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COMPLETE SINGULAR COLLINEATIONS AND QUADRICS

ALEX CASAROTTI, ELSA CORNIANI, AND ALEX MASSARENTI

Abstract. We construct wonderful compactifications of the spaces of linear maps, and symmetric linear
maps of a given rank as blow-ups of secant varieties of Segre and Veronese varieties. Furthermore, we
investigate their birational geometry and their relations with some spaces of degree two stable maps.
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1. Introduction

We construct the wonderful compactification of the space of linear maps of rank h, between two vector
spaces of dimensions n ` 1 and m ` 1, as a sequence of blow-ups of secant varieties of Segre varieties.
This generalizes a construction, due to I. Vainsencher, for complete collineations that is maps of maximal
rank [Vai84, Theorem 1].

Complete collineations have been widely studied from the algebraic, enumerative and birational view-
point since the 19th-century [Cha64], [Gia03], [Hir75], [Hir77], [Sch86], [Seg84], [Sem48], [Sem51], [Sem52],
[Tyr56], [Vai82], [Vai84], [KT88], [LLT89], [Tha99], [Hue15], [Mas20a], [Mas20b].

Spaces of complete collineations are examples of wonderful compactifications. The wonderful compact-
ification of a symmetric space was introduced by C. De Concini and C. Procesi in [DCP83]. Later on,
D. Luna gave a more general definition of wonderful variety and then he proved that, according to his
definition, all wonderful varieties are spherical [Lun96].

Let G be a reductive group, and B Ă G a Borel subgroup. A spherical variety is a variety admitting
an action of G with an open dense B-orbit. For wonderful varieties we require in addition the existence
of an open orbit whose complementary set is a simple normal crossing divisor, E1 Y ¨ ¨ ¨ Y Er, where the
Ei are the G -invariant prime divisors in the variety X.

Let Sn,m be the image of the Segre embedding Pn ˆ Pm Ñ PN , and SechpSn,mq the h-secant variety of
Sn,m, that is the subvariety of PN obtained as the closure of the union of all ph´ 1q-planes spanned by h
general points of Sn,m. We summarize the main results in Theorem 2.14 and Propositions 3.4, 3.10.

Theorem 1.1. Consider the following sequence of blow-ups

Cpn,m, hq :“ Sec
ph´1q
h pSn,mq Ñ Sec

ph´2q
h pSn,mq Ñ ¨ ¨ ¨ Ñ Sec

p1q
h pSn,mq Ñ Sec

p0q
h pSn,mq :“ SechpSn,mq

where Sec
pkq
h pSn,mq Ñ Sec

pk´1q
h pSn,mq is the blow-up of Sec

pk´1q
h pSn,mq along the strict transform of

SeckpSn,mq for k “ 1, . . . , h ´ 1. Denote by Ek Ă Cpn,m, hq the exceptional divisor over SeckpSn,mq
for k “ 1, . . . , h´ 1.
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The pSLpn` 1q ˆ SLpm` 1qq-action

pSLpn` 1q ˆ SLpm` 1qq ˆ PN ÝÑ PN

ppA,Bq, Zq ÞÝÑ AZBt

induces an pSLpn ` 1q ˆ SLpm` 1qq-action on Cpn,m, hq, and Cpn,m, hq is wonderful.
Assume that h ă n ` 1 and fix homogeneous coordinates rz0,0 : ¨ ¨ ¨ : zn,ns on PN . For i “ 1, . . . , h we

define the divisors DC
i as the strict transforms in Cpn,m, hq of the divisor given by the intersection of

det

¨
˚̋

z0,0 . . . z0,i´1

...
. . .

...

zi´1,0 . . . zi´1,i´1

˛
‹‚“ 0

with Cpn,m, hq. The divisor DC
h in Cpn,m, hq has two irreducible components HC

1 ,H
C
2 , and the Picard

rank of Cpn,m, hq is ρpCpn,m, hqq “ h ` 1. Moreover, the effective cone EffpCpn,m, hqq is generated by
E1, . . . , Eh´1,H

C
1 ,H

C
2 and the nef cone NefpCpn,m, hqq is generated by DC

1 , . . . ,D
C
h´1

,HC
1 ,H

C
2 .

In the case h “ n` 1 we present similar results. Furthermore, we extend the construction in Theorem
1.1, by replacing Sn,m with the Veronese variety Vn, to the space Qpn, hq of rank h symmetric complete
collineations.

Note that both SechpSn,mq and SechpVnq are singular, the wonderful varieties Cpn,m, hq and Qpn, hq
are examples of the process producing a wonderful compactification from a conical one in [MP98].

Spherical varieties are Mori dream spaces. Roughly, a Mori dream space is a projective variety X

whose cone of effective divisors EffpXq admits a well-behaved decomposition into convex sets, called Mori
chamber decomposition, and these chambers are the nef cones of the birational models of X [HK00].

In Propositions 3.17 and 3.18 we give a detailed description of the Mori chamber decompositions of
Cpn,m, hq and Qpn, hq when their Picard rank is at most three. Moreover, in Section 4 we investigate the
connection of Cpn,m, hq and Qpn, hq with some Kontsevich spaces of degree two maps.

Kontsevich moduli spaces are denoted by Mg,npX,βq where X is a projective scheme and β P H2pX,Zq

is the homology class of a curve in X. A point in Mg,npX,βq corresponds to a holomorphic map α

from an n-pointed genus g curve C to X such that α˚prCsq “ β. When X is a projective space or a
Grassmannians the class β is completely determined by its degree, similarly when X is the product of
two projective spaces we identify the class β with its the bidegree. By Propositions 4.1, 4.6, 4.8, 4.12,
and Corollary 4.11 we have the following:

Theorem 1.2. There are isomorphisms

Cpn,m, 2q
„
ÝÑ M0,0pPn ˆ Pm, p1, 1qq

and

Sec
p1q
3

pVnq
„
ÝÑ M0,0pPn, 2q.

Furthermore, there is a 2-to-1 morphism

M0,0pGp1, nq, 2q Ñ Sec
p2q
4

pVnq.

For the automorphism groups we have that

AutpM0,0pPn ˆ Pm, p1, 1qqq –

"
PGLpn` 1q ˆ PGLpm ` 1q if n ă m;

S2 ˙ pPGLpn ` 1q ˆ PGLpn` 1qq if n “ m ě 2;

and AutpM 0,0pP1 ˆ P1, p1, 1qqq – PGLp4q.

Furthermore, AutpM0,0pPn, 2qq – PGLpn ` 1q for n ě 3, AutpM 0,0pP2, 2qq – PGLp3q ¸ S2, and

AutpM0,0pP1, 2qq – PGLp3q.
Finally,

AutpM 0,0pGp1, nq, 2qq –

"
S2 ˙ PGLpn` 1q if n ą 3;

S2 ˙ pS2 ˙ PGLpn ` 1qq if n “ 3.
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The Mori theory of the spaces M0,npX,βq, especially when the target variety is a projective space or
a Grassmannian, has been widely investigated in a series of papers [CS06], [Che08], [CHS08], [CHS09],
[CC10], [CC11], [CM17]. As an application of Theorem 1.2 we recover some of these results in Propositions
4.2, 4.6, and Remark 4.4. In particular, Theorem 1.2 gives an explicit description of the birational

contraction of M0,0pPn, 2q in [CHS09, Theorem 1.2] as the blow-down Sec
p1q
3

pVnq Ñ Sec3pVnq.

Organization of the paper. Throughout the paper we work over an algebraically closed field K of
characteristic zero. In Section 2, we construct the spaces of complete singular collineations and quadrics,
Cpn,m, hq and Qpn, hq. In Section 3, we study their Picard rank, their effective and nef cones, and
compute the Mori chamber decomposition of Cpn,m, 2q and Qpn, 3q. Finally, in Section 4 we investigate
the relation of the space of complete singular collineations and quadrics with Kontsevich moduli spaces
of conics.

Acknowledgments. The first and the third named authors are members of the Gruppo Nazionale per
le Strutture Algebriche, Geometriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica
"F. Severi" (GNSAGA-INDAM). The first named author is supported by Fondo PRIN-MIUR "Moduli
Theory and Birational Classification" 2017. We thank the referee for many helpful comments that allowed
us to improve the paper.

2. Complete rank h collineations

Let V,W be K-vector spaces of dimension respectively n` 1 and m` 1 with n ď m, and let PN with
N “ nm`n`m be the projective space parametrizing collineations from V to W that is non-zero linear
maps V Ñ W up to a scalar multiple.

The line bundle OPnˆPmp1, 1q “ OPpV qp1q b OPpW qp1q induces an embedding

σ : PpV q ˆ PpW q ÝÑ PpV bW q “ PN

prus , rvsq ÞÝÑ ru b vs.

The image Sn,m “ σpPn ˆ Pmq Ă PN is the Segre variety. Let rx0, . . . , xns, ry0, . . . , yms be homogeneous
coordinates respectively on Pn and Pm. Then the morphism σ can be written as

σprx0, . . . , xns, ry0, . . . , ymsq “ rx0y0 : ¨ ¨ ¨ : x0ym : x1y0 : ¨ ¨ ¨ : xnyms.

We will denote by rz0,0 : ¨ ¨ ¨ : zn,ms the homogeneous coordinates on PN , where zi,j corresponds to the
product xiyj.

A point p P PN “ PpHompW,V qq can be represented by an pn`1qˆpm`1q matrix Z. The Segre variety
Sn,m is the locus of rank one matrices. More generally, p P SechpSn,mq if and only if Z can be written as
a linear combination of h rank one matrices that is if and only if rankpZq ď h. If p “ rz0,0 : ¨ ¨ ¨ : zn,ms
then we may write

(2.1) Z “

¨
˚̋

z0,0 . . . z0,m
...

. . .
...

zn,0 . . . zn,m

˛
‹‚.

Therefore, the ideal of SechpSn,mq is generated by the ph ` 1q ˆ ph ` 1q minors of Z.

2.1. Spherical and Wonderful varieties. Let X be a normal projective Q-factorial variety. We denote
by N1pXq the real vector space of R-Cartier divisors modulo numerical equivalence. The nef cone of X
is the closed convex cone NefpXq Ă N1pXq generated by classes of nef divisors.

The stable base locus BpDq of a Q-divisor D is the set-theoretic intersection of the base loci of the
complete linear systems |sD| for all positive integers s such that sD is integral

(2.2) BpDq “
č

są0

BpsDq.

The movable cone of X is the convex cone MovpXq Ă N1pXq generated by classes of movable divisors.
These are Cartier divisors whose stable base locus has codimension at least two in X. The effective cone
of X is the convex cone EffpXq Ă N1pXq generated by classes of effective divisors. We have inclusions
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NefpXq Ă MovpXq Ă EffpXq. We refer to [Deb01, Chapter 1] for a comprehensive treatment of these
topics.

Definition 2.3. A spherical variety is a normal variety X together with an action of a connected reductive
affine algebraic group G , a Borel subgroup B Ă G , and a base point x0 P X such that the B-orbit of x0
in X is a dense open subset of X.

