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A BI-FIDELITY STOCHASTIC COLLOCATION METHOD FOR

TRANSPORT EQUATIONS WITH DIFFUSIVE SCALING AND

MULTI-DIMENSIONAL RANDOM INPUTS

LIU LIU, LORENZO PARESCHI, AND XUEYU ZHU

Abstract. In this paper, we consider the development of efficient numer-
ical methods for linear transport equations with random parameters and
under the diffusive scaling. We extend to the present case the bi-fidelity
stochastic collocation method introduced in [33,50,51]. For the high-fidelity
transport model, the asymptotic-preserving scheme [29] is used for each sto-
chastic sample. We employ the simple two-velocity Goldstein-Taylor equa-
tion as low-fidelity model to accelerate the convergence of the uncertainty
quantification process. The choice is motivated by the fact that both mod-
els, high fidelity and low fidelity, share the same diffusion limit. Speed-up is
achieved by proper selection of the collocation points and relative approx-
imation of the high-fidelity solution. Extensive numerical experiments are
conducted to show the efficiency and accuracy of the proposed method, even
in non diffusive regimes, with empirical error bound estimations as studied
in [16].

Keywords. transport equations, uncertainty quantification, stochastic collocation, bi-

fidelity method, Goldstein-Taylor model, diffusive scaling, asymptotic-preserving schemes

1. Introduction

Transports equations, which describe how kinetic particles make collisions and
absorption through a material medium while evolving in time, arises in many
applications, such as atmosphere and ocean modeling [9,43,48], astrophysics [40],
nuclear physics [8, 31], biology [21, 42] and epidemiology [3, 7]. Such problems
usually involve a mixed range of length scales characterized by the Knudsen
number, defined as the ratio of the mean free path over a typical length scale
such as the size of the spatial domain. To resolve multiple scales, carefully
designed numerical methods are usually needed, see for example [6, 12, 24, 29]
for multiscale kinetic problems.

Besides the multiscale challenges, practical applications of the linear trans-
port model usually contain uncertainties [4, 25, 26, 30]. For example, the scat-
tering cross-section in the collision operator is usually extracted from data, or
in some cases we have only a rough estimate of the initial data. Such uncer-
tainties could compromise the predictive capability of the underlying model.
Efficient uncertainty quantification (UQ) for such problem becomes critical for
improving the reliability of numerical predictions in real-life applications, see
example [13, 27, 36] for an overview of broader UQ problems for kinetic and
related models. Among many numerical methods in UQ, stochastic collocation
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(SC) method has shown its competitiveness in many practical applications due
to its intrinsic simplicity and non-intrusive nature. There has been many work
in this direction developed in recent years, see for examples [1,5,20,23,34,35,47]
and the references therein. Despite the successful development of SC methods,
the high cost of a single high-fidelity run together with the number of required
high-fidelity simulation runs, can still render it computationally infeasible for
large-scale applications with high-dimensional random parameter space.

Alternatively, many efforts have been devoted to developing multi-fidelity
methods by different communities from various perspectives to mitigate the
computational cost [14, 17, 33, 38, 41, 50, 51]. See also the recent survey [39].
By combining an inaccurate but cheap low-fidelity solver and an accurate yet
expensive solvers in clever ways, multi-fidelity ideas have shown effectiveness in
reducing the number of high-fidelity samples. Specifically, within the context of
kinetic equations, multi-scale control variate and multilevel variance reduction
Monte Carlo methods for kinetic equations with uncertainties has been studied
to reduce the sampling cost in [10, 11, 22, 37], particularly for problems close
to the fluid regime or in the grazing limit. A bi-fidelity approximation con-
structed by combining the compressible Euler system and Boltzmann equations
can approximate well the high-fidelity solutions at a much reduced computa-
tional cost [10, 32].

