in the following and use the acronym
EMG for the general case with ξ 6= 0.

The Friedmann and Klein-Gordon equations are given
by:

3FH2 = ρ +
σ̇2

2
+ Λ + V − 3ḞH ≡ ρ + ρσ ,

(2a)

σ̈ + 3Hσ̇ =
Fσ

2F + 3F 2
σ

[
ρ − 3p + 4Λ + 4V

− 2
F Vσ
Fσ

−
(
1 + 3Fσσ

)
σ̇2
]
, (2b)

where ρ ≡ ρm+ρr (p ≡ pr) denotes the sum of the matter
and radiation energy density (pressure) and a subscript
σ denotes the derivative with respect to the scalar field
σ. For theories described by the action 1, it is useful to
define an effective dark energy density as follows [74, 75]:

ρDE =
F0

F
ρσ + (ρm + ρr)

(
F0

F
− 1

)
, (3)

where the subscript 0 denotes that a quantity is evaluated
at z = 0. The energy fraction of the scalar field is simply
given by Ωσ ≡ ρDE/3H

2F0.
The coupling between gravity and the scalar degree

of freedom induces a time varying Newton’s gravita-
tional constant GN , which is given by GN = 1/(8πF ).
This quantity is usually named the cosmological New-
ton’s gravitational constant, as opposed to the one that
is actually measured in laboratory Cavendish-type exper-
iments which, for a nearly massless scalar tensor theory
of gravity, is rather given by [74]:

Geff =
1

8πF

2F + 4F 2
σ

2F + 3F 2
σ

. (4)

Note that, strictly speaking, given the non-vanishing po-
tential for the scalar field V (σ) = λσ4/4, we would have
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FIG. 1. [Top] We plot the evolution of the scalar field (left) and the energy injection Ωσ defined in the main text. [Bottom] We
plot the evolution of the variation of the effective Newton constant (Geff − G)/G (left) and of the post-Newtonian parameter
γPN−1 (right). The model parameters used in the plot are σi = 0.54Mpl and V0 = 2 and we vary the value of the non-minimal
coupling ξ according to the legend in the top-left panel. For a comparison, we also plot two examples for λ = 0 in Eq. (9) and
ξ = 0.1 (−1/6) in red (green).

scale-dependent fifth forces corrections in Geff that are
proportional to Vσ and Vσσ (see e.g. Refs. [76, 77]).
However, since Vσ ' Vσσ ' 0 at lat times for the mod-

els considered in this paper (see also Fig. 1), such scale
dependent corrections vanish and so we will use Eq. (4)
throughout this paper.

The deviations from general relativity (GR) can also be
parameterized by means of the so-called Post-Newtonian
(PN) parameters [78], which are given within NMC by
the following equations [74]:

γPN = 1− F 2
σ

F + 2F 2
σ

, (5)

βPN = 1 +
FFσ

8F + 12F 2
σ

dγPN

dσ
. (6)

Note that γPN < 1 in our models. Solar-system exper-
iments agree with GR predictions, for which both γPN

and βPN are identically equal to unity, at a very precise
level. Measurements of the perihelion shift of Mercury
constrain βPN−1 = (4.1±7.8)×10−5 at 68% CL [78] and

Shapiro time delay constrains γPN−1 = (2.1±2.3)×10−5

at 68% CL [79]. As we will see below, such limits are au-
tomatically satisfied in our model.

A. Background evolution

The evolution of relevant background quantities is
shown in Fig. 1. For our comparison, we consider
the bestfit cosmological parameters given in Table 3 of
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Ref. [48], that is

θs = 1.0417, 100ωb = 2.264, ωc = 0.1267,

τreio = 0.081, ln 1010As = 3.105, ns = 0.981,

σi[Mpl] = 0.54, V0 = 2 (7)

for EMG, where σi is the initial condition on the scalar
field and for which we vary the non-minimal coupling ξ
according to the legend in the figures, and

θs = 1.0422, 100ωb = 2.236, ωc = 0.1177,

τreio = 0.077, ln 1010As = 3.080, ns = 0.969 (8)

for the ΛCDM model to which we compare our results.
Note that the constant V0 is related to λ by2

λ = 102V0/(3.516× 10109). (9)

We stress that these values are only used to build our in-
tuition and will be superseded the cosmological param-
eter estimation that we present in Sec. IV. As can be
seen from the top-left panel, the addition of the effec-
tive mass makes EMG more similar to EDE models with
respect to nearly massless NMC models [37, 41, 42]. In-
deed, σ starts frozen deep in the radiation era and, when
its effective mass becomes larger than the Hubble flow,
eventually rolls down the potential and starts oscillat-
ing around its effective minimum located at σ = 0. It
is clear from Fig. 1, that the corrections to the effective
mass of the scalar field induced by the non-minimal cou-
pling F (σ) modify the dynamics of σ, which, for ξ ≥ 0,
experiences a temporary growth before falling down the
potential. Because of this initial growth, the oscillations
around σ = 0 have a visibly larger amplitude and their
phase is slightly shifted compared to the case with ξ = 0.

The importance of such a modification to the dynamics
for ξ = 0 can be understood by looking at the shape of
Ωσ in the top-right panel of Fig. 1. For the same values of
{σi, V0}, a larger ξ sizeably increases the energy that the
scalar field injects into the cosmic fluid once it starts to
roll down its potential, an effect which, at a fixed value of
ξ, can also be obtained by increasing the initial value of
the scalar field σi. On the other hand, for larger values of
ξ, we observe that Ωσ becomes gradually more negative,
therefore suppressing H(z), with respect to the ξ = 0
case, before σ starts to thaw, reducing the degeneracy
of the non-minimal coupling ξ with the initial condition
σi (see also next Subsection). Therefore our model of-
fers a broader phenomenology than EDE ones, which is
interesting since the exact shape in redshift of the en-
ergy injection plays a crucial role in physical models that
aim at solving the H0 tension [32]. We stress that having
Ωσ < 0 is not a physical problem as Ωσ only parmeterizes
the contribution of the scalar field to the total expansion
rate when the Friedmann equations are recast in Einstein

gravity form [74, 75]. Although the main focus of this pa-
per is the ξ ≥ 0 regime, it is also instructive to show the
behavior of Ωσ when the coupling is negative. We take
the conformal coupling ξ = −1/6 as an example (see also
Section VI). For such a large and negative ξ, the profile
of the energy injection is continuous and resembles the
one in models with extra dark radiation, exactly as the
massless case with λ = 0 [37, 41, 42].

We stress again that the quartic potential drastically
modifies the scalar field evolution compared to the case
in which λ = 0. By the addition of the effective mass,
consistency of Geff and PN parameters with Cavendish-
type measurements and Solar System constraints, respec-
tively, can be obtained without any fine tuning for ξ > 0,
as can be seen from the bottom panels of Fig. 1. Note
also that, thanks to the potential V (σ), we have that
Geff grows with time, which is not possible in standard
scalar-tensor models involving only the coupling F (σ),
for which Geff decreases with time regardless of the sign
of the non-minimal coupling [37, 42]. However, in the
conformally coupled case, Geff decreases as in the mass-
less case [42].

B. Imprints of the Non-Minimal coupling on CMB
and LSS

We now show the imprints of EMG on CMB and LSS
observables. The temperature and E-mode polarization
CMB angular power spectra are shown in the top panels
of Fig. 2, from which it can be seen that the coupling
sizeably affects the acoustic peaks structure of the CMB
spectra, as a consequence of the modification to gravity
around recombination. However, note that thanks to the
potential V (σ) and the different cosmological evolution of
σ, the imprint of ξ is drastically reduced with respect to
the massless case with λ = 0. Indeed, in the latter case,
relative changes in ∆C`/C` of the same magnitude of the
ones shown in the top panels of Fig. 2 can be obtained
with much smaller values of ξ, see e.g. Fig. 9 of Ref. [37].
We also note that the modifications to acoustic peaks for
ξ = −1/6 are out of phase with respect to the ξ > 0 case.