Let pX,G ,B, x0q be a spherical variety. We distinguish two types of B-invariant prime divisors: a
boundary divisor of X is a G -invariant prime divisor on X, a color of X is a B-invariant prime divisor
that is not G -invariant. We will denote by BpXq and CpXq respectively the set of boundary divisors and
colors of X.

Definition 2.4. A wonderful variety is a smooth projective variety X with the action of a semi-simple
simply connected group G such that:

- there is a point x0 P X with open G orbit and such that the complement XzG ¨ x0 is a union of prime
divisors E1, ¨ ¨ ¨ , Er having simple normal crossing;

- the closures of the G -orbits in X are the intersections
Ş

iPI Ei where I is a subset of t1, . . . , ru.

As proven by D. Luna in [Lun96] wonderful varieties are in particular spherical.

2.4. Complete singular forms. For n “ m, let PN` Ă PN be the subspace of symmetric matrices.
Then SechpSn,mq X PN` “ SechpVq for any h ě 1, where Vn Ă PN` is the image of the degree two
Veronese embedding of Pn.

Definition 2.5. The space of complete rank h collineations is the variety Cpn,m, hq obtained by blowing-
up SechpSn,mq along the strict transforms of the secant varieties SeckpSn,mq for k ă h in order of increasing
dimension. When n “ m we will denote Cpn, n, hq simply by Cpn, hq. Furthermore, we will denote by
E1, . . . , Eh´1 the exceptional divisors.

Similarly, for n “ m the space of complete rank h quadrics is the variety Qpn, hq obtained by blowing-
up SechpVnq along the strict transforms of the secant varieties SeckpVnq for k ă h in order of increasing

dimension. We will denote by EQ
1
, . . . , EQ

h´1
its exceptional divisors.

Remark 2.6. The case Cpn,m, n`1q and Qpn, n`1q are respectively the space of complete collineations
from V to W and the space of complete quadrics of V . By [Vai84, Theorem 1] and [Vai82, Theorem 6.3]
they are wonderful varieties and their birational geometry has been studied in [Mas20a].

Notation 2.7. For k ď h, we will denote by Sec
pkq
h pSn,mq the blow-up of SechpSn,mq along the strict

transforms of the secant varieties SecipS
n,mq for i “ 1, . . . , k, and by Sec

pkq
h pVnq the blow-up of SechpVnq

along the strict transforms of the secant varieties SecipV
nq for i “ 1, . . . , k.

Note that there is an embedding

(2.8) i : Qpn, hq ãÑ Cpn, hq.

The following pSLpn` 1q ˆ SLpm` 1qq-action

(2.9)
pSLpn` 1q ˆ SLpm` 1qq ˆ PN ÝÑ PN

ppA,Bq, Zq ÞÝÑ AZBt

induces an pSLpn ` 1q ˆ SLpm` 1qq-action on Cpn,m, hq. Similarly, when n “ m the SLpn` 1q-action

(2.10)
SLpn` 1q ˆ PN` ÝÑ PN`

pA,Zq ÞÝÑ AZAt

induces an SLpn` 1q-action on Qpn, hq.

Remark 2.11. Since SechpSn,mq can be identified with the variety of pn` 1q ˆ pm` 1q matrices modulo
scalar of rank at most h, [Har95, Example 12.1], [HT84, Proposition 12(a)] give

dimpSechpSn,mqq “ hpm ` n` 2 ´ hq ´ 1, degpSechpSn,mqq “
n´hź

i“0

`
m`1`i
n´i

˘
`
m`1´h`i
n´h´i

˘ .
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Similarly, SechpVnq identifies with the variety parametrizing pn`1q ˆ pn`1q symmetric matrices modulo
scalar of rank at most h and

dimpSechpVnqq “
2nh ´ h2 ` 3h ´ 2

2
, degpSechpVnqq “

n´hź

i“0

`
n`1`i

n`1´h´i

˘
`
2i`1

i

˘ .

Proposition 2.12. The tangent cone of SechpSn,mq at a point p P SeckpSn,mqzSeck´1pSn,mq for k ď h

is a cone with vertex of dimension nm` n`m´ pm ` 1 ´ kqpn ` 1 ´ kq over Sech´kpSn´k,m´kq.
The tangent cone of SechpVnq at a point p P SeckpVnqzSeck´1pVnq for k ď h is a cone with vertex of

dimension
`
n`2

2

˘
´ 1 ´ pn´k`1qpn´k`2q

2
over Sech´kpVn´kq.

Proof. We compute the tangent cones of SechpSn,mq. The symmetric case can be worked out similarly.
It is enough to compute the tangent cone of SechpSn,mq at

pk “

ˆ
Ik,k 0k,m`1´k

0n`1´k,k 0n`1´k,m`1´k

˙

where Ik,k is the k ˆ k identity matrix. Consider the affine chart z0,0 ‰ 0 and the change of coordinates
zi,i ÞÑ zi,i ´ 1 for i “ 1, . . . , k ´ 1, zi,j ÞÑ zi,j otherwise. Then the matrix Z in (2.1) takes the following
form ¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

1 z0,1 . . . z0,k´1 z0,k . . . z0,m
z1,0 z1,1 ´ 1 . . . z1,k´1 z1,k . . . z1,m
...

...
. . .

...
...

. . .
...

zk´1,0 zk´1,1 . . . zk´1,k´1 ´ 1 zk´1,k . . . zk´1,m

zk,0 zk,1 . . . zk,k´1 zk,k . . . zk,m
...

...
. . .

...
...

. . .
...

zn,0 zn,1 . . . zn,k´1 zn,k . . . zn,m

˛
‹‹‹‹‹‹‹‹‹‹‚

.

Recall that SechpSn,mq Ď PN is cut out by the ph ` 1q ˆ ph ` 1q minors of Z. Now, the lowest degree
terms of these minors are given by the ph ` 1 ´ kq ˆ ph ` 1 ´ kq minors of the following matrix

¨
˚̋

zk,k . . . zk,m
...

. . .
...

zn,k . . . zn,m

˛
‹‚.

Therefore, the tangent cone TCpkSechpSn,mq is contained in the cone C over Sech´kpSn´k,m´kq with
vertex the linear subspace of PN given by tzk,k “ ¨ ¨ ¨ “ zk,m “ zk`1,k “ ¨ ¨ ¨ “ zk`1,m “ ¨ ¨ ¨ “ zn,k “ ¨ ¨ ¨ “
zn,m “ 0u. Finally, by Remark 2.11 we conclude that TCpkSechpSn,mq “ C. �

We will need the following result on fibrations with smooth fibers on a smooth base.

Proposition 2.13. Let f : X Ñ Y be a surjective morphism of varieties over an algebraically closed field
with equidimensional smooth fibers. If Y is smooth then X is smooth as well.

Proof. By [Sch10, Theorem 3.3.27] the morphism f : X Ñ Y is flat. Finally, since all the fibers of
f : X Ñ Y are smooth and of the same dimension [Mum99, Theorem 3’, Chapter III, Section 10] yields
that X is smooth. �

Theorem 2.14. The variety Cpn,m, hq is smooth and the divisors E1, . . . , Eh´1 are smooth and intersect
transversally. The closures of the orbits of the SLpn ` 1q ˆ SLpm ` 1q-action on Cpn,m, hq induced by
(2.9) are given by all the possible intersections of E1, . . . , Eh´1 and Cpn,m, hq. Furthermore, the analogous
statements hold for Qpn, hq. Hence Cpn,m, hq and Qpn, hq are wonderful.

Proof. We will proceed as follows. For h “ 1 we will prove the statement for any n and m. Then we will
prove that if for h ă j the statement holds for any n and m then it also holds for h “ j and any n and
m. This will prove the statement for any n,m and h “ 0, . . . , n ` 1.

For h “ 1 we have Cpn,m, 1q “ Sn,m. Hence, the statements holds for any n and m. Assume that for
any h ă j the statement holds for any n and m and consider Cpn,m, jq.
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In order to understand the geometry of our construction it is more useful to focus on a specific case.
For instance take n “ m “ 3. We have S3,3 Ă Sec2pS3,3q Ă Sec3pS3,3q Ă P15. Let X1 be the blow-up
of P15 along S3,3 with exceptional divisor E1. Then E1 is a P8-bundle over S3,3. The strict transform

Sec
p1q
2

pS3,3q intersects the fiber E1,p of E1 over a point p P S3,3 along the base of the tangent cone of

Sec2pS3,3q at p which by Proposition 2.12 is S2,2. Similarly, Sec3pS3,3q intersects E1,p along Sec2pS2,2q.
Hence, the fibers of E1 Ñ S3,3 are secant varieties Sec2pS2,2q. Now, let X2 be the blow-up of X1

along Sec
p1q
2

pS3,3q with exceptional divisor E2. Then E2 Ñ Sec
p1q
2

pS3,3q is a P3-bundle. Fix a point

p P Sec
p1q
2

pS3,3qzpE1 X Sec
p1q
2

pS3,3qq. By Proposition 2.12 Sec
p2q
3

pS3,3q intersects E2,p along S1,1. If p P

Sec
p1q
2

pS3,3qXE1 then the projective tangent cone of Sec
p1q
3

pS3,3q at p coincides with the projective tangent

cone of Sec
p1q
3

pS3,3q X E1,p “ Sec2pS2,2q at p P Sec
p1q
2

pS3,3q X E1,p “ S2,2 which in turn by Proposition

2.12 is S1,1. Hence, the fibers of E2 Ñ Sec
p1q
2

pS3,3q are isomorphic to S1,1. Summing up after the two
blow-ups the fibers of E1 Ñ S3,3 are isomorphic to Cp2, 2, 2q, that is the blow-up of Sec2pS2,2q along S2,2,

and the fibers of E2 Ñ Sec
p1q
2

pS3,3q are isomorphic to Cp1, 1, 1q that is S1,1.
Arguing in the same way we see that for any i “ 1, . . . , j ´ 1, Proposition 2.12 gives a fibration

Ei Ñ Sec
pi´1q
i pSn,mq “ Cpn,m, iq whose fibers are isomorphic to Sec

pj´i´1q
j´i pSn´i,m´iq “ Cpn ´ i,m ´

i, j ´ iq. Then, by the induction hypothesis and Proposition 2.13 the exceptional divisors E1, . . . , Ej´1

in Cpn,m, jq are smooth. Moreover, by Proposition 2.12, Cpn,m, jq is smooth away from E1, . . . , Ej´1

and for i “ 1, . . . , j ´ 1 there is a fibration Cpn,m, jq X Ei Ñ Cpn,m, iq whose fibers are isomorphic to
Cpn´ i,m´ i, j ´ iq. Hence, by induction and Proposition 2.13 we get that Cpn,m, jq XEi is smooth and

dimpCpn,m, jq X Eiq “ ipn`m´ iq ´ 1 ` pj ´ iqpn ´ i `m´ i ´ j ` iq ´ 1 “ dimpCpn,m, jqq ´ 1.