In this work, we are interested in adapting the bi-fidelity method developed in
[33,50,51] to efficiently approximate the high-fidelity statistics of the multiscale
linear transport equation with multi-dimensional random parameters. One key
component of the bi-fidelity method is the choice of a proper low-fidelity model,
which is crucial for the approximation quality of the bi-fidelity surrogate. In this
work, we consider the simple two-velocity Goldstein-Taylor (GT) model [18,44]
as our low-fidelity model. This choice is motivated by the following observation:
after the even and odd parity formulation of the transport equation, the general
linear transport equation can be reformulated as a similar form of the discrete-
velocity GT model, which can be regarded as a good approximation with discrete
velocity variables, and more importantly, with significantly less computational
cost [29]. Additionally the two models, high-fidelity and low-fidelity, share the
same diffusion limit. We demonstrate that the bi-fidelity approximations based
on this low-fidelity model could produce reasonably satisfactory results across a
large range of regimes, from the kinetic to diffusive regime. To our knowledge,
this is the first manuscript in which a multi-fidelity approach has been applied
in the context of diffusive scaling.

The rest of the manuscript is organized as follows. In Section 2-3, we introduce
the linear transport equation with random inputs and the uncertain discrete-
velocity GT model. The former is the high-fidelity model (as it is our goal
problem to be solved), whereas an equivalent reformulation of the GT model is
served as our low-fidelity model. In Section 4, we first give a brief review of the
bi-fidelity approach [33, 50] and then recall the corresponding empirical error
bound estimations. In Section 5, extensive numerical experiments are shown to
illustrate the effectiveness and efficiency of our proposed method, where kinetic,
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fluid and mixed regimes are all carefully examined. We end the manuscript with
some concluding remarks and future perspectives in Section 6.

2. Transport equations with random input and diffusive scaling

We consider an one-dimensional linear transport equation with random scat-
tering coefficients under the diffusive scaling. Let f(t, x, v) be the probability
density distribution of particles at position x, time t, and with v ∈ (−1, 1) the
cosine of the angle between the particle velocity and its position variable. Then
f is governed by the following linear transport equation [8]:

(1) ε∂tf + v∂xf =
σ(x, z)

ε

[

1

2

∫ 1

−1
f(v′) dv′ − f

]

,

where ε is the Knudsen number and σ(x, z) is the random scattering coefficient
and z ∈ Iz with Iz the domain of the random parameter space. In this project,
we ignore the absorption and source terms, which can also introduce uncertain-
ties. The treatment of these terms does not add numerical difficulties thereby
will be neglected here for the ease of presentation.

To understand its diffusion limit, we first split equation (1) into two equations
for v > 0:

ε∂tf(v) + v∂xf(v) =
σ(x, z)

ε

[

1

2

∫ 1

−1
f(v′) dv′ − f(v)

]

,

ε∂tf(−v)− v∂xf(−v) =
σ(x, z)

ε

[

1

2

∫ 1

−1
f(v′) dv − f(−v)

]

.

(2)

By the even-odd decomposition [29], we introduce the even and odd parities

r(t, x, v) =
1

2
[f(t, x, v) + f(t, x,−v)],

j(t, x, v) =
1

2ε
[f(t, x, v)− f(t, x,−v)].

(3)

The system (2) can then be reformulated by the following system:

(4)















∂tr + v∂xj =
σ(x, z)

ε2
(r − r),

∂tj +
v

ε2
∂xr = −

σ(x, z)

ε2
j,

where

(5) r(t, x) =

∫ 1

0
rdv.

As ε → 0+, (4) yields

r = r, j = −
v

σ(x, z)
∂xr.
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Substituting it into system (4) and integrating over v, one gets the limiting
diffusion equation ( [2, 31]) as follows:

(6)















j = −
v

σ(x, z)
∂xr,

∂tr = ∂x

[

1

3σ(x, z)
∂xr

]

.

Solving the model (2) brings many numerical challenges due to the complexity
of velocity integral operators on the right-hand-side, the stiffness of the source
terms, and in particular for the case with high-dimensional random parameters
[26,29]. In this regard, we desire to adapt the bi-fidelity approximation method
developed in [33,50] to the present case in order to mitigate the computational
cost of a standard Monte Carlo sampling approach.

3. The Low-fidelity Goldstain-Taylor model

In this section, we introduce a simple discrete-velocity model subject to ran-
dom inputs and discuss the motivation of choosing it as our low-fidelity model
for the linear transport equation within the framework of bi-fidelity approxima-
tion.

The one-dimensional Goldstein-Taylor (GT) model [18, 44] is given by

(7)















∂tu+
1

ε
∂xu =

σ(x, z)

2ε2
(v − u),

∂tv −
1

ε
∂xv =

σ(x, z)

2ε2
(u− v).

