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Abstract: The upper extremities limitation represents one of the essential functional impairments in

patients with cervical spinal cord injury. Electromechanics assisted devices and robots are increasingly

used in neurorehabilitation to help functional improvement in patients with neurological diseases.

This review aimed to systematically report the evidence-based, state-of-art on clinical applications

and robotic-assisted arm training (RAT) in motor and functional recovery in subjects affected by

cervical spinal cord injury. The present study has been carried out within the framework of the

Italian Consensus Conference on “Rehabilitation assisted by robotic and electromechanical devices

for persons with disability of neurological origin” (CICERONE). PubMed/MEDLINE, Cochrane

Library, and Physiotherapy Evidence Database (PEDro) databases were systematically searched from

inception to September 2021. The 10-item PEDro scale assessed the study quality for the RCT and the

AMSTAR-2 for the systematic review. Two different authors rated the studies included in this review.

If consensus was not achieved after discussion, a third reviewer was interrogated. The five-item

Oxford CEBM scale was used to rate the level of evidence. A total of 11 studies were included.

The selected studies were: two systematic reviews, two RCTs, one parallel-group controlled trial,

one longitudinal intervention study and five case series. One RCT was scored as a high-quality study,

while the systematic review was of low quality. RAT was reported as feasible and safe. Initial positive

effects of RAT were found for arm function and quality of movement in addition to conventional

therapy. The high clinical heterogeneity of treatment programs and the variety of robot devices could

severely affect the generalizability of the study results. Therefore, future studies are warranted to

standardize the type of intervention and evaluate the role of robotic-assisted training in subjects

affected by cervical spinal cord injury.

Keywords: cervical spinal cord injury; arm function; exoskeleton; robot-assisted therapy; robotic

therapy; rehabilitation

1. Introduction

Spinal cord injury (SCI) represents one of the most disabling neurological conditions by
complete or incomplete damage to the spinal cord with resulting detrimental consequences
in motor, sensitive, and visceral controls [1–4].

The prevalence of SCIs widely varies among countries, ranging from 13.0 per million
to 163.4 per million people [5]. Considering that most of the presentation involves young
adults, both sanitary costs and lifetime assistance costs are highly burdensome, estimating
a comprehensive cost of more than 1 million dollars per person [6]. SCIs might arise
from mechanical damages (i.e., contusions, compressions or lacerations of the spinal cord)
or non-traumatic events (e.g., degenerative cervical myelopathies, cancers, infections,
intervertebral disc diseases, etc.) [6,7].
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High-level spinal cord lesions could lead subjects to a high disability, considering
the loss of arms and hands function related to detrimental consequences of functional
impairment, reduced independence in activities of daily living (ADL), and a poor Health-
Related Quality of Life (HRQoL) [1,2,7,8].

Rehabilitation might play a crucial role in the arm and hand functional recovery of
patients affected by SCI, with a large variety of therapeutic options currently adopted. [7,9]
It has been recently proposed that repetitive, task-specific, functional training could be
considered effective in improving upper limb functions, even potentially interacting with
the self-repair capacity of the spinal cord [10,11].

Among the new therapeutic options, robotic devices are well suited to produce inten-
sive, task-oriented motor training that might enhance conventional rehabilitation facili-
tating the plasticity-related recovery by increasing sensory feedback and supporting the
motor system [12].

These devices might perform arm or hand-assisted training, typically targeting either
the shoulder and elbow, or the wrist and fingers. Robotic devices can be categorized as
exoskeletons or end-effectors. Exoskeletons are devices that directly control the articulation
of targeted joint(s), whereas robotic end-effectors contact users at the distal part of their
limb [11,13,14]. Robotic devices are currently used in clinical practice to deliver an adequate
intensity of training in terms of movement repetitions even in more severe subjects, which
promotes functional recovery and may potentially facilitate adaptive plasticity [11,13].

In addition, robotic training provides the standardized rehabilitative training and
monitors recovery of motor function in patients more objectively, thus reducing the sub-
jective human influence [15]. Robotic rehabilitation aims to optimize learning strategies
and to provide a patient-tailored rehabilitation plan [11]. Nowadays, more than 120 de-
vices have been developed for upper limb rehabilitation of patients affected by neurologic
disability [16].