So Cpn,m, jq is smooth and the intersection Cpn,m, jq X Ei is transversal for any i “ 1, . . . , j ´ 1.
Now, consider an intersection of the following form Ej1 X ¨ ¨ ¨ XEjt. By Proposition 2.12 the restriction

of the blow-down morphism

Ej1 X ¨ ¨ ¨ XEjt Ñ Ej1 X ¨ ¨ ¨ X Ejt´1
X Cpn,m, jtq

has fibers isomorphic to Cpn´ jt,m´ jt, j ´ jtq. Again by the induction hypothesis and Proposition 2.13
Ej1 X ¨ ¨ ¨ X Ejt is smooth of dimension

pj ´ jtqpn´ j `m´ j ´ j ` jtq ´ 1 ` jtpn`m´ jtq ´ 1 ´ pt ´ 1q “ dimpCpn,m, jqq ´ t

and hence the intersection is transversal.
The claim about the orbit closures follows from [Vai84, Theorem 1] and the fact that the SLpn` 1q ˆ

SLpm ` 1q action on Cpn,m, hq is given by the restriction of the action (2.9) on the space of complete
collineations. With an analogous proof we get the result for Qpn, hq. �

3. Divisors on Cpn,m, hq and Qpn, hq

In the section we study the Picard groups and the cones of effective and nef divisors of the wonderful
varieties introduces in Section 2. We will denote by Cpn,m, hqo and Qpn, hqo the orbits of the matrix

(3.1) Jh “

ˆ
Ih,h 0

0 0

˙

where Ih,h is the h ˆ h identity matrix, under the actions (2.9) and (2.10) respectively.

Proposition 3.2. The Picard groups of Cpn,m, hqo and Qpn, hqo are given by

PicpCpn,m, hqoq –

$
&
%

Z if h “ n` 1 ă m` 1;

Z ‘ Z if h ă n` 1;
Z

pn`1qZ if h “ n` 1 “ m` 1;

and

PicpQpn, hqoq –

$
&
%

Z if h ă n` 1 is odd;
Z
2Z

‘ Z if h ă n` 1 is even;
Z

pn`1qZ if h “ n` 1.
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Proof. Let Gh be the stabilizer of the matrix Jh in (3.1) under the action (2.9). Since the Picard group
and the character group of SLpn ` 1q ˆ SLpm ` 1q are trivial [ADHL15, Theorem 4.5.1.2] yields that
PicpCpn,m, hqoq is isomorphic to the character group XpGhq of Gh. Write an element pA,Bq P SLpn `
1q ˆ SLpm` 1q as

(3.3) A “

ˆ
Ah,h Ah,n`1´h

An`1´h,h An`1´h,n`1´h

˙
, B “

ˆ
Bh,h Bh,m`1´h

Bm`1´h,h Bm`1´h,m`1´h

˙
.

Then pA,Bq P Gh if and only if An`1´h,h “ 0, Bm`1´h,h “ 0 and Ah,hB
T
h,h “ λIh,h. Assume that

h ă n` 1 and h ă m` 1. Then XpGhq is generated by the characters

dAh
:“ detpAh,hq, dBh

:“ detpBh,hq, dAn`1´h
:“ detpAn`1´h,n`1´hq, dBm`1´h

:“ detpBm`1´h,m`1´hq, λ

with the following relations

dAh
` dAn`1´h

“ dBh
` dBm`1´h

“ 0, dAh
` dBh

“ hλ.

Hence, XpGhq is the free abelian group generated by dAh
and λ.

Now, assume that h “ n` 1 ă m` 1. Then dAn`1´h
“ 0 and so dAh

“ 0. Therefore, XpGhq is the free
abelian group generated by λ.

If h “ n` 1 “ m` 1 then dAn`1´h
“ dBm`1´h

“ 0. So dAh
“ dBh

“ 0, and hence XpGhq is the abelian
group generated by λ with the relation pn` 1qλ “ 0.

Now, we consider the symmetric case. We will keep denoting by Gh the stabilizer of the matrix Jh in
(3.1) under the action (2.10). Write an element A P SLpn ` 1q as in (3.3). Then A P Gh if and only if
An`1´h,h “ 0 and Ah,hA

T
h,h “ λIh,h. Therefore, XpGhq is generated by

dAh
:“ detpAh,hq, λ

with the relation 2dAh
´ hλ “ 0.

Assume h ă n`1. If h “ 2k`1 then p2,´hq P Z2 is primitive. Considering the basis u “ 2dAh
´hλ, v “

dAh
´ kλ of Z2 we get that XpGhq – Z2{ xuy – Z. If h “ 2k then p2,´hq “ 2p1,´kq, and considering the

basis u “ 2dAh
´ kλ, v “ λ of Z2 we get that XpGhq – Z2{ x2uy – Z{2Z ‘ Z. Finally, if h “ n ` 1 we

have dAh
“ 0, and hence pn` 1qλ “ 0. So XpGhq – Z{pn` 1qZ. �

Proposition 3.4. The Picard rank of Cpn,m, hq and Qpn, hq is given by

ρpCpn,m, hqq “

$
&
%

h ´ 1 if h “ n` 1 “ m` 1;

h ` 1 if h ă n` 1;

h if h “ n` 1 ă m` 1;

and

ρpQpn, hqq “

"
h if h ă n` 1;

h ´ 1 if h “ n` 1.

Proof. Assume that h ă n` 1. Since, by Theorem 2.14 the variety Cpn,m, hq is wonderful with boundary
divisors E1, . . . , Eh´1, [Bri07, Proposition 2.2.1] yields an exact sequence

0 Ñ Zh´1 Ñ PicpCpn,m, hqq Ñ PicpCpn,m, hqoq Ñ 0

where Zh´1 is the free abelian group generated by the boundary divisors. To conclude it is enough to use
Proposition 3.2. The proof in the symmetric case is similar. �

For i “ 1, . . . , h, we define the divisor DC
i in Cpn,m, hq as the strict transform of the divisor given by

the intersection of SechpSn,mq with

det

¨
˚̋

z0,0 . . . z0,i´1

...
. . .

...

zi´1,0 . . . zi´1,i´1

˛
‹‚“ 0.

We will keep the same notation for the corresponding divisors in the intermediate blow-ups Sec
pkq
h pSn,mq.
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Similarly, for i “ 1, . . . , h we define the divisor DQ
i in Qpn, hq as the strict transform of the divisor

given by the intersection of SechpVnq with

det

¨
˚̋

z0,0 . . . z0,i´1

...
. . .

...

z0,i´1 . . . zi´1,i´1

˛
‹‚“ 0.

Again we will keep the same notation for the corresponding divisors in the intermediate blow-ups Sec
pkq
h pVnq.

Lemma 3.5. Let Z be an pn`1qˆpm`1q matrix of rank k ă mintn`1,m`1u such that the determinant
of the top left k ˆ k minor Zk of Z vanishes. Then, either the first k rows of Z are linearly dependent or
the the first k columns of Z are linearly dependent.

Proof. Assume that both the first k rows and the first k columns of Z are linearly independent. We
will then prove that either detpZkq ‰ 0 or rankpZq ą k. If detpZkq ‰ 0 the claim follows. So, assume
detpZkq “ 0. We will write e1, . . . , em`1 for the canonical basis of Km`1 and ē1, . . . ēn`1 for the canonical
basis of Kn`1. Since the first k columns of Z are linearly independent, up to a change of coordinates, we
may assume that these columns are the vectors ē1, ē2, . . . , ēk´1, ēk`1. The first k ` 1 rows of the matrix
Z are of the following form

$
’’’’’’’&
’’’’’’’%

Z0,´ “ et
1

` a0k`1
etk`1

` ¨ ¨ ¨ ` a0m`1
etm`1

;

Z1,´ “ et
2

` a1k`1
etk`1

` ¨ ¨ ¨ ` a1m`1
etm`1

;
...

Zk´2,´ “ etk´1
` ak´2

k`1
etk`1

` ¨ ¨ ¨ ` ak´2

m`1
etm`1;

Zk´1,´ “ ak´1

k`1
etk`1

` ¨ ¨ ¨ ` ak´1

m`1
etm`1;

Zk,´ “ etk ` akk`1
etk`1

` ¨ ¨ ¨ ` akm`1e
t
m`1;

for some aji P K. By assumption, the first k rows are linearly independent and so we must have ak´1

i ‰ 0

for at least one i P tk ` 1, . . . m` 1u. Hence, the k ` 1 rows Z0,´, . . . , Zk,´ are linearly independent, and
rankpZq ě k ` 1. �

Corollary 3.6. For k ă mintn` 1,m` 1u, the divisor cut out on SeckpSn,mq by the top left kˆ k minor
of the matrix in (2.1) has two components H1 and H2, where H1 is cut out by the k ˆ k minors of the
first k rows of Z, and H2 is cut out by the k ˆ k minors of the first k columns of Z.

Proof. The claim follows immediately from Lemma 3.5. �

Remark 3.7. In SeckpVnq the divisor associated to Dk is irreducible. Indeed, in the symmetric case the
divisors H1,H2 in Corollary 3.6 coincide.

In order to further clarify this we explicitly work out the case of 3 ˆ 3 matrices. The hypersurface
D2 “ tz0,0z1,1 ´ z0,1z1,0 “ 0u cuts out on Sec2pS2,2q Ă P8 a divisor with two irreducible components:

H1 “ tz0,1z1,0 ´ z0,0z1,1 “ z0,2z1,1 ´ z0,1z1,2 “ z0,2z1,0 ´ z0,0z1,2 “ 0u;

H2 “ tz0,1z1,0 ´ z0,0z1,1 “ z0,1z2,0 ´ z0,0z2,1 “ z1,1z2,0 ´ z1,0z2,1 “ 0u.

In the symmetric case the divisor tz0,0z1,1 ´ z20,1 “ 0u cuts out on Sec2pV2q Ă P5 the irreducible divisor

tz0,2z1,1 ´ z0,1z1,2 “ z0,1z0,2 ´ z0,0z1,2 “ z20,1 ´ z0,0z1,1 “ 0u

with multiplicity two.

Notation 3.8. We will denote by HC
1 ,H

C
2 the strict transforms of H1,H2 in Cpn,m, hq.

Proposition 3.9. The set of colors of Cpn,m, hq is given by

tDC
1
, . . . ,DC

nu if h “ n` 1 “ m` 1;

tHC
1 ,H

C
2 ,D

C
1 , . . . ,D

C
h´1

u if h ă n` 1;

tDC
1 , . . . ,D

C
n`1u if h “ n` 1 ă m` 1;
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while for Qpn, hq the set of colors is given by

tDQ
1
, . . . ,DQ

h u if h ă n` 1;

tDQ
1
, . . . ,DQ

n u if h “ n` 1.