Here we assume a random scattering coefficient σ(x, z), that already in itself
characterizes a model with many interesting applications [19]. We introduce
the macroscopic variables: the mass density ρ and the flux s,

ρ = u+ v, s =
u− v

ε
,

then the GT model (7) is equivalent to the following system:

(8)







∂tρ+ ∂xs = 0,

∂ts+
1

ε2
∂xρ = −

σ(x, z)

ε2
s.

The above system is the analogous of (4) for the high-fidelity model and in the
diffusion limit ε → 0, system (8) can be approximated by the heat equation to
the leading order, with random diffusion coefficient σ(x, z):

(9)



















s = −
1

σ(x, z)
∂xρ,

∂tρ = ∂x

[

1

σ(x, z)
∂xρ

]

.

Comparing (6) and (9), both systems look similar except for the magnitude of
the diffusion coefficient on the right hand-side. If one sets the diffusion coefficient
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in (9) be σGT and that in (6) be σLTE, then by assuming σGT = 1
3σLTE the two

models share the same diffusion limit. It is worth noting that the GT model
(7) can be regarded as a discrete-velocity kinetic model of the linear transport
equation: u defines the density of particles traveling with velocity 1, whereas v
that of particles traveling in the reverse direction with velocity −1. Besides, the
GT model has much cheaper computational cost, yet shares the same limiting
diffusion equations with the linear transport model as ε → 0. Motivated by
these observations, we employ the equivalent formulation of the GT equation,
that is, system (8) as our low-fidelity model. We refer to [45] for rigorous results
concerning the diffusion limit of two-velocity models and extensions to nonlinear
diffusion coefficients.

4. The bi-fidelity stochastic collocation approach

In this section, we briefly review the bi-fidelity method. Assume the expensive
high-fidelity model and the cheap low-fidelity model are available to generate the
high-fidelity solution uH(z) and the low-fidelity solution uL(z) respectively, for
any given parameter z. The main idea of the bi-fidelity approximation in [33,50]
is to approximate the high-fidelity solution uH(z) by the following expansion:

(10) uB(z) =
n
∑

k=1

ck(z)u
H(zk),

where n is the number of the selected high-fidelity solutions in the parameter
space. If n is small and the coefficient ck(z) can be efficiently and accurately
approximated, an efficient bi-fidelity approximation can be constructed. To
achieve this goal, two major questions need to be addressed: (1) how to select
the collocation points zk so that the total number of high-fidelity samples n is
small? (2) how to approximate the expansion coefficients ck(z) properly for any
given parameter z?

Point Selection. It would be computationally infeasible to select the im-
portant points among high-fidelity samples due to the cost of the high-fidelity
solver. To migrate this cost, we search the important points in the parame-
ter space guided by the low-fidelity model, which is informative yet cheap to
evaluate over a large number of points in the parameter space.

Specifically, we denote the candidate set ΓN = {z1, z2, . . . , zN}, which is as-
sumed to be large enough to cover the parameter space Z. We shall identify im-
portant points iteratively by a greedy approach [33,50]. Initially, denote γ0 = {}
and assume we have the first k important points γk = {zi1 , zi2 , . . . , zik} avail-
able at the k-th iteration. Denote the snapshot matrix uL(γk) = {u(z)|z ∈ γk}
and the corresponding spanned solution space UL(γk) = Span{uL(z)|z ∈ γk}.
Then we pick the z point (from the candidate set ΓN ) so that the corresponding
low-fidelity solution is farthest away from the existing spanned solution space
UL(γk), to be the next sampling point:

(11) zik+1
= arg max

z∈ΓN

dL(uL(z), UL(γk)), γk+1 = γk ∪ zik+1
,
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where dL(v,W ) is the distance between a function v ∈ uL(ΓN ) and the space
W ∈ uL(γk). We then continue this process until all n important points γn are
selected. The whole procedure can be efficiently implemented by performing the
pivoted Cheloskey decompostion on uL(ΓN ). We refer the reader to more details
in [33, 50]. With the selected parameter points {γn}, the corresponding high-
fidelity approximation space can be constructed by UH(γn) = Span{uH(z)|z ∈
γn}.