As discussed, the non-minimal coupling ξ enhances the
energy injection of the scalar field into the cosmic fluid,
similarly to what can be obtained with a larger σi. In
order to compare the two effects, in the bottom panels of
Fig. 2, we fix ξ = 0 and plot the residual CMB spectra for
a set of initial conditions σi that give the same maximum
energy injection of the curves presented in the top panel.
Although both parameters modify the acoustic structure
of the CMB, the pattern of the CMB residuals is different.
In particular, given the same energy injection obtained
by varying ξ or σi with ξ = 0 respectively, the former has
a stronger impact on the CMB since, thanks to the non-
minimal coupling, the scalar field modifies the expansion
history already while it is frozen, slightly decreasing H(z)
since its effective energy density is negative (see Fig. 1).
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FIG. 2. [Top] We plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the non-minimal
coupling ξ. [Center] We plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the initial
condition on the scalar field σi with ξ = 0. [Bottom] We plot the lensed CMB TT (left) and EE (right) angular power spectrum
as a function of the potential parameter V0 keeping the non-minimal coupling fixed to ξ = 0.1. We utilize the set of parameters
used to produce Fig. 1.

2 3.516 × 10109 is the numerical value of M4
pl in eV4
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FIG. 3. We plot the CMB BB angular power spectrum due
to tensor perturbations. In order to clarify the distinction
between effects due to the shift in cosmological parameters
and the genuine effects of the non-minimal coupling, we plot
both the relative differences between the EDE and ΛCDM
baselines in Eq. (7) and (8) (top) and the ones obtained by
fixing the EDE parameters in Eq. (7) and varying ξ (bottom).
We set the tensor-to-scalar ratio to r0.05 = 0.05. The lensing
spectra are almost unaffected by varying our parameters, so
the relative differences for the total spectra do not change
from the ones in our plots.

In the perspective of future experiments dedicated to
CMB polarization, it is also instructive to show the im-
prints of EMG on primordial B-mode polarization. These
are shown in Fig. 3, where we vary ξ in the top panel. In
the bottom panel, in order to better understand which
effects are due to the shift of the cosmological parameters
in Eqs. (7) and (8) and the ones of varying the coupling,
we also plot the residuals obtained by fixing the cosmo-

logical parameters to Eq. (7) and changing the coupling
ξ and fix ξ = 0 and vary σi in the right one. Note that a
non-minimal coupling modifies the propagation equation
for the two polarization states of the gravitational waves
h+,× as (neglecting anisotropic stresses for simplicity)3:

ḧ+,× +

(
3 +

Ḟ

HF

)
Hḣ+,× +

k2

a2
= 0. (10)

As shown in Refs. [70, 82, 83], the additional friction term
induced by the non-minimal coupling may leave interest-
ing observational signatures. In the case of V (σ) = 0, the
impact on B-mode polarization was analyzed in Ref. [37],
where it was found the effects increase with |ξ|. In our
model, where the potential V (σ) enlarge the range of ξ
which is compatible with the data (see next Section), the
effects can indeed be larger, as can be seen from the left
panel of Fig. 3. The effect of an increasing ξ is twofold.
First it changes the acoustic structure of the C`’s for
` & 100, with a pattern which cannot be mimicked by a
change in σi, similarly to what happens with the other
CMB spectra, as can be appreciated by looking at the
right panel of Fig. 3. Second, it also decreases the power
in the range 10 . ` . 100 compared to the ΛCDM model.
Our plots also show a bump at very large scales. This,
however, is a feature which is not directly ascribed to the
EMG model or the EDE one. In fact, such a peak comes
from the interplay of the different cosmological parame-
ters in Eqs. (7) and (8). Nevertheless, we have verified
that such a bump also occurs when considering the rel-
ative differences between the bestfit values for ΛCDM
and EMG/EDE cosmologies shown in the next Section,
and thus it may constitute an indirect signature of EMG
and EDE models that can be tested with future CMB B
modes experiments.

Since EDE scenarios have been recently shown to be
constrained by the matter power spectrum at low red-
shift [71–73, 84, 85], it is important to investigate the
imprints of our model also on LSS and compare them to
the ones of NMC and EDE models. We plot the ratio
between the linear matter power spectra for our EMG
model and the ΛCDM one in the left panel of Fig. 4.
As previously studied in [33–37], the matter power spec-
trum is enhanced at small scales in effectively massless
scalar-tensor models aiming at alleviating the H0 prob-
lem since gravity was relatively stronger at early times.
Analogously, EDE models also enhance the matter power
spectrum at small scales compared to the ΛCDM one, as
can be seen from the orange line in the plot. It is how-
ever important to understand that this effect is not due
to the EDE component itself, but rather by the shift to-
wards a larger ωc that is needed to maintain the fit to
the CMB data, see Eqs. (7) and (8). In fact, the larger is

3 The term Ḟ /HF is sometimes referred to as αM or δ in the
literature [80, 81].
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FIG. 4. We plot the ratio of the EMG and ΛCDM linear
matter power spectra at z = 0 (top) and the evolution of the
dark matter perturbation δρc for k = 0.1 h/Mpc divided by
the one for the ΛCDM model (bottom) as a function of the
non-minimal coupling ξ. As in the previous plot, for solid
lines, we utilize the set of parameters used to produce Fig. 1
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ΛCDM baselines in Eq. (7) and (8). In the lower half of the
top panel, in order to make clear which are the effects due only
to the variation of ξ, we fix the EDE baseline parameters in
Eq. (7) and plot P (k) varying ξ using dashed lines.

the fraction of EDE, the greater is the suppression of the
growth of the perturbations within the horizon during the
epoch when EDE is not negligible. We see from the top
panel of Fig. 4 that, fixing all the other parameters, the
non-minimal coupling ξ goes instead in the direction of
suppressing the power at small scales, as it weakens the
strength of gravity during the EMG epoch, see Fig. 1.
This is not true anymore for the ξ = −1/6 case in which
a stronger gravity (Geff/G > 1) at early times leads to an
enhancement of the power at smaller scales. Again, the
results are completely different from the case with λ = 0,
for which the Geff always decreases with time, leading to

a stronger gravity at early times and a consequent larger
power in P (k) at small scales [37].

The results in Fig. 4 can be better understood by look-
ing at the evolution of dark matter perturbations. For
this purpose, we plot the evolution of the ratio of the dark
matter perturbation δρc for the EMG and the ΛCDM
model for the mode k = 0.1 h/Mpc in the bottom panel
of Fig. 4. As can be seen, for a positive ξ, initially scalar
field perturbations enhance the growth of dark matter
perturbations with respect to the ΛCDM case, overcom-
ing the suppression factor due to having Geff/G < 1.
The opposite occurs for a negative value, as can be seen
from the brown line. On even smaller scales (larger k),
we also have a fifth force (scale dependent) contribution
from the scalar field perturbations that further enhances
the growth of dark matter perturbations at very early
times with respect to the ΛCDM case, which explains
the raise in the P (k) at small scales for ξ = 0.5 in the
left panel of Fig. 4.

Once the scalar field starts to roll down the potential,
however, the scalar field perturbations become negligible
and the only effect of the modification to gravity is to
suppress (enhance) the gravitational potentials by a fac-
tor of F (σ) < 1 (> 1) depending on the sign of ξ, leading
to the observed suppression (enhancement) in the left
panel of Fig. 4.