Proof. The claim for Cpn,mq and Qpnq follows from [Mas20a, Proposition 3.6]. In particular, the divisors
listed in the statement are stabilized by the action of the Borel subgroups in (2.9) and (2.10) respectively.
Moreover, SechpSn,mq and SechpVnq are stabilized respectively by the action (2.9) and (2.10). Then,
DC

1 , . . . ,D
C
h are stabilized by the restriction of the action (2.9), and similarly the strict transform in

Qpn, hq of DQ
1
, . . . ,DQ

h are stabilized by the restriction of the action (2.10).
The groups acting are connected, so any reducible divisor which is stabilized must be stabilized com-

ponent wise. In particular, since by Corollary 3.6 in Cpn,m, hq for h ă n` 1 we have DC
h “ HC

1 YHC
2 and

since DC
h is stabilized, we have that both HC

1
and HC

2
are stabilized.

As noticed in [ADHL15, Remark 4.5.5.3], if pX,G ,B, x0q is a spherical wonderful variety with colors
D1, . . . ,Ds the big cell XzpD1 Y ¨ ¨ ¨ YDsq is an affine space. Therefore, it admits only constant invertible
global functions and PicpXq “ ZrD1, . . . ,Dss.

Now, for h ă n ` 1 in Cpn,m, hq we have h ` 1 colors and since by Proposition 3.4 the Picard
rank of Cpn,m, hq is h ` 1, these divisors D1, . . . ,Dh´1,H

C
1
,HC

2
must be all the colors. Similarly, for

h “ n` 1 ă m` 1 we found the divisors DC
1
, . . . ,DC

n`1
, and since in this case ρpCpn,m, hqq “ h, they are

all the colors. Note that when h “ n` 1 “ m` 1, the divisor DC
n`1 is not a color, since it is stabilized by

the whole group. In this case ρpCpn,m, hqq “ h ´ 1 and then DC
1 , . . . ,D

C
n are the colors. With a similar

argument we can compute the colors of Qpn, hq. �

Proposition 3.10. For the effective and the nef cone of Cpn,m, hq we have

EffpCpn,m, hqq “

$
&
%

xEC
1
, . . . , EC

h´1
y if h “ n` 1 “ m` 1;

xEC
1 , . . . , E

C
h´1

,HC
1 ,H

C
2 y if h ă n` 1;

xEC
1 , . . . , E

C
h´1

,DC
n`1y if h “ n` 1 ă m` 1;

NefpCpn,m, hqq “

$
&
%

xDC
1 , . . . ,D

C
ny if h “ n` 1 “ m` 1;

xDC
1 , . . . ,D

C
h´1

,HC
1 ,H

C
2 y if h ă n` 1;

xDC
1
, . . . ,DC

n`1
y if h “ n` 1 ă m` 1;

and for the effective and the nef cone of Qpn, hq we have

EffpQpn, hqq “

"
xEQ

1
, . . . , EQ

h´1
,DQ

h y if h ă n` 1;

xEQ
1
, . . . , EQ

h´1
y if h “ n` 1;

NefpQpn, hqq “

"
xDQ

1
, . . . ,DQ

h y if h ă n` 1;

xDQ
1
, . . . ,DQ

n y if h “ n` 1.

Proof. The statement for Cpn,mq and Qpnq follows from [Mas20a, Theorem 3.13]. We consider now the
case h ă n` 1.

Consider Cpn,m, hq. By [ADHL15, Proposition 4.5.4.4], Theorem 2.14 and Proposition 3.10 the effective
cone of Cpn,m, hq is generated by EC

1
, . . . , EC

h´1
,DC

1
, . . . ,DC

h´1
,HC

1
,HC

2
. By [Mas20a, Section 5] the divisor

DC
i induces a birational morphism that contracts the exceptional divisor EC

i . Therefore DC
i lies in the

interior of the effective cone for any i “ 1, . . . , h´1. In particular, since by Proposition 3.4 ρpCpn,m, hqq “
h ` 1, we conclude that the extremal rays of the effective cone are EC

1
, . . . , EC

h´1
,HC

1
,HC

2
.

Furthermore, by [Bri89, Section 2.6] the nef cone is generated by DC
1
, . . . ,DC

h´1
,HC

1
,HC

2
. A similar

argument gives the generators for the effective and nef cone of Qpn, hq. �

3.10. Birational geometry of Cpn,m, hq and Qpn, hq. Let X be a normal Q-factorial variety. We say
that a birational map f : X 99K X 1 to a normal projective variety X 1 is a birational contraction if its
inverse does not contract any divisor. We say that it is a small Q-factorial modification if X 1 is Q-factorial
and f is an isomorphism in codimension one. If f : X 99K X 1 is a small Q-factorial modification then the
natural pullback map f˚ : N1pX 1q Ñ N1pXq sends MovpX 1q and EffpX 1q isomorphically onto MovpXq

and EffpXq respectively. In particular, we have f˚pNefpX 1qq Ă MovpXq.
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Now, assume that the divisor class group ClpXq is free and finitely generated, and fix a subgroup G of
the group of Weil divisors on X such that the canonical map G Ñ ClpXq, mapping a divisor D P G to
its class rDs, is an isomorphism. The Cox ring of X is defined as

CoxpXq “
à

rDsPClpXq

H0pX,OX pDqq

where D P G represents rDs P ClpXq, and the multiplication in CoxpXq is defined by the standard
multiplication of homogeneous sections in the field of rational functions on X.

Definition 3.11. A normal projective Q-factorial variety X is called a Mori dream space if the following
conditions hold:

- Pic pXq is finitely generated, or equivalently h1pX,OX q “ 0,
- Nef pXq is generated by the classes of finitely many semi-ample divisors,
- there is a finite collection of small Q-factorial modifications fi : X 99K Xi, such that each Xi

satisfies the second condition above, and Mov pXq “
Ť

i f
˚
i pNef pXiqq.

The collection of all faces of all cones f˚
i pNef pXiqq above forms a fan which is supported on MovpXq.

If two maximal cones of this fan, say f˚
i pNef pXiqq and f˚

j pNef pXjqq, meet along a facet, then there exist
a normal projective variety Y , a small modification ϕ : Xi 99K Xj, and hi : Xi Ñ Y , hj : Xj Ñ Y small
birational morphisms of relative Picard number one such that hj ˝ϕ “ hi. The fan structure on MovpXq
can be extended to a fan supported on EffpXq as follows.

Definition 3.12. Let X be a Mori dream space. We describe a fan structure on the effective cone EffpXq,
called the Mori chamber decomposition. There are finitely many birational contractions from X to Mori
dream spaces, denoted by gi : X 99K Yi. The set Excpgiq of exceptional prime divisors of gi has cardinality
ρpX{Yiq “ ρpXq ´ ρpYiq. The maximal cones C of the Mori chamber decomposition of EffpXq are of the
form Ci “

@
g˚
i

`
NefpYiq

˘
,Excpgiq

D
. We call Ci or its interior C

˝

i a maximal chamber of EffpXq. We refer
to [HK00, Proposition 1.11] and [Oka16, Section 2.2] for details.

Remark 3.13. By the work of M. Brion [Bri93] we have that Q-factorial spherical varieties are Mori
dream spaces. An alternative proof of this result can be found in [Per14, Section 4]. In particular, by
Theorem 2.14 Cpn,m, hq and Qpn, hq are Mori dream spaces.

Remark 3.14. Recall that by [HK00, Proposition 2.11] given a Mori Dream Space X there is an em-
bedding i : X Ñ TX into a simplicial projective toric variety TX such that i˚ : PicpTXq Ñ PicpXq is an
isomorphism inducing an isomorphism EffpTXq Ñ EffpXq. Furthermore, the Mori chamber decomposition

of EffpTXq is a refinement of the Mori chamber decomposition of EffpXq. Indeed, if CoxpXq – KrT1,...,Tss
I

where the Ti are homogeneous generators with non-trivial effective PicpXq-degrees then CoxpTXq –
KrT1, . . . , Tss.

Since the variety TX is toric, the Mori chamber decomposition of EffpTXq can be computed by means
of the Gelfand–Kapranov–Zelevinsky, GKZ for short, decomposition [ADHL15, Section 2.2.2]. Let us
consider the family W of vectors in PicpTXq given by the generators of CoxpTXq, and let ΩpWq be the
set of all convex polyhedral cones generated by some of the vectors in W. By [ADHL15, Construction
2.2.2.1] the GKZ chambers of EffpTXq are given by the intersections of all the cones in ΩpWq containing
a fixed divisor in EffpTXq.

Remark 3.15. Let pX,G ,B, x0q be a projective spherical variety. Consider a divisor D on X, and let fD
be the, unique up to constants, section of OXpDq associated toD. We will denote by linKpG ¨Dq Ď CoxpXq
the finite-dimensional vector subspace of CoxpXq spanned by the orbit of fD under the action of G that
is the smallest linear subspace of CoxpXq containing the G -orbit of fD.

By [ADHL15, Theorem 4.5.4.6] if G is a semi-simple and simply connected algebraic group and
pX,G ,B, x0q is a spherical variety with boundary divisors E1, . . . , Er and colors D1, . . . ,Ds then CoxpXq
is generated as a K-algebra by the canonical sections of the Ei and the finite dimensional vector subspaces
linKpG ¨ Diq Ď CoxpXq for 1 ď i ď s.
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Next, we study the birational geometry of Cpn,m, hq and Qpn, hq when the Picard rank is small. We
begin with Qpn, hq. The varieties Qp1, 2q and Qp2, 3q are covered by [Mas20a, Section 6]. So, the first
case to consider is that of Qpn, 3q for n ě 3.

Lemma 3.16. For the variety Qpn, 3q we have that DQ
1

„ H, DQ
2

„ 2H ´ EQ
1

, DQ
3

„ 3H ´ 2EQ
1

´ EQ
2

.

Proof. Consider the strict transform L Ă Qpn, 3q of the line Lµ,λ “ tµx20 ` λpx21 ` x22q “ 0u. This line
intersects Vn at a point p, Sec2pVnqzVn at a point q, and it is not contained neither in the tangent cone
of Sec2pVnq at p nor in the tangent space of H2 “ tz0,0z1,1 ´ z2

0,1 “ 0u at p.

First, consider the blow-up Sec
p1q
3

pVnq of Sec3pVnq along Vn and keep the same notation for the push-

forward to Sec
p1q
3

pVnq of L, DQ
1
,DQ

2
,DQ

3
. Recall that Sec

p1q
3

pVnq is singular along the strict transform of

Sec2pVnq. However, DQ
2
,DQ

3
are Cartier on Sec

p1q
3

pVnq since they are restrictions to Sec
p1q
3

pVnq of divisors
in the blow-up of PN` along Vn.

WriteDQ
2

“ 2H´aE1. Note thatH2 intersect Lµ,λ at p. Since Lµ,λ is not contained in the tangent space

of H2 at p in Sec
p1q
3

pVnq the strict transforms L andDQ
2

intersect just in one point. Then 1 “ DQ
2

¨L “ 2´a
yields a “ 1.

Similarly, Lµ,λ intersects the cubic hypersurface H3 given be the top left 3ˆ 3 minor of (2.1) at p with

multiplicity two and at q. Moreover, Lµ,λ is not contained in the tangent cone of H3 at p and hence

in Sec
p1q
3

pVnq the strict transforms L and DQ
3

intersect just in one point. Then 1 “ DQ
3

¨ L. Writing

DQ
3

„ 3H ´ bE1 we get 1 “ DQ
3

¨ L “ 3 ´ b and hence b “ 2.