Approximation of bi-fidelity sample. Ideally, one can compute the ex-
pansion coefficients by projecting the high-fidelity data onto the high-fidelity
approximation space UH(γn), which requires the high-fidelity simulation dur-
ing the online stage. To migrate this cost, the bi-fidelity approach developed
in [33, 50] uses the low-fidelity coefficients cLk (z) as an approximation for the
high-fidelity coefficients ck(z). In other words, for any given z, we shall com-
pute the low-fidelity solution uL(z) and its low-fidelity coefficients by projecting
onto the low-fidelity approximation space UL(γn):

(12) uL(z) ≈ PUL(γn)u
L(z) =

n
∑

k=1

cLk (z)u
L(zk), zk ∈ γn.

where the low-fidelity projection coefficients can be computed as follows:

(13) GLcL = f , fL = (fL
k )1≤k≤n, fL

k = 〈uL(z), uL(zk)〉,

and GL is the Gramian matrix of uL(γn),

(14) (GL)ij =
〈

uL(zi), u
L(zj)

〉L
, 1 ≤ i, j ≤ n,

where 〈·, ·〉L is the standard inner product associated with UL(γn).
Once cLk (z) are computed, it can serve as surrogates for the high-fidelity

coefficients shown below in (15). Consequently, the bi-fidelity approximation
of the high-fidelity approximation solution uH(z) can be constructed by the
following:

(15) uB(z) =

n
∑

k=1

cLk (z)u
H (zk).

To make things clearer, the bi-fidelity approximation of the high-fidelity sample
for a given z is summarized in Algorithm 1.

Bi-fidelity Mean. Once we have the bi-fidelity surrogate uB(z), it is straight-
forward to employ the Monte Carlo or other quadrature-based methods to com-
pute the statistical moments, such as expectation:

(20) E[uH ] ≈ EM [uH ] =

M
∑

i=1

wiu
B(zi),

where (zi, wi) are the points and associated weights in the Monte Carlo method
or quadrature rules. However, this might still require many bi-fidelity solution
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Algorithm 1: Bi-fidelity approximation for a high-fidelity solution at
given z

Offline:

1 Select a sample set ΓN = {z1, z2, . . . , zN} ⊂ Iz.

2 Run the low-fidelity model uL(zj) for each zj ∈ ΓN .

3 Select n “important” points from ΓN . Denote γN = {zi1 , · · · zin} ⊂ ΓN

and the low-fidelity approximation space by UL(γn).
4 Run high-fidelity simulation at each point in the selected sample set γn.

Online:

5 For any given z, compute the low-fidelity solution uL(z) and the
corresponding low-fidelity coefficients by projection:

(16) uL(z) ≈ PUL(γn)u
L(z) =

n
∑

k=1

cLk (z)u
L(zk), zk ∈ γn.

During the online stage, the operator PUL(γn) in (16) is a projection

onto the space UL(γn) with projection coefficients {cLk } computed by
the Galerkin approach:

(17) GLcL = f , fL = (fL
k )1≤k≤N , fL

k = 〈uL(z), uL(zk)〉,

where GL is the Gramian matrix of uL(γn),

(18) (GL)ij =
〈

uL(zi), u
L(zj)

〉L
, 1 ≤ i, j ≤ n,

with 〈·, ·〉L the inner product associated with UL(γn).
6 Construct the bi-fidelity approximation by applying the same

approximation rule as in low-fidelity model:

(19) uB(z) =
n
∑

k=1

cLk (z)u
H(zk).

reconstructions. In [49] an extension to this approach is developed to approxi-
mate high-fidelity solution expectations more efficiently. We first compute the
low-fidelity sample mean (via the Monte Carlo or quadrature rules):

(21) µL =
M
∑

i=1

wiu
L(zi),

then project it on the low-fidelity approximation space UL(γn),

(22) µL ≈ PUL(γn)µ
L =

n
∑

i=1

cLi u
L(zi),

where the expansion coefficients cL are computed by solving the following linear
system:

(23) GLcL = gL, gL =
〈

µL, uL(zj)
〉L

, 1 ≤ j ≤ n, z ∈ γn.
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with this coefficient cLk (z), the bi-fidelity approximation of the high-fidelity mean
can be constructed as follows:

(24) µB =
n
∑

k=1

cLku
H(zk), zk ∈ γn.

We refer readers to [49] for additional details.