Furthermore, it is instructive to show the effects on the
observed redshift-space galaxy-spectrum. We plot the
multipole moments in Fig. 5 where we show the monopole
` = 0 (left panel) and the quadrupole ` = 2 (right panel)
resummed at 1 loop order in perturbation theory, which
we have produced with the publicly available code Py-
Bird4 [86]. Although PyBird works in the framework of
a ΛCDM effective field theory of LSS, the deviations from
General Relativity at the relevant redshift considered by
PyBird are so small that its use in this context is safe
(see Fig. 1). As an example we have considered the mul-
tipole moments at z = 0.38, which corresponds to the
redshift of the low-z NGC BOSS data (see next Section).
Note that the effect of ξ is to reduce the amplitude of
both P0(k) and P2(k). It is very interesting to note that,
starting from the parameters in Eqs. (7) and (8), we re-
cover very similar spectra for ΛCDM and the EMG model
with ξ = 0.1, suggesting that the non-minimal coupling
can help reconcile EDE models with LSS observations.

III. METHODOLOGY AND DATASETS

We perform a Markov-chain Monte Carlo (MCMC)
analysis using a modified version of the hiCLASS code
[87–90] interfaced to the publicly available sampling code
MontePython-v35 [91, 92] and to the PyBird code for the

4 https://github.com/pierrexyz/pybird
5 https://github.com/brinckmann/montepython public

https://github.com/pierrexyz/pybird
https://github.com/brinckmann/montepython_public
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FIG. 5. We plot the 1 loop ` = 0 (left) and ` = 2 (right) mul-
tipole moments of the galaxy power spectrum as a function of
the non-minimal coupling ξ. We utilize the set of parameters
used to produce Fig. 1. We also plot the ΛCDM results in
magenta dotted lines for a comparison.

calculation of the full shape of the galaxy power spectrum
in the effective field theory of large scale structure [86].
We obtain plots using the GetDist package6 [93]. For all
our runs, we set the initial velocity of the scalar field to
zero, use adiabatic initial conditions for the scalar field
perturbations [37, 94] and consider massless neutrinos
(Neff = 3.046)7

We sample over the cosmological parameters
{ωb, ωcdm, θs, ln 1010As, ns, τreio, ξ, σi, V0} using

6 https://getdist.readthedocs.io/en/latest
7 We have tested that the differences with respect to having one

massive neutrino with mν = 0.06 eV in the estimate of the cos-
mological parameters are small except for a shift in H0 towards
larger values and a smaller σ8 (though S8 does not change ap-
preciably).

the Metropolis-Hastings algorithm and with a Gelman-
Rubin [95] convergence criterion R − 1 < 0.03. For
the extra parameters we consider flat priors ξ ∈ [0, 1],
σi/Mpl ∈ [0, 0.9] and V0 ∈ [0.6, 3.5]. Note that EDE
models are usually parametrized with two parameters
describing the redshift at which the scalar field starts
to roll down the potential, usually denoted as critical
redshift zc, and the maximum energy injection fscf

[46–48]. For the particular case of the RnR model,
the correspondence between {V0, σi} and {zc, fscf} is
unique under the assumption of the same initial velocity
of the scalar field. However, as explained in Section II,
this one to one correspondence is not possible in our
model, where also ξ contributes to the energy injection
into the cosmic fluid. For this reason, we prefer to use
the physical parameters describing our model (1) as
previously done [42]. Nevertheless, we quote log10 zc and
fscf ≡ Ωscf as derived parameters. Note that we model
the non-linear power spectra using HALOFIT [96, 97].
In this respect, see also Ref. [98] for a comparison
between of HALOFIT and HMcode [99] in the context
of EDE.

For each run, we also compute the best-fit values ex-
tracted using the MINUIT algorithm [100] implemented
in the IMINUIT python package8 and quote the differ-
ence in the model χ2 with respect to ΛCDM one, i.e.
∆χ2 = χ2 − χ2(ΛCDM), where negative values indicate
an improvement in the fit of the given model with respect
to the ΛCDM for the same dataset.

In order to quantify to what extent the improvement
in the fit to the data warrants the increase in the model
complexity compared to the baseline ΛCDM model, we
compute the Bayes factor defined as the ratio of the ev-
idences for the extended model ME with respect to the
baseline ML as [101]:

BEL ≡
∫
dθE π(θE |ME)L(x|θE ,ME) ,∫
dθL π(θL|ML)L(x|θL,ML) ,

, (11)

where π(θE,L) is the prior for the parameters θE,L and
L(x|θE,L) the likelihood of the data given the model
ME,L. The extent to what the extended model ME is
preferred over the baseline ML can be qualitatively as-
sessed using the Jeffreys scale reported in Table I [102].
We compute the evidence directly from our MCMC using
the method introduced in Ref. [103] implemented in the
MCEvidence code9.

We constrain the cosmological parameters using sev-
eral combination of datasets. Our CMB measurements

8 https://iminuit.readthedocs.io/en/stable/
9 https://github.com/yabebalFantaye/MCEvidence

https://getdist.readthedocs.io/
https://iminuit.readthedocs.io/
https://github.com/yabebalFantaye/MCEvidence
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lnB ≡ lnBEL Strength of preference for model Mi

0 ≤ lnB < 1 Weak

1 ≤ lnB < 3 Definite

3 ≤ lnB < 5 Strong

lnB ≥ 5 Very strong

TABLE I. Revised Jeffreys scale used to interpret the val-
ues of lnB obtained when comparing two competing models
through their Bayesian evidence [102]. A value of lnB > 0
indicates that the extended model is favoured with respect to
the ΛCDM baseline model.

are those from the Planck 2018 legacy release (here-
after P18) on temperature, polarization, and weak lens-
ing CMB anisotropies angular power spectra [104, 105].
The high-multipoles likelihood ` ≥ 30 is based on Plik
likelihood. We use the low-` likelihood combination at
2 ≤ ` < 30: temperature-only Commander likelihood plus
the SimAll EE-only likelihood. For the Planck CMB
lensing likelihood, we consider the conservative multi-
poles range, i.e. 8 ≤ ` ≤ 400. We marginalize over
foreground and calibration nuisance parameters of the
Planck likelihoods [104, 105] which are also varied to-
gether with the cosmological ones. We refer to this CMB
dataset as P18.

We use the baryon acoustic oscillation (BAO)
of Baryon Spectroscopic Survey (BOSS) DR12 [106]
post-reconstructed power spectrum measurements in
three redshift slices with effective redshifts zeff =
0.38, 0.51, 0.61 [107–109], in combination with the
’small-z’ measurements from 6dF [110] at zeff = 0.106
and the one from SDSS DR7 [111] at zeff = 0.15. We
refer to this combination of BAO data as BAO.

We also use the full shape of the BOSS DR12 pre-
reconstructed galaxy clustering measurements [112] us-
ing the Effective Field Theory (EFT) of LSS analysis
of Refs. [113, 114]. In particular we consider the com-
bination of the monopole and quadrupole of the power
spectra of the three different sky-cuts CMASS NGC
and CMASS SGC at effective redshift zeff = 0.57 and
LOWZ NGC at zeff = 0.32 and we follow the conven-
tions of Refs. [86, 113, 114] for the maximum wavenum-
ber that we consider (kmax = 0.23h/Mpc for CMASS and
kmax = 0.20h/Mpc for NGC). We combine this dataset
with the Hrs and DA/rs parameters measured from the
post-reconstructed power spectra corresponding to the
same sky-cuts, see Ref. [86] for an explanation of how
the covariances between these datasets are calculated.
We refer to such a dataset, combined with ’small-z’ BAO
mentioned in the previous paragraph as BAO+FS.

Additionally, we use the Pantheon supernovae dataset
[115], which includes measurements of the luminosity dis-
tances of 1048 SNe Ia in the redshift range 0.01 < z < 2.3.
We refer to Pantheon data as SN. As discussed in [42],
we do not consider any corrections due to the change in
the peak luminosity of SNe induced by the time evolution
of the gravitational constant [116–119], since they should

lead to a negligible effect for the models considered here.