To date, interest has been growing in the scientific literature, with several papers
suggesting medical relevant features of robotic-assisted rehabilitation in functional recovery
of patients affected by neurologic disability [14,17–19]. However, despite these promising
findings, there is not agreement on the effectiveness of this novel approach in the current
clinical practice of the rehabilitation field. Moreover, even the expensive technology could
limit the spreading of this advanced treatment in clinical settings and the evidence of
its effectiveness in patients affected by neurological diseases of rehabilitative interest,
including SCI.

Therefore, this comprehensive review of systematic reviews and clinical studies sum-
marizes the state-of-art on safety, clinical applications, and effectiveness of robotic rehabili-
tation in the integrated management of upper limb functional recovery in SCI patients.

2. Materials and Methods

The present study has been carried out within the framework of the Italian Consensus
Conference on “Rehabilitation assisted by robotic and electromechanical devices for persons
with disability of neurological origin” (CICERONE) [20].

2.1. Search Strategy

PubMed/MEDLINE, Cochrane Library, and Physiotherapy Evidence Database (PE-
Dro) databases were systematically searched from inception to September 2021 for all the
papers published following the SPIDER tool strategy [21], depicted by Table 1.
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Table 1. Spider tool search strategy.

S PI D E R

Sample
Phenomenon of

Interest
Design Evaluation

Research
Type

Spinal Cord Injury
Robotic rehabilitation for

upper limb motor
recovery

Research
article

Functional and/or
rehabilitative outcomes

Qualitative

(Spinal Cord
Injury[Title/Abstract]) OR
Spinal Cord Injuries[MeSH

Terms]

((((robot[Title/Abstract]) OR
exoskeleton[Title/Abstract]) OR
end-effector[Title/Abstract]) OR

robotics[MeSH Terms]) OR
Exoskeleton Device[MeSH
Terms] AND (((((((upper

limb[Title/Abstract]) OR upper
extremity[Title/Abstract]) OR

hand[Title/Abstract]) OR
arm[Title/Abstract]) OR upper

extremity[MeSH Terms]))

(((function[Title/Abstract]) OR
rehabilitation [Title/Abstract])
OR recovery [Title/Abstract])

This comprehensive systematic review of systematic reviews and clinical studies has
been performed in accordance with the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) statement. [22]

2.2. Selection Criteria

After the ‘duplicates’ removal, two reviewers (LP, LL) independently screened for
inclusion title and abstract of all potentially relevant studies identified. In case of dis-
agreement, a consensus was achieved by the decision of a third reviewer (AdS). Full-text
studies were retrieved by the same two reviewers (LP, LL) and independently screened for
inclusion. If consensus was not achieved by discussion between them, disagreements were
solved by the decision of a third reviewer (AdS).

Randomized controlled trials were considered eligible if responding to the questions
defined according to the following PICO model: (P) Participants: SCI patients in acute,
subacute (≤3 months after injury), or chronic phase; (I) Intervention: Rehabilitation train-
ing with robotic-assisted devices for upper limb, with or without conventional therapy;
(C) Comparator: Conventional rehabilitation; (O) Outcome measures: safety of robotic
rehabilitation, the feasibility of robotic rehabilitation, upper limb strength, functioning,
independence in ADL, and HRQoL.

We included systematic reviews, randomized controlled trials (RCTs), observational
analytic studies, and case series. Exclusion criteria were: (1) papers involving animals;
(2) language other than English; (3) case reports design; (4) participants with different
neurologic disabilities from SCI; (5) robotic-assisted rehabilitation combined with other
advanced technologies such as non-invasive brain stimulations (NIBS) or transcranial
direct current stimulation (tDCS).

2.3. Data Extraction and Synthesis

All data were extracted from eligible full-text documents through Excel by two differ-
ent authors. In case of disagreement, the consensus was achieved by the review of a third
author.

The following data were extracted: (1) title; (2) authors; (3) publication year; (4) study
design; (5) participants; (6) intervention characteristics; (7) outcomes; (8) main findings.