4.1. An empirical error bound estimation. In practical applications, a pri-

ori assessment of the model quality and prediction errors is important. A pre-
vious study [16] introduced a novel empirical error bound estimation approach
with ease of implementation to evaluate the performance of the bi-fidelity sur-
rogates a priori. In this section, we will briefly describe the methodology.

In [16], an important quantity that characterizes the similarity between the
LF and HF models is introduced:

(25) Rs(z) =
dH(vH(z), UH (γk))

||vH(z)||

/dL(vL(z), UL(γk))

||vL(z)||
.

For instance, Rs ≈ 1 implies that the LF model is informative enough in the BF
reconstruction. With Rs and the observation in [16, Theorem 1], for any given
new point z∗, one has

||vH (z∗)− vB(z∗)||

||vH(z∗)||
≤

dL(vL(z∗), U
L(γk))

||vL(z∗)||
Rs(z∗)

×
(

1 +
||PUH (γk)v

H(z∗)− vB(z∗)||

dH(vH(z∗), UH(γk))

)

.

(26)

To remove the dependency of the new HF sample vH(z∗) on the above right-
hand side, one uses zk+1 ∈ γk+1 as the testing points served as an error surrogate
for the BF approximation in the entire parameter space. If the LF and HF
models are similar (i.e., Rs ≈ 1), one can choose some proper constants c1 and
c2, such that for the first k + 1 pre-selected important points γk+1,

||vH(z∗)− vB(z∗)||

||vH(z∗)||
≤

dL(vL(z∗), U
L(γk))

||vL(z∗)||

×
[

c1 + c2
||PUH (γk)v

H(zk+1)− vB(zk+1)||

dH(vH(zk+1), UH(γk))

]

.

(27)

It can be seen that one only needs the LF data and the first k + 1 pre-selected
HF samples.

Another important quantity introduced in [16], called Re, indicates the ap-
proximation quality of the BF approach,

(28) Re(z) :=
||PUH (γk)v

H(z) − vB(z)||

dH(z, UH(γk))
,

which describes the balance between the in-plane error and the relative dis-
tance. When Re is large, one should stop collecting new HF samples. Take the
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expectation of (27) on both sides with respect to z∗, we get

E

[ ||vH(z∗)− vB(z∗)||

||vH (z∗)||

]

≤ E

[dL(vL(z∗), U
L(γk))

||vL(z∗)||
(c1 + c2Re(zk+1))

]

.

≤
[

max
z∗

dL(vL(z∗), U
L(γk))

||vL(z∗)||

]

(c1 + c2Re(zk+1))

(29)

We acknowledge that the above error bound estimation, though not really
rigorous, is a useful quantity to access the quality of the BF approximation in
practical applications. In the following numerical experiments, our empirical
results suggest that this error bound estimation is effective if the constants c1
and c2 are set to be 1.

5. Numerical Examples

In this section, we present several numerical examples to illustrate the ef-
fectiveness of our method. To examine the accuracy, two metrics are used to
quantify the errors: the differences in the mean solutions and in the correspond-
ing standard deviation compared with the reference solutions, with L2 norm in
space,

(30) emean(u
B) =

∥

∥µB − E[uH ]
∥

∥

L2 , estd(u
B) =

∥

∥σ[uB ]− σ[uH ]
∥

∥

L2 ,

where µB, σB are the bi-fidelity approximation for the high-fidelity mean and
standard deviation, respectively. Here E[uH ], σH are the corresponding high-
fidelity sample mean and sample standard deviation that served as reference
solutions.

Without loss of generality, the d-dimensional random variable z = {z1, · · · , zd}
is assumed to follow the uniform distribution on [−1, 1]d in all our numerical
tests, and the dimension of the random parameter is chosen as d = 5 for simplic-
ity. Higher dimensional random spaces can be treated similarly, note however
that already the d = 5 case would make the corresponding stochastic Galerkin
approach [26] extremely expensive from a computational viewpoint.

To compute the reference solutions for the mean and standard deviation of
the high-fidelity quantities of interests, we use the high-order stochastic colloca-
tion method over 5-dimensional sparse quadrature points with 5-level Clenshaw-
Curtis rules, i.e., evaluated on 2243 quadrature points (cf., [46]).