We also consider the combination with a Gaussian like-
lihood based on the latest determination of the Hub-
ble constant from Hubble Space Telescope (HST) ob-
servations (hereafter R19), i.e. H0 = (73.5 ± 1.4) km
s−1Mpc−1 [3] and from time delay from gravitationally
lensed quasars from the H0LiCOW collaboration [5], that
is H0 =

(
73.3+1.7

−1.8

)
km s−1Mpc−1. Since there is no

correlation between the two measurements, they can be
combined again in an inverse-variance weighted Gaus-
sian prior as H0 = (73.4± 1.1) km s−1Mpc−1. We refer
to this prior simply as H0.

Finally, in order to include weak lensing data from
photometric surveys, we follow Refs. [71, 72] and imple-
ment them through a Gaussian prior on the parameter
S8 = σ8

√
Ωm/0.3. Compressing a large amount of data

in a single data point obtained for ΛCDM is just an ap-
proximation and the correct way would be to perform
a full fledged analysis with the correct likelihood. How-
ever, it was demonstrated in Ref. [71], that, when com-
bined with CMB, BAO, SN, the DES-Y1 likelihood from
two-point correlations of photometric galaxy clustering,
galaxy-galaxy lensing and cosmic shear is well approx-
imated by a Gaussian prior on S8 = 0.773 ± 0.026 in
ΛCDM and EDE models. Note also that another thor-
ough analysis of EDE models with weak lensing surveys
is performed in Ref. [98]. In that paper, the analy-
sis with the full KiDS+VIKING likelihood and the one
where the joint KiDS+VIKING and DES data are ap-
proximated by a Gaussian prior again show a qualita-
tive agreement between the two approaches, although the
joint KiDS+VIKING and DES data are somewhat more
constraining. Given these results, we use as a proxy for
complementary measurements on S8 from galaxy weak
lensing a Gaussian prior for the inverse-variance weighted
combination of the measurements of DES [120], KV-450
[121, 122] and HSC [123], i.e. S8 = 0.770 ± 0.017. We
refer to this prior simply as S8. We leave the task of a
full weak lensing analysis to assess the reliability of our
approximation to a future work.

As a final comment, note that also Big Bang Nucle-
osynthesis data constrain the variation of the GN from
the early times to today. As discussed more in depth in
Refs. [41, 42], in our model this translates into a con-
straint on the quantity ξσ2

i , which is constrained to be
∆GN/GN = (GN (tBBN) − GN (t0))/GN (t0) ' ξσ2

i =
1.010.20

−0.16 at a 68% CL level [124, 125]. A tighter con-
straint was also derived more recently in Ref. [126], which
found ∆GN = 0.02 ± 0.06. As we will show in the next
Section, contraints from the data set introduced above
are always tighter or nevertheless consistent with BBN
ones, so we do not need to include BBN data in our
analysis10.

10 In our model, the σ field is frozen deep in the radiation era. Al-
though we do not consider this possibility in our paper, quantum
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FIG. 6. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set
P18 + BAO + FS + SN + H0. Red contours show the results obtained for EMG with a larger prior on V0 (see main text),
for which we use the data set P18 + BAO + SN + H0. 2D contours contain 68% and 95% of the probability. We also plot
the 68% and 95% CL for the priors on H0 and S8 described in Sec. IV.

IV. RESULTS

In this Section, we present the results of our MCMC
analysis performed using several combinations of the data
sets introduced in the previous section. We comment on
each combination in turn and we only present plots of
the posterior distribution of the cosmological parameters
varied in the analysis and refer the reader to Appendix A
for the tables containing their mean and best-fit values,
as well as the χ2 for each data set and the Bayes factors.

We start by discussing the results obtained using the
data set P18 + BAO + FS + SN + H0, which are
presented in Fig. 6 and Table II. They clearly show that
in the EMG model a large value of H0 = 71.00+0.87

−0.79 km

s−1Mpc−1 at 68% CL is obtained, reducing the tension

with SH0ES + H0LiCOW at 1.7σ, better than the 2.1
(4) σ reduction for the EDE (ΛCDM) obtained for H0 =
70.57+0.77

−0.98 (68.82± 0.39) km s−1Mpc−1 at 68% CL. This
reduction comes both from the larger mean value of H0

and the larger errors compared to ΛCDM. As for other
models aiming at solving the H0, we obtain a larger ωc
and ns compared to the ΛCDM model11.

It is interesting to note that EMG helps fitting CMB
data better with respect to EDE (and also to the ΛCDM).
This is reflected in our 68 % CL estimate for ξ =
0.15+0.06

−0.07, its 95 % CL upper limit ξ < 0.42, and a best-

fit value of ξ = 0.178. We also get σi = 0.49+0.11
−0.06 at

68%CL, or equivalently fscf = 0.084+0.030
−0.021. Note how-

ever the remarks in Section II about the meaning of fscf

in the context of EMG.

mechanically, it is possible that the scalar field random walks and
ends up at a larger values at earlier times. This leads to a larger
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FIG. 7. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set
P18 + SN + H0 . 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on
H0 and S8 described in Sec. IV.

Compared to ΛCDM, both the EMG and the EDE
model exacerbate the tension with measurements of σ8

and S8. We get consistent results in terms of σ8 for EMG
and EDE, i.e. σ8 = 0.830±0.008 at 68%CL for EMG and
σ8 = 0.832+0.009

−0.011 at 68%CL for EDE. However, the larger
ωc and H0 leads to essentially the same S8 = 0.829 ±
0.011(±0.13) at 68%CL for EMG (EDE).

Overall, the EMG models fits the data much better
than the ΛCDM model with an improvement of ∆χ2 =
−16.0. Such an improvement (better than ∆χ2 = −9.3
for the EDE model) is largely due to the better fit to
the H0 prior, but there is also some improvement in the
fit to CMB data, in particular to high-` TTTEEE data.
As for LSS data, there is only a very small degradation
compared to ΛCDM due to the ∆χ2 = +2.5 in the fit to
BAO DR12 FS + BAO, high-z NGC. The suppression

of the matter power spectrum given by the large positive
coupling ξ helps fit FS + BAO data keeping the value
of H0 large at the same time. This large improvement
in the fit corresponds to a Bayes factor of lnBij = +1.0
for EMG. The EDE model, which leads to a smaller im-
provement in the fit , i.e. ∆χ2 = −9.3, has nevertheless
a slightly larger Bayes factor of lnBij = +1.5 due to the
smaller number of extra parameters compared to EMG.
Note that, from its definition in Eq. (11), the Bayes fac-
tor depends on the prior range of the extra parameter ξ
and as such has to be interpreted with some caution. In
fact, especially if a parameter is not well constrained (as
for the case of some the EMG parameters as V0 and ξ,
see next Section) one could enhance the evidence for the
EMG model by reducing the prior range and therefore
the sampling volume. For attempts towards model selec-
tion techniques which are less dependent on the specific
choice of the prior see e.g. Ref. [130].

H, which becomes in tension with BBN constraints. A way out to this problem can be to assume a different non-minimal cou-
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FIG. 8. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set
P18 + BAO + FS + SN + H0 + S8. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95%
CL for the priors on H0 and S8 described in Sec. IV.

With the choice of V0 prior as above, however, it is not
possible to recover the model studied in Ref. [42] as the
particular λ → 0 limit. The reason of this choice is to
make sure that for every possible combination of param-
eters the scalar field always decreases toward σ = 0, so to
be able to safely use the FS data. Indeed, for λ = 0, the
deviation from GR grows at late times, invalidating the
use of the FS likelihood and PyBird for a large portion
of the parameter space.

On the other hand, it is instructive to study the ef-
fects of widening the V0 prior to see if the data constrain
the model with λ = 0. For this purpose we perform an

MCMC analysis with the data set P18 + BAO + SN
+ H0 that does not suffer from the issue raised above and
we set the prior range V0 ∈ [−4, 3.5]. We have checked
that for V0 ≤ −3, the potential is essentially negligible.