All studies included were synthesized, describing both study characteristics and data
extracted. A meta-analysis was not performed given the high clinical heterogeneity in
design, intervention, and outcomes assessed in the different studies.
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2.4. Study Quality

The five-item Oxford CEBM scale was used to rate the level of evidence (OCEBM
website). The study quality included was assessed by the 16-item assessment of multiple
systematic reviews 2 (AMSTAR 2) scale [23] for systematic reviews, and the 10-item PEDro
scale24 for the randomised clinical trials. Regarding the PEDro scale, the risk of bias
was rated as poor (0–3), fair (4–5), good (6–8) and excellent (9–10) in line with the PEDro
scale. [24] Two different authors rated the studies included in this systematic review. If
consensus was not achieved after discussion, a third reviewer was interrogated.

3. Results

3.1. Evidence Synthesis

Out of 226 studies identified from the databases, 214 were considered eligible for
inclusion after duplicate removal and screened for title and abstract: 164 were excluded,
and 50 full-text papers were screened. Subsequently, 39 articles were excluded because
they did not respect eligibility criteria. As a result, 11 papers [25–35] were included in
the qualitative synthesis (PRISMA flow diagram was depicted by Figure 1): five case
series [25–29], one parallel-group controlled trial [30], two RCT [31,34], two systematic
reviews [32,33] and one longitudinal intervention study [35].

The studies included in this systematic review were published from 2012 [25] to
2020 [35], covering several Nations from all over the world; more in detail, seven studies
were from the Americas (two from Canada [25,32] and five from USA [26,27,29,30,33]),
two from Europe (one from Netherlands [28] and one from UK [35]), and two from Asia
(Republic of Korea [31,34]).

3.2. Evidence Level and Study Quality of the Included Studies

Due to the high clinical heterogeneity of the included studies; thus, the results are de-
scribed qualitatively. Based on the Oxford Centre for Evidence-Based (OCEBM) 2011 Levels
of Evidence, [34] we included two systematic reviews [32,33] (Level 1), 2 RCT [31,34]
(Level 2), one parallel-group controlled trial [30] (Level 3), one longitudinal intervention
trial [35] (Level 3), and five case series (Level 4) [25–29].

The study cohort sample sizes were highly heterogeneous in the research studies,
ranging from five (case series) [28] to 34 (RCT) [31] for clinical trials; nevertheless, the
systematic reviews included larger samples (73 study participants by Singh et al. [32] and
88 by Yozbatiran et al. [33]). All the studies assessed patients of both genders, with ages
ranging from 17 [26] to 76 years. [29] The study by Fitle et al. [27] did not report age.

Concerning the study quality of the clinical studies, we reported one good-quality [31],
one fair-quality [34], according to the PEDro scale [24]. The two systematic reviews showed
a low quality [31] and a critically low quality [33] according to AMSTAR 2 scale [23].

3.3. Clinical Characteristics of Study Participants

Six studies included SCI patients in the chronic phase [26–30,34], two in the subacute
phase [25,35], and three papers [31–33] included both chronic and subacute SCI patients.
Complete (American Spinal Injury Association Impairment Scale—AIS—A and B) and
incomplete lesions (AIS C and D) were assessed by seven studies [25,26,28,31–34] while
four studies [27,29,30,35] selected only incomplete lesions (AIS C and D). All the clinical
trials included clarified SCI levels, ranging between C2 [29] and C8 [31] (further details are
depicted in Table 2).

3.4. Robotic Rehabilitation Characteristics

Robotic devices assessed in the studies included resulted to be extremely heteroge-
neous. Armeo Spring [25,32,33], InMotion 3.0 Wrist robot [26,32], Haptic Master [28,32],
MAHI Exo-II [27,29,30,33], Armeo Power [31,34], RiceWrist-S [33], Reo Go, [32,33] Haptic
Master, [32,33] Reaching Robot, [32,33] Amodeo, [34] SEM Glove. [35]
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The joints involved with robotic training were: shoulder, [25,34] elbow, [25,27,29–31,34]
wrist [25,27,29–31,34], and fingers [31,34,35]. Even robotic-assisted rehabilitation programs
were heterogeneous, varying from 429 [31], to 12 weeks [35], with the duration of the
interventions ranging from a total of 30 min [31] to 4 h per day [35]. Training sessions
ranged from 130 to 5 per week [25]. On the other hand, supervision was not clarified by
two study [26,34], one did not perform a supervision [35], whereas all the other research
studies included assessed supervised exercise programs [25,27–31]. Robot-assisted training
was assessed as an add-on conventional therapy in four studies, [25,28,31,34], whereas
five studies considered stand-alone robotic training [26,27,29,30,35]. Only two studies
compared occupational therapy with occupational therapy combined with robotic train-
ing [31,34]. Moreover, Zariffa et al. [25] compared the efficacy of the unilateral treatment
with the contralateral upper limb. Lastly, both systematic reviews included studies with
robotic training combined or not combined with conventional therapy (further details on
robotic rehabilitation in the included studies are depicted by Table 2) [32,33].