For the high-fidelity (HF) solver, at each given sample we employ the AP
scheme [29] developed for the deterministic linear transport equation (1) under
the diffusive scaling. The standard 16-points Gauss-Legendre quadrature set is
used for the velocity space to compute r̄ in (5). For the low-fidelity (LF) solver,
we use the deterministic AP method [28] to solve the linear Goldstein-Taylor
model (8). Similar results are obtained using IMEX Runge-Kutta approaches
of the type proposed in [6] for both the high fidelity and the low fidelity models.

The spatial and temporal discretizations are specified in each of the following
tests. Periodic boundary conditions are considered, if not specified. Regarding
the comparisons on CPU time, since for different numerical examples, different
temporal and spatial discretizations in HF and LF models are used, we test
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Figure 1. Test 1. The mean (left) and standard deviation
(right) of r at ε = 10−8 (first row), and ε = 10−2 (second row),
obtained by 12 high-fidelity runs and the sparse grid method
with 2243 quadrature points (crosses).

and compare the CPU computational time roughly by estimating the HF costs
about 20 times more than the LF solvers.

Test 1: Uncertain cross-section. We first consider the linear transport equa-
tion (4) with the random cross-section coefficient given by

(31) σ(x, z) = 1 + σ

d
∑

i=1

1

(iπ)2
cos (2πix)zi,

where σ = 4 and d = 5. The initial conditions are

(32) r(x, v, z, 0) = 0, j(x, v, z, 0) = 0,

and the boundary conditions are (see [29])

(33) σj = −vrx,

thus one gets for v > 0,

(34) r −
ε

σ
vrx

∣

∣

∣

x=0
= 1, r +

ε

σ
vrx

∣

∣

∣

x=1
= 0.
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Figure 2. Test 1. Error for the bi-fidelity approximation of
mean (left) and standard deviation (right) of r at ε = 10−8 and
ε = 10−2, with respect to r high-fidelity runs.
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Figure 3. Error bound estimation for Test 1. Left: ε = 10−8.
Right: ε = 10−2.

In this example, we set ∆x = 0.025, ∆t = 2/3× 10−4 in the HF solver, while
∆x = 0.025, ∆t = 2× 10−4 in the LF solver. The mean and standard deviation
of the BF solution r at time T = 0.01 for ε = 10−8 and 10−2 are shown in
Fig. 1. One can see that the mean and standard deviation of r obtained by BF
solutions (based on 12 high-fidelity samples) match perfectly well with the HF
solutions. In contrast, the LF solutions are slightly off, especially near the left
boundary.

In Fig. 2, we show the errors of the mean (circle) and standard deviation
(stars) of the BF approximation of r with respect to the number of HF runs for
different ε. While the baseline low-fidelity approximations have the error larger
than O(10−3), the errors can be reduced to O(10−5) for the mean and O(10−4)
for the standard deviation of HF solutions with 12 selected HF samples used
in the BF approach. In contrast, the high-fidelity reference solution used 2243
quadrature points in the sparse grid method, the saving of computational cost
is quite noticeable in our BF method.

Besides, one interesting observation is that as ε increase, even though the LF
model deviates from the HF model, the bi-fidelity solutions seem to show similar
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convergence trend in both cases, indicating a uniform (in ε) accuracy properties
of the bi-fidelity approximation. Some theoretical studies for a general class of
multiscale kinetic models was conducted on this topic, see [15].

From Fig. 3, one can see that 1) the model similarity Rs is close to 1 and
Re is less than 10 when the number of HF samples is small; 2) the empirical
error bound estimations (red solid lines) is able to bound well the true errors,
and adding more HF training samples can further reduce the BF errors; 3) until
when the number of HF simulations reaches r = 12, the similarity metric Rs

becomes more fluctuating and Re also increase significantly as r further grows,
which indicates that collecting additional HF samples does not help further to
improve the approximation quality of our BF surrogate.

Test 2: Uncertain cross-section and initial data. In this test, we consider
the random cross-section coefficient given by (31) as well as uncertain initial
data:

(35) f(t = 0, x, v, z) = ρ0 exp

(

−

(

v − 0.5

T0

)2
)

+ ρ1 exp

(

−

(

v + 0.75

T1

)2
)

,

where

ρ0(x, z) = 1 + 3

d
∑

k=1

1

(kπ)2
sin(2πkx)zk , T0(x, z) =

5 + 2 cos(2πx)

20
(1 + 0.6z1) ,

ρ1(x, z) = 1 + 2

d
∑

k=1

1

(kπ)2
cos(2πkx)zk , T1(x, z) = 0.5 + 0.2 cos(2πx)z2.