The posteriors obtained for this MCMCs analysis are
shown as red contours in Fig. 6 and they show that data
do not prefer the small V0 region for which the scalar field
grows. The results also show another interesting feature
of the EMG model, i.e. there is only a small difference
in constraints on the EMG model when using BAO in
place of the more complete BAO + FS data. As can be
seen, the only effect of using BAO is have slightly larger
posteriors, but with the same mean as those obtained
with BAO + FS data. Note that this is in agreement for
the findings of Ref.[61] in the context of the New Early
Dark Energy model.

pling of the form F (σ) = M2
pl + ξ sin2 [f(σ)] so that it never gets too large.
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FIG. 9. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set
P18 + BAO + FS + SN . 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the
priors on H0 and S8 described in Sec. IV.

In order to further assess the role of BAO + FS data,
we also perform an MCMC analysis without considering
them, and use the data set P18 + SN + H0. The results
are presented in Fig. 7 and Table III. As can be seen,
removing BAO and FS data leads to a somewhat larger
value of H0 = 70.85 ± 0.92 km s−1Mpc−1 for the EDE
(and a much larger bestfit of H0 = 71.38 km s−1Mpc−1),

confirming that BAO + FS have the power to constrain
these models, as shown in12 Refs. [71–73]. On the other
hand, H0 for the EMG model increases only a bit to
H0 = 71.21± 0.93 km s−1Mpc−1, since BAO + FS data
constrain it less than they constrain EDE models. It
is very interesting to note that the best-fit value for the
coupling ξ = 0.17 is very close to the one found including
BAO + FS data.

11 Note that, taken at face value, a larger ns would have profound
implications on inflationary physics [127–129].

12 Note that our results slightly differ from the ones in Ref. [73].
The main reason is that we use a different H0 prior which has
a stronger impact on our MCMC analysis, whereas they used a
prior obtained from earlier SH0ES results, i.e. H0 = 74.03±1.42
km s−1Mpc−1 [131]. Also, we fix Neff = 3.046 in our analysis
which leads results slightly different from the ones obtained with

The EMG model fits most of the data, with the ex-
ception of CMB lensing, better than both the EDE and

the Planck assumption of one massive neutrino with mν = 0.06
eV (see main text). Finally, we do not use high redshift Lyman-
α forest data from eBOSS DR14 measurements [132, 133] . We
have checked that we recover the results that are consistent with
Ref. [73] when using the EDE model with ξ = 0 and their dataset
and conventions.
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the ΛCDM model, leading to a ∆χ2 = −17.1. This time,
however, the improvement in the fit does not warrant the
increase in the model complexity compared to ΛCDM
and we obtain a Bayes factor of lnBij = −0.2.

We have shown that the EMG model leads to a larger
value of S8 compared to the ΛCDM one. Therefore, we
would like to test it against weak lensing data. Strictly
speaking, this would require using data from e.g. the
KiDS-VIKING galaxy shear measurements. However, it
was claimed in Refs. [71, 72] that the same results can be
obtained by implementing weak lensing data through a
Gaussian prior on the parameter S8 = 0.770± 0.017 (see
also Ref. [98] for a thorough comparison of this method
to the correct use of cosmic shear measurements). With
these caveats, we follow Refs. [71, 72] and present in
Fig. 8 and Table IV the results for the data set P18
+ BAO + FS + SN + S8 + H0. Note, despite being
far from a resolution to the S8 tension, the EMG model
shows now a much smaller S8 = 0.809±0.009 and a best-
fit value of S8 = 0.807, lower than the one obtained for
ΛCDM i.e. S8 = 0.811. This confirms the conclusion
of Ref. [98] for EDE models that, even though it is true
that the S8 tension is not resolved within this model, the
same holds for the ΛCDM model which, however, is not
able to address the H0 tension, as opposed to the EMG
model, for which we obtain a mean H0 = 70.63+0.80

−1.00 and

a best fit of H0 = 71.59 km s−1Mpc−1.
Even in this case, however, we note that the large im-

provement in the fit (not followed by a preference from
the model-selection point of view) is coming mainly from
the substantial improvement in the fit to H0. It is there-
fore natural to ask what happens when we remove H0

prior from the data set.
We present the results obtained without the combined

SH0ES-H0LiCOW determination of H0 in Fig. 9 and Ta-
ble V for the data set P18 + BAO + FS + SN13. The
results show that the mean value for H0 in the EMG
model (and in the EDE one) is only slightly larger then
the one in ΛCDM, as also found in previous studies of ef-
fectively massless models of scalar-tensor theories [33, 34]
. This can be appreciated by looking at the larger pos-
terior distributions of H0 and ωc for the EMG and EDE
models in Figs. 9. The incapability of EDE to solve the
H0 tension when prior information on H0 is not included,
has been recently discussed in the literature [71]. A sim-
ilar result holds for EMG. 14

Although the best-fit parameters shown in the third
column of Table V do not lead to a very large H0, we
confirm the results of Refs. [98, 134] for EMG and find

13 We have checked that the addition of a prior on S8 to this data
set does not change appreciably the results.

14 However, it has also been proposed in Refs. [98, 134] (see also
next Section), that a distinction should be made between looking
at the posterior distributions and the fact that there are some
parameters that fit the data in a way that is statistically indis-
tinguishable from ΛCDM and still lead to a large H0.

some set of parameters exist that lead to a large H0 with-
out a significant change in ∆χ2. For example, we find
that 100ωb = 2.285, ωc = 0.1308, 100 ∗ θs = 1.04089,
τreio = 0.057, ln 1010As = 3.066 ns = 0.9840, ξ = 0.151,
V0 = 2.19, and σi = 0.57 leads to ∆χ2 = 0.7, fitting the
data very similarly to ΛCDM, with an improvement in
the fit to CMB data and a slight worsening to the fit to
BAO DR12 FS + BAO, high-z NGC data. Such a pa-
rameter set, leads to a large fscf = 0.081 and and a large
H0 = 70.15 km s−1Mpc−1.

V. ANALYSIS OF THE 1 PARAMETER
EXTENSION

The ΛCDM model predictions can be recovered in
both the EDE and the EMG models when σi, or equiv-
alently the energy injection of the scalar field into the
cosmic fluid, goes to zero. In this regime, both V0 and
the coupling ξ essentially play no role. When using the
Metropolis-Hasting algorithm, this can give rise to a large
portion of the parameter space that can artificially en-
hance the statistical weight of ΛCDM models. This is-
sue has been recently addressed, within EDE models, in
Refs. [51, 54, 55, 59, 73].

Here, we take a similar, but somewhat alternative ap-
proach, and follow the lines of Refs. [98, 134], where it
was shown that by fixing15 log10 zc (or V0 in our conven-
tion) it is possible to extend the fscf−H0 degeneracy even
for a choice of datasets without prior information on H0,
avoiding problems related to the volume sampling and
to the choice of a prior that allows for a ΛCDM limit.
Such a degeneracy is clearly disrupted (see Fig. 9) when
a prior on H0 is not included in the data set and a tight
upper bound on fscf is obtained.

Note, however, that in absence of theoretical motiva-
tions, this must be seen only as a purely phenomeno-
logical approach, which is rather unorthodox from the
standard Bayesian point of view, for which all the pa-
rameters has to be varied altogether. Nevertheless, in the
class of MG considered here, there is however the possi-
bility to reduce the number of parameters by restricting
to ξ = −1/6, which corresponds to the theoretical value
for conformal coupling [37] (see more in the following
Section).

Based on the former argument, we perform an analysis
similar to the one of Ref. [59, 98] for the EMG model, for
which we fix V0 and ξ to their best-fit values in the third
column of Table II and leave σi free to vary. We do not
include H0 data and we use the P18 + BAO + FS +
SN data set. The results are presented in Fig. 10, where
we confront our results to ones for EMG obtained in the

15 In the EDE model of Refs. [98, 134] also a second parameter
related to the axion decay constant f , namely Θi, has to be
fixed.
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FIG. 10. 1D and 2D posterior distributions of a subset of parameters for the EMG model. Blue and dark red contours are
drawn from the samples in Fig. 6 and 9 respectively, while the green ones are drawn from the sample obtained by using the
data set P18 + BAO + FS + SN and fixing V0 and ξ to their best-fit values in the third column of Table II. 2D contours
contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the prior on H0 described in Sec. IV.

previous section considering the data sets P18 + BAO
+ FS + SN and P18 + BAO + FS + SN + H0.