3.5. Main Findings of the Included Studies

All the case series [25–29] included in the present systematic review assessed the feasi-
bility of robotic rehabilitation in SCI patients. Zariffa et al. [25] assessed both compliance
and therapist timing, reporting that more rehabilitation exercises were performed with
progressively less hands-on involvement by the therapist. Tolerance has been assessed by
Francisco et al. [29], reporting no significant increase of self-reported pain and discomfort
level during the therapy sessions. Accordingly, Cortes et al. [26] reported a high safety
profile and tolerance without increasing pain and spasticity, and Vanmulken et al. [28]
showed a discrete tolerance (Usefulness, Satisfaction and Ease-of-use questionnaire mean
score of 66.1 ± 14.7%). Lastly, it should be highlighted that all papers included in this
systematic review [25–33] did not report any major adverse event during robot-assisted
training in SCI patients.

A main rehabilitative measure as muscle strength was assessed by all the research
articles, albeit with a wide heterogeneity in terms of outcomes, including Medical Research
Council grade, [29] Manual Muscle Test (MMT), [31] grip [25,29] and pinch [29] strength,
and upper extremity motor score (UEMS) [25]. Two studies [25,26] reported no significant
changes in terms of muscle strength; on the contrary, Francisco et al. [29] showed a sig-
nificant improvement of muscle strength (UEMS: 31.5 ± 2.3 vs. 34.0 ± 2.3; p = 0.04; grip
strength: 9.7 ± 3.8 vs. 12 ± 4.3; p = 0.02; pinch strength 4.5 ± 1.1 vs. 5.7 ± 1.2; p = 0.01), even
maintained at follow-up evaluation (UEMS: 35.5 ± 2.0; p = 0.02; grip strength: 12.7 ± 4.0;
p = 0.05; pinch strength 5.6 ± 1.2; p = 0.02).

Kim et al., [31] reported a significant improvement in terms of UEMS in the robotic
training group compared to the control group (p = 0.03). However, no significant changes
in MRC scale were shown. In particular, elbow flexors (C5) (p = 0.21), wrist extensors (C6)
(p = 0.08), elbow extensors (C7) (p = 0.16), finger flexors (p = 0.66), and 5th finger abductors
(T1) (p = 0.59).

In line with previous findings, both systematic reviews [32,33] affirmed that evidence
supporting robot-assisted training effectiveness in muscle strength improvement in SCI
patients is still controversial.
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Table 2. Main characteristics of the studies included in this systematic review.

Article Nation Design Aim
Number

Participants
(Drop-Outs)

Gender and
Age

SCI Stage
SCI According

to AIS
SCI

Level
Methodological

Quality
CBIM

Zariffa 2012 [25] Canada Case Series

To assess the feasibility
and efficacy of upper

limb robotic
rehabilitation device in
subacute cervical SCI

15 (3)
14 M, 1 F

19–75 years
Subacute

AIS A (n = 2)
AIS B (n = 4)
AIS C (n = 1)
AIS D (n = 5)

C4–C6 n/a 4

Cortes 2013 [26] USA Case Series

To assess feasibility,
safety, and effectiveness

of robotic-assisted
training in chronic SCI

10 (0)
8 M, 2 F

17–70 years
Chronic

AIS A (n = 3)
AIS B (n = 4)
AIS C (n = 1)
AIS D (n = 2)

C4–C6 n/a 4

Fitle 2015 [27] USA Case series

To assess feasibility and
effectiveness of a

robotic exoskeleton
designed to train elbow,

forearm and wrist
movements

10 (2)
8 M, 2 F,
age: NR

Chronic AIS C–D (n = 2) C2–C6 n/a 4

Vanmulken 2015
[28]

Netherlands Case Series

To assess feasibility and
effectiveness (arm-hand

function and
performance) of haptic

robot technology

5 (2)
4 M, 1 F

25–70 years
Chronic

AIS A (n = 1)
AIS B (n = 2)