Now, we consider Qpn, 3q. Since DQ
2

does not contain the strict transform of Sec2pVnq its expression

remains unvaried after the last blow-up. On the other hand, E2 must appear in the expression of DQ
3

.

Let us write DQ
3

„ 3H ´ 2E1 ´ cE2 and keep denoting by L its strict transform in Qpn, 3q. Note that

Lµ,λ is not contained in the tangent space of H3 at q. So 0 “ DQ
3

¨ L “ 3 ´ 2 ´ c and hence c “ 1. �

Proposition 3.17. For n ě 3, the Mori chamber decomposition of EffpQpn, 3qq has five chambers as
displayed in the following 2-dimension section of EffpQpn, 3qq

EQ
1

EQ
2

DQ
3

DQ
1

DQ
2

where MovpQpn, 3qq coincides with NefpQpn, 3qq and is generated by DQ
1
,DQ

2
,DQ

3
.

Proof. By Theorem 2.14, Proposition 3.9, Remarks 3.14, 3.15, and Lemma 3.16 the Mori chamber decom-
position of EffpQpn, 3qq is a possibly trivial coarsening of the decomposition in the statement.

Since by Proposition 3.10 DQ
1
,DQ

2
,DQ

3
are the generators of the nef cone of Qpn, 3q, these rays can not

be removed. Furthermore, since Mori chamber are convex the walls between EQ
2
,DQ

2
and EQ

1
,DQ

1
can

not be removed. Finally, to see that the wall between EQ
2
,DQ

1
can not be removed it is enough to observe

that the stable base locus of a divisor in the chamber delimited by EQ
2
,DQ

2
,DQ

1
is EQ

2
, while the stable

base locus of a divisor in the chamber delimited by EQ
2
,DQ

1
, EQ

1
is EQ

1
Y EQ

2
. �

We will study the decomposition of the effective cone of Cpn,m, 2q. For n “ m “ 1 we have Cp1, 1, 2q –
P3. Hence, the first interesting cases occur for n “ 1 and m ą 1. The case Cp1,m, 2q is in [Mas20a, Page
1606].
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Proposition 3.18. For n ą 1 and m ą 1 the Mori chamber decomposition of EffpCpn,m, 2qq has three
chambers as displayed in the following 2-dimensional section of EffpCpn,m, 2qq

HC
2

HC
1

EC
1

DC
1

where MovpCpn,m, 2qq coincides with NefpCpn,m, 2qq and is generated by HC
1 ,H

C
2 ,D

C
1 .

Proof. It is enough to argue as in the proof of Proposition 3.17, and to observe that since Mori chambers
are convex in the case n ą 1,m ą 1 the wall between EC

1 ,D
C
1 can not be removed. �

In the following we consider the spherical variety Sec
p2q
4

pVnq obtained by blowing-up Sec4pVnq along

Vn and then along the strict transform of Sec2pVnq. We will keep denoting by DQ
i , E

Q
j the push-forward

of the corresponding divisors via the blow-down Qpn, 4q Ñ Sec
p2q
4

pVnq.

Proposition 3.19. The Mori chamber decomposition of EffpSec
p2q
4

pVnqq has nine chambers as displayed

in the following 2-dimensional section of EffpSec
p2q
4

pVnqq

EQ
1

DQ
4

EQ
2

DQ
2

DQ
1

DQ
3

P

where NefpSec
p2q
4

pVnqq is generated by DQ
1
,DQ

2
,DQ

3
, and the movable cone MovpSec

p2q
4

pVnqq is generated

by DQ
1
,DQ

2
,DQ

3
, P with P „ 6DQ

1
´ 3EQ

1
´ 2EQ

2
.

Proof. Note that the SLpn ` 1q-actions on Sec
p2q
4

pVnq and Qpn, 4q are equivariant with respect to the

blow-down morphism Qpn, 4q Ñ Sec
p2q
4

pVnq. Hence, by Proposition 3.9 the colors of Sec
p2q
4

pVnq are

DQ
1
,DQ

2
,DQ

3
,DQ

4
, and its boundary divisors are EQ

1
, EQ

2
. Arguing as in the proof of Lemma 3.16 we have

that DQ
4

„ 4H ´ 3EQ
1

´ 2EQ
2

. Note that DQ
4

is also a boundary divisor when n “ 3. Now, the claim on
the movable cone follows from Remark 3.15 and [ADHL15, Proposition 3.3.2.3]. Finally, to conclude it is
enough to argue as in the proof of Proposition 3.17. �

We conclude this section by computing the automorphism groups of the varieties Sec
pkq
h pSn,mq and

Sec
pkq
h pVnq.

Proposition 3.20. For all h ď n we have

AutpSechpSn,mqq –

"
PGLpn` 1q ˆ PGLpm ` 1q if n ă m;

S2 ˙ pPGLpn ` 1q ˆ PGLpn` 1qq if n “ m;

and AutpSechpVnqq – PGLpn` 1q.
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Proof. Let φ be an automorphism of SechpSn,mq. By the stratification of the singular locus of SechpSn,mq
described in Proposition 2.12 φ must stabilize SeckpSn,mq for all k ď h. In particular, φ induces an
automorphism φ|Sn,m P AutpSn,mq, and by [Mas20a, Lemma 7.4] we have that AutpSn,mq – PGLpn `
1q ˆ PGLpm ` 1q if n ă m, and AutpSn,nq – S2 ˙ pPGLpn ` 1q ˆ PGLpn` 1qq.

Note that in the case n “ m also the involution in S2 switching the two factors comes from an
automorphism of the ambient projective space PN and so it induces an automorphism of SechpSn,mq. Let
us proceed by induction on h. So AutpSech´1pSn,mqq – AutpSn,mq, and we have a surjective morphism
of groups

χ : AutpSechpSn,mqq ÝÑ AutpSech´1pSn,mqq
φ ÞÝÑ φ|Sech´1pSn,mq.

Recall that SechpSn,mq “ JoinpSech´1pSn,mq,Sn,mq. Assume that φ|Sech´1pSn,mq “ IdSech´1pSn,mq. Then
φ|Sech´1pSn,mq fixes Sech´1pSn,mq and hence Sn,m. Let p P SechpSn,mq be a general point. By Remark 2.11

the actual dimension of JoinpSech´1pSn,mq,Sn,mq is smaller than the expected one. So there are infinitely
many lines intersecting Sn,m and Sech´1pSn,mq through p. Any two of these lines are stabilized by φ and
intersect at p, so φppq “ p. Hence φ “ IdSechpSn,mq and χ is an isomorphism. The same proof, with the
obvious variations, works in the symmetric case as well. �

Theorem 3.21. For all h ď n and k “ 1, . . . , h ´ 1 we have

AutpSec
pkq
h pSn,mqq –

"
PGLpn ` 1q ˆ PGLpm ` 1q if n ă m;

S2 ˙ pPGLpn ` 1q ˆ PGLpn` 1qq if n “ m;

AutpSec
pkq
h pVnqq – PGLpn ` 1q;

and for h “ n` 1 we have

AutpCpn,m, n ` 1qq –

"
PGLpn` 1q ˆ PGLpm ` 1q if n ă m;

pS2 ˙ pPGLpn ` 1q ˆ PGLpn` 1qqq ¸ S2 if n “ m ě 2;

AutpQpn, n` 1qq – PGLpn` 1q ¸ S2;

AutpCp1, 1, 2qq – PGLp4q, and AutpQp1, 2qq – PGLp3q.

Proof. When h “ n ` 1 the statement follows from [Mas20a, Theorem 7.5]. Hence we consider the case

h ď n. We will prove the claim for Sec
pkq
h pSn,mq. The argument in the symmetric case is completely

analogous.

First, take k “ h ´ 1. Hence Sec
ph´1q
h pSn,mq – Cpn,m, hq. An automorphism φ P AutpCpn,m, hqq acts

on the extremal rays of EffpCpn,m, hqq as a permutation. If it acts non trivially then it must act non
trivially also on the generators of NefpCpn,m, hqq in Proposition 3.10. However, this is not possible since
for instance these nef divisors have spaces of global sections of different dimensions. Hence, φ stabilizes all

the exceptional divisors in Definition 2.5, and therefore it induces an automorphism rφ P AutpSechpSn,mqq.
The morphism of groups

rχ : AutpCpn,m, hqq ÝÑ AutpSechpSn,mqq

φ ÞÝÑ rφ
is clearly an isomorphism, and we conclude by Proposition 3.20.

Now, consider the case k ă h ´ 1. Recall that Cpn,m, hq is obtained from Sec
pkq
h pSn,mq by blow-

ups centered at subvarieties of Sec
pkq
h pSn,mq that are stabilized by all φ P AutpSec

pkq
h pSn,mqq. Hence,

φ P AutpSec
pkq
h pSn,mqq lifts two an automorphism φ of Cpn,m, hq, and we get a morphism of groups

χ : AutpSechpSn,mqq ÝÑ AutpCpn,m, hqq
φ ÞÝÑ φ

which again is an isomorphism. Finally, we conclude by the computation of AutpCpn,m, hqq in the first
part of the proof. �
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4. Kontsevich spaces of conics and complete singular forms

An n-pointed rational pre-stable curve pC, px1, ..., xnqq is a projective, connected, reduced curve with at
most nodal singularities of arithmetic genus zero, with n distinct and smooth marked points x1, ..., xn P C.
We will refer to the marked and the singular points of C as special points.

Let X be a homogeneous variety. A map pC, px1, ..., xnq, αq, where α : C Ñ X is a morphism from an
n-pointed rational pre-stable curve to X is stable if any component E – P1 of C contracted by α contains
at least three special points.

Now, let us fix a class β P H2pX,Zq. By [FP97, Theorem 2] there exists a smooth, proper, and separated
Deligne-Mumford stack M0,npX,βq parametrizing isomorphism classes of stable maps rC, px1, ..., xnq, αs
such that α˚rCs “ β.

Furthermore, by [KP01, Corollary 1] the coarse moduli space M0,npX,βq associated to the stack

M0,npX,βq is a normal, irreducible, projective variety with at most finite quotient singularities of di-
mension

dimpM0,npX,βqq “ dimpXq `

ż

β

c1pTXq ` n´ 3.

The variety M0,npX,βq is called the moduli space of stable maps, or the Kontsevich moduli space of

stable maps of class β from a rational pre-stable n-pointed curve to X. The boundary BM0,npX,βq “

M0,npX,βqzM0,npX,βq is a simple normal crossing divisor in M0,npX,βq whose points parametrize iso-
morphism classes of stable maps rC, px1, ..., xnq, αs where C is a reducible curve. When X “ PN , we will
write M0,npPN , dq for M 0,npPN , drLsq, where L Ď PN is a line.

For details on moduli spaces parametrizing curves in projective spaces, and in particular conics, we
refer to [EH16, Section 8.4].