From the plot, it is easy to see that the degeneracy be-
tween σi and H0 is now more visible leading to a larger of
H0 = 69.18+0.79

−1.00 km s−1Mpc−1 at 68% CL and slightly
reducing the tension with SH0ES+H0LiCOW (3.2σ vs
4.2σ in the 3 parameter case using the same data set).
However, the value of σi remains consistent with σi = 0
and most of the improvement in reducing the tension is
ascribed to a larger error on H0 compared to the 3 pa-
rameters case. In fact, the best-fit value for H0 that
we obtain is H0 = 68.79 km s−1Mpc−1, correspond-
ing to σi = 0.30Mpl. The best-fit cosmology for the
1 parameter EMG leads to a total χ2 of 4001.5, i.e.
∆χ2 = 1.8, nearly indistinguishable from the 3 parame-
ters one. Compared to the 3 parameters models we have a
∆χ2 ∼ −1.3 and a ∆χ2 ∼ −0.9 gain in the fitting Planck
high-` TTTEEE data and BAO DR12 FS + BAO, low-
z NGC and high-z SGC respectively, whereas the fit to
BAO DR12 FS + BAO, high-z NGC is worsen by a fac-

tor of ∼ +1.6, all the other partial χ2s being essentially
the same.

It is interesting to note that now there is only 1 extra
parameter and the model is not as penalized as for the
case with 3 parameters. In fact, the Bayes factor is now
lnB = 1.4 and for the data set P18 + BAO + FS
+ SN, the model results slightly preferred over ΛCDM
according to the Jeffreys scale in Table I.

We therefore conclude that by fixing two parameters
does not help much alleviate theH0 tension, which is only
addressed when additional prior information from local
measurements of the Hubble constant is added, as shown
in the previous Section. As in Section IV, though, we
note that we do find some choices of parameters for which
the fit to the data is not substantially different from the
one in the ΛCDM model, but lead to a larger H0, as in
Refs. [98, 134], with which we qualitatively agree. A fully
quantitative comparison with Refs. [98, 134] is however
not possible because of the presence of the non-minimal
coupling and the different potential considered.
Indeed, potentials with a different curvature such as
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those with flattened wings and power-law minima are
well known to lead to a larger value of H0 compared to
the simpler quartic potential [47, 54, 55, 57].

As a last comment, note that it would be an interesting
exercise to fix also ξ to search for the σi that exactly
solves the H0 tension, as proposed in Ref. [24]. However,
this is not the purpose of this paper and we hope to
return to this point in a future work.

VI. THE ξ = −1/6 CASE

So far, we have focused on the case of a positive cou-
pling ξ ≥ 0. As a representative example of the param-
eter space with ξ < 0, we also show the results obtained

by fixing ξ = −1/6 [37].
From Fig. 1 in Section II, we see that the energy in-

jection is not sharp in redshift anymore, but rather we
observe a continuous energy injection in the early Uni-
verse, until the scalar field contribution redshits away.

The similarity between the background dynamics of
this model and the one of a model with extra dark-
radiation parameterized by Neff and the consequent dif-
ficulty in constraining the coupling ξ has been studied
in Ref. [42]. Here, the contribution of the scalar field to
the total energy budget is similar so we do not expect
significant differences between the results here and the
ones found in Ref. [42]. However, note that thanks to
the small effective mass, the scalar field decreases more
rapidly compared to the massless case with λ = 0, see
e.g. Fig. 1 of Ref. [42].
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FIG. 11. 1D and 2D posterior distributions of a subset of parameters for the EDE (orange), EMG (blue) and conformally
coupled EMG (brown) using the data set P18 + BAO + FS + SN + H0. We also show in green the results for the case
with ξ = −1/6 and λ = 0 for a comparison. Note that for the latter case the data set P18 + BAO + SN + H0 is instead
used. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on H0 and S8

described in Sec. IV.

For our MCMC analysis we use the data set P18 + BAO
+ FS + SN + H0 and we fix ξ = −1/6. Our results

are shown in Fig. 11, where we compare to results of the
previous section and show also the results for the case
with ξ = −1/6 and λ = 0 obtained with the same prior



17

on σi for a comparison (for simplicity we refer to it as
CC). Note that, for the λ = 0, we have used the data set
P18 + BAO + SN + H0, since for a large portion of
the σi prior we have Geff/G − 1 ∼ 10−3 and the use of
the FS likelihood might be less accurate.

Fig. 11 shows that the EMG case with ξ = −1/6 leads
to H0 = 70.11 ± 0.79 km s−1Mpc−1 at 68% CL a value
smaller than the one obtained in the EDE and EMG
model with ξ ≥ 0. This is expected, as the ability of
the EDE and EMG model with ξ ≥ 0 to alleviate the
H0 tension relies on an energy injection very localized in
redshift, a feature that is not shared by the EMG model
with ξ = −1/6. The bestfit value of σi = 0.46Mpl leads
to H0 = 70.30 km s−1Mpc−1, again smaller than the
ξ = 0 and ξ ≤ 0 case. The improvement in the fit is
∆χ2 = −9.0 accompanied by a Bayes factor of lnBij =
−1.4, as in the EDE case, which has the same number of
parameters. The main improvement in the ∆χ2 comes
from a better fit to Planck high-` data compared to the
other EMG and EDE models, but it is compensated by
a degradation in the fit to LSS and H0 data.

On the other hand, in the latter model, the energy
density of the scalar field redshifts away much faster than
for λ = 0, since the scalar field is driven towards σ ' 0
by the quartic potential. This is the reason why the
H0 in this model is larger than H0 = 69.78 ± 0.66 km
s−1Mpc−1 at 68% CL, obtained for λ = 0, for which
the scalar field contribution is not completely negligible
after recombination. For the very same argument, we
observe that a larger |ξσ2

i |, which is a measure of the
scalar field contribution to the fractional ∆H(z)/H(z)
before recombination when ξ < 0, is allowed in the EMG
model compared to the CC one. Also, the value of γPN is
orders of magnitude larger in the CC model, i.e. γPN >
−2.1 · 10−5 at 95%CL, compared to the EMG case with
ξ = −1/6 in which γPN > −3.5 · 10−9 at 95%CL. If the
former is comparable to Solar System experiments, the
latter is much smaller.

Furthermore, as expected from the discussion in Sec-
tion II and Fig. 4, the negative coupling leads to larger σ8.
We get σ8 = 0.837+0.013

−0.021 and σ8 = 0.835±0.010 for λ 6= 0
and λ = 0, respectively, larger than the EDE or EMG
model with a positive coupling (see Table II). However,
this is accompanied by a comparable S8 = 0.833+0.016

−0.022 for
EMG with ξ = −1/6 and a smaller S8 = 0.822 ± 0.011
for ξ = −1/6 , λ = 0, since H0 is smaller and therefore
the shift in the value of ωc necessary to restore the fit
with CMB data is slightly smaller as well. This is again
in line with the observation that models that lead to a
larger H0 modifying the sound horizon inevitably lead to
a larger ωc and therefore S8 [135].