C3–C7 n/a 4

Francisco 2017
[29]

USA Case Series

To assess feasibility,
tolerability, and
effectiveness of

robotic-assisted arm
training

10 (2)
8 M, 2 F,

19–76 years
Chronic

AIS C (n = 4)
AIS D (n = 4)

C2–C7 n/a 4

Frullo 2017 [30] USA
Parallel group
controlled trial

To assess feasibility of
subject-adaptive

robotic-assisted therapy:
AAN vs. ST training

modality

17 (3)
12 M and 2 F, 3

NR
53.5 years

Chronic AIS C–D (n = 17) C3–C8 n/a 4

Kim 2019 [31]
Republic of

Korea
RCT

To assess the clinical
efficacy of upper limb

robotic therapy in
people with tetraplegia

34 (4)
RT: 17 (2)
CT: 17 (2)

28 M, 6 F,
RT: 56.7 ± 13.6

years
CT: 47.1 ± 14.9

years

Subacute/Chronic

AIS A (n = 8)
AIS B (n = 6)
AIS C (n = 4)

AIS D (n = 16)

C2–C8 8/10 2
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Table 2. Cont.

Article Nation Design Aim
Number

Participants
(Drop-Outs)

Gender and
Age

SCI Stage
SCI According

to AIS
SCI

Level
Methodological

Quality
CBIM

Singh 2018 [32] Canada
Systematic

review

To summarize
feasibility and
outcomes of

robotic-assisted upper
extremity training for
patients with cervical

SCI

73 (11)
46 M, 8 F, 7 NR

17–75 years
Subacute/Chronic

AIS A-B (n = 16)
AIS C-D (n = 46)

C2–C8
Critically

low quality
3

Yozbatiran 2019
[33]

USA
Systematic

review

To summarize the
current evidence of

robot-assisted
rehabilitation in

patients with
tetraplegia

88 (13)
69 M, 13 F, 6 NR

17–76 years
Subacute/Chronic

AIS A–B (n = 14)
AIS C–D (n = 58)

3 NR
C2–C7 Low quality 3

Jung 2019 [34]
Republic of

Korea
RCT

To assess the effects of
combined upper limb

robotic therapy (RT) as
compared to
conventional

occupational therapy
(OT) in SCI patients

38 (8)
RT: 22 (5)
CT: 16 (3)

24 M, 6 F
RT: 47.23 ± 14
CT: 53 ± 13.5

Subacute

AIS A (n = 3)
AIS B (n = 4)
AIS C (n = 7)

AIS D (n = 16)

C2–C7 4/10 3

Osuagwu 2020
[35]

UK

Interventional
longitudinal
clinical trial

design

To investigate the
therapeutic effect of a

self-administered
home-based hand

rehabilitation
programme for people
with cervical SCI using

the soft extra muscle
(SEM) Glove

15 (0)
11 M, 4 F

50.3 (33–60)
Chronic

AIS C (n = 3)
AIS D (n = 11)

Untested (n = 1)
C2–C5 n/a 4

Zariffa 2012 [25] Canada Case Series

To assess the feasibility
and efficacy of upper

limb robotic
rehabilitation device in
subacute cervical SCI

15 (3)
14 M, 1 F

19–75 years
Subacute

AIS A (n = 2)
AIS B (n = 4)
AIS C (n = 1)
AIS D (n = 5)

C4–C6 n/a 4



Brain Sci. 2021, 11, 1630 9 of 16

Table 2. Cont.

Article Nation Design Aim
Number

Participants
(Drop-Outs)

Gender and
Age

SCI Stage
SCI According

to AIS
SCI

Level
Methodological

Quality
CBIM

Cortes 2013 [26] USA Case Series

To assess feasibility,
safety, and effectiveness

of robotic-assisted
training in chronic SCI

10 (0)
8 M, 2 F

17–70 years
Chronic

AIS A (n = 3)
AIS B (n = 4)
AIS C (n = 1)
AIS D (n = 2)