In this example, we choose ∆x = 0.025, ∆t = 10−4 in the HF solver, and
∆x = 0.04, ∆t = 2× 10−4 in the LF solver. Numerical solutions and bi-fidelity
errors at output time T = 0.02 with ε = 10−2 are shown in Fig. 4.

From Fig. 4 we observe that: while the LF solution misses details of the HF
solution near the peaks, the mean and standard deviation of the BF approxi-
mations agree well with the HF solution globally, using r = 12 HF runs. A fast
exponential decay of errors for the BF approximation is observed from Fig. 5.
With only 12 HF simulations, the BF mean can reach the accuracy level of less
than O(10−4). In Fig. 5, the practical error bound estimators bound well the
true BF errors, with the values of both metrics Re and Rs are about less than
10. Similar conclusion as that in Test 1 can be drawn.

Test 3: Riemann problem. We next consider a Riemann problem assuming
again the random coefficient (31). Both the boundary condition

f(x = 0, t, v, z) = 1 + 0.4z1, if v ≥ 0,

f(x = 1, t, v, z) = 0, if v ≤ 0,

and initial distribution

f(x, t = 0, v, z) = 1 + 0.4z1, 0 ≤ x < 0.5,

f(x, t = 0, v, z) = 0, 0.5 ≤ x ≤ 1,
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Figure 4. Test 2, with ε = 10−2. The mean (left) and standard
deviation (right) of r, obtained by r = 12 high-fidelity runs and
the sparse grid method with 2243 quadrature points (crosses,
first row). The corresponding errors are also reported (second
row).

are uncertain. The corresponding B.C. and I.C. for the even and odd parts are

(36) σj = −vrx.

thus for v > 0,

(37) r −
ε

σ
vrx

∣

∣

∣

x=0
= 1 + 0.4z1, r +

ε

σ
vrx

∣

∣

∣

x=1
= 0,

and

r(x, t = 0, z) = 1 + 0.4z1, 0 ≤ x < 0.5,

r(x, t = 0, z) = 0, 0.5 ≤ x ≤ 1,

j(x, t = 0, z) = 0.

In this example, we let the output time T = 0.01 and ε = 10−8. Set ∆t =
2× 10−4, ∆x = 0.04 in the LF solver, and ∆t = 5 × 10−5, ∆x = 0.0125 in the
HF solver.

Fig. 6 shows the numerical mean and standard deviation of r̄ for ε = 10−8.
While the LF solutions are not able to capture the detailed information around
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Figure 5. Error bound estimation for Test 2.

the transition region, the BF approximation agrees with the HF solutions at a
very satisfactory level.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Hi-Fi
Bi-Fi
Low-Fi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

Hi-Fi
Bi-Fi
Low-Fi

Figure 6. Test 3, with ε = 10−8. The mean (left) and standard
deviation (right) of r, obtained by r = 12 high-fidelity runs and
the sparse grid method with 2243 quadrature points (crosses).

From Fig. 7, it can been seen that the BF errors decay really fast with respect
to the selected HF runs. With only r = 12 HF simulation runs, the BF errors of
the mean and standard deviation of r reach as small as about O(10−4). Based
on Fig. 8, the practical error bound estimators bound well the true BF errors,
with the values of both metrics Re and Rs around or less than 10. Again, further
increasing the HF samples after r = 8 does not help in improving the quality of
BF approximation, which is consistent with our expectations.

Test 4: Mixed regime test. In Test 4, we investigate the performance of the
BF approximation in a mixed regime, which is a benchmark test for multiscale
kinetic problems. In this case, the Knudsen number is spatially dependent and
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Figure 7. Test 3, with ε = 10−8. Errors of the bi-fidelity ap-
proximation mean (left) and standard deviation (right) of r with
respect to the number of high-fidelity runs.
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Figure 8. Error bound estimation for Test 3.

is given by

(38) ε2(x) = 10−8 +

[

tanh

(

1−
11

2
(x− 0.5)

)

+ tanh

(

1 +
11

2
(x− 0.5)

)]

.