4.0. Conics in Pn. Let M0,0pPn, 2q be the Kontsevich space of conics in Pn. We will denote by ∆ Ă

M0,0pPn, 2q the boundary divisor parametrizing maps with reducible domain, and by Γ Ă M0,0pPn, 2q
the locus of maps of degree two onto a line. Note that Γ is a P2-bundle over the Grassmannian Gp1, nq
parametrizing lines in Pn. In M0,0pPn, 2q we consider the following divisor classes:

- H of conics intersecting a fixed codimension two linear subspace of Pn;
- T of conics which are tangent to a fixed hyperplane in Pn;
- Ddeg of conics spanning a plane that intersects a fixed linear subspace of dimension n´ 3 in Pn.

It is well-known that M0,0pP2, 2q is isomorphic to the space of complete conics Qp2, 3q [FP97, Section
0.4]. The following result generalizes this fact.

Proposition 4.1. The Kontsevich space M0,0pPn, 2q is isomorphic to the blow-up Sec
p1q
3

pVnq of Sec3pVnq
along Vn.

Proof. We may associate to a rank three quadric Q Ă Pn its dual conic CQ Ă Pn˚. Conversely, given a

smooth conic CQ P M0,0pPn, 2q we can consider the cone swept by the duals of the tangent lines of CQ

and whose vertex is the dual of the plane spanned by CQ. This yields a morphism

φo : M0,0pPn, 2q ÝÑ Sec3pVnq Ă PN`

CQ ÞÝÑ Q.

Consider the hyperplane H “ tz0,0 “ 0u Ă PN`. The points of HXSec3pVnq correspond to the rank three
quadrics Q Ă Pn passing through p “ r1 : 0 : ¨ ¨ ¨ : 0s. These quadric in turn correspond via the morphism
φo to the conics CQ Ă Pn˚ that are tangent the the hyperplane Hp Ă Pn˚ which is dual to p P Pn. Hence,
φo is induced by the divisor class T . Now, [CHS09, Theorem 1.2] yields that φo extends to a morphism

φ :M0,0pPn, 2q Ñ Sec3pVnq

restricting to an isomorphism on M0,0pPn, 2q and contracting the boundary divisor ∆.
Fix a rank two conic in CQ Ă Pn˚. Up to an automorphism of Pn˚ we may assume that CQ “ tx0 “

¨ ¨ ¨ “ xn´3 “ xx´2xn´1 “ 0u. Consider the family of smooth conics CQ,t “ tx0 “ ¨ ¨ ¨ “ xn´3 “
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xx´2xn´1 ´ tx2n “ 0u, with t ‰ 0, degenerating to CQ. Then

φpCQ,tq “ tx2n ´ 4txn´2xn´1 “ 0u

where we keep denoting by rx0 : ¨ ¨ ¨ : xns the homogeneous coordinates on the dual projective space.
Hence

φpCQq “ lim
tÞÑ0

φpCQ,tq “ tx2n “ 0u

and so ∆ gets contracted onto the Veronese variety Vn Ă Sec3pVnq. Now, by [Har77, Proposition 7.14] φ
yields a morphism

ψ :M0,0pPn, 2q Ñ Sec
p1q
3

pVnq

mapping ∆ onto EQ
1

. Hence, ψ restricts to a morphism ψ|Γ : Γ Ñ Sec
p1q
2

pVnq associating to a double cover

P1 Ñ L ramified at p, q P L the rank two quadric Hp Y Hq, where Hp,Hq are the hyperplanes dual to p
and q. Moreover, associating to a rank two quadric H1 YH2 the 2-to-1 cover P1 Ñ pH1 XH2q˚ ramified
at H˚

1 ,H
˚
2 we get a birational inverse of ψ|Γ. Note that ψ|Γ can not contract any divisor in Γ since both Γ

and Sec
p1q
2

pVnq have Picard rank two. Furthermore, ψ|Γ can not contract any locus of codimension greater

than one in Γ either since Sec
p1q
2

pVnq is smooth.

Hence, ψ :M0,0pPn, 2q Ñ Sec
p1q
3

pVnq is a finite and birational morphism. Finally, since M0,0pPn, 2q and

Sec
p1q
3

pVnq are normal [Mum99, Chapter 3, Section 9] yields that ψ is an isomorphism. �

As an application of Proposition 4.1 we have the following result.

Proposition 4.2. The Kontsevich space M0,0pPn, 2q is a spherical variety with respect to the following
SLpn` 1q-action:

(4.3)
SLpn` 1q ˆM0,0pPn, 2q ÝÑ M0,0pPn, 2q

pA, rC,αsq ÞÝÑ rC,A ˝ αs.

The effective cone of M0,0pPn, 2q is generated by ∆ and Ddeg, and the nef cone of M0,0pPn, 2q is generated
by T and H. Furthermore, the following

∆

T

H

Ddeg

is the Mori chamber decomposition of EffpM 0,0pPn, 2qq, where H „ 2T ´ ∆ and Ddeg „ 3T ´ 2∆.

Proof. The effective and the nef cone of M 0,0pPn, 2q had already been computed in [CHS08, Theorem 1.5,
Corollary 1.6] and [CHS09, Theorem 1.1] respectively.

The SLpn`1q-action on M0,0pPn, 2q in (4.3) corresponds to the SLpn`1q-action on Sec
p1q
3

pVnq induced

by (2.10) via the isomorphism in Proposition 4.1. Note that with respect to this action Sec
p1q
3

pVnq is
spherical but not wonderful. However, we can deduce its boundary divisors and colors from those of

Qpn, 3q via the blow-down Qpn, 3q Ñ Sec
p1q
3

pVnq of EQ
2

. Since boundary divisors and colors of Sec
p1q
3

pVnq

lift to boundary divisors and colors of Qpn, 3q by Proposition 3.9 we get that EQ
1

is the only boundary

divisor of Sec
p1q
3

pVnq, and that its colors are DQ
1
,DQ

2
,DQ

3
, where we kept the same notation for divisors on

Qpn, 3q and Sec
p1q
3

pVnq. Hence, arguing as in the proof of Proposition 3.17 we get that DQ
1
,DQ

2
generate

the nef cone of Sec
p1q
3

pVnq, DQ
3
, EQ

1
generate it effective cone, and the Mori chamber decomposition of

EffpSec
p1q
3

pVnqq has three chambers delimited respectively by the divisors DQ
3
,DQ

2
, the divisors DQ

2
,DQ

1

and the divisors DQ
1
, EQ

1
.
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Now, by the proof of Proposition 4.1 we have that EQ
1

gets mapped to ∆ by the isomorphism ψ´1 :

Sec
p1q
3

pVnq Ñ M0,0pPn, 2q. Moreover, a straightforward computation shows that ψ´1˚T “ DQ
1

, ψ´1˚H “

DQ
2

and ψ´1˚Ddeg “ 1

2
DQ

3
. Finally, the statement follows from Lemma 3.16, Proposition 4.1 and the

description of the Mori chamber decomposition of EffpSec
p1q
3

pVnqq in the first part of the proof. �

Remark 4.4. We sum up the birational models of M 0,0pPn, 2q in the following diagram:

Qpn, 3q

Sec
p1q
3

pVnq – M0,0pPn, 2q Hilb2pPnq

Chow2pPnq

Sec3pVnq Gp2, nq

T

H

χ

rDdeg

where Hilb2pPnq and Chow2pPnq are respectively the Hilbert scheme and the Chow variety of conics in

Pn, χ is the flip of Γ Ă M0,0pPn, 2q, Gp2, nq is the Grassmannians of planes in Pn, and rDdeg is the strict

transform of Ddeg via χ. The morphism induced by rDdeg associates to a conic in Hilb2pPqn the unique
plane of Pn in which it is contained. We would like to stress that the modular interpretation of the flip
of M0,0pPn, 2q as a Hilbert scheme was well-know, see for instance [Kie11, Section 3].

4.4. Conics in Pn ˆ Pm. Let M0,0pPn ˆ Pm, p1, 1qq be the Kontsevich space parametrizing conics in

Pn ˆ Pm. Denote by π : M0,1pPn ˆ Pm, p1, 1qq Ñ M 0,0pPn ˆ Pm, p1, 1qq the forgetful morphism, and by

ev :M0,1pPn ˆ Pm, p1, 1qq Ñ Pn ˆ Pm the evaluation morphism.
Let Hn and Hm be the hyperplane sections of Pn and Pm respectively, and Hn,m – Pn´1 ˆ Pm´1 Ă

Pn ˆ Pm. Consider the divisors

Kn :“ π˚ev
˚H2

n, K
m :“ π˚ev

˚H2
m, K

n,m :“ π˚ev
˚Hn,m

and let ∆ be the boundary divisor of maps with reducible domain.
By the proof of [Opr05, Lemma 1, Section 2.1], the Picard group of M0,0pPn ˆ Pm, p1, 1qq is generated

by ∆,Kn,Km. In particular, since H2
1

“ 0, the Picard rank of M 0,0pPn ˆ Pm, p1, 1qq is:

(4.5) ρpM 0,0pPn ˆ Pm, p1, 1qqq “

$
’&
’%

1 if n “ m “ 1;

2 if n “ 1,m ě 2;

3 if n,m ě 2.

Proposition 4.6. The Kontsevich space M0,0pPn ˆ Pm, p1, 1qq is isomorphic to the space Cpn,m, 2q of
rank two complete collineations on Pn ˆ Pm.

Proof. First consider the case n “ m “ 1. We have that M0,0pP1 ˆ P1, p1, 1qq – P3. Indeed, we may
embed P1 ˆ P1 in P3 as a smooth quadric Q, and the conics in Q are in bijection with the hyperplanes in
P3.

Furthermore, Cp1, 1, 2q – P3 as well, and we may write down explicitly as isomorphism Cp1, 1, 2q Ñ
M0,0pP1ˆP1, p1, 1qq as follows: write a point of Cp1, 1, 2q as a 2ˆ2 matrix Z, fix homogeneous coordinates
prx0 : x1s, ry0 : y1sq on P1 ˆ P1, and associate to Z the conic CZ “ tpx0, x1q ¨ Z ¨ py0, y1qt “ 0u Ă P1 ˆ P1.

Now, let Z P Sec2pSn,mqzSn,m an pn ` 1q ˆ pm ` 1q matrix of rank two. The image of Z yields a line
LZ in Pn, and the dual of the kernel of Z gives a line RZ in Pm˚. Hence, we get a morphism

γo : Cpn,m, 2qo ÝÑ Gp1, nq ˆ Gp1,mq
Z ÞÝÑ pLZ , RZq.

The fiber of γo over pLZ , RZq can be identified with the collineations on LZ ˆ RZ . To see this we
argue as follows. Acting with SLpn ` 1q ˆ SLpm ` 1q on Gp1, nq ˆ Gp1,mq we may assume that LZ “
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tx2 “ ¨ ¨ ¨ “ xn “ 0u and RZ “ ty2 “ ¨ ¨ ¨ “ ym “ 0u. Hence, in pγoq´1pLZ , RZq we have the matrices
annihilating the vectors p0, 0, 1, 0, . . . , 0q, . . . , p0, 0, . . . , 0, 1q and whose image is generated by the vectors
p1, 0, 0, . . . , 0q, p0, 1, 0, . . . , 0q that is matrices of the following form

Z “

ˆ
Z 02,m´1

0n´1,2 0n´1,m´1

˙
, with Z “

ˆ
z0,0 z0,1
z1,0 z1,1

˙
.