C4–C6 n/a 4

Fitle 2015 [27] USA Case series

To assess feasibility and
effectiveness of a

robotic exoskeleton
designed to train elbow,

forearm and wrist
movements

10 (2)
8 M, 2 F,
age: NR

Chronic AIS C-D (n = 2) C2–C6 n/a 4

Vanmulken 2015
[28] Netherlands Case Series

To assess feasibility and
effectiveness (arm-hand

function and
performance) of haptic

robot technology

5 (2)
4 M, 1 F

25–70 years
Chronic

AIS A (n = 1)
AIS B (n = 2)

C3–C7 n/a 4

Francisco 2017
[29]

USA Case Series

To assess feasibility,
tolerability, and
effectiveness of

robotic-assisted arm
training

10 (2)
8 M, 2 F,

19–76 years
Chronic

AIS C (n = 4)
AIS D (n = 4)

C2–C7 n/a 4

Frullo 2017 [30] USA
Parallel group
controlled trial

To assess feasibility of
subject-adaptive

robotic-assisted therapy:
AAN vs. ST training

modality

17 (3)
12 M and 2 F, 3

NR
53.5 years

Chronic AIS C–D (n = 17) C3–C8 n/a 4

Kim 2019 [31]
Republic of

Korea
RCT

To assess the clinical
efficacy of upper limb

robotic therapy in
people with tetraplegia

34 (4)
RT: 17 (2)
CT: 17 (2)

28 M, 6 F,
RT: 56.7 ± 13.6

years
CT: 47.1 ± 14.9

years

Subacute/Chronic

AIS A (n = 8)
AIS B (n = 6)
AIS C (n = 4)

AIS D (n = 16)

C2–C8 8/10 2
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Table 2. Cont.

Article Nation Design Aim
Number

Participants
(Drop-Outs)

Gender and
Age

SCI Stage
SCI According

to AIS
SCI

Level
Methodological

Quality
CBIM

Singh 2018 [32] Canada
Systematic

review

To summarize
feasibility and
outcomes of

robotic-assisted upper
extremity training for
patients with cervical

SCI

73 (11)
46 M, 8 F, 7 NR

17–75 years
Subacute/Chronic

AIS A-B (n = 16)
AIS C–D (n = 46)

C2–C8
Critically

low quality
3

Yozbatiran 2019
[33]

USA
Systematic

review

To summarize the
current evidence of

robot-assisted
rehabilitation in

patients with
tetraplegia

88 (13)
69 M, 13 F, 6 NR

17–76 years
Subacute/Chronic

AIS A–B(n = 14)
AIS C–D (n = 58)

3 NR
C2–C7 Low quality 3

Jung 2019 [34]
Republic of

Korea
RCT

To assess the effects of
combined upper limb

robotic therapy (RT) as
compared to
conventional

occupational therapy
(OT) in SCI patients

38 (8)
RT: 22 (5)
CT: 16 (3)

24 M, 6 F
RT: 47.23 ± 14
CT: 53 ± 13.5

Subacute

AIS A (n = 3)
AIS B (n = 4)
AIS C (n = 7)

AIS D (n = 16)

C2–C7 4/10 3

Osuagwu 2020
[35]

UK

Interventional
longitudinal
clinical trial

design

To investigate the
therapeutic effect of a

self-administered
home-based hand

rehabilitation
programme for people
with cervical SCI using

the soft extra muscle
(SEM) Glove

15 (0)
11 M, 4 F

50.3 (33–60)
Chronic

AIS C (n = 3)
AIS D (n = 11)

Untested (n = 1)
C2–C5 n/a 4

Abbreviations: AAN: assist-as-needed; AIS: American Spinal Injury Association Impairment Scale; CT: conventional therapy; F: Female; M: Male; NR: not reported; RCT: Randomized Controlled Trial; RT: robotic training; SCI: Spinal
Cord Injury; ST: subject-triggered; USA: United States of America; CBIM.
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Concerning functioning, several outcome measures were assessed by the included
papers, including graded and redefined assessment of strength, sensibility, and prehension
(GRASSP) [25,30], Action Research Arm Test (ARAT) [25,27,29,30], Jebsen-Taylor Hand
Function Test (JTHFT) [27,29], SCIM II [29], and SCIM III [31]. Zariffa et al. [25] showed a
significant improvement of GRASSP score only in the subgroup with partial hand function
at baseline (6.0 ± 1.6 vs. 1.9 ± 0.9; p = 0.04). Considering the whole sample, no significant
results (p > 0.05) were underlined in both GRASSP scores. On the contrary, Frullo et al. [30]
reported significant results in GRASSP strength (p = 0.031) and GRASSP sensation (0.002),
although these results have not been corrected for multiple comparisons. No significant
effects were shown in the ARAT score (p = 0.128). However, Francisco et al. [29], in their
case series, reported a significant increase in terms of ARAT (30.7 ± 3.8 vs. 34.3 ± 4.0;
p = 0.02) and JTHFT (0.14 ± 0.04 vs. 0.21 ± 0.07; p = 0.04), whereas SCIM II did not
significantly improve (62.1 ± 9.7 vs. 62.6 ± 9.7; p = 0.18).