VII. CONCLUSIONS

We have presented a model of Early Modified Grav-
ity (EMG) where a scalar field with a non-minimal cou-
pling to the Ricci scalar of the type M2

pl + ξσ2 has

a self-interacting potential. In this model, which ex-
tends the massless one of Ref. [42] and reduces to the
Rock’n’Roll Early Dark Energy (EDE) model of Ref. [48]
for ξ = 0, the scalar field σ, which is frozen during
radiation era, grows around the time of recombination
driven by the coupling to pressureless matter and is sub-
sequently driven into damped oscillations around its min-
imum at σ = 0 by the small effective mass induced by the
quartic potential. The rolling of the field towards σ = 0
suppresses the modification to gravity at late times, re-
covering an excellent agreement of the laboratory exper-
iments and Solar System tests with General Relativity.
The addition of the effective potential has the virtue of
reconciling the ξ > 0 branch of the model studied in [42]
with GR without any fine tuning.

The modification to gravity at early times, however,
has the important consequence of alleviating the H0 ten-
sion as it modifies the redshift profile of the energy in-
jected into the cosmic fluid when the scalar field thaws.
Our MCMC analysis, performed with a variety of cosmo-
logical data, shows that the tension can be reduced sub-
stantially and at the same time a positive coupling ξ > 0
suppresses the small scale matter power spectrum and
thus helps fit the full Shape of the matter power spectrum
data, that has recently claimed to constrain the EDE
resolution of the H0 tension. In particular, the tension
with the combination of recent SH0ES and H0LiCOW
measurements, i.e. H0 = 73.4 ± 1.1 km s−1Mpc−1, is
reduced at the 1.7σ level when this is added to Cosmic
Microwave Background, SNe, Baryonic Acoustic Oscilla-
tions and the Full Shape of the matter power spectrum
data. For this data set, we obtain H0 = 71.00+0.87

−0.79 km

s−1Mpc−1 at 68 % CL which is larger than the one we get
for EDE for ξ = 0 i.e. H0 = 70.57+0.77

−0.98 km s−1Mpc−1.

Performing the MCMC analysis with different combi-
nations of the data mentioned above helps us trace the
origin of the larger H0 back to the suppression of the
power spectrum caused by the non minimal coupling ξ,
for which we get a mean value of ξ = 0.15+0.06

−0.07 at 68% CL
(however it is only an upper bound ξ < 0.39 at 95%CL).
In fact, for all the data set that we use we get a similar
constrain on the parameter ξ. Although the fit to data
is always improved, however, the Bayesian model selec-
tion for EMG depends on the data set considered, and is
penalized by the larger number (3) of extra parameters
compared to ΛCDM, therefore never resulting in a strong
preference.

In order to confirm the argument above we have per-
formed the same analysis fixing ξ to the conformal cou-
pling ξ = −1/6. In this case rather than a suppression we
have an enhancement of the matter power spectrum and
the capability of the model to ease the tension is therefore
reduced, with H0 = 70.11 ± 0.79 km s−1Mpc−1, smaller
than the ξ = 0 case, showing a clear hierarchy for nega-
tive, null and positive couplings. Note, however, that the
addition of the small effective mass to the ξ = −1/6 case
leads to larger H0 than the one for the conformally cou-
pled massless case of Ref. [42] for which H0 = 69.78±0.66
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km s−1Mpc−1 (see Section VI).
As a last comment, in this paper we have consid-

ered two dimensionless couplings for a cosmological scalar
field, which rule the coupling to the Ricci scalar (ξ) and
its self-interaction (λ). A quartic potential for the scalar
field σ, implies that we recover the RnR model [48] for
ξ = 0. However, it is known that potentials with flat-
tened wings that have a different curvature around the
minimum at σ = 0, such as those in the original EDE
proposal of Ref. [47] or in the α-attractor EDE model of
Ref. [57], provide a better fit to Planck polarization data
and lead to an even larger H0. It would be interesting
to explore different choices of the potential in the EMG
framework.
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ΛCDM EDE EMG

102ωb 2.256± 0.013 (2.255) 2.280± 0.018 (2.286) 2.273± 0.017 (2.281)

ωc 0.1182± 0.0009 (0.1184) 0.1253+0.0033
−0.0038 (0.1242) 0.1282+0.0042

−0.0033 (0.1302)

100 ∗ θs 1.04209± 0.00028 (1.04216) 1.04152± 0.00036, (1.04170) 1.04118+0.00040
−0.00046 (1.04120)

τreio 0.058± 0.007 (0.052) 0.058+0.007
−0.008 (0.059) 0.056± 0.007 (0.057)

ln
(
1010As

)
3.049± 0.014 (3.038) 3.059± 0.016 (3.059) 3.061± 0.015 (3.067)

ns 0.9701± 0.0036 (0.9710) 0.9783+0.0054
−0.0061 (0.9813) 0.9782± 0.0055 (0.9849)

σi [Mpl] − < 0.70 (0.48) 0.49+0.11
−0.06 (0.53)

V0 − 2.21+0.07
−0.38 (2.09) 2.21+0.10

−0.15 (2.25)

ξ − − < 0.42 (0.18)

H0 [km s−1Mpc−1] 68.82± 0.39 (68.74) 70.57+0.77
−0.98 (70.90) 71.00+0.87

−0.79 (71.59)

rs [Mpc] 147.37± 0.22 (147.33) 143.5± 1.8 (143.78) 142.2+1.5
−2.0 (141.21)

σ8 0.821± 0.006 (0.818) 0.832+0.009
−0.011 (0.831) 0.830± 0.008 (0.850)

S8 0.817± 0.010 (0.815) 0.829± 0.013 (0.820) 0.829± 0.011 (0.847)

log10 zc − 3.58+0.04
−0.16 (3.53) 3.60+0.06

−0.05 (3.63)

fscf − < 0.119 (0.057) 0.084+0.030
−0.021 (0.099)

ξσ2
i [M2

pl] − − < 0.067 (0.050)

γPN − 1 − − > −1.7 · 10−9 (−8.9 · 10−9)

∆χ2 − -9.3 -16.0

lnBij − +1.5 +1.0

P18 + BAO + FS + SN + H0 ΛCDM EDE EMG

Planck high-` TTTEEE 2350.07 2352.08 2347.75

Planck low-` EE 395.70 396.69 396.37

Planck low-` TT 22.32 21.51 21.52

Planck lensing 9.37 9.36 9.17

BAO BOSS low-z 2.21 2.74 2.06

BAO DR12 FS + BAO, high-z NGC 65.13 65.15 67.64

BAO DR12 FS + BAO, high-z SGC 62.63 63.29 62.83

BAO DR12 FS + BAO, low-z NGC 70.06 70.53 69.89

Pantheon 1026.86 1026.93 1026.88

H0 18.57 5.35 2.81

Total 4022.94 4013.64 4006.92

TABLE II. [Upper table] Constraints on main and derived parameters considering the data set P18 + BAO + FS + SN
+ H0 for ΛCDM, ξ = 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for
which we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for
the data set P18 + BAO + FS + SN + H0 for ΛCDM, EDE and EMG model.
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ΛCDM EDE EMG

102ωb 2.261± 0.014 (2.263) 2.283± 0.018 (2.292) 2.275± 0.018 (2.284)

ωc 0.1175± 0.0011 (0.1170) 0.1253+0.0036
−0.0044 (0.1285) 0.1288± 0.0046 (0.131)

100 ∗ θs 1.04216± 0.00029 (1.04200) 1.04153± 0.00038 (1.04135) 1.04114± 0.00048 (1.04107)

τreio 0.061+0.007
−0.008 (0.060) 0.060+0.007

−0.008 (0.061) 0.058+0.007
−0.008 (0.056)

ln
(
1010As

)
3.053+0.014

−0.016 (3.050) 3.062± 0.016 (3.072) 3.067± 0.016 (3.067)

ns 0.9707± 0.0040 (0.9733) 0.9788± 0.0061 (0.9849) 0.9800± 0.0059 (0.9870)

σi [Mpl] − 0.48+0.14
−0.09 (0.58) 0.50+0.12

−0.07 (0.56)

V0 − 2.23+0.10
−0.45 (1.97) 2.22+0.11

−0.13 (2.24)

ξ − − < 0.39 (0.17)