By the first part of the proof the collineations on LZ ˆRZ are in bijection with M0,0pLZ ˆRZ , p1, 1qq Ď

M0,0pPn ˆ Pm, p1, 1qq. This yields an isomorphism

δo : Cpn,m, 2qo ÝÑ M0,0pPn ˆ Pm, p1, 1qq
Z ÞÝÑ CZ .

Now, consider the embedding M0,0pPn ˆPm, p1, 1qq Ă M 0,0pPN , 2q. We will show that the inverse of δo is

induced by the restriction to M0,0pPn ˆ Pm, p1, 1qq of the divisor T on M0,0pPN , 2q. Since T restricts on

M0,0pLZ ˆRZ , p1, 1qq to the corresponding tangency divisor it is enough to show the claim for M0,0pLZ ˆ

RZ , p1, 1qq. By the first part of the proof the correspondence between Cp1, 1, 2q and M0,0pP1 ˆ P1, p1, 1qq
is defined by mapping a matrix Z “ pzi,jq0ďi,jď1 to the divisor CZ “ tz0,0x0y0 ` z0,1x0y1 ` z1,0x1y0 `
z1,1x1y1u Ă P1 ˆ P1 which in turn is mapped by the Segre embedding to the conic

CZ “ tz0,0X ` z0,1Y ` z1,0Z ` z1,1W “ XW ´ Y Z “ 0u Ă P3

pX,Y,Z,W q.

Now, considering the intersection of CZ with the plane tW “ 0u we get the points rz1,0 : 0 : ´z0,0 : 0s

and rz0,1 : ´z0,0 : 0 : 0s. Therefore CZ is tangent to tW “ 0u if and only if z0,0 “ 0 that is if only if the
matrix Z lies on the hyperplane section tz0,0 “ 0u of PN .

By [CHS09, Theorem 1.2] the divisor T is base point free and hence it restricts to a base point free
divisor on M0,0pPn ˆ Pm, p1, 1q. Therefore, the inverse of δo is indeed a morphism

η : M0,0pPn ˆ Pm, p1, 1qq ÝÑ Cpn,m, 2q
CZ ÞÝÑ Z

mapping the boundary divisor ∆ to EC
1 . Moreover, by Propositions 3.4 and (4.5) we get that η does not

contract any divisor. Finally, since Cpn,m, 2q is smooth we conclude, by [Mum99, Chapter 3, Section 9],
that η is an isomorphism. �

Remark 4.7. Via the isomorphism

η´1 : Cpn,m, 2q Ñ M 0,0pPn ˆ Pm, p1, 1qq

we have

η´1˚p∆q “ EC
1 , η

´1˚pKnq “ HC
1 , η

´1˚pKmq “ HC
2 , η

´1˚pKn,mq “ DC
1 .

These equalities together with Proposition 3.18 give that for n “ 1 ă m, the Mori chamber decomposition
of M0,0pPn ˆ Pm, p1, 1qq has two chambers delimited by ∆,Kn,m and Kn,m,Km, while for 1 ă n ď m the

Mori chamber decomposition of M0,0pPn ˆ Pm, p1, 1qq has three chambers delimited respectively by the
divisors Kn,Km,Kn,m, the divisors Kn,Kn,m,∆ and the divisors Km,Kn,m,∆.

Recall that a divisor of class Kn parametrizes stable maps α : P1 Ñ Pn ˆPm intersecting a codimension
two cycle of class H2

n. These curves are mapped via the projection onto Pn to lines intersecting a fixed
codimension two linear subspace of Pn. Call Lα the line corresponding to the stable map α. Note
that these lines correspond in turn to a hyperplane section of the Grassmannian Gp1, nq in its Plücker
embedding. Hence, the semi-ample divisor Kn induces a morphism M0,0pPn ˆ Pm, p1, 1qq Ñ Gp1, nq
associating to a map rP1, αs P M0,0pPn ˆPm, p1, 1qq the line Lα. Then by the proof of Proposition 4.6 HC

1

yields a morphism Cpn,m, 2q Ñ Gp1, nq associating to a matrix Z P Cpn,m, 2qo the projectivization of its
image.

Similarly, Km induces a morphism M0,0pPn ˆ Pm, p1, 1qq Ñ Gp1,mq associating to a map rP1, αs P
M0,0pPn ˆ Pm, p1, 1qq the line Rα given by projecting the image of α to Pm, and HC

2 yields a morphism
Cpn,m, 2q Ñ Gp1,mq associating to a matrix Z P Cpn,m, 2qo the projectivization of the dual of its kernel.
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4.7. Conics in Gp1, nq. Let Gp1, nq be the Grassmannian of lines in Pn. Following [CC10, Section 2] we
describe divisor classes on M0,0pGp1, nq, 2q. Fix projective subspaces Πn´1,Πn´3 Ă Pn of dimension n´1

and n´ 3, and consider the Schubert cycles

σ
1,n
1,1 “ tW P Gp1, nq | dimpW X Πn´1q ě 1u;

σ
1,n
2

“ tW P Gp1, nq | dimpW X Πn´3q ě 0u.

Let π :M0,1pGp1, nq, 2q Ñ M0,0pGp1, nq, 2q be the forgetful morphism and ev :M0,1pGp1, nq, 2q Ñ Gp1, nq
the evaluation morphism. We define

H1,n
σ1,1

“ π˚ev
˚σ1,1, H

1,n
σ2

“ π˚ev
˚σ2.

Furthermore, we will denote by T 1,n the class of the divisor of conics that are tangent to a fixed hyperplane
section of Gp1, nq.

Let D1,n
deg be the class of the divisor of maps rC,αs P M0,0pGp1, nq, 2q such that the projection of the

span of the linear spaces parametrized by αpCq from a fixed subspace of dimension n´ 4 has dimension
less than three.

Next we define the divisor class D1,n
unb. A stable map α : P1 Ñ Gp1, nq induces a rank two subbundle

Eα Ă OP1 bCn`1. We define D1,n
unb as the closure of the locus of maps rP1, αs P M0,0pGp1, nq, 2q such that

Eα ‰ OP1p´1q‘2.
Finally, we denote by ∆k,n the boundary divisor parametrizing stable maps with reducible domain.

Proposition 4.8. There is a finite 2-to-1 morphism

ϕ :M0,0pGp1, nq, 2q ÝÑ Sec
p2q
4

pVnq

mapping a stable map rP1, αs P M0,0pGp1, nq, 2q to the rank four quadric Q˚
C “

Ť
pPQC

pTpQq˚ Ă Pn˚,

where QC “
Ť

rLsPαpP1q L.

Proof. By [CM17, Proposition 4.10, Theorem 5.1, Corollary 5.4] there is a birational morphism f :

M0,0pGp1, nq, 2q Ñ T n
4 , contracting D

1,n
deg and ∆1,n, where T n

4 is the double symmetric determinantal

locus of rank at most four constructed in [HT15, Section 2.2]. By [HT15, Proposition 2.3] there is a finite
2-to-1 morphism ρ : T n

4 Ñ Sec4pVnq branched along Sec3pVnq.
Now, consider the morphism ρ ˝ f :M0,0pGp1, nq, 2q Ñ Sec4pVnq. By [Har77, Proposition 7.14] there is

a morphism ϕ : M0,0pGp1, nq, 2q Ñ Sec
p2q
4

pVnq such that π ˝ ϕ “ ρ ˝ f , where π : Sec
p2q
4

pVnq Ñ Sec4pVnq
is the blow-down.

Hence ϕ is 2-to-1 and by [HT15, Theorem 1.1] on M0,0pGp1, nq, 2q it is defined by

ϕ|M0,0pGp1,nq,2q : M0,0pGp1, nq, 2q ÝÑ Sec
p2q
4

pVnq
rP1, αs ÞÑ Q˚

C

where Q˚
C “

Ť
pPQC

pTpQq˚ Ă Pn˚, and QC “
Ť

rLsPαpP1q L. Note that Q˚
C is indeed a quadric hypersurface

of rank four, and since QC can be constructed from either of its two rulings ϕ|M0,0pGp1,nq,2q is 2-to-1. �

Remark 4.9. For n “ 3 the double cover in Proposition 4.8 had been constructed in [Hue15, Section 5].

Remark 4.10. As an application of Propositions 3.19, 4.8 we recover some results of [CC10]. Indeed, on
M0,0pGp1, nq, 2q there is an SLpn` 1q-action given by

SLpn` 1q ˆM0,0pGp1, nq, 2q ÝÑ M0,0pGp1, nq, 2q
pM, rC,αsq ÞÝÑ rC,^2M ˝ αs

inducing on M0,0pGp1, nq, 2q a structure of spherical variety.
Considering the subspace H “ tx4 “ ¨ ¨ ¨ “ xn “ 0u Ă Pn we get an embedding i : Gp1,Hq ãÑ Gp1, nq

which in turn induces an embedding j : M0,0pGp1, 3q, 2q Ñ M0,0pGp1, nq, 2q. Furthermore, the pull-back

map j˚ : PicpM 0,0pGp1, nq, 2qq Ñ PicpM 0,0pGp1, 3q, 2q is an isomorphism. This reduces the study of the

birational geometry of M0,0pGp1, nq, 2q to that of M0,0pGp1, 3q, 2q.
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By Proposition 3.19 and the 2-to-1 morphism in Proposition 4.8 we get that the divisor classes
∆1,n,D

1,n
deg,D

1,n
unb and the divisor classes H1,n

σ1,1 ,H
1,n
σ2
, T 1,n are respectively the classes of the boundary

divisors and the colors of the spherical variety M0,0pGp1, nq, 2q.

Furthermore, the divisors classes D1,n
unb,D

1,n
deg,∆

1,n generate the effective cone of M0,0pGp1, nq, 2q. The

Cox ring of M0,0pGp1, nq, 2q is generated by the global sections of the divisors ∆1,n,D
1,n
deg,D

1,n
unb and

H
1,n
σ1,1 ,H

1,n
σ2
, T 1,n.

The nef cone of M0,0pGp1, nq, 2q is generated by H
1,n
σ1,1 ,H

1,n
σ2
, T 1,n. Moreover, the following is a 2-

dimensional section of the Mori chamber decomposition of EffpM 0,0pGp1, nq, 2qq

D
1,n

unb
D

1,n

deg

∆1,n

T 1,n

H
1,n
σ1,1

H
1,n
σ2

P 1,n

where P 1,n „ 1

4
p3H1,n

σ1,1 `3H
1,n
σ2

´∆1,nq, and MovpM0,0pGp1, nq, 2qq is generated by H1,n
σ1,1 ,H

1,n
σ2
, T 1,n, P 1,n.

We have the following result on the automorphisms of Kontsevich spaces of conics.