On the other hand, the RCT performed by Kim et al. reported significant differences
between groups in terms of total SCIM-III score (7 [2 to 11] vs. 0 [−4 to 4]; p < 0.01).
However, only the mobility (room and toilet) item significantly varied between groups (1
[0 to 3] vs. 0 [−1 to 1]; p = 0.02) in contrast with the other items not showing significant
differences [31].

Both systematic reviews [32,33] reported that robot-assisted rehabilitation might be
considered promising training to improve muscle function in SCI.

Lastly, the case series performed by Cortes et al. [26] evaluated kinematics and cor-
ticospinal excitability after robotic rehabilitation in SCI patients. The authors reported
a significant improvement of kinematic (1.17 ± 0.11 radians vs. 1.03 ± 0.08 radians;
p = 0.03) and smoothness of movement (0.26 ± 0.03 vs. 0.31 ± 0.02; p = 0.03) in SCI
patients. However, the corticospinal excitability did not show significant changes (ampli-
tude: 32 ± 0.5 mV vs. 27 ± 0.06 mV; p = 0.35; latency: 17.4 ± 0.7 ms vs. 16.9 ± 0.74 ms;
p = 0.28). Similarly, Fitle et al. [27] showed a significant improvement between pre- and
post-intervention in the non-segmental kinematic measure (normalized speed) of the less
affected arm (p = 0.01). In addition, segmental kinematic measures improved significantly
in the more affected arm (p = 0.03).

Lastly, the study by Frullo et al. [30] reported a significant improvement of normalized
speed (p < 0.001), mean arrest period ratio (p = 0.001), and spectral arc length (p = 0.001)
only in the assist-as-need group.

Figure 1. Prisma Flow chart.
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4. Discussion

Advancement in technology has been widely spreading in the rehabilitation field
during the past two decades, and SCI patients might benefit from robotic rehabilitation.
However, despite this approach being commonly adopted in the clinical practice, this
systematic review showed that only a few studies assessed the effectiveness of robotic-
assisted training for recovering upper limb muscle strength and function in patients
with SCI.

Taken together, our findings suggested that robotic devices for upper limbs might be
considered safe, tolerable, and feasible in the complex rehabilitative management of SCI
patients. However, to date, safety, tolerance, and feasibility of robot-assisted training have
been primarily investigated in patients with other neurological diseases (i.e., stroke and
multiple sclerosis) [36–38] and these outcomes should be deeply assessed in SCI patients,
starting from the findings reported by the present systematic review.

We highlighted that robotic rehabilitation mainly was assessed in patients suffering
from incomplete SCI, both with sub-acute [25,31–34] and chronic lesions. [26–33,35] Among
the included studies, Zariffa et al. [25] suggested that SCI patients with more represented
residual function could beneficiate from robot-assisted therapy more than other subjects.

Indeed, motor and sensory feedback stimuli are key components of task-oriented
robotic training and might be more effective in patients with incomplete SCI than complete
SCI [11–14]. Moreover, plasticity process can be elicited indirectly by sensory and motor
afferent stimuli and directly through neuromodulation via non-invasive brain stimulation.
More in detail, Yozbatiran et al. [39] suggested that modulating excitatory input of the
corticospinal tracts on spinal circuits induced by tDCS combined with robot-assisted
training could improve arm and hand functions in persons with incomplete SCI. This
intriguing study has not been included in our systematic review, considering that the
combination of robotic-assisted rehabilitation with other advanced technologies (i.e., NIBS
and tDCS) was an exclusion criterion due to the limitation that they might affect the efficacy
of robot-assisted training. However, we are aware that this combination should be deeply
investigated in future studies on SCI patients.