As shown in Fig. 9, the values of ε(x) vary smoothly from O(10−1) to O(1).
Assume a deterministic cross-section σ = 1, and the same initial data as (35).
Periodic boundary conditions are considered here. We use ∆t = 10−4 in the
LF, ∆t = 5× 10−5 in the HF solver, and ∆x = 0.02 in both solvers. Numerical
results and error bound estimation at time T = 0.01 are shown in Fig. 10 – 12.

In contrast to the poor approximation of LF solutions in some regions, the
mean and standard deviation of the BF approximations match very well with
the HF solution across the whole range of ε, suggesting the GT model can
capture the important variations of the linear transport model in the uncertainty
parameter space across multiple scales. Again, a fast exponential decay of the
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Figure 9. Illustration of the spatially varying ε(x) over the
physical domain for Test 4.
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Figure 10. Test 4. The mean (left) and standard deviation
(right) of r, obtained by r = 12 high-fidelity runs and the sparse
grid method with 2243 quadrature points (crosses).

errors for the BF approximation is observed. With only r = 12 HF simulations,
the BF mean can reach the accuracy of about O(10−4), which is quite remarkable
compared to other non-intrusive sampling methods such as the Monte-Carlo
based or sparse-grid type methods.

In Fig. 12, both two metrics Rs and Re are less than 10. It is worthy to
mention that the true error curve (black line with dots) are computed based
on the HF solutions of the entire test sets, while the error bound estimations
(red line) only depends on the existing pre-selected training HF data, suggesting
the effectiveness of the error bound estimation. In practical applications, the
suggested evaluation metrics and error bound estimation could indeed provide
an admissible and easy way to evaluate the performance of the BF method a
priori.
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Figure 11. Test 4. Errors of the bi-fidelity approximation mean
(left) and standard deviation (right) of r with respect to the
number of high-fidelity runs.
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Figure 12. Error bound estimation for Test 4.

Test 5: A discontinuous cross-section test. In the last test case, we con-
sider the cross-section to be uncertain and discontinuous:

(39) σ(x, z) =















1 + 4

d
∑

i=1

1

(iπ)2
cos (2πix)zi, 0 ≤ x ≤ 0.5,

0.2, 0.5 < x < 1,

where d = 5. The initial distribution is given by

(40) f(t = 0, x, v) =
1

2πξ
exp

(

−
(x− 0.5)2

2ξ

)

, ξ = 0.01.

Periodic boundary condition is assumed. We set ε2 = 0.001 and the output time
T = 0.01. We use ∆x = 0.025, ∆t = 2× 10−4 in the LF solver, and ∆x = 0.02,
∆t = 2/3 × 10−4 in the HF solver.
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From Fig. 13, we observe that the mean and standard deviation of the BF
approximations match quite well with the HF solutions, particularly around the
discontinuity. The BF approximations again enjoy a fast exponential decay of
the errors. With only 15 HF simulations, the BF mean reaches the accuracy
of about O(10−4). In Fig. 14, the practical error bound estimators bound the
true BF errors well, while the values of both metrics Re and Rs are less than
10. After r = 15, if one increases the HF samples, it will not help to improve
the quality of BF approximations.
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Figure 13. Test 5. The mean (left) and standard deviation
(right) of r, obtained by r = 25 high-fidelity runs and the sparse
grid method with 2243 quadrature points (crosses, first row).
The corresponding errors are also reported (second row).

6. Conclusion

In this paper, we investigate the applicability and performance of the bi-
fidelity stochastic collocation method to quantify the uncertainties of multiscale
linear transport equations with multi-dimensional random parameters. The
sources of uncertainties considered are multidimensional and include the colli-
sion kernel or initial and boundary conditions. The Goldstein-Taylor model,
which is a simpler model with discrete velocities compared to the linear trans-
port model under study, has been chosen as the low-fidelity model. Both models
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Figure 14. Error bound estimation for Test 5.

share the same diffusion limit. Our numerical examples demonstrate that the
proposed bi-fidelity method works effectively across a large range of regimes in
diffusive, kinetic and mixed regimes. This suggest that the present approach is
capable to reach a uniform accuracy with respect to the multiple scale involved.
Furthermore, an empirical error bound estimation is computed to access the
quality of the bi-fidelity approximation. Further researches will consider the
extension of the present approach to transport equations occurring in biomath-
ematics, like chemotaxis and epidemiology [3, 4, 7, 25].
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