Corollary 4.11. We have that

AutpM0,0pPn ˆ Pm, p1, 1qqq –

"
PGLpn` 1q ˆ PGLpm ` 1q if n ă m;

S2 ˙ pPGLpn ` 1q ˆ PGLpn` 1qq if n “ m ě 2;

and AutpM 0,0pP1 ˆ P1, p1, 1qqq – PGLp4q.

Furthermore, AutpM0,0pPn, 2qq – PGLpn ` 1q for n ě 3, AutpM 0,0pP2, 2qq – PGLp3q ¸ S2, and

AutpM0,0pP1, 2qq – PGLp3q.

Proof. The first claim on AutpM0,0pPn ˆPm, p1, 1qqq follows from Proposition 4.6 and Theorem 3.21. For

the second claim recall that M0,0pP1 ˆ P1, p1, 1qq – P3 since curves of bidegree p1, 1q in P1 ˆ P1 are in
bijection with the hyperplane sections of a smooth quadric surface in P3.

The automorphism group of M0,0pPn, 2q for n ě 3 follows from Proposition 4.1 and Theorem 3.21. The

automorphism group of M 0,0pP2, 2q has been computed in [Mas20a, Remark 7.6]. Finally, to get the claim

on AutpM0,0pP1, 2qq notice that M0,0pP1, 2q – P2. Indeed, a 2-to-1 morphism P1 Ñ P1 is determined by

its branch locus, and so M0,0pP1, 2q is isomorphic to P1 ˆ P1 mod out by the involution switching the
factors. �

Finally, we compute the automorphism group of M0,0pGp1, nq, 2q. Since the cases n “ 2 has been
covered in Corollary 4.11 we assume that n ě 3.

Proposition 4.12. The automorphism group of M0,0pGp1, nq, 2q is given by

AutpM 0,0pGp1, nq, 2qq –

"
S2 ˙ PGLpn` 1q if n ą 3;

S2 ˙ pS2 ˙ PGLpn ` 1qq if n “ 3.

Proof. First, consider the case n “ 3. An automorphism of M0,0pGp1, 3q, 2q must either preserve or

switch the extremal rays D1,3
unb and D

1,3
deg. Indeed, there is an automorphism τ : M0,0pGp1, 3q, 2q Ñ

M0,0pGp1, 3q, 2q switching them, namely the automorphism induced by the involution of Gp1, 3q given by
projective duality. This yields a surjective morphism of groups

Ψ : AutpM0,0pGp1, 3q, 2qq ÝÑ S2
ϕ ÞÑ σϕ
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where σϕ is the permutation of the extremal rays of EffpM 0,0pGp1, 3q, 2qq induced by ϕ. Now, assume
that σϕ is trivial. Then ϕ descends to an automorphism ϕ of the variety T 3

4 in the proof of Proposition
4.8. By [HT15, Proposition 2.5 (3)] T 3

4 is Fano and the morphism ρ : T 3
4 Ñ Sec4pV3q “ P9 in the proof

of Proposition 4.8 is induced by a multiple of ´KT 3

4

. Hence, ϕ in turn descends to an automorphism of

Sec4pV3q “ P9 stabilizing the branch locus Sec3pV3q. Since the group of automorphisms of P9 stabilizing
Sec3pV3q is isomorphic to PGLp4q we get an exact sequence

1 Ñ S2 Ñ AutpT 3
4 q Ñ PGLp4q Ñ 1.

Note that PGLp4q acts on M0,0pGp1, 3q, 2q and hence on T 3
4

. So the last morphism in the sequence has
a section, and AutpT 3

4 q – PGLp4q ¸ S2.
Now, the morphism Ψ yields the exact sequence

1 Ñ AutpT4q Ñ AutpM0,0pGp1, 3q, 2qq Ñ S2 Ñ 1

and since the last morphism in this sequence has a section we get the claim.
When n ą 3 it is enough to argue as in the case n “ 3 noticing that in this case D1,n

unb and D
1,n
deg can

not be switched and applying Proposition 3.20. �

4.12. On the anti-canonical divisor. In this last section we study the positivity of the anti-canonical
divisor of the varieties in Propositions 3.17, 3.18 and 3.19. Recall that a normal and Q-factorial projective
variety X is

- Fano if ´KX is ample;
- weak Fano if ´KX is nef and big;
- log Fano if there exists an effective divisor D Ă X such that ´pKX `Dq is ample and the pair pX,Dq

is Kawamata log terminal.

Clearly, Fano implies weak Fano which in turn implies log Fano. As a consequence of Kodaira’s lemma
[Laz04, Proposition 2.2.6] X is log Fano if and only if there exists an effective divisor D Ă X such that
´pKX ` Dq is nef and big and the pair pX,Dq is Kawamata log terminal. Moreover, if X and Y are
normal and Q-factorial projective varieties which are isomorphic in codimension one then X is log Fano if
and only if Y is so. We refer to [GOST15] for further information on these notions. Finally, by [BCHM10,
Corollary 1.3.2] if X is log Fano then it is a Mori dream space.

4.12.1. The anti-canonical divisor of Qpn, 3q. If n “ 2 then Sec
p1q
3

pVnq is the space of complete conics
that is the blow-up of P5 along V2. So

´K
Sec

p1q
3

pV2q
“ 6DQ

1
´ 2EQ

1
“ 2pDQ

1
`DQ

2
q.

Assume n ě 3. By [dJS17, Theorem 1.1] we have that

´KM0,0pPn,2q “
3pn ` 1q

4
H ´

n´ 7

4
∆

and hence Proposition 4.1 yields

´K
Sec

p1q
3

pVnq
“

3pn ` 1q

2
DQ

1
´ pn´ 1qEQ

1
“

7 ´ n

2
DQ

1
` pn´ 1qDQ

2
“ 3DQ

1
`
n´ 1

2
DQ

3
.

Therefore, Sec
p1q
3

pVnq is Fano if and only if 1 ď n ă 7, weak Fano for n “ 7 and log Fano for n ě 8.

Now, note that by Proposition 2.12 the tangent cone of Sec
p1q
3

pVnq at a point of Sec
p1q
2

pVnqzpSec
p1q
2

pVnqX

EQ
1

q is a cone with vertex of dimension 2n over Vn´2. Hence, Sec
p1q
3

pVnq looks, locally around a point

of Sec
p1q
2

pVnqzpSec
p1q
2

pVnq X EQ
1

q, as the weighted projective space Pp1n´1, 22n`1q. Therefore, Sec
p1q
3

pVnq

has quotient singularities of type 1

2
p1n´1q along Sec

p1q
2

pVnqzpSec
p1q
2

pVnq XEQ
1

q and the discrepancy of the

canonical divisor of Qpn, 3q with respect to EQ
2

is n´3

2
. Summing up we have

(4.13) ´KQpn,3q “
7 ´ n

2
DQ

1
` pn´ 1qDQ

2
´
n´ 3

2
EQ

2
“ 2DQ

1
` 2DQ

2
`
n´ 3

2
DQ

3
.

Hence, by Proposition 3.17 and (4.13) we get that Qpn, 3q if Fano for n ě 4 and weak Fano for n “ 3.
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4.13.2. The anti-canonical divisor of Cpn,m, 2q. The first two Chern classes of the tangent bundle TPnˆPm

of Pn ˆ Pm are given by

c1 “ pn` 1qHn ` pm ` 1qHm, c2 “

ˆ
n` 1

2

˙
H2

n ` pn` 1qpm ` 1qHnHm `

ˆ
m` 1

2

˙
H2

m.

Hence, by [dJS17, Theorem 1.1] we have

´K
M0,0pPnˆPm,p1,1qq “

pn ` 1qp2n ` m ` 3q

2n ` 2m ` 4
Kn `

pn ` 1qpm ` 1q

pn ` m ` 2q
Kn,m `

pm ` 1qp2m ` n ` 3q

2n ` 2m ` 4
Km ´

nm ´ 3n ´ 3m ´ 7

2n ` 2m ` 4
∆

and plugging in the relation ∆ “ 2Kn,m ´ Kn ´ Km from [Opr05, Section 2.2] we get

(4.14) ´KM0,0pPnˆPm,p1,1qq “ pn ´ 1qKn ` 4Kn,m ` pm´ 1qKm.

As a consequence of Propositions 3.18, 4.6 and (4.14) we see that Cpn,m, 2q is Fano for all n,m ě 1.

4.14.3. The anti-canonical divisor of Sec
p2q
4

pVnq. By Proposition 4.8 there is a 2-to-1 morphism

ϕ :M0,0pGp1, nq, 2q Ñ Sec
p2q
4

pVnq

branched along EQ
1

and Sec
p2q
3

pVnq. Note that Sec
p2q
3

pVnq is a divisor in Sec
p2q
4

pVnq if and only if n “ 3.

In this case Sec
p2q
4

pV3q is the space of complete quadrics of P3. So its anti-canonical divisor is given by

´K
Sec

p2q
4

pV3q
“ 10DQ

1
´ 5EQ

1
´ 2EQ

2

and by Proposition 3.19 Sec
p2q
4

pV3q is Fano.

Assume that n ě 4. Then Sec
p2q
3

pVnq has codimension greater than one in Sec
p2q
4

pVnq and so it does

not play any role in the Riemann-Hurwitz formula relating the canonical divisors of M0,0pGp1, nq, 2q and

Sec
p2q
4

pVnq. By [CC10, Remark 2.4] we have that

´KM0,0pGp1,nq,2q “
11 ´ n

4
H1,n

σ1,1
`

3n´ 1

4
H1,n

σ2
`

7 ´ n

4
∆1,n.

Write ´K
Sec

p2q
4

pVnq
“ aDQ

1
` bEQ

1
` cEQ

2
. Since ϕ˚DQ

1
“ H

1,n
σ1,1 , ϕ

˚DQ
2

“ T 1,n, ϕ˚DQ
3

“ H
1,n
σ2

, ϕ˚EQ
1

“

2D
1,n
unb, ϕ

˚EQ
2

“ ∆1,n we have that

´KM0,0pGp1,nq,2q “ ϕ˚p´K
Sec

p2q
4

pVnq
q ´D

1,n
unb “

4a` 6b ´ 3

4
H1,n

σ1,1
`

1 ´ 2b

4
H1,n

σ2
`

4c ´ 2b ` 1

4
∆1,n

where we used the relation D
1,n
unb “ 1

4
p3H1,n

σ1,1 ´H
1,n
σ2

´ ∆1,nq in [CC10, Section 3]. Finally,

(4.15) ´K
Sec

p2q
4

pVnq
“ p2n ` 2qDQ

1
´

3n´ 2

2
EQ

1
´ pn´ 2qEQ

2
“ 2DQ

1
`

6 ´ n

2
DQ

2
` pn´ 3qDQ

3
.

By Proposition 3.19 and (4.15) we get that Sec
p2q
4

pVnq is Fano for 3 ď n ď 5 and weak Fano for n “ 6.
Furthermore, writing

´K
Sec

p2q
4

pVnq
“ p8 ´ nqDQ

1
` 3DQ

3
` pn´ 6qP

we see that Sec
p2q
4

pVnq is log Fano for n ď 8.
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