Robotic training should be considered as an “add on” to conventional therapy in
sub-acute SCI patients (≤3 months after injury); four studies included in this systematic
review assessed the role of robotic-assisted rehabilitation combined with conventional
physical therapy [25,28] and occupational therapy [25,31], probably due to complex sce-
nario underpinning SCI management. In contrast, robotic treatment has been proposed as a
stand-alone therapy in three case series out of four involving chronic SCI patients [26,27,29].

The present comprehensive systematic review showed a lack of evidence on differ-
ences between proximal (shoulder elbow) and distal (hand) training according to the
robot design. More in detail, rehabilitation robots could be classified into two groups:
end-effector based robots, which provide training capability encapsulating a large portion
of the functional workspace, and exoskeletons, designed to resemble human anatomy
with a structure enabling individual actuation of joints [40]. Therefore, we would like to
highlight that future studies should involve enhanced control modes to allow additional
treatment options in SCI patients; indeed, taking into account the different actions that the
upper limb might exert (i.e., reaching and grasping), robotic devices might have a more
targeted function with a more specific mechanical design in order to perform an adequate
patient-tailored rehabilitation in subjects after SCI.

Concerning the type of intervention proposed, very high variability was recorded
in terms of robot devices, the number of sessions per day, session duration, frequency,
and joint involvement. This intrinsic limitation, probably related to the first phase of
adopting new technology, severely affects the generalizability of these findings. In addition,
it should be noted that the type of treatment intervention should be based on the SCI level,
considering the clinical heterogeneity of functional disability occurring in cervical SCI.
Future studies should focus on larger samples involving cervical SCI patients divided into
subgroups to provide a patient-tailored robotic rehabilitative treatment.
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In the literature, we found two similar systematic reviews investigating the role of
robotic rehabilitation in SCI patients, albeit their quality was classified as low [32] and very
low, [33] according to AMSTAR 2 scale [23]. Indeed, both Smith et al. [32] and Yozbatiran
et al. [33] summarized the available literature on the robot-assisted training in upper limb
rehabilitation of SCI patients, including even case reports and studies on the combination of
robotic rehabilitation with other advanced technologies, severely affecting the homogeneity
of data assessed and heavily influencing their results.

Nevertheless, by the present systematic review, the RCT performed by Kim et al. [31]
was investigated first. This good-quality paper reported a significant improvement in
terms of UEMS in the robotic training group compared to the control group (1 [0 to 3] vs.
0 [−1 to 1]; p = 0.03) in SCI patients; on the other hand, no significant changes in MRC
scale were shown (p > 0.05). The authors suggested that significant improvement in muscle
strength might have potential benefits in terms of short-distance mobility and electrical
wheelchair manipulation. In line with these findings, significant improvements in SCIM-III
scores (7 [2 to 11] vs. 0 [−4 to 4]; p < 0.01) in the robot-assisted rehabilitation group might
have positive effects in terms of independence in the ADL [31].

Considering these findings, the present study might be viewed as the first systematic
review performed by a large consensus panel of experts, including research studies specifi-
cally assessing the effects of robot-assisted training of the upper limb in patients with SCI.
We showed that the current available literature on this topic might be defined as low-quality
evidence. The lack of evidence might be partly due to the rapid evolution of advanced
technologies with high costs that might not allow a standardization and reproducibility of
single large-scale rehabilitation intervention.

The studies included in this systematic review had several limitations, as the small sam-
ple sizes, [25,26,31] the lack of a control group [25–29], the monocentric design, [26,27,30,31]
and the lack of long-term follow up evaluations [25–28,31]; as well as the wide variability
in robotic devices, training protocols, and outcome measures adopted in the studies.

5. Conclusions

Taken together, the present comprehensive systematic review summarized the state-
of-the-art robotic-assisted rehabilitation treatments available for patients suffering from
cervical SCI. Nowadays, robotic-assisted training is still experimental, but recent studies
provided preliminary evidence showing intriguing positive effects on functional outcomes
in SCI patients. We are aware that the high clinical heterogeneity of treatment programs
and the variety of robot devices could severely affect the generalizability of the study
results; therefore, future studies are warranted to standardize the type of intervention and
evaluate the role of a robot-assisted training in the complex rehabilitation management of
patients with SCI.
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