H0 [km s−1Mpc−1] 69.13± 0.49 (69.25) 70.85± 0.92 (71.38) 71.21± 0.93 (71.87)

rs [Mpc] 147.49± 0.25 (147.61) 143.4± 1.9 (141.83) 141.9+1.9
−2.2 (140.70)

σ8 0.820± 0.006 (0.818) 0.833± 0.011 (0.842) 0.833± 0.008 (0.836)

S8 0.811± 0.011 (0.806) 0.827± 0.016 (0.838) 0.831± 0.014 (0.833)

log10 zc − 3.59+0.06
−0.19 (3.50) 3.60+0.06

−0.04 (3.64)

fscf − < 0.134 (0.083) 0.088+0.033
−0.025 (0.107)

ξσ2
i [M2

pl] − − < 0.072 (0.053)

γPN − 1 − − > −1.7 · 10−9 (−1.8 · 10−9)

∆χ2 − −11.5 −17.1

lnBij − +1.8 −0.2

P18 + SN + H0 ΛCDM EDE EMG

Planck high-` TTTEEE 2351.75 2352.22 2349.25

Planck low-` EE 396.94 397.51 396.23

Planck low-` TT 22.08 21.41 21.29

Planck lensing 9.59 9.07 9.32

Pantheon 1026.96 1026.87 1026.86

H0 14.76 3.50 2.00

Total 3822.08 3810.58 3804.97

TABLE III. [Upper table] Constraints on main and derived parameters considering the data set P18 + SN + H0 for ΛCDM,
ξ = 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the
95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for the data set P18 +
SN + H0 for ΛCDM, EDE and EMG model.
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ΛCDM EDE EMG

102ωb 2.262± 0.013 (2.265) 2.277± 0.016 (2.276) 2.272± 0.016 (2.275)

ωc 0.1174± 0.0008 (0.1178) 0.1218+0.0022
−0.0034 (0.1228) 0.1234+0.0028

−0.0047 (0.1262)

100 ∗ θs 1.04213± 0.00029 (1.04229) 1.04160+0.00052
−0.00034 () 1.04154± 0.00043 (1.04148)

τreio 0.055± 0.007 (0.057) 0.055± 0.007 (0.058) 0.054± 0.007 (0.057)

ln
(
1010As

)
3.041± 0.014 (3.047) 3.044± 0.015 (3.042) 3.047± 0.015 (3.058)

ns 0.9716± 0.0035 (0.9719) 0.9756+0.0043
−0.0053 (0.9752) 0.9755+0.0046

−0.0054 (0.9791)

σi [Mpl] − < 0.60 (0.47) 0.39+0.15
−0.10 (0.50)

V0 − 2.59+0.72
−0.64 (3.21) 2.44+0.76

−0.50 (2.05)

ξ − − < 0.63 (0.14)

H0 [km s−1Mpc−1] 69.17± 0.35 (69.09) 70.40± 0.76 (70.75) 70.63+0.80
−1.0 (71.59)

rs [Mpc] 147.51± 0.21 (147.38) 145.0+1.7
−1.3 (144.43) 144.3+2.3

−1.5 (142.75)

σ8 0.815± 0.005 (0.819) 0.819+0.006
−0.008 (0.81682) 0.819+0.006

−0.007 (0.820)

S8 0.805± 0.008 (0.811) 0.808± 0.010 (0.804) 0.809± 0.009 (0.807)

log10 zc − 3.72+0.37
−0.26 (4.12) 3.66+0.04

−0.20 (3.52)

fscf − < 0.101 (0.064) < 0.121 (0.085)

ξσ2
i [M2

pl] − − < 0.054 (0.030)

γPN − 1 − − > −1.8 · 10−9 (−8.0 · 10−10)

∆χ2 − −11.0 −11.5

lnBij − −0.4 −0.12

P18 + BAO + FS + SN + H0 + S8 ΛCDM EDE EMG

Planck high-` TTTEEE 2351.17 2351.13 2351.51

Planck low-` EE 396.43 396.47 396.48

Planck low-` TT 22.36 21.70 22.19

Planck lensing 9.32 10.09 10.46

BAO BOSS low-z 2.65 2.96 2.91

BAO DR12 FS + BAO, high-z NGC 64.76 64.08 65.53

BAO DR12 FS + BAO, high-z SGC 63.11 63.23 63.00

BAO DR12 FS + BAO, low-z NGC 70.57 71.14 70.54

Pantheon 1026.89 1026.97 1026.98

H0 15.88 6.00 2.90

S8 5.66 4.02 4.82

Total 4028.81 4017.81 4017.35

TABLE IV. [Upper table] Constraints on main and derived parameters considering the data set P18 + BAO + FS + SN
+ H0 + S8 for ΛCDM, ξ = 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits,
for which we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment
for the data set P18 + BAO + FS + SN + H0 + S8 for ΛCDM, EDE and EMG model.
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ΛCDM EDE EMG

102ωb 2.243± 0.013 (2.251) 2.245+0.015
−0.016 (2.240) 2.244± 0.015 (2.247)

ωc 0.1195± 0.0009 (0.1186) 0.1206+0.0008
−0.0019 (0.1200) 0.1206+0.0011

−0.0019 (0.1234)

100 ∗ θs 1.04193± 0.00029 (1.04199) 1.04182± 0.00032, (1.04181) 1.04181+0.00033
−0.00029 (1.04168)

τreio 0.054± 0.007 (0.059) 0.054± 0.007, (0.054) 0.054± 0.007 (0.54)

ln
(
1010As

)
3.043± 0.014 (3.050) 3.045± 0.014 (3.044) 3.045± 0.014 (3.0491)

ns 0.9666± 0.0037 (0.9699) 0.9678+0.0037
−0.0047 (0.9663) 0.9673± 0.0044 (0.9686)

σi [Mpl] − < 0.50 (0.05) < 0.45 (0.31)

V0 − 2.14± 0.78 (0.69) 2.47+0.86
−0.39 (2.28)

ξ − − < 0.81 (0.18)

H0 [km s−1Mpc−1] 68.16± 0.41 (68.55) 68.46+0.42
−0.68 (67.90) 68.39+0.50

−0.67 (68.94)

rs [Mpc] 147.16± 0.22 (147.32) 146.53+0.94
−0.23 (147.08) 146.59+0.90

−0.38 (145.17)

σ8 0.822± 0.0058 (0.823) 0.823+0.006
−0.007 (0.824) 0.822± 0.007 (0.824)

S8 0.830± 0.010 (0.823) 0.831± 0.011 (0.836) 0.830± 0.011 (0.834)

log10 zc − 3.26+0.65
−0.72 (2.07) 3.44+0.52

−0.17 (3.54)

fscf − < 0.0617 (0.0004) < 0.0726 (0.037)

ξσ2
i [M2

pl] − − < 0.0381 (0.0172)

γPN − 1 − − > −1.7 · 10−8 (−5.0 · 10−10)

∆χ2 − −1.2 −2.6

lnBij − −1.3 −2.7

P18 + BAO + FS+ SN ΛCDM EDE EMG

Planck high-` TTTEEE 2347.99 2346.77 2345.32

Planck low-` EE 396.89 396.00 396.04

Planck low-` TT 22.69 23.23 23.34

Planck lensing 8.82 8.86 8.80

BAO BOSS low-z 2.00 1.33 1.44

BAO DR12 FS + BAO, high-z NGC 65.78 67.86 67.91

BAO DR12 FS + BAO, high-z SGC 62.42 61.76 61.69

BAO DR12 FS + BAO, low-z NGC 69.82 69.25 69.17

Pantheon 1026.89 1027.09 1027.02

Total 4003.30 4002.15 4000.74

TABLE V. [Upper table] Constraints on main and derived parameters considering the data set P18 + BAO + FS + SN
for ΛCDM, ξ = 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for which
we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for the
data set P18 + BAO + FS + SN for ΛCDM, EDE and EMG model